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S1 Connection between OSRE and Semiparametric Model

In a semiparametric model when P is indexed by a finite-dimension parameter, θ, and a

nuisance parameter, η. Suppose that we are interested in the inference θ. In this case, m is

the log-likelihood function and v = θ. Following the semiparametric efficiency theory (Bickel

et al. 1993, Chapter 3), h∗n in our equation (2.1) is the least favorable direction for θ and

∇m[h∗n] = I−1(θ0)l̇
∗, where I is the efficient information matrix and l̇∗ is the efficient score

function for θ. Therefore, our OSRE is equivalent to the one-step Newton-Raphson solution

to the efficient score function.

In a fully nonparametric model, v(P ) is a functional of P . In this case, the efficient
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influence function for v(P ) is ψ function satisfying

v̇(P )(g) =

∫
ψ(Z;P )gdP,

where g is any L2(P ) function with
∫
gdP = 0. Such a function exists and is unique (Bickel

et al. (1993); Chapter 4). An initial estimator for v(P ) is v(Pn). Thus, our OSRE beomes

v(Pn)− n−1
∑
ψ(Zi, Pn). This is exactly the de-bias equation given in Kennedy (2022).

In summary, OSRE is equivalent to a one-step Newton-Raphson solution to the efficient

score function in a semiparametric setting; and it reduces to the de-bias equation in Kennedy

(2022) in a nonparametric setting.

S2 Proof of Theorem 1

In this section we will finish the proof of Theorem 1.

Proof. Supposing d(n)(f̂n, fn0) converges to zero in probability, we have

Fn(f̂n)− Fn(fn0) =
〈
v∗n, f̂n − fn0

〉
(n)

+Op

(
d2(n)(f̂n, fn0)

)
. (S2.1)

As we have stated, our proposed estimator for θn0 is defined as

θ̃n = θ̂n − Pn

{
∇m(Z, f̂n)[ĥn]

}
, (S2.2)

where θ̂n = Fn(f̂n) is the plug-in estimator based on f̂n.

By applying (S2.1), (S2.2) and Condition A.1, we have

θ̃n − θn0 =
(
Fn(f̂n)− Fn(fn0)

)
− Pn∇m(Z, f̂n)[ĥn]

=
〈
v∗n, f̂n − fn0

〉
(n)

− (Pn − P )
{
∇m(Z, f̂n)[ĥn]

}
−P

{
∇m(Z, f̂n)[ĥn]

}
+Op

(
d2(n)(f̂n, fn0)

)
.
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With Conditions A.2 and A.3, we can further obtain

θ̃n − θn0 =P
{
∇2m(Z, fn0)[h

∗
n, f̂n − fn0]

}
− (Pn − P )

{
∇m(Z, f̂n)[ĥn]

}
−P

{
∇2m(Z, fn0)[ĥn, f̂n − fn0]

}
+Op

(
d2(n)(f̂n, fn0)

)
=− (Pn − P )

{
∇m(Z, f̂n)[ĥn]

}
− P

{
∇2m(Z, fn0)[ĥn − h∗n, f̂n − fn0]

}
+Op

(
d2(n)(f̂n, fn0)

)
.

By the Cauchy-Schwarz inequality, Conditions A.4 and A.5 imply that

P
{
∇2m(Z, fn0)[ĥn − h∗n, f̂n − fn0]

}
= op(n

− 1
2 ).

Consequently,

√
n(θ̃n − θn0) =−

√
n(Pn − P )

{
∇m(Z, f̂n)[ĥn]

}
−

√
nP
{
∇2m(Z, fn0)[ĥn − h∗n, f̂n − fn0]

}
+Op

(√
nd2(n)(f̂n, fn0)

)
=−Gn{∇m(Z, f̂n)[ĥn]}+ op(1)

Finally, from Condition A.6,

−Gn{∇m(Z, f̂n)[ĥn]} = −Gn{∇m(Z, fn0)[h
∗
n]}+ op(1).

Then, we can conclude that

√
n(θ̃n − θn0) = −{Gn∇m(Z, fn0)[h

∗
n]}+ op(1),

so we have proved the first part of the theorem. The second part of the theorem is due to

the asymptotic linear expansion and Condition A.7.

.

S3 Technical Conditions and proof of Theorem 3

In order to obtain the asymptotic properties for the OSRE listed in Theorem 3, we need the

following technical assumptions:
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B.1 X i are i.i.d and there exists a constant U such that maxi,j |Xi,j| ≤ U .

B.2 The smallest eigenvalue Λ2
min of Σ is larger than a constant Cmin. The largest eigenvalue

Λ2
max of Σ is smaller than a constant Cmax. Moreover, the diagonal elements of Σ are

uniformly bounded by 1 after the normalization X’s.

B.3 Define C0 = (32Cmax/Cmin) + 1. We have ρ(Σ, C0s0) ≤ ρ, for some constant ρ > 0,

where ρ(A, k) = maxT⊆{1,2,...,pn},|T |≤k ∥A−1
T,T∥∞, where |T | is the cardinality of T and AT,T

denotes the block of A consisting of the rows and columns from T .

B.4 Let s0 be the number of non-zero coefficients in βn0 and we assume s0 = O(nα0/ log pn),

where α0 < 1/2.

B.5 Let sΩ be the maximum sparsity level of the rows of Ω = Σ−1, which means sΩ =

maxj #{j ̸= k,Ωj,k ̸= 0}. It holds that sΩ = O(nα1/ log pn), where α1 < 1/2.

B.6 {εi}ni=1 are i.i.d with mean zero and variance σ2
ε .

B.7 There exists a constant C such that ∥βn0∥2 ≤ C and ∥βn0∥2 ̸= 0.

B.8 limn→∞ 4σ2
εβ

∗T
n Ωnβ

∗
n → c2.

Remark 1. Condition B.1 implies that covariates are uniformly bounded by a constant. In

fact, most of variables are bounded and it is easy to find a uniform bound. Condition B.2 on

eigenvalues of covariance matrix is common in high-dimensional models. [Van de Geer et al.

(2014), Javanmard and Montanari (2014b), Javanmard et al. (2018)] Condition B.3 is also

given by Javanmard and Montanari (2014b) to obtain a sharper bound on the bias of Lasso

estimator. A large family of covariance matrices satisfy Condition B.3 , such as block diagonal

matrices and circulant matrices, where Σi,j = r|i−j| for some r ∈ (0, 1). Conditions B.4 and
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B.5 control the sparsity of parameters and Σ−1, similar conditions are also given by papers

related to “de-biased” Lasso estimator [Van de Geer et al. (2014), Javanmard and Montanari

(2014b) and Javanmard et al. (2018)]. Van de Geer et al. (2014) assumes s0 = O(n1/2/ log pn).

Our method requires a slightly stronger assumption than Van de Geer et al. (2014) since our

method applies to a much more general class of models are more flexible in applying to

other models. These Conditions also imply that pn can be larger than n and the largest pn

permitted is o(exp(nmin{α1,α2})). Condition B.7 implies the real parameter vector can not

be zero. Conditions B.6 and B.8 guarantee the asymptotic variance of OSRE tends to a

constant.

Proof. Condition B.1 - B.3 has been verified in former statement. Using the same argument

in last example, it is apparent that
√
nd2(n)(f̂n, fn0) = op(1) which verifies Condition 4.

Consider

P
{
∇2m(Z, fn0)[ĥn − h∗n, ĥn − h∗n]

}
= 4(β̂

T

nM − β∗T
n Ω)Σ(MT β̂n − Ωβ∗

n), (S3.3)

where M = T̂−2Γ̂. Note

β̂
T

nM − β∗T
n Ω = β∗T

n (M − Ω) + (β̂n − β∗
n)

T (M − Ω) + (β̂n − β∗
n)

TΩ. (S3.4)

Since Conditions B.1 - B.3 and B.5 hold, Van de Geer et al. (2014) shows that maxk ∥Mk −

Ωk∥2 = Op

(√
sΩ log pn/n

)
, where Mk and Ωk are k-th rows of M and Ω. Since ∥β∗

n∥2 ≤ C,

we have

∥β∗T
n (M − Ω)∥2 = Op

(√
sΩ log pn/n

)
.

Thus, from the conditions that sΩ = o(nα1/ log pn) for some α1 < 1/2 and Λmax ≤ Cmax,

it gives
√
nβ∗T

n (M − Ω)Σ(MT − Ω)β∗
n = op(1). Additionally, s0 = o(nα0/ log pn) for some

α0 < 1/2 and Λmin ≥ Cmin imply that
√
n(β̂n − β∗

0)
TΩ(β̂n − β∗

n) = op(1). Combing these
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results with (S3.3) and (S3.4), we have proved that
√
nd2(n)(ĥn, h

∗
n) = op(1). Condition 5 thus

holds.

For Condition A.6, since

∇m(Z, f)[h] = −2(Y −XTβ)XTMTβ,

To verify Condition 6, recalling that for h(X) = −XTγ,

∇m(Z, f)[h] = −(Y −XTβ)XTγ.

we obtain

1√
n

n∑
i=1

β̂
T

nMX i

(
Yi −XT

i β̂n

)
−
√
nPX,Y

{
β̂

T

nMX(Y −XT β̂n)
}

=
1√
n

n∑
i=1

β̂
T

nMX iX
T
i (β

∗
n − β̂n)−

√
nβ̂

T

nMΣ(β∗
n − β̂n) +

1√
n

n∑
i=1

β̂
T

nMX iεi

=
1√
n

n∑
i=1

[
β̂

T

nMX iX
T
i (β

∗
n − β̂n)− β∗T

n ΩΣ(β∗
n − β̂n)

]
+
√
n(β∗T

n Ω− β̂
T

nM)Σ(β∗
n − β̂n) +

1√
n

n∑
i=1

β̂
T

nMX iεi.

(S3.5)

For the first term, we have

1√
n

n∑
i=1

[
β̂

T

nMX iX
T
i (β

∗
n − β̂n)− β∗T

n (β∗
n − β̂n)

]
=
√
n(β̂n − β∗

n)
TMΣ̂n(β

∗
n − β̂n) +

√
nβ∗T

n (MΣ̂n − I)(β∗
n − β̂n)

=
√
n(β̂n − β∗

n)
T (MΣ̂n − I)(β∗

n − β̂n) +
√
n∥β̂n − β∗

n∥22

+
√
nβ∗T

n (MΣ̂n − I)(β∗
n − β̂n)

For sΩ ≲ n/ log pn, we have ∥MΣ̂n − I∥∞ ≲
√

log pn/n. [Van de Geer et al. (2014)]As the

result, ∥∥∥(MΣ̂n − I)(β∗
n − β̂n)

∥∥∥
∞

= Op

(√
log pn/n

√
s0 log pn

n

)
.

Thanks to Condition B.4 holds,
∥∥∥(MΣ̂n − I)(β∗

n − β̂n)
∥∥∥
∞

= op(n
−1/2).
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It has been proved that with probability tending to 1 [Van de Geer et al. (2014), Javan-

mard et al. (2018)],

∥β̂n − β∗
n∥22 ≤

c1s0σ
2

n
log pn, (S3.6)

where c1 is a constant.

According to (S3.6) and Condition B.4, we have

∥β̂n − β∗
n∥22 = op(n

− 1
2 ). (S3.7)

Combine former statement and Condition B.7, we can conclude

1√
n

n∑
i=1

[
β̂

T

nMX iX
T
i (β

∗
n − β̂n)− β∗T

n (β∗
n − β̂n)

]
= op(1).

As previous proof, we have

d2(n)(ĥn, h
∗
n) = (β̂

T

nM − β∗T
n Ω)Σ(MT β̂n − Ωβ∗

n) = o(n−1/2).

Combining with (S3.7), this implies

√
n(β∗T

n Ω− β̂
T

nM)Σ(β∗
n − β̂n) = op(1).

Therefore,

2√
n

n∑
i=1

β̂
T

nMX i

(
Yi −XT

i β̂n

)
−
√
n2PX,Y

{
β̂

T

nMXT (Y −XT β̂n)
}

=
1√
n
2

n∑
i=1

β̂
T

nMX iεi + op(1).

Thus, verifying Condition 6 is equivalent to verifying the asymptotic equicontinuity of the

last term for the functional class {QXε : ∥Q − Q∗
n∥1 ≤ δn}, where Q∗

n = 2βT
n0Ω, δn =

δ−1max(s0, sΩ)
√

log pn/n.

To this end, let

Gδn = {εXTγ1 − εXTγ2 : d(n)(γj,γ
∗
n) ≤ δ1n, ∥γj − γ∗

n∥1 ≤ δ2n},
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where δ1n = δ−1
√

max(sΩ, s0) log pn/n, δ2n = δ−1max(sΩ, s0)
√
log pn/n, for some constant

δ. By Markov’s inequality and the symmetrization [Van der Vaart and Wellner (1996)], we

have

P (∥Gn∥Gδn
> x) ≤ 2

x
P

∥∥∥∥∥ 1√
n

n∑
i=1

ζig(X i)

∥∥∥∥∥
Gδn

,

where ζi is Radmacher variable. Let D = {β ∈ Rpn : (XTβ)2 ≤ 1}, which is an ellipsoid in

Rpn . By Hoeffding’s inequality [Van der Vaart and Wellner (1996)], the stochastic process is

sub-Gaussian for the l2(Pn)-seminorm and we have

1

n

n∑
i=1

g2(X i) =
1

n

n∑
i=1

[
εiX

T
i γ1 − εiX

T
i γ2

]2
≤ max

i
(XT

i (γ1 − γ2))
2 1

n

n∑
i=1

ε2i .

From the maximal inequality [Van der Vaart and Wellner (1996)], we conclude

Pε

∥∥∥∥∥ 1√
n

n∑
i=1

εig(X i)

∥∥∥∥∥
Gδn

≲P

∫ δn

0

√
logN(ε,Hδn , dn)dε

(
1

n

n∑
i=1

ε2i

) 1
2


≲P

[
D2(Hδn , dn)

] 1
2

(
E
1

n

n∑
i=1

ε2i

) 1
2

where Hδn = {γ1 − γ2 : d(n)(γj,γ
∗
n) ≤ δ1n, ∥γj − γ∗

n∥1 ≤ δ2n} with the norm dn(γ) =

maxi(X
T
i γ)

2l, and D(Hδn , dn) =
∫∞
0

√
logN(ε,Hδn , dn)dε.

On the other hand, since Hδn ⊆ 2δ1nD and Hδn ⊆ 2δ2nB, where B = {β ∈ Rpn : ∥β∥1 ≤

1}, it suffices to bound D(D, dn) and D(B, dn) to complete the proof. If X is a random vector

on Rpn , then A∗X is an isotropic random vector on Rpn . According to Lemma 4.4 of Bartlett

et al. (2012), we have

D(B, dn) ≤ cQhn.

where Q = max1≤i≤n ∥X i∥lpn∞ , hn = log3/2 nmax{log1/2 n, log1/2 pn}. Moreover, Lemma 4.7
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of Bartlett et al. (2012) implies that

P [D2(D, dn)]
1
2 ≤ c3(EW

2)1/2
√

log n log pn,

where c3 is an absolute constant and W = max ∥A∗X i∥2. According to Condition 1, Q ≤ U

and W ≤ U
√
pn. Hence,

Pε

∥∥∥∥∥ 1√
n

n∑
i=1

εig(Xi)

∥∥∥∥∥
Gδn

≲ min{δ1n
√
pn log n log pn, δ2nhn}.

Since s0 = O(nα0/ log pn) and s1 = O(nα1/ log pn), the right hand side tends to zero. This

verifies the asymptotic equicontinuity in Condition 6 holds.

Combing with Conditions B.6 and B.8, we have finished the proof for Theorem 3.

S4 Technical Conditions and proof of Theorem 4

In order to obtain the asymptotic properties of θ̂n, we need the following assumptions:

C.1 The number of nonzero components q > 0 is fixed and there is a constant cf > 0 such

that min1≤j≤q ∥fj∥2 ≥ cf .

C.2 The random variables εi are i.i.d with mean zero and Var(εi) = σ2
ε . Their tail probabil-

ities satisfy P (|εi| > x) ≤ K exp(−Cx2), i = 1, . . . , n, for all x ≥ 0 and for constants C

and K.

C.3 Pfj(Xj) = 0 and fj ∈ F, where F is the class of functions f on [0, 1] whose kth derivative

f (k) exists and satisfies a Lipschitz condition of order α:

∣∣f (k)(s)− f (k)(t)
∣∣ ≤ C|s− t|α for s, t ∈ [0, 1],

where α ∈ (0, 1] and let d = k + α.
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C.4 The covariate vector X has a continuous density and there exist constants C1 and C2

such that the density function gj of Xj satisfies 0 < C1 ≤ gj(x) ≤ C2 ≤ ∞ on [0, 1] for

every 1 ≤ j ≤ pn.

C.5 In the projection π[V1k|V 1,−k, X2, . . . , Xpn ], the number of nonzero components of hjk(Xj)

functions qk > 0 is fixed, hjk is Lipschitz continuous with smooth parameter d and there

is a constant cu > 0 such that min2≤j≤q ∥ukj∥2 ≥ cu, ukj is the projection of V 1,−k into

the space of Xj.

C.6 λn1 ≍
√
n log(pnmn) and λ̃kn1 ≍ λ̃n1 ≍

√
n log(pnmn) uniformly in k and mn ≍ n1/(2d+1)

for d > 3/2.

C.7 Suppose that λn2 ≤ O(n1/2) and satisfies

λn2
n(8d+ 3)/(8d+ 4)

= o(1),

and

n1/(4d+2) log1/2(pnmn)

λn2
= o(1).

C.8 Suppose that λ̃n2k ≍ λ̃n2 ≤ O(n1/2) and satisfies

λ̃n2
n(8d+ 3)/(8d+ 4)

= o(1),

and

n1/(4d+2) log1/2(pnmn)

λ̃n2
= o(1).

C.9 Let V T
1,−kη

∗
k1 =

∑
l∈Ak1

V1lη
∗
k1l, where Ak1 = {l : η∗k1l ̸= 0} and

s∗nk(X−1) =
∑
j∈Ak2

mn∑
l=1

ϕl(Xj)η
∗
kjl,

where Ak2 = {j : s∗(n)kj (x) ̸= 0, for all x}, and define

η∗
nk = (η∗k1l1 , . . . , η

∗
k1lrk

, η∗kj11, . . . , η
∗
kj1mn

, . . . , η∗kjqk1
, . . . , η∗kjqkmn

),



S4. TECHNICAL CONDITIONS AND PROOF OF THEOREM 4

where lu ∈ Ak1 and ju ∈ Ak2. Suppose η∗
nk1 and s∗nk maximize P [V1k − V T

1,−kη
∗
nk1 −

s(X−1)]
2 in the sieve space which is the linear space of B-spline functions in this example.

Besides, suppose constant Q such that qk < Q and it satisfies ∥η∗
nk∥2 ≤ Cη for all k and

a constant Cη.

C.10 Suppose

lim
n→∞

κ∗T
n1Ωn11κ

∗
n1 = c2,

where κ∗
n1 = (κ∗n11, . . . , κ

∗
n1mn

), κ∗n1k =
∫
f01(t)ϕk(t)dt, Ωn11 is the first mn rows and lines

of Ωn which is the inverse of Covariance matrix of B-spline functions of {X1, . . . , Xpn}.

Remark 2. Conditions C.1, C.3 and C.4 are standard conditions for nonparametric additive

models. These conditions are needed to estimate the nonzero additive components at optimal

rate, even if q important variables are known. Condition C.1 can be slightly relaxed to q

increase in log n scale. Condition C.2 strengthens the assumptions needed for nonparametric

estimation of a nonparametric additive model. Condition C.6 are the scale of λn1 which is

suggested by Huang et al. (2010) to guarantee Lasso estimators in the first step are well

enough to be used as weights in the adaptive group Lasso, and the same scale of λ̃n1 also

be applied to the group Lasso of π[V1k|V 1,−k, X2, . . . , Xpn ]. Condition C.7 is the condition

to obtain converge rate of the function. Conditions C.1 - C.4 and C.7 are also given by

Huang et al. (2010). Condition C.5 and C.9 ensures the sparse structure of the projection

π[V1k|V 1,−k, X2, . . . , Xpn ]. Since basis functions of B-spline are almost orthogonal to each

other and most of covariates are independent from each other, π[V1k|V 1,−k, X2, . . . , Xpn ] can

satisfy the sparse structure. At least conditions C.5 and C.9 hold if all the covariates are

independent. Condition C.9 also implies ∥ηnk0∥2 won’t tend to ∞. Besides, Condition C.8 is

the same condition as C.7 which is applied to π[V1k|V 1,−k, X2, . . . , Xpn ]. Besides, Conditions
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C.7 and C.8 allow λn2 = O(n1/2) and λ̃n2 = O(n1/2). Then, we can obtain pn is at most

o(exp(n2d/(2d+1))) by substituting λn2 and λ̃n2 into the two equations in Conditions C.7 and

C.8. Condition C.10 guarantee the asymptotic variance of the estimator tends to a constant.

Proof. Conditions A.1 - A.3 have been verified in the main text. The remaining conditions

need to verify are A.4 - A.6.

For Condition A.4, since Conditions C.1 - C.4, C.6 and C.7 hold, it was proved by Huang

et al. (2010) that

pn∑
j=1

∥β∗
n − β̂n∥22 = Op

(
m2

n

n
+
mn

n
+

1

m2d−1
n

+
4m2

nλ
2
n2

n2

)
(S4.8)

and
pn∑
j=1

∥f̂nj − fn0j∥22 = Op(
mn

n
+

1

n
+

1

m2d
n

+
4mnλ

2
n2

n2
). (S4.9)

Thus since λn1 = O(
√
n log(pnmn)), mn = O(n1/(2d+1)) and λn2 ≤ O(n1/2),

√
nd2(n)(f̂n, fn0) = Op(n

1/2n−2d/(2d+1)) = Op(n
(1/2−d)/(2d+1)).

Since d > 3/2, d(n)(f̂n, fn0) = op(n
−1/4).

To verify Condition A.5, we consider < ĥn − h∗n, ĥn − h∗n >(n). Since V = (V 1, . . . ,V n)
T

has i.i.d bounded rows and λ̃nk2 has the same order of λ̃n2 in Condition C.8, using the proof

of (S4.8), we have

pn∑
j=2

∥η̂kj − η∗
nkj∥22 = Op(

m2
n

n
+
mn

n
+

1

m2d−1
n

+
4m2

nλ
2
n2

n2
). (S4.10)

Then we have

|τ̂ 2k − τ 2k | =|ξTk ξk/n− τ 2k∥+ |ξTk VAk
(η̂k − η∗

nk)/n|

+ |ξTk VAk
η∗
nk/n|+ |η∗T

nkV
T
Ak
VAk

(η̂kn − η∗
nk)/n|,

(S4.11)

where ξk = (ξk1, . . . , ξkn)
T with ξki = V1k − s∗nk(Xi,Ak

). Recalling the definition in condition

C.9, VAk
is obtained by removing all mn columns that are not in the set Ak of V .
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We now consider each term in the right-hand side of (S4.11). Without loss of generally,

we suppose the first qk components of s
∗(n)
k are not zero and the others are zero. For the first

term, we have

|ξTk ξk/n− τ 2k | ≤ 2(|ϵTk ϵk/n− τ 2k |+ |ζT
knζkn/n|) ≲ n−1/2 + qm−2d

n ,

where ζkn = (ζ1kn, . . . , ζnkn)
T with ζikn =

∑
j∈Ak

(s
∗(n)
k (Xij) − s∗nk(Xij)). The last step holds

for

∥s∗(n)k (Xij)− s∗nk(Xij)∥2 = O
(
m−d

n

)
.

For the second term in (S4.11),

|ξTk VAk
(η̂kn − ηnk0)/n| ≤ ∥ξ∗Tk ∥2∥VAk

(η̂kn − ηnk0)/n∥2,

where ξ∗k = VAk
(V T

Ak
VAk

)−1V T
Ak
ξk. By equations (36) and (37) of Huang et al. (2010),

∥ξ∗k∥22 = Op(qmn + 1 + qnm−2d
n ). (S4.12)

Lemma 3 of Huang et al. (2010) implies there exist constants c1 and c2 such that

c1m
−1
n ≤ σmin(V

T
Ak
VAk

/n) ≤ σmax(V
T
Ak
VAk

/n) ≤ c2m
−1
n . (S4.13)

Combing previous results, we have

∥VAk
(η̂k − η∗

nk)/n∥22 ≲ n−1m−1
n

(
m2

n

n
+
mn

n
+

1

m2d−1
n

+
4m2

nλ
2
n2

n2

)
.

Consequently, we have

|ξTk VAk
(η̂k − η∗

nk)/n|2

=Op

(
n−1(qmn + 1 + qnm−2d

n )

(
mn

n
+

1

n
+

1

m2d
n

+
4mnλ

2
n2

n2

))
.

For the third term in (S4.11), from (S4.12), (S4.13) and Condition C.9, we obtain

|ξTk VAk
η∗
nk/n|2 ≲ n−1m−1

n (qmn + 1 + qnm−2d
n ).
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Using (S4.10), (S4.13) and Condition C.9, we have

|η∗T
nkV

T
Ak
VAk

(η̂k − η∗
nk)/n|2 ≲ m−2

n

(
m2

n

n
+
mn

n
+

1

m2d−1
n

+
4m2

nλ
2
n2

n2

)
.

Combining the above results, since mn = O(n1/(2d+1)) and λn2 ≤ O(n1/2), for d > 3/2, we

conclude |τ̂ 2k − τ 2k | = op(n
−1/4). Since 1/τ 2k = O(1), this also implies1/τ̂ 2k − 1/τ 2k = op(n

−1/4).

With this result, let M̂ = T̂−2Ĉ so

∥M̂k −Mk∥2 ≤ ∥η̂k − η∗
nk∥/τ̂ 2k + ∥η∗

nk∥2(1/τ̂ 2k − 1/τ 2k )

= op(n
−1/4).

(S4.14)

Clearly,

∥κ̂TM̂ − κTM∥22 ≤ ∥(κ̂− κ)TM∥22 + ∥(κ̂− κ)T (M̂ −M)∥22 + ∥κT (M̂ −M)∥22.

Define ΣVk
= P [V i,Ak

V T
i,Ak

], where V i,Ak
is obtained by removing all components that are

included in Ak1 and allmn components that are not in the set Ak of V i. By taking expectation

in the proof of (S4.13), there exist constants c3 and c4 such that

c3m
−1
n ≤ σmin(ΣVk

) ≤ σmax(ΣVk
) ≤ c4m

−1
n . (S4.15)

Since M is first mn columns of Σ−1
Vk
, it holds

∥(κ̂− κ)TM∥22 ≲ mn

(
m2

n

n
+
mn

n
+

1

m2d−1
n

+
4m2

nλ
2
n2

n2

)
.

Under Condition C.3, C.6 and C.8, we obtain ∥(κ̂−κ)TM∥22 = op(mnn
−1/2). Thus, combing

with (S4.14), we have

∥κ̂TM̂ − κTM∥22 = op(mnn
−1/2). (S4.16)

By the properties of spline [De Boor et al. (1978)], there exists a positive constant c such

that

d2(n)(ĥn, h
∗
n) ≤ cm−1

n ∥κ̂M̂ − κM∥22.
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This implies d2(n)(ĥn, h
∗
n) = op(n

−1/2). We have verified Condition A.5.

To verify Condition A.6, recall that

∇m(Z, f̂)[ĥ] = −κ̂TM̂V (Y − V T β̂).

Therefore, similar decomposition in (S3.5) can be applied, then we have

1√
n

n∑
i=1

κ̂TM̂Vi

(
Yi − V T

i β̂n

)
−
√
nPV ,Y

(
κ̂TM̂V

(
Y − V T β̂n

))
=
√
n
[
(κ̂TM̂ − κTM)Σ̂Vk

(βn0 − β̂n)
]
+
√
n
[
κ∗T

(
Σ−1

Vk
Σ̂Vk

− I
)
(βn0 − β̂n)

]
+
√
n
[
(κ̂TM̂ − κTM)ΣVk

(βn0 − β̂n)
]
+

1√
n

n∑
i=1

(Yi − V T
i )V T

i κ̂TM̂,

where Σ̂Vk
= V T

k Vk/n, κ
∗T = (κT , 0, . . . , 0), βn0 maximizes m-function in the sieve space. As

for the first term, combining (S4.8) with (S4.13) and (S4.16), we have

√
n
[
(κ̂TM̂ − κTM)Σ̂Vk

(βn0 − β̂n)
]
= Op

(
n1/4

(
m2

n

n
+
mn

n
+

1

m2d−1
n

+
4m2

nλ
2
n2

n2

)1/2
)
.

Since Condition 6 holds, we know that the first term is op(1). Follow the proof of Theorem

7 of Javanmard and Montanari (2014a) by replacing the Cmin ≤ σmin(Σ) ≤ σmax(Σ) ≤ Cmax

with (S4.15), we have

∥Σ−1
Vk
Σ̂Vk

− I∥∞ = Op

(√
log pnmn

n

)
.

Combine with (S4.8), we have

√
n
[
κ∗T

(
Σ−1

Vk
Σ̂Vk

− I
)
(βn0 − β̂n)

]
= op(1).

It follows from (S4.8), (S4.15) and (S4.16) that the third term is op(1). Thus, we have

1√
n

n∑
i=1

κ̂TM̂Vi

(
Yi − V T

i β̂n

)
−
√
nPV ,Y

(
κ̂TM̂V

(
Y − V T β̂n

))
=

1√
n

n∑
i=1

κ̂TM̂Viνi + op(1).
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where νi = Yi − V T
i βn0 Thus, verifying Condition A.6 is equivalent to proving the equiconti-

nuity of the right-hand side of the above expression.

To this end, let

Gδn = {νV Tγ1 − νV Tγ2 : d
2
(n)(γj,γ

∗
n) ≤ δ1n},

where γ∗
n = κTM , δ1n = δ−1mnn

−1/2, for some constant δ. Following to the proof of Theorem

3, we can conclude

P [D2(D, dn)]
1
2 ≤ c(EW 2)1/2

√
log n log pnmn,

Since B-spline basis functions are bounded by a constant U According to Condition C.5

and C.9, each line of Σ−1
V has at most qmn columns of non-zero components. Recalling the

definition of W , W ≤ U
√
qmn. Hence,

Pν

∥∥∥∥∥ 1√
n

n∑
i=1

νig(Xi)

∥∥∥∥∥
Gδn

≲
√
δ1n
√
mn log n log pnmn.

Since Condition C.6 holds, the right hand side tends to zero. Then, we can verify the

asymptotic equicontinuity in Condition A.6. Finally, Condition A.7 follows naturally from

condition C.10.
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S5 OSRE for coefficient inference in Lasso

Single coefficient example has been widely learned in recent years, which is called as “de-

biased” estimator. In this section we will use it as another example. Consider n i.i.d samples

(X i, Yi) with X i = (Xi1, . . . , Xipn)
T ∈ Rpn , where one of X ′s is one and the others have

mean zero for k > 1. Moreover, it holds

Yi =

pn∑
j=1

Xijβn0j + εi, P [εi|X i] = 0, (S5.1)

where βn0 = (βn01, . . . , βn0pn)
T is the vector of parameters and εi is a random variable

representing the noise in the i-th response variable. Let Fn = {f(x) =
∑pn

j=1 xjβj}, which is

a linear functional class. In addition, we equip Fn with an inner product as

< f1, f2 >(n)= P {f1(X)f2(X)} =

pn∑
j,k=1

βjP [XjXk]βk for all f1, f2 ∈ Fn.

The true function fn0(x) =
∑pn

j=1 xjβn0j ∈ Fn is assumed to be the unique maximizer for

P{m(X, Y, f)} with m(X, Y, f) = −(Y − f(X))2/2. Clearly,

P {∇m(X i, Yi, fn0)[h]} = P {(Yi − fn0(X i))h(X i)} ,

and

P
{
∇2m(X i, Yi, fn0)[h1, h2]

}
= −P {h1(X i)h2(X i)} .

Suppose that we are interested in the first component of βn0, . Then Fn(f) = βn01 which

is equivalent to P [eT
1Σ

−1
n Xf(X)], where e1 is a pn-vector with only the first element is one

and the others are zero, and Σn is the covariance matrix of X assumed to be non-singular.

Furthermore, for hn(X) =
∑pn

j=1Xjγj, it holds ∇Fn(fn0)[hn] = γ1. To construct OSRE for

βn01, the key step is to obtain h∗n as given in Condition 3. For the linear model, we show

h∗n(X) = −(P
{
g2n(X)

}
)−1gn(X), (S5.2)
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where gn(X) = X1 − π(X1|X2, X3, . . . , Xpn), and π(X1|X2, . . . , Xpn) is the L
2(P ) projection

of X1 onto the linear span of X2, . . . , Xpn .

To see this, since π(X1|X2, . . . , Xpn) is the L
2(P ) projection of X1 onto the linear span

of X2, . . . , Xpn , we obtain

P {(X1 − π(X1|X2, X3, . . . , Xpn))π(X1|X2, X3, . . . , Xpn)} = 0,

and

P {(X1 − π(X1|X2, X3, . . . , Xpn))Xk} = 0 , for all k = 2, 3, . . . , pn.

Thus,

P
{
∇2m(Z, fn0)[h

∗
n, X1]

}
=(Pg2n(X))−1P [(X1 − π[X1|X2, X3, . . . , Xpn ])X1]

=(Pg2n(X))−1P [(X1 − π(X1|X2, X3, . . . , Xpn))
2]

=1

and for k > 1,

P
{
∇2m(Z, fn0)[h

∗
n, Xk]

}
=(Pg2n(X))−1P [(X1 − π[X1|X2, X3, . . . , Xpn ])Xk] = 0.

Consequently, for any hn ∈ Fn with hn(x) =
∑pn

j=1 xjγj, we obtain

P
{
∇2m(Z, fn0)[h

∗
n, hn]

}
= γ1 = ∇F(fn0)[hn].

In other words, h∗n satisfies Condition 3.

Therefore, suppose β̂n is an initial estimator of β∗
n and we can find a proper estimator

for h∗n, denoted by ĥn. The OSRE for β∗
n1 is then given as

β̃n1 = β̂n1 −
1

n

n∑
i=1

ĥn(X i)
(
Yi −XT

i β̂n

)
, (S5.3)

where β̂n1 is the first coordinate of β̂n.
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Without loss of generality, we suppose the parameter we are interested in is the first

coordinate of linear parameter. Suppose the linear regression model is defined as (S5.1). The

vector parameter βn0 is sparse, then the initial estimator β̂n in (S5.3) can be estimated using

the Lasso method:

β̂n = arg min
β∈Rpn

{
1

n
∥Y −Xβ∥22 + 2λ∥β∥1

}
, (S5.4)

where ∥Y −Xβ∥22 =
∑n

i=1(Yi −XT
i β)

2, ∥β∥1 =
∑pn

j=1 |βj| is the l1-norm on Rpn and λ ≥ 0

is a penalty parameter. Obviously, the Lasso estimator of fn0 is

f̂n(X i) = XT
i β̂n, (S5.5)

where β̂n is defined by (S5.4).

Next, we should estimate h∗n defined by (S5.2). Recalling the definition of h∗n, we should

first estimate π(X1|X2, X3, . . . , Xpn), the projection of X1 on the linear space spanned by

X1, ..., Xpn . This estimation can be treated as another high-dimensional linear regression

problem, so we adopt Lasso to estimate the coefficients:

η̂1 = arg min
η∈Rp−1

{
1

2n
∥X1 −X−1η∥22 + λ̃∥η∥1

}
,

where η̂1 = (η̂11, . . . , η̂1pn), X1 = (Xi1, . . . , Xn1)
T , X−1 is the sub-matrix of X obtained by

removing the first column. We then obtain

ĝn(X) = X1 − π̂(X1|X2, . . . , Xpn) = X1 −XT
−1η̂1,

where X−1 = (X2, . . . , Xpn)
T . Next, we estimate Pg2n(X) using

τ̂ 21 = ∥X1 −XT
−1η̂1∥22/n+ λ∥η̂1∥1.

Consequently, the estimator for h∗n is given as

ĥn(X) = −ĝn(X)/τ̂ 21 . (S5.6)
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Since the second part of (S2.2) is

Pn

{
∇m(Z, f̂n)[ĥn]

}
= Pn

{
(Y − f̂n(X))ĥn(X)

}
,

by applying (S5.5) and (S5.6) to (S2.2), the one-step regularized estimator for βn01 is

β̃n1 = β̂n1 +
1

n

n∑
i=1

τ̂−2
1

(
Xi1 −

pn∑
j=2

Xij η̂1j

)(
Yi −XT

i β̂n

)
, (S5.7)

where β̂n1 is the first element of the initial Lasso estimator β̂n. As a note, the OSRE is exactly

the same as the de-biased Lasso estimator in Van de Geer et al. (2014) and Javanmard et al.

(2018).

To state the asymptotic properties for the OSRE, we need the following assumptions:

B.9 Let s1 be the number of non-zero elements of the first row of Ω = Σ−1. We assume

s1 = O(nα1/ log pn), where α1 < 1/2.

B.10 Let Ω11n be the first line and first row element of Ωn, suppose limn→∞ Ω11n = Ω11.

Remark 3. Condition B.9 controls the sparsity of parameters and Σ−1, similar conditions are

also given by papers related to “de-biased” Lasso estimator [Van de Geer et al. (2014), Javan-

mard and Montanari (2014b) and Javanmard et al. (2018)]. These Conditions also imply that

pn can be larger than n and the largest pn permitted is o(exp(nmin{α1,α2})). Conditions B.6

and B.10 guarantee the asymptotic variance of OSRE tends to a constant.

Theorem 1. Suppose that Conditions B.1 - B.4, B.6, B.9,B.10 hold true. Furthermore,

λ ≍
√
log pn/n in (S5.4) and λ̃ ≍

√
log pn/n in (S5). Then

√
n(β̃n1 − βn01)

p−→ N(0, c2),

where c2 = σ2
εΩ11, .
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Proof. In order to prove this theorem, we need to verify all the conditions we have listed

before. Conditions A.1 - A.3 have been verified in Section 2.3. Thus, the remaining conditions

to verify are Conditions A.4 - A.7. First, let us consider d(n)(f̂n, fn0). Since (S3.6) and

Condition B.2 holds, we have

d2(n)(f̂n, fn0) = (β̂n − β∗
n)

TΣ(β̂n − β∗
n) = Op

(
s0 log pn

n

)
.

Thus, Condition B.4 implies
√
nd2(n)(f̂n, fn0) = op(1) so Condition 4 holds.

We now consider

P
{
∇2m(Z, fn0)[ĥn − h∗n, f̂n − fn0]

}
= (γ̂n − γ∗

n)
TΣ(β̂n − β∗

n),

where γ∗
n = (1,ηT

n01)
T/τ 210, ηn01 is the vector of coefficient of π(X1|X2, . . . , Xpn), τ

2
10 =

Pg2n(X) and γ̂n = (1, η̂T
1 )

T/τ̂ 21 . Since Conditions B.1, B.2 and B.9 hold and λ̃ ≍
√

log pn/n,

as proved by Theorem 2.4 of Van de Geer et al. (2014) that ∥γ̂n−γ∗
n∥2 = Op

(√
s1 log pn/n

)
,

we have

√
n|(γ̂n − γ∗

n)
TΣ(β̂n − β∗

n)| = Op

(√
s0s1 log pn√

n

)
. (S5.8)

We use s0 = O(nα0/ log pn) and s1 = O(nα1/ log pn) to obtain that
√
n|(γ̂n − γ∗

n)
TΣ(β̂n −

β∗
n)| = op(1). This verifies Condition A.5.

To verify Condition A.6, recalling that for h(X) = −XTγ,

∇m(Z, f)[h] = −(Y −XTβ)XTγ.
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Therefore, apply similar decomposition like (S3.5), we have

1√
n

n∑
i=1

(
Yi −XT

i β̂n

)
XT

i γ̂n −
√
nPX,Y

{
(Y −XT β̂n)X

T γ̂n

}
=

1√
n

n∑
i=1

γ̂T
nX iX

T
i (β

∗
n − β̂n)−

√
nγ̂T

nΣ(β
∗
n − β̂n) +

1√
n

n∑
i=1

γ̂T
nX iεi

=
1√
n

n∑
i=1

[
γ̂T
nX iX

T
i (β

∗
n − β̂n)− γ∗T

n X iX
T
i (β

∗
n − β̂n)

]
+

1√
n

n∑
i=1

[
γ∗T
n X iX

T
i (β

∗
n − β̂n)− γ∗T

n Σ(β∗
n − β̂n)

]
+
√
n(γ∗

n − γ̂n)
TΣ(β∗

n − β̂n) +
1√
n

n∑
i=1

γ̂T
nX iεi

Since Conditions B.1 - B.3 hold, according to equation (96) of Javanmard et al. (2018), we

have

√
n(γ̂n − γ∗

n)
T Σ̂n(β

∗
n − β̂n) ≲ min(s0, s1)

log pn√
n
. (S5.9)

Additionally, equation (89) of Javanmard et al. (2018) implies that

P

(√
neT

1 (Σ
−1
n Σ̂n − I)(β∗

n − β̂n) ≥ c2

√
s0
n
log pn

)
→ 0, (S5.10)

as n tends to ∞, where c2 is a constant. Thus, combing equations (S5.8), (S5.9) and (S5.10)

and applying Conditions B.4 and B.9, we have

1√
n

n∑
i=1

(
Yi −XT

i β̂n

)
XT

i γ̂n −
√
nP n

X,Y (Y −XT β̂n)X
T γ̂n

=
1√
n

n∑
i=1

γ̂T
nX iεi + op(1).

Thus, verifying Condition A.6 is equivalent to proving the equicontinuity of the right-hand

side of the above expression. This have been proved in Section S3.

Condition A.7 follows naturally from condition B.6 and B.10. Theorem 1 holds.
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S5.1 Simulation based on oracle h∗n

In this subsection, we will provide more numerical experiments for OSRE based on oracle

h∗n. Note that ĥn is an estimator of h∗n, while h
∗
n would have closed-form when Σ is known.

h∗n in the OSRE of θ should be

h∗n(X) = 2βTΩX,

and h∗n in the OSRE of β1 and βk should be

h∗n(X) = ΩX,

where Ω = Σ−1. Table 1 shows results for oracle OSRE based on 500 replicates for high-

dimensional linear models. The cover probability of the estimators are similar with OSRE

based on estimated h∗n, while the oracle OSRE will have smaller SEs and ESEs than OSRE

based on estimated h∗n. When sample size n = 200, SEs for the oracle OSREs are about 70%

of the SE fro the OSRE based on estimated h∗n.

Table 1: Results for oracle OSRE based on 500 replicates for high-dimensional linear models.
n Method Parameter Bias SE ESE CP95 CP90 Bias SE ESE CP95 CP90

(a) (b)

100 OSRE θ -0.051 0.412 0.372 0.886 0.828 0.055 0.386 0.402 0.944 0.900

(oracle) β1 -0.010 0.195 0.207 0.954 0.920 0.008 0.202 0.208 0.940 0.902

βk 0.005 0.194 0.206 0.968 0.902 0.043 0.223 0.208 0.930 0.866

(c) (d)

OSRE θ 0.115 0.273 0.271 0.944 0.886 0.022 0.419 0.399 0.922 0.876

(oracle) β1 -0.005 0.202 0.205 0.936 0.894 -0.005 0.212 0.209 0.936 0.894

βk 0.010 0.212 0.206 0.942 0.896 0.004 0.211 0.209 0.938 0.892

(a) (b)

200 OSRE θ -0.020 0.276 0.279 0.942 0.884 -0.004 0.255 0.276 0.958 0.918

(oracle) β1 0.013 0.147 0.146 0.942 0.892 -0.010 0.135 0.145 0.960 0.914

βk 0.002 0.14 0.146 0.948 0.914 0.018 0.155 0.145 0.912 0.864

(c) (d)

OSRE θ 0.041 0.171 0.172 0.952 0.892 -0.008 0.294 0.278 0.926 0.858

(oracle) β1 0.007 0.144 0.144 0.950 0.900 0.006 0.152 0.145 0.944 0.900

βk <0.001 0.141 0.145 0.950 0.906 -0.003 0.154 0.146 0.940 0.878
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S6 OSRE for high dimensional generalized linear model

This section will consider statistic inference for a single coefficient in a high-dimensional

generalized linear model. Consider n i.i.d samples (X i, Yi) with X i = (Xi1, . . . , Xipn)
T ∈ Rpn

and Yi ∈ {0, 1}, where one of X ′s is one and the others have mean zero for k > 1. Yi follows

a binomial distribution with mean

P [Yi = 1 | X i] = G

(
pn∑
j=1

Xijβ
∗
nj

)
, (S6.1)

where G is the link function, β∗
n = (β∗

n1, . . . , β
∗
npn)

T is the vector of parameters. Similarly, let

Fn = {f(x) =
∑pn

j=1 xjβj} be a linear functional class equipped with an inner product defined

as former section. Suppose fn0(x) =
∑pn

j=1 xjβ
∗
nj ∈ Fn is unique maximizer of P{m(X, Y, f)},

where m(X, Y, f) is the log-likelihood function defined as

m(X, Y, f) = Yi log

 G
(∑pn

j=1Xijβ
∗
nj

)
1−G

(∑pn
j=1Xijβ∗

nj

)
+ log

[
1−G

(
pn∑
j=1

Xijβ
∗
nj

)]
.

Clearly, we have

P {∇m(X i, Yi, fn0)[h]} = P
{
l′x(Yi,X

T
i βn0)h(X i)

}
,

where

l′x(y, x) = y
G′(x)

G(x) (1−G(x))
− G′(x)

1−G(x)

and

P
{
∇2m(X i, Yi, fn0)[h1, h2]

}
= P

{
l′′xx
(
Yi,X

T
i βn0

)
h1(X i)h2(X i)

}
,

where

l′′xx(y, x) = yH1(x)−H2(x),

H1(x) =
G′′(x)G(x) (1−G(x))− (1− 2G(x))G′2(x)

G2(x) (1−G(x))2
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and

H2(x) =
G′′(x)(1−G(x)) +G′2(x)

(1−G(x))2
.

Without loss of generality, suppose that we are interested in the first component of βn0.

Then, similar to former section, Fn(f) = β∗
n1 which is equivalent to P [eT

1Σ
−1
n Xf(X)]. Since

m is the log-likelihood function, we can construct h∗n as

h∗n(X, Y ) = −(P
{
g21n(X)

}
)−1g2n(X, Y ), (S6.2)

where

g1n(X) = X1 − π(X1|X2, X3, . . . , Xpn),

g2n(X, Y ) = l′′−1
xx (Y,XTβn0)(X1 − π(X1|X2, X3, . . . , Xpn)).

To see this,

P
{
∇2m(Z, fn0)[h

∗
n, X1]

}
=(Pg21n(X))−1P [(X1 − π[X1|X2, X3, . . . , Xpn ])X1]

=(Pg21n(X))−1P [(X1 − π(X1|X2, X3, . . . , Xpn))
2]

=1

and for k > 1,

P
{
∇2m(Z, fn0)[h

∗
n, Xk]

}
=(Pg21n(X))−1P [(X1 − π[X1|X2, X3, . . . , Xpn ])Xk] = 0.

Consequently, for any hn ∈ Fn with hn(x) =
∑pn

j=1 xjγj, we obtain

P
{
∇2m(Z, fn0)[h

∗
n, hn]

}
= γ1 = ∇F(fn0)[hn].

In other words, h∗n satisfies Condition 3.

Without loss of generality, we suppose the parameter we are interested in is the first

coordinate of linear parameter. Suppose the vector parameter βn0 is sparse, then the initial
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estimator β̂n can be estimated using the Lasso method:

β̂n = arg min
β∈Rpn

{
1

n

n∑
i=1

l(X i, Yi,β) + 2λ∥β∥1

}
, (S6.3)

where l(X i, Yi,β) = Yi log
[
G
(
XT

i β
)
/
(
1−G

(
XT

i β
))]

+log
(
1−G

(
XT

i β
))
, ∥β∥1 =

∑pn
j=1 |βj|

is the l1-norm on Rpn and λ ≥ 0 is a penalty parameter.

Similar to the estimation of h∗n in (S5.2), we can estimate h∗n in (S6.2) with Lasso.

ĝn2(X) = l′′−1
xx

(
Yi,X

T
i β̂n

)
(X1 − π̂(X1|X2, . . . , Xpn))

= l′′−1
xx

(
Yi,X

T
i β̂n

)
(X1 −XT

−1η̂
∗
1),

where X−1 is as defined in former section and η̂∗
1 should satisfies

η̂∗
1 = arg min

η∈Rp−1

{
1

2n
∥Wβ̂n

X1 −Wβ̂n
X−1η∥22 + λ̃∥η∥1

}
, (S6.4)

where Wβ̂n
is diagonal matrix with (i, j)-th element U(XT

i β̂n). Similarly, we estimate

Pg2n1(X) using (S5) by replacing X with Wβ̂n
X as

τ̂ 21 = ∥Wβ̂n
X1 −Wβ̂n

XT
−1η̂1∥22/n+ λ̃∥η̂1∥1.

Consequently, the estimator for h∗n is given as

ĥn(X) = −ĝn2(X)/τ̂ ∗21 .

Then, the one-step regularized estimator for βn01 is

β̃n1 = β̂n1 +
1

n

n∑
i=1

τ̂ ∗−2
1 l′′−1

xx

(
Yi,X

T
i β̂n

)(
Xi1 −

pn∑
j=2

Xij η̂1j

)
l′x

(
Yi,X

T
i β̂n

)
,

where β̂n1 is the first element of the initial Lasso estimator β̂n. The OSRE is exactly the

same as the de-biased Lasso estimator for generalized linear model in Van de Geer et al.

(2014).
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Obviously, when G(x) = exp(x)/(1 + exp(x)),

P {∇m(X i, Yi, fn0)[h]} = P


Yi − exp

(∑pn
j=1Xijβ

∗
nj

)
1 + exp

(∑pn
j=1Xijβ∗

nj

)
h(X i)

 ,

and

P
{
∇2m(X i, Yi, fn0)[h1, h2]

}
= −P


exp

(∑pn
j=1Xijβ

∗
nj

)
[
1 + exp

(∑pn
j=1Xijβ∗

nj

)]2h1(X i)h2(X i)

 .

To simplify the notation, let U1(x) = exp(x)/(1 + exp(x))2. Then, we have

h∗n(X) = −(P
{
g21n(X)

}
)−1g2n(X), (S6.5)

where

g1n(X) = X1 − π(X1|X2, X3, . . . , Xpn),

g2n(X) = U−1
1 (XTβn0)(X1 − π(X1|X2, X3, . . . , Xpn)).

Then, the one-step regularized estimator for βn01 is

β̃n1 = β̂n1 +
1

n

n∑
i=1

τ̂ ∗−2
1 U−1(XT

i β̂n)

(
Xi1 −

pn∑
j=2

Xij η̂1j

)Yi − exp
(
XT

i β̂n

)
1 + exp

(
XT

i β̂n

)
 .

S6.1 Theorem and proof of OSRE for high-dimensional generalized linear mod-

els

To state the asymptotic properties for the OSRE, we need the following additional assump-

tions.

B.11 With probability larger than 1− p−c1 ,

min
{
G(XT

i βn0), 1−G(XT
i βn0)

}
≥ c2,

for 1 ≤ i ≤ n and some small positive constant c2 ∈ (0, 1).
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Theorem 2. Suppose that Conditions B.1 - B.4, B.9-B.11 hold true. Furthermore, λ ≍√
log pn/n in (S6.3) and λ̃ ≍

√
log pn/n in (S6.4). Then

√
n(β̃n1 − βn01)

p−→ N(0, c2),

where c2 = P (l′′xx(Y,X
Tβn0))Ω11, .

Proof. In order to prove this theorem, we need to verify all the conditions we have listed

before. Conditions A.1 - A.3 have been verified in former statements. Thus, the remaining

conditions to verify are Conditions A.4 - A.7.

Since λ ≍
√
log pn/n and condition B.1, B.2, B.4, B.11 hold, by applying proposition 1

of Guo et al. (2021), we have

P
(∥∥∥β̂n − β∗

n

∥∥∥
1
≤ Cs0(log pn/n)

1/2
)
≥ 1− p−c1

n − exp(−c1n),

where C > 0 is a positive constant. Combing with condition B.2,
√
nd2(n)(f̂n, fn0) = op(1)

which verifies Condition A.4. We now

P
{
∇2m(Z, fn0)[ĥn − h∗n, f̂n − fn0]

}
=− P

{
l′′xx
(
Yi,X

T
i β

∗
n

)
l′′−1
xx

(
Yi,X

T
i β̂n

)
(γ̂n − γ∗

n)
TΣ(β̂n − β∗

n)
}

=− P
{
(γ̂n − γ∗

n)
TΣ(β̂n − β∗

n)
}
+ op

(
(γ̂n − γ∗

n)
TΣ(β̂n − β∗

n)
)
,

where γ∗
n = (1,η∗T

n1 )
T/τ 210, η

∗
n1 can maximize P∥Wβn0

X1−Wβn0
X−1η∥22 , τ 210 = P∥Wβn0

X1−

Wβn0
X−1η

∗
n1∥22 and γ̂n = (1, η̂T

1 )
T/τ̂ 21 . Conditions B.1, B.2, B.9 holds, by applying The-

orem 3.2 of Van de Geer et al. (2014) and λ̃ ≍
√

log pn/n consequent ∥γ̂n − γ∗
n∥2 =

Op

(√
s1 log pn/n

)
.

Thus, we have

√
n|(γ̂n − γ∗

n)
TΣ(β̂n − β∗

n)| = Op

(√
s0s1 log pn√

n

)
. (S6.6)
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We use s0 = O(nα0/ log pn) and s1 = O(nα1/ log pn) to obtain that
√
n|(γ̂n − γ∗

n)
TΣ(β̂n −

β∗
n)| = op(1). This verifies Condition A.5.

To verify Condition A.6, recalling that for h(X) = −XTγ,

∇m(Z, f)[h] = −P
{
l′x
(
Yi,X

T
i β

∗
n

)
XTγ

}
.

Therefore, apply similar decomposition like (S3.5), we have

1√
n

n∑
i=1

(
G(XT

i β̂n)− Yi

)
XT

i γ̂n −
√
nPX,Y

{
(G(XT β̂n)− Y )XT γ̂n

}
=

1√
n

n∑
i=1

(
G(XT

i β̂n)−G(XT
i β

∗
n)
)
XT

i γ̂n −
√
nPX,Y

{(
G(XT β̂n)−G(XTβ∗

n)
)
XT γ̂n

}
− 1√

n

n∑
i=1

γ̂T
nX iεi

=
1√
n

n∑
i=1

G′(XT
i β

∗)γ̂T
nX iX

T
i (β

∗
n − β̂n)−

√
nγ̂T

nP (G
′(XTβ∗)XXT )(β∗

n − β̂n)

− 1√
n

n∑
i=1

γ̂T
nX iεi

=
1√
n

n∑
i=1

[
γ̂T
nG

′(XT
i β

∗)X iX
T
i (β

∗
n − β̂n)− γ∗T

n G′(XT
i β

∗)X iX
T
i (β

∗
n − β̂n)

]
+

1√
n

n∑
i=1

[
G′(XT

i β
∗)γ∗T

n X iX
T
i (β

∗
n − β̂n)− γ∗T

n P (G′(XTβ∗)XXT )(β∗
n − β̂n)

]
+
√
n(γ∗

n − γ̂n)
TP (G′(XTβ∗)XXT )(β∗

n − β̂n) +
1√
n

n∑
i=1

γ̂T
nX iεi,

where εi = Yi − e(XT
i β

∗
n). As we have illustrated in section S5, conditions B.1 - B.3 lead to

equation (S5.9). Then

√
n

∣∣∣∣∣ 1n
n∑

i=1

G′(XT
i β

∗)(γ̂n − γ∗
n)

TX iX
T
i (β

∗
n − β̂n)

∣∣∣∣∣
≤
√
n

4

∣∣∣∣∣ 1n
n∑

i=1

(γ̂n − γ∗
n)

TX iX
T
i (β

∗
n − β̂n)

∣∣∣∣∣ ≲ min(s0, s1)
log pn√

n
.

(S6.7)

Let X∗
i = X i

√
G′(X iβ

∗), Σ̂∗
n = 1

n

∑n
i=1 X

∗
iX

∗T
i and Σ∗

n = P (X∗
iX

∗T
i ), By applying lemma
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6.2 of Javanmard and Montanari (2014a) , we have∥∥∥Σ∗−1
n Σ̂∗

n − I
∥∥∥
∞

= Op

(√
log pn
n

)
.

Then, we have∥∥∥∥∥ 1√
n

n∑
i=1

[
G′(XT

i β
∗)γ∗T

n X iX
T
i (β

∗
n − β̂n)− γ∗T

n P (G′(XTβ∗)XXT )(β∗
n − β̂n)

]∥∥∥∥∥
≤ 1√

n

∣∣∣eT
1 (Σ

∗−1
n Σ̂∗

n − I)
∣∣∣ ∥β∗

n − β̂n∥1 ≲
√
s0
n
log pn,

(S6.8)

Thus, combing equations (S6.6), (S6.7) and (S6.8) and applying Conditions B.4 and B.9,

we have

1√
n

n∑
i=1

(
Yi −XT

i β̂n

)
XT

i γ̂n −
√
nP n

X,Y (Y −XT β̂n)X
T γ̂n

=
1√
n

n∑
i=1

γ̂T
nX iεi + op(1).

Thus, verifying Condition A.6 is equivalent to proving the equicontinuity of the right-hand

side of the above expression, which have been proved in Section S3.

Condition A.7 follows naturally from condition B.10 and B.11. Here, we have finished

the proof of Theorem 2.

S6.2 Simulation study with high-dimensional generalized linear models

In this section we will conduct simulation study for high-dimensional generalized linear model.

We use similar setting as section 4.1 in the main text . In this setting, we generate p = 100

covariates consisting of K ≡ p/q groups, each group with q variables. For q variables in the

kth group, denoted by Xk1, ..., Xkq, they are generated as

Xkj =
(wkj + tuk)

1 + t
, wkj ∼ U(0, 1), uk ∈ U(0, 1).

In this way, we generate a sequence of blocked covariates. Y follows binominal distribution

with mean XTβ∗. We set t = 0.5 so the correlation between any two X’s in the same block
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Table 2: Simulation results based on 500 replicates for high-dimensional generalized linear models.

n Case method Bias SE ESE CP95 CP90

100 (a) PSI 0.691 1.221 0.516 0.884 0.792

OSRE -0.055 0.464 0.408 0.932 0.866

(b) PSI 0.731 1.242 0.576 0.918 0.842

OSRE -0.005 0.456 0.441 0.954 0.910

(c) PSI 1.519 2.803 0.963 0.93 0.858

OSRE -0.045 0.472 0.459 0.958 0.926

(d) PSI 6.477 10.017 27366.613 0.948 0.888

OSRE -0.087 0.470 0.469 0.956 0.910

200 (a) PSI 0.310 0.410 0.268 0.748 0.654

OSRE -0.003 0.241 0.203 0.908 0.842

(b) PSI 0.317 0.438 0.286 0.746 0.652

OSRE -0.004 0.279 0.227 0.910 0.842

(c) PSI 0.428 0.572 0.332 0.758 0.634

OSRE -0.010 0.288 0.263 0.946 0.894

(d) PSI 0.572 0.780 0.383 0.728 0.640

OSRE -0.032 0.310 0.286 0.938 0.902

is ρ = 0.2, but they are independent if from different blocks. Similar situations as those in

section 4.1 are considered as follow

(a) q = 2 and β∗ = (1, 1, 1, 0, . . . , 0)T .

(b) q = 4 and β∗ = (1, 1, 1, 0, . . . , 0)T .

(c) q = 4 and β∗ = (1, 1, 1, 1, 0, . . . , 0)T .

(d) q = 4 and β∗ = (1, 1, 1, 1, 1, 0, . . . , 0)T .

To illustrate our proposed method, we focus on inference for the coefficient of the first
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covariate given by β∗
1 . We consider sample size n = 100 and 200 replicate each scenario 500

times in the simulation study.

To calculate OSRE, the initial estimate for β’s is based on the generalized Lasso regression.

The tuning parameter is selected by minimizing cross-validation error. The estimate for h∗n

is also obtained from a Lasso regression with cross validation, but the tuning parameter is

set to be a factor of the cross-validation optimal parameter. Similar to the choice of high

dimensional linear model, we choose a factor of 2−6 in the simulation. To examine the

inference performance of the proposed method, we report the coverage rate of confidence

intervals for OSRE. For comparisons, we also report the coverage rate of the ad-hoc post-

selection inference (PSI) by treating selected variables in the Lasso method as the only

variable in the logistic regression model.

In Table 2, we report the simulation results of Bias, standard errors (SEs), estimated

standard errors (ESEs) the coverage probabilities based on (1−α)-confidence intervals, where

α = 0.10 and 0.05, respectively. CP95 represents coverage rates of 95% confidence intervals

and CP90 is the results of 90% confidence interval. We use robust estimator to estimate

Bias, SE and ESE. Our proposed method has much smaller bias than PSI. Besides, SE and

ESE are inflated in case (d) when sample size n = 100 even they are calculated through

robust methods. As shown in the table, post-selection inference (PSI) performs very poorly

in all of the cases even when sample size equals to 200. Instead, the coverage probabilities of

the confidence intervals based on OSRE are reasonably close to the nominal levels no matter

n = 100 or 200 in all of the cases. This illustrates that out proposed method is also valid for

high-dimensional generalized liner model.
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S7 Additional numerical example for partial linear model

Section 3.2 in the main text illustrates the example of high-dimensional additive model. It

will be also interesting to expand the situation to partial linear model. Since X1 is a covariate

with linear effect, thus we suppose

Yi = µ+Xi1β
∗
1 +

pn∑
j=2

f ∗
nj(Xij) + εi,

where µ is a constant and εi is the error term with mean zero and finite variance σ2. Thus,

X1 is the linear part and (X2, . . . , Xp) are the non-linear parts of Y .

Obviously, the difference between this semi-parametric model and NAM is that X1 should

be used instead of B-spline bases of X1. Thus, the estimator are similar as the one in the main

text by replacing the B-spline bases with X1 itself. Table 3 shows the relative bias (Bias),

standard errors (SE), estimated standard errors (ESE), the coverage rates of OSREs and PSI

based on 500 replicates. CP95 is the coverage rates of 95% confidence interval while CP90 is

that of 90% confidence intervals. We can find similar results as the those in non-parametric

additive models. Both of the methods have small relative biases. While the ESEs of ad-hoc

method(PSI) are smaller than SEs. The coverage probabilities of OSREs are reasonably close

to the nominal levels for linear or non-linear parameters when sample size n = 200. In the

meanwhile, PSI has coverage probabilities lower than (1− α) for all cases.

S8 Additional results for real data application

We fit both linear model and additive model to this data to test whether any significant

linear or nonlinear association exists between any gene and TRIM32. All covariates are

standardized by their ranges so the values are between 0 and 1. Linear model fitting is the
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Table 3: Simulation results based on 500 replication for high-dimensional partial linear models.

Parameter n ρ Method Bias SE ESE CP90 CP95

β∗
1 200 0 PSI -0.010 0.543 0.505 0.842 0.912

OSRE -0.005 0.84 0.769 0.868 0.928

0.2 PSI -0.002 0.825 0.702 0.870 0.924

OSRE -0.036 1.154 1.055 0.886 0.944

400 0 PSI -0.002 0.371 0.351 0.892 0.948

OSRE -0.004 0.619 0.597 0.908 0.954

0.2 PSI -0.005 0.530 0.500 0.878 0.912

OSRE -0.003 1.062 0.965 0.902 0.952∫
f∗2
4 (x)dx 200 0 TS -0.005 1.128 0.873 0.854 0.908

OSRE 0.036 1.598 1.864 0.926 0.96

0.2 PSI 0.021 1.126 0.890 0.884 0.928

OSRE 0.049 1.775 1.938 0.916 0.958

400 0 PSI 0.006 0.746 0.615 0.886 0.938

OSRE 0.034 1.159 1.189 0.920 0.964

0.2 PSI 0.007 0.718 0.632 0.884 0.946

OSRE 0.011 1.236 1.279 0.936 0.958
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same as in the first simulation study where the penalty parameter for Lasso estimation is

based on cross validation. OSRE for each regression coefficient in the linear model is then

calculated as in the simulation study and its variance is estimated using the proposed method.

To fit nonparametric additive model, we use cubic splines with six evenly distributed knots

in [0, 1] to estimate each additive components. To test the importance of each covariate, we

calculate OSRE for the summary of each functional component as
∫
f 2
k (x)dx, k = 1, ..., p. In

the estimation, the tuning parameter is chosen using BIC.

Table 4 summarizes the estimated parameters and their associated p-values, which are

computed based on normal distributions. Since the parameter we are interested in is the

integral of squared functions, the OSRE for the additive model is about the square of the

OSRE for the coefficients in the linear model. This table shows that a total of 25 genes are

selected by the linear model but the additive identify 13 important genes. Among those genes,

9 are statistically significant in the linear model if using 0.05 as the significance level but 7

are significant in the additive. Only gene 1367777 at is shown to be significantly associated

with TRIM32 for both models.

To further see how these selected genes are associated with TRIM32 in the two model,

Figure 1 plots locally weighted scatterplot smoothing estimates for the significant variables

claimed in the additive model. The plot indicates that both 1368228 at and 1379971 at reveal

nonlinear associations with TRIM32. We also observe a clear linear relationship between

TRIM32 and 1367777 at, the only gene that is tested to be significant both models.
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Table 4: Parameter inference in the microarray data analysis.

Probe NAM Lasso

OSRE Standard Error p-value OSRE Standard Error p-value

1384035 at 8.34e-06 6.29e-05 0.148

1368136 at 5.52e-06 1.66e-05 <0.001

1398370 at 4.04e-05 8.09e-05 <0.001

1376261 at 4.89e-06 1.23e-04 0.665 1.11e-03 4.25e-02 0.775

1379982 at 9.28e-06 7.24e-05 0.162

1367777 at 8.45e-05 4.68e-04 0.049 9.63e-03 4.03e-02 0.009

1368228 at 9.13e-06 3.61e-05 0.006

1380137 at 1.18e-06 1.18e-05 0.274 8.40e-03 3.45e-02 0.008

1384139 at 8.95e-06 7.60e-05 0.199

1379971 at 1.65e-05 4.29e-05 <0.001

1388491 at 1.18e-05 2.85e-05 <0.001 2.33e-03 4.55e-02 0.576

1375642 at 8.62e-06 3.96e-05 0.018

1369414 at 1.88e-05 1.54e-04 0.183

1372674 at 9.37e-03 4.87e-02 0.036

1370205 at -2.54e-04 4.04e-02 0.945

1373887 at 1.19e-02 5.72e-02 0.024

1389910 at 4.36e-03 3.93e-02 0.226

1382223 at 1.63e-03 5.99e-02 0.767

1377836 at 5.41e-03 6.03e-02 0.328

1368165 at 1.26e-02 6.72e-02 0.041

1369978 at 4.57e-03 5.60e-02 0.373

1367483 at 8.34e-04 4.28e-02 0.832

1372248 at 1.02e-03 4.32e-02 0.797

1373117 at 4.85e-03 3.92e-02 0.177

1372925 at 8.09e-03 4.68e-02 0.059

1390411 at -6.47e-03 3.33e-02 0.034

1375833 at -8.18e-03 3.80e-02 0.019

1372443 at 1.83e-03 8.39e-02 0.812

1393736 at -1.93e-03 5.53e-02 0.704

1378125 at -1.10e-02 3.58e-02 0.001

1370261 at 2.71e-03 3.15e-02 0.348

1371551 at -7.62e-03 3.62e-02 0.022

1371752 at 1.34e-03 4.15e-02 0.725
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Figure 1: Scatter plots between NAM selected genes and TRIM32.
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