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S1 Connection between OSRE and Semiparametric Model

In a semiparametric model when P is indexed by a finite-dimension parameter, 6, and a
nuisance parameter, 7. Suppose that we are interested in the inference 6. In this case, m is
the log-likelihood function and v = 6. Following the semiparametric efficiency theory (Bickel
et al. 1993, Chapter 3), h’ in our equation (2.1) is the least favorable direction for 6 and
Vmlh%] = I71(6y)I*, where I is the efficient information matrix and [* is the efficient score
function for 0. Therefore, our OSRE is equivalent to the one-step Newton-Raphson solution

to the efficient score function.

In a fully nonparametric model, v(P) is a functional of P. In this case, the efficient
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influence function for v(P) is ¢ function satisfying

o(P)(g) = / (Z; P)gdP,

where g is any Lo(P) function with [ gdP = 0. Such a function exists and is unique (Bickel
et al. (1993); Chapter 4). An initial estimator for v(P) is v(P,). Thus, our OSRE beomes
v(P,) —n ' > 9(Z;, P,). This is exactly the de-bias equation given in Kennedy (2022).

In summary, OSRE is equivalent to a one-step Newton-Raphson solution to the efficient
score function in a semiparametric setting; and it reduces to the de-bias equation in Kennedy

(2022) in a nonparametric setting.

S2 Proof of Theorem 1

In this section we will finish the proof of Theorem 1.

Proof. Supposing d(n)(ﬁ, fno) converges to zero in probability, we have

§alF) = ulfuo) = (vi Fo = Fuo)  + Oy (dhy(Fus o)) (52.1)

As we have stated, our proposed estimator for 6,9 is defined as
0, =0, P, {vm(z, ﬁ)[ﬁn]} , (52.2)

where 8, = &L(ﬁl) is the plug-in estimator based on ﬁ

By applying (S2.1), (S2.2) and Condition A.1, we have

0= b0 = (8u(F) = Falf0)) = B.Vm(Z, J,) [
= (05 Fo = fw) (B PY{Vm(2Z, FR1}

~P{Vm(Z. )] } + Oy (42 (s fun))
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With Conditions A.2 and A.3, we can further obtain
= b =P {V*m(Z, f0) [l Fo = ool } = B = P) {Vm(Z, ) ]}
~P{V*m(Z, fu0)lus o = fual } + Oy (2P f0))
= — By~ PY{Vm(Z. ]| = P{V*m(Z. fuo)lln = i, = fuol |

0, () (Fas fuo))
By the Cauchy-Schwarz inequality, Conditions A.4 and A.5 imply that

1

PA{VII(Z, fuo) o = i o= Fuol | = 0p(n7 ).
Consequently,
V0 = 0o) = = /(B = P) { Vm(Z, ) ] |
— VAP {5 Z, f10) [ = By Fo = Fuol} + Oy (VRS (Fos fuo))

~

Finally, from Condition A.6,

~G{Vm(Z, f) ]} = =G Vm(Z, fu0) (3]} + 0,(1).
Then, we can conclude that

Vi(On = 00) = —{G.Vm(Z, fro) B3]} + 0,(1),

so we have proved the first part of the theorem. The second part of the theorem is due to

the asymptotic linear expansion and Condition A.7. O

S3 Technical Conditions and proof of Theorem 3

In order to obtain the asymptotic properties for the OSRE listed in Theorem 3, we need the

following technical assumptions:
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B.1 X, are i.i.d and there exists a constant U such that max; ; |.X; ;| < U.

2

B.2 The smallest eigenvalue A;;, of ¥ is larger than a constant C,. The largest eigenvalue

A% of ¥ is smaller than a constant Cp... Moreover, the diagonal elements of ¥ are

max

uniformly bounded by 1 after the normalization X’s.

B.3 Define Cy = (32Chnax/Cmin) + 1. We have p(X, Cysg) < p, for some constant p > 0,
where p(A, k) = maxrci 2, p.},7]<k HA;}THOO, where |T'| is the cardinality of 7" and Arp

denotes the block of A consisting of the rows and columns from 7.

B.4 Let sy be the number of non-zero coefficients in 3,,, and we assume sy = O(n*°/log p,),

where o < 1/2.

B.5 Let sq be the maximum sparsity level of the rows of Q = Y~! which means sq =

max; #{j # k,Q;, # 0}. It holds that sq = O(n**/logp,), where oy < 1/2.
B.6 {&;}1, are i.i.d with mean zero and variance o2.
B.7 There exists a constant C' such that ||3,,ll2 < C and ||3,,/|2 # 0.
B.8 lim,, o 402370, 8 — 2.

Remark 1. Condition B.1 implies that covariates are uniformly bounded by a constant. In
fact, most of variables are bounded and it is easy to find a uniform bound. Condition B.2 on
eigenvalues of covariance matrix is common in high-dimensional models. [Van de Geer et al.
(2014), Javanmard and Montanari (2014b), Javanmard et al. (2018)] Condition B.3 is also
given by Javanmard and Montanari (2014b) to obtain a sharper bound on the bias of Lasso
estimator. A large family of covariance matrices satisfy Condition B.3 , such as block diagonal

matrices and circulant matrices, where 3; ; = 71" for some r € (0,1). Conditions B.4 and
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B.5 control the sparsity of parameters and X!, similar conditions are also given by papers
related to “de-biased” Lasso estimator [Van de Geer et al. (2014), Javanmard and Montanari
(2014b) and Javanmard et al. (2018)]. Van de Geer et al. (2014) assumes sy = O(n'/?/log p,,).
Our method requires a slightly stronger assumption than Van de Geer et al. (2014) since our
method applies to a much more general class of models are more flexible in applying to
other models. These Conditions also imply that p,, can be larger than n and the largest p,
permitted is o(exp(n™™e122})) " Condition B.7 implies the real parameter vector can not
be zero. Conditions B.6 and B.8 guarantee the asymptotic variance of OSRE tends to a

constant.

Proof. Condition B.1 - B.3 has been verified in former statement. Using the same argument
in last example, it is apparent that \/ﬁd%n)(ﬁ, fno) = 0,(1) which verifies Condition 4.

Consider
P{Vm(Z, o)l — by T = B} = 4(B, M = BTOS(MTB, -~ 0B;).  ($33)
where M = T-2T'. Note
B, M — B'Q = BT(M — Q) + (B, — B,)" (M — Q) + (B, - B,)" (83.4)

Since Conditions B.1 - B.3 and B.5 hold, Van de Geer et al. (2014) shows that maxy, || M} —

Q2 =0, (\/SQ logpn/n>, where M;, and €, are k-th rows of M and 2. Since |3} |2 < C,

we have

187 (M = @)l = 0, (Vsalogpa/n)
Thus, from the conditions that sq = o(n®/logp,) for some a; < 1/2 and Apax < Chax,
it gives v/nB: (M — Q)X(MT — Q)B% = 0,(1). Additionally, s; = o(n®/logp,) for some

ap < 1/2 and Appy > Chn imply that n(8, — 8578, — B) = 0,(1). Combing these
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results with (S3.3) and (S3.4), we have proved that \/ﬁd%n) (ﬁn, h’) = 0,(1). Condition 5 thus
holds.

For Condition A.6, since
Vm(Z, f)[h] = =2(Y - X" B) X" M B,
To verify Condition 6, recalling that for h(X) = — X7+,
m(Z, f)[h] = —(Y - X'B)X".

we obtain

\/—Zﬁ MX, (Y- XTB,) - vaPey {B.MX (v - X7B,)}
Z MXe;

:ﬁzamxix?w;—fi') VB, ME(B; — B,)
=1

3\

n (S3.5)
1 =T * 2 * * 2
=/ 2 [Bn MX, X! (B -8, —Box(B: — gn)}
~ —~ 1 <~
VBT = B MR8, - B+ - 3B M X
=1
For the first term, we have

% > [B.MX X8, - B.) - B8, - B,
=1

=Vn(B, — By ME.(8;, - B,) + VnB, (M, — 1)(8, — B,)
=Vn(B, — By (MS, - 1)(8;, - B,) + VnlB, - B3
+VnB; (M, — 1)(8;, - B,)
For sq < n/logpy, we have [|MY, — I||ls < v/logpa/n. [Van de Geer et al. (2014)]As the

result,

| - 185 - B.)

I
_o, ( fogo @) |

Thanks to Condition B.4 holds, = 0,(n=1/2).

(ME, ~ D)8, - B.)| _
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It has been proved that with probability tending to 1 [Van de Geer et al. (2014), Javan-

mard et al. (2018)],

C1800’2

18, — BylI3 <

log pp, (S3.6)

where ¢ is a constant.

According to (S3.6) and Condition B.4, we have
18, = BLl5 = 0p(n72). (53.7)

Combine former statement and Condition B.7, we can conclude

LS [BAMXXT(8, - B - B8, ~ B,)] = o)

\/ﬁ p n 2 7 n n n n n p :
As previous proof, we have

T * ST * 3 * —
Combining with (53.7), this implies
* 5T * a3
V(8,2 — B, M)Z(B;, — B,) = 0,(1).

Therefore,

% iB:MXZ (YQ — XZTBTJ —\/n2Px y {B:MXTO/ - XTBn)}
=1

1 T
Thus, verifying Condition 6 is equivalent to verifying the asymptotic equicontinuity of the
last term for the functional class {QXe : ||Q — Q%|1 < 0.}, where QF = 282,Q, 6, =

6~ max(sg, sq)+/log p,/n.

To this end, let

G5n = {5XT71 - 5XT72 : d(n)(q/]a’YZ) < 51717 ||73 - 7:;”1 < 52n}7
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where &1, = §71y/max(sq, so) log pn/n, 6oy = 0~ max(sq, 9)+/log p,/n, for some constant
d. By Markov’s inequality and the symmetrization [Van der Vaart and Wellner (1996)], we
have

2
P(|Gullcs, > ) < =P

1 n
— i9( X
7 > G9(X)
i=1 Gs,,
where (; is Radmacher variable. Let D = {3 € R : (X7 3)? < 1}, which is an ellipsoid in
RP». By Hoeffding’s inequality [Van der Vaart and Wellner (1996)], the stochastic process is
sub-Gaussian for the (?(P,,)-seminorm and we have
1 < 1 <

2(x )= = XTry — . XT~ T2
_Zg (Xz) - nz [51Xz Y1 €ZX1 72}

i=1 i=1
1 n
< XT (v, —79))*= 2.
— mlax( ) (71 72)) n izlgl
From the maximal inequality [Van der Vaart and Wellner (1996)], we conclude

P

1 n
— Zé’:?ig(Xi)
\/ﬁ =1 Gén

[ n
n 1
<P / Vlog N(e, Hy,, d,)de (EE s§>
0 i=1

1
2

AR 3
< 2 - 2
<P [D*(H;,,d,)]> (En ;5>

where Hs, = {7, =7y dw)(v;;72) < O, [lv; — 7nlli < 920} with the norm dy(v) =

max; (X, v)?l, and D(H;,,d,) = [;° /log N(e, Hs,, dy,)de.

On the other hand, since Hj, C 201, D and Hjs, C 265,8, where B = {38 € RP» : ||B||; <
1}, it suffices to bound D(D, d,,) and D(B,d,,) to complete the proof. If X is a random vector
on RP» then A*X is an isotropic random vector on RP*. According to Lemma 4.4 of Bartlett
et al. (2012), we have

D(B,d,) < cQhs,.

where Q = max;<jcp, || Xl izn, hn = log¥*nmax{log"*n,log"? p,}. Moreover, Lemma 4.7
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of Bartlett et al. (2012) implies that

P[D*(D, d,))? < c3(EW?)*\/lognlogp,,

where ¢ is an absolute constant and W = max ||A*X||s. According to Condition 1, Q < U

and W < U,/p,. Hence,

P. < min{d1,\/pn lognlog p,, danhy }-

Gsp,

% Z ig(Xi)

Since sg = O(n*/logp,) and s; = O(n®/logp,), the right hand side tends to zero. This
verifies the asymptotic equicontinuity in Condition 6 holds.

Combing with Conditions B.6 and B.8, we have finished the proof for Theorem 3. n

S4 Technical Conditions and proof of Theorem 4
In order to obtain the asymptotic properties of @“ we need the following assumptions:

C.1 The number of nonzero components ¢ > 0 is fixed and there is a constant ¢; > 0 such

that mini<j<g || fill2 = ¢

C.2 The random variables ¢; are i.i.d with mean zero and Var(e;) = o2. Their tail probabil-
ities satisfy P(|e;] > z) < Kexp(—Cz?),i =1,...,n, for all x > 0 and for constants C

and K.

C.3 Pf;(X;) =0and f; € F, where F is the class of functions f on [0, 1] whose kth derivative

%) exists and satisfies a Lipschitz condition of order «:
[f®E(s) = fO)] < Cls — 1] for 5,1 € [0,1],

where a € (0,1] and let d = k + a.
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C.4 The covariate vector X has a continuous density and there exist constants C'; and Cy
such that the density function g; of X; satisfies 0 < C} < g;(x) < Cy < oo on [0, 1] for

every 1 < j < pp.

C.5 In the projection 7w[Vix|V'1 —k, Xa, ..., X}, ], the number of nonzero components of h;x(X;)
functions ¢ > 0 is fixed, h;;, is Lipschitz continuous with smooth parameter d and there
is a constant ¢, > 0 such that mino<;<, ||ug;|l2 > ¢y, uk; is the projection of V4 _j, into

the space of X.

C.6 A\ =< v/nlog(p,m,) and Nent = A1 = \/nlog(p,m,) uniformly in k and m,, =< n'/(4+D

for d > 3/2.

C.7 Suppose that A\, < O(n'/?) and satisfies

)\n2 o
n(8d+3)/(8d +4)

and

n!/U D 1og! 2 (pymy)
)\n2

C.8 Suppose that Xngk = Xng < O(nl/Q) and satisfies

= o)
n(8d + 3)/(8d + 4) ’
and
/(4d+2) 10g1/2(pnmn) B 0(1>

>\n2

C.9 Let V{ _ymj, = > ieay, Vuniy, where Agy = {l:njy; # 0} and

S:Lk Z Z ¢l nk]h

JEAK =1

where Ay = {j : s,:jn) (x) # 0, for all x}, and define

* _ * * * * * *
Mok = (Wklzla o Mt Mo -+ Mhgjima s =+ Mg, 15+ - ,nqukmn),
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where [, € Ap; and j, € Age. Suppose 1., and s’, maximize P[Vi — V1T,—k77:§k1 —
s(X_1)]? in the sieve space which is the linear space of B-spline functions in this example.
Besides, suppose constant () such that ¢, < @ and it satisfies ||n},||2 < C, for all k£ and

a constant C,,.

C.10 Suppose

. *T x 2
lim k1 Quuk,, = ¢,
n—oo

where Ky = (K1, Ko )s Ko = J for(£)@r(t)dt, Qu11 s the first m,, rows and lines

of €2, which is the inverse of Covariance matrix of B-spline functions of {Xy,..., X, }.

Remark 2. Conditions C.1, C.3 and C.4 are standard conditions for nonparametric additive
models. These conditions are needed to estimate the nonzero additive components at optimal
rate, even if ¢ important variables are known. Condition C.1 can be slightly relaxed to ¢
increase in logn scale. Condition C.2 strengthens the assumptions needed for nonparametric
estimation of a nonparametric additive model. Condition C.6 are the scale of \,; which is
suggested by Huang et al. (2010) to guarantee Lasso estimators in the first step are well
enough to be used as weights in the adaptive group Lasso, and the same scale of an also
be applied to the group Lasso of 7[Vix|V1 _k, Xo,..., X, ]. Condition C.7 is the condition
to obtain converge rate of the function. Conditions C.1 - C.4 and C.7 are also given by
Huang et al. (2010). Condition C.5 and C.9 ensures the sparse structure of the projection
T[Vik|Vi—k, Xo, ..., Xp,]. Since basis functions of B-spline are almost orthogonal to each
other and most of covariates are independent from each other, 7[V1;|V1 _j, Xo,..., X,,] can
satisfy the sparse structure. At least conditions C.5 and C.9 hold if all the covariates are
independent. Condition C.9 also implies ||1,,.0/l2 won’t tend to co. Besides, Condition C.8 is

the same condition as C.7 which is applied to 7[Vix|V1 g, Xo, ..., X,,]. Besides, Conditions
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C.7 and C.8 allow A2 = O(n'/2) and A = O(n'/2). Then, we can obtain p, is at most
o(exp(n?¥(24+1))) by substituting \,, and M2 into the two equations in Conditions C.7 and

C.8. Condition C.10 guarantee the asymptotic variance of the estimator tends to a constant.

Proof. Conditions A.1 - A.3 have been verified in the main text. The remaining conditions
need to verify are A.4 - A.6.
For Condition A.4, since Conditions C.1 - C.4, C.6 and C.7 hold, it was proved by Huang

et al. (2010) that

Pn

N m my, 1 4m?2\2
D185~ Bl = 0 (22 T g ) (549
=1

and

Pn

-~ m, 1 1 4m, N2
Zanj_anng:Op( + - + :
) n n

). (S4.9)

2d 2
ma n

Thus since \,; = O(y/nlog(pam,)), m, = O(nY/24HD) and A, < O(n'/?),
\/ﬁd%n)(ﬁw fno) _ Op<n1/2n72d/(2d+1)) _ Op(n(1/2fd)/(2d+1)).

Since d > 3/2, dmy(fn, fuo) = 0p(n~ 4.
To verify Condition A.5, we consider < En — h;,/fzn —h) >(). Since V.= (Vyq,..., vt
has i.i.d bounded rows and Xnkg has the same order of Xng in Condition C.8, using the proof

of (54.8), we have

Pn 2 212

~ . ms My, 1 dmi Nz
E 72 = s 12 = Op(_n Tt s T T 2). (54.10)
Jj=2 n

Then we have

72— 12| =|€r € n — TR + |€FVa, (T — miy) /]
(S4.11)

1 Va e/l + 1M VA Vi, (M — 1) /1,

where &, = (&, -+, &) T with & = Vi, — s7,.(Xi 4, ). Recalling the definition in condition

C.9, V4, is obtained by removing all m,, columns that are not in the set Ay of V' .
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We now consider each term in the right-hand side of (S4.11). Without loss of generally,
we suppose the first ¢, components of SZ(") are not zero and the others are zero. For the first

term, we have

€56/n — 7| < 2(|eken/n — 7|+ [Chnin/nl) S 02 4 gy,

where €1, = (Cikns - - - 5 Cakn)? With (i = ZjeAk(sZ(n) (Xij) — s5.(Xij)). The last step holds
for

2™ (Xij) — 51 (Xij) |2 = O (my, %) .

n

For the second term in (S4.11),
1€k Vaae (in — o) /1] < M€ 1201V, (T, — Do) /12,
where & = Vi, (V{ Va,)7'VJ &, By equations (36) and (37) of Huang et al. (2010),
€15 = Oplama + 1 + qnmy ). (54.12)
Lemma 3 of Huang et al. (2010) implies there exist constants ¢; and ¢y such that
clmgl < amin(VATkVAk/n) < amax(V}kVAk/n) < Cngl. (54.13)

Combing previous results, we have

2 2132
o~ * 2 —1, -1 (M | M 1 4mi A
Vi G )l S -t (220 2y )

Consequently, we have
€5 Va, (7, — M) /]

mn 1 1 4m,\
=0y ("_l(qmn + 1+ gnm,,*%) <7 + - + + ’ n2)) .

2d
m; n

For the third term in (S4.11), from (S4.12), (S4.13) and Condition C.9, we obtain

&L Va i /n> S ntmy  (gmy, + 1+ gnm ).
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Using (54.10), (S4.13) and Condition C.9, we have

. N . _ mi my, 1 4m%>\%
5k VA Va, @, — ) /ol S my? <7 ot ot 2) :

Combining the above results, since m,, = O(n'/?#Y) and A, < O(n'/?), for d > 3/2, we
conclude |72 — 72| = 0,(n"'/*). Since 1/72 = O(1), this also implies1/72 — 1/7% = o,(n"1/*).

With this result, let M = 720 so

1My = Millz < 172y, = mll /7 + Il (L/7 = 1/7)
(S4.14)

= op(n~"").

Clearly,
IR M — kTM)5 < [|(R — )" M|5 + (R — #)"(M = M)|5 + [&"(M — M)]|3.

Define Sy, = P[V; 4,V 4], where V, 4, is obtained by removing all components that are
included in A, and all m,, components that are not in the set A, of V;. By taking expectation

in the proof of (S4.13), there exist constants c3 and ¢4 such that
C3m’r:1 S O-Hlin(EVk) S Umax(EVk) S c4m;1. (8415)

Since M is first m,, columns of Z(,kl, it holds

N m2  m, 1 4m?2\2
(K — “)TMH% S ma (7 + n + m2d—1 + n2 2) :

Under Condition C.3, C.6 and C.8, we obtain ||(K — k)" M||2 = 0,(m,n""/?). Thus, combing
with (S4.14), we have

|KTM — k" M| = o, (mun~"?). (S4.16)

By the properties of spline [De Boor et al. (1978)], there exists a positive constant ¢ such
that

d? ﬁn,h* < emYRM — kM|
(n) n n 2
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This implies ¢, (hu, B) = 0,(n~/2). We have verified Condition A.5.

To verify Condition A.6, recall that

A

Vm(Z, f)ih] = —&TMV (Y —VTB).

Therefore, similar decomposition in (S3.5) can be applied, then we have

vz >RSI (v = VB,) ~ Varey (75 (v - v'5,))
i=1

=V [(R7M = KT M) (B — B + v [T (3518 = 1) (B, — B)]
T ~ 1 & S
Vi (R = M) (B = )] + 7 o0 = VOVIRSE
where ivk = VIVi/n, &7 = (s7,0,...,0), B,, maximizes m-function in the sieve space. As

for the first term, combining (S4.8) with (S4.13) and (S4.16), we have

AT N ~ 2 . 1 Am2 )\2 1/2
Vi[RI = KTM)Sy (8,0~ B)| = O, <n1/4 (m— + g 4 ) .

n n  m2dl n?
Since Condition 6 holds, we know that the first term is o0,(1). Follow the proof of Theorem

7 of Javanmard and Montanari (2014a) by replacing the Cpin < 0min(X) < omax(X) < Chiax

18 lo nTMn,
578, ~ Il = Oy (\/ ng) -

Combine with (5S4.8), we have

with (S4.15), we have

Vi [67 (5515 = 1) (B — B,)| = a,(1).
It follows from (S4.8), (S4.15) and (S4.16) that the third term is o,(1). Thus, we have

T SR (v VIB,) ~ iRy (RTTIV (v - V7))
=1

n

1 P
=— ) R"MVy; +0,(1).
n
i=1
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where v; = Y; — VI 3,, Thus, verifying Condition A.6 is equivalent to proving the equiconti-
nuity of the right-hand side of the above expression.

To this end, let

Gs, = (VT = vV, t dly (75, 75) < G1n b

where v = kT M, 61, = 6 'm,n""/2, for some constant §. Following to the proof of Theorem

3, we can conclude
P|D*(D,d,)|* < c(EW?)"*\/log nlog pym,,

Since B-spline basis functions are bounded by a constant U According to Condition C.5

and C.9, each line of 2",1 has at most gm,, columns of non-zero components. Recalling the

definition of W, W < U,/qm,,. Hence,

S; V 5111 V My, log n IOg P,

Gs,,

P,

1 n
= Z vig(Xi)
Vi
Since Condition C.6 holds, the right hand side tends to zero. Then, we can verify the

asymptotic equicontinuity in Condition A.6. Finally, Condition A.7 follows naturally from

condition C.10.
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S5 OSRE for coefficient inference in Lasso

Single coefficient example has been widely learned in recent years, which is called as “de-
biased” estimator. In this section we will use it as another example. Consider n i.i.d samples
(X,,Y:) with X; = (Xi1,...,Xip,)T € RPr, where one of X's is one and the others have

mean zero for k > 1. Moreover, it holds

Pn
Y, = ZXz‘jﬁn()j +¢;, Plei| X;] =0, (S5.1)

j=1
where 8,0 = (Buots-- -, Bnop, )’ is the vector of parameters and ¢; is a random variable
representing the noise in the i-th response variable. Let F, = {f(x) = fil x;3;}, which is

a linear functional class. In addition, we equip JF,, with an inner product as

< f1,fa >y= P{AX) (X))} = ) BPIX;X,]B: for all fi, f» € F.

jk=1

The true function f,o(x) = ;’il 2jBno; € F, is assumed to be the unique maximizer for

P{m(X,Y, f)} with m(X,Y, f) = —(Y — f(X))?/2. Clearly,
PAVIM(X,Yi, fao) ]} = PA(Yi = fao(X3)) M(X3)}

and

P{V2m(X:,Yi, fuo)lha, ha)} = —P {hy(X:)ha( X )}

Suppose that we are interested in the first component of 3,,,, . Then §,(f) = B01 which
is equivalent to Plef X' X f(X)], where e, is a p,-vector with only the first element is one
and the others are zero, and ¥, is the covariance matrix of X assumed to be non-singular.
Furthermore, for h,(X) = §l1 X4, it holds V§,(fno)[hn] = 71. To construct OSRE for

Bro1, the key step is to obtain h} as given in Condition 3. For the linear model, we show

I (X) = —(P {gn(X)}) " gu(X), (55.2)
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where g,(X) = X1 — 7(X1|Xs, X5,...,X,,), and 7(X1|Xa, ..., X,,) is the L?(P) projection
of X, onto the linear span of X,,..., X, .
To see this, since m(X;|Xa, ..., X, ) is the L?*(P) projection of X; onto the linear span

of Xy,...,X,,, we obtain

P{(Xl — 7T(X1|X27X37 e ,Xpn))ﬂ'(XllXQ, Xg, e 7Xpn)} = 0,

and
P{(X) — 7(X1|Xa, X5, o, X, ) Xe} = 0, for all k= 2,3, pn.
Thus,
P{V?*m(Z, fuo)[hy;, X1]} =(Pga(X)) ' P[(Xy — 7[X1] X5, X5, ..., X, ]) X1]

=(Pgn(X)) ™ P[(X1 = m(X1|X2, X3, ., X))
=1

and for k > 1,

P{V*m(Z, fuo)lh;,, Xil} =(Pgn(X)) ™ P[(X1 — 7[X:1|Xp, X3, ..., X, ) Xi] = 0.
Consequently, for any h,, € F,, with h,(x) = §Z1 xj7;, we obtain

P{V*m(Z, fuo)[l b} = 11 = V(fuo) [hn).

In other words, h; satisfies Condition 3.

Therefore, suppose Bn is an initial estimator of 3; and we can find a proper estimator

for b}, denoted by ﬁn The OSRE for %, is then given as

nl
G.o=3., 1 nﬁ x,) (v, — X783 S5.3

where Bnl is the first coordinate of Z’)’n
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Without loss of generality, we suppose the parameter we are interested in is the first
coordinate of linear parameter. Suppose the linear regression model is defined as (S5.1). The
vector parameter 3, is sparse, then the initial estimator Bn in (S5.3) can be estimated using

the Lasso method:

~ 1
= i —|lY — X8B3 + 2A A
B, —are pin {1 — X8I + 24181, | (55.4)
where [|[Y — X 8|3 = X1, (Y — X7 8)% 18] = Y202, 165] is the l;-norm on RP" and A > 0

is a penalty parameter. Obviously, the Lasso estimator of f, is

~

fu(X0) = XT8,, (S5.5)

where 3, is defined by (S5.4).

Next, we should estimate h defined by (S5.2). Recalling the definition of A}, we should
first estimate 7(X;|Xs, X3,...,X,,), the projection of X; on the linear space spanned by
X1, ..., Xp,. This estimation can be treated as another high-dimensional linear regression

problem, so we adopt Lasso to estimate the coefficients:

. : 1 Y
7, = arg min {2—HX1 — X |3+ )‘H”IHI} ;
n n

€Rp—1
where 7, = (M1, -+, Mip, ), X1 = (Xi1,..., Xn1)?, X _; is the sub-matrix of X obtained by

removing the first column. We then obtain
G(X) = X1 —7(X1|Xa, ..., X,,) = X1 — X547,
where X_; = (Xy,...,X,,)". Next, we estimate Pg2(X) using
= 11X0 = XTm3/n+ Al -
Consequently, the estimator for i) is given as

ha(X) = —gu(X) /72 (S5.6)
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Since the second part of (S2.2) is

P, {Vm(Z, L)} = Bu {(V = F(X)ha(X) }

by applying (S5.5) and (S5.6) to (S2.2), the one-step regularized estimator for S, is
. . 1 n Pn .
~— ~ T
ﬁnl = ﬁnl + ﬁ 27’1 2 (le — ZQXijnlj> (Y; - Xz /Bn) 5 (857)
1= 1=

where B\nl is the first element of the initial Lasso estimator Bn As anote, the OSRE is exactly
the same as the de-biased Lasso estimator in Van de Geer et al. (2014) and Javanmard et al.
(2018).

To state the asymptotic properties for the OSRE, we need the following assumptions:

B.9 Let s; be the number of non-zero elements of the first row of @ = £~ We assume

s1 = O(n*/logp,), where o < 1/2.
B.10 Let €41, be the first line and first row element of €2, suppose lim,, o0 211, = Q11.

Remark 3. Condition B.9 controls the sparsity of parameters and ¥}, similar conditions are
also given by papers related to “de-biased” Lasso estimator [Van de Geer et al. (2014), Javan-
mard and Montanari (2014b) and Javanmard et al. (2018)]. These Conditions also imply that
pn can be larger than n and the largest p, permitted is o(exp(n™™{122}))  Conditions B.6

and B.10 guarantee the asymptotic variance of OSRE tends to a constant.

Theorem 1. Suppose that Conditions B.1 - B.4, B.6, B.9,B.10 hold true. Furthermore,

A= /logpn/n in (S5.4) and X =< \/1og pn/n in (S5). Then

\/H(Bnl - 5n01) % N(07 02)7

2

_ 2
where ¢ = 02, .
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Proof. In order to prove this theorem, we need to verify all the conditions we have listed
before. Conditions A.1- A.3 have been verified in Section 2.3. Thus, the remaining conditions
to verify are Conditions A.4 - A.7. First, let us consider d(n)(fAn, fno). Since (S3.6) and

Condition B.2 holds, we have

S0 logpn
—n .

B (Fos o) = B = B72(B, - 8 = 00

Thus, Condition B.4 implies \/ﬁd%n)(ﬁ, fno) = 0,(1) so Condition 4 holds.

We now consider

PAVP(Z, fuo)llin = iy o = Frol} = B = 43758, - B7),
where v = (1,n10)7 /75, Mao is the vector of coefficient of 7(Xi1|Xo,...,X,,), 5 =
Pg2(X) and 5, = (1,77)7/72. Since Conditions B.1, B.2 and B.9 hold and X < \/log p,,/n,
as proved by Theorem 2.4 of Van de Geer et al. (2014) that ||, =752 = O, <\/sl logpn/TL),

we have

. . ~ . \/Sos1 log pr,
Vi3, = 1) TR(B, - By) = 0, (=R ). (55.5)
\/ﬁ
We use sp = O(n*/logp,) and s; = O(n®/logp,) to obtain that /n|(¥, — ’)’Z)TE(,@n -
B;)| = 0,(1). This verifies Condition A.5.

n

To verify Condition A.6, recalling that for h(X) = — X%+,

Vin(Z, f)lh] = —(Y - X" B8)X".
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Therefore, apply similar decomposition like (S3.5), we have
% 2 (vi - X7B,) XT3, - VaPxy {(v - X"B,)X"5,}
T ~T 1 a ~T
fZ WX XT(B, =B~ VRIS, - B+ 2 YA X
f Z X XT(8; - B.) -7 XX (8, - B,)]
Z X XT(B, - B - 78, - B,)|
V(v = 7,)"2(8;, — B,) + ) Z T X e,

Since Conditions B.1 - B.3 hold, according to equation (96) of Javanmard et al. (2018), we

have

~ a 3 . 1 n
Vi, =7) a8~ B) S min(so, 1)~ 2 (35.9)

Additionally, equation (89) of Javanmard et al. (2018) implies that

P (\/ﬁe{(z,;lin ~-N(B:-8,) > 02@10%) -0, (S5.10)

as n tends to 0o, where ¢y is a constant. Thus, combing equations (S5.8), (S5.9) and (S5.10)

and applying Conditions B.4 and B.9, we have
f Z (vi- X7B,) XI5, - VaPyx (v - X"B,) X",
Z ’YnX i + Op )

Thus, verifying Condition A.6 is equivalent to proving the equicontinuity of the right-hand
side of the above expression. This have been proved in Section S3.

Condition A.7 follows naturally from condition B.6 and B.10. Theorem 1 holds. [



S5. OSRE FOR COEFFICIENT INFERENCE IN LASSO23

S5.1 Simulation based on oracle A}

In this subsection, we will provide more numerical experiments for OSRE based on oracle
hy. Note that T, is an estimator of hy, while h’ would have closed-form when ¥ is known.
h’ in the OSRE of § should be

n(X) = 280X,
and h; in the OSRE of 3; and ) should be
B(X) = OX,

where 2 = X7, Table 1 shows results for oracle OSRE based on 500 replicates for high-
dimensional linear models. The cover probability of the estimators are similar with OSRE
based on estimated A}, while the oracle OSRE will have smaller SEs and ESEs than OSRE
based on estimated h}. When sample size n = 200, SEs for the oracle OSREs are about 70%

of the SE fro the OSRE based on estimated h.

Table 1: Results for oracle OSRE based on 500 replicates for high-dimensional linear models.

n Method Parameter Bias SE ESE CP95 CP90 Bias SE ESE CP95 CP90
(a) (b)
100 OSRE 6 -0.051 0.412 0.372 0.886 0.828 0.055 0.386 0.402 0.944 0.900
(oracle) B1 -0.010 0.195 0.207 0.954 0.920 0.008 0.202 0.208 0.940 0.902
B 0.005 0.194 0.206 0.968 0.902 0.043 0.223 0.208 0.930 0.866
(<) (d)
OSRE 6 0.115 0.273 0.271 0.944 0.886 0.022 0.419 0.399 0.922 0.876
(oracle) B1 -0.005 0.202 0.205 0.936 0.894 -0.005 0.212 0.209 0.936 0.894
B 0.010 0.212 0.206 0.942 0.896 0.004 0.211 0.209 0.938 0.892
(a) (b)
200 OSRE 6 -0.020 0.276 0.279 0.942 0.884 -0.004 0.255 0.276 0.958 0.918
(oracle) B1 0.013 0.147 0.146 0.942 0.892 -0.010 0.135 0.145 0.960 0.914
B 0.002 0.14 0.146 0.948 0.914 0.018 0.155 0.145 0.912 0.864
(<) (d)
OSRE 6 0.041 0.171 0.172 0.952 0.892 -0.008 0.294 0.278 0.926 0.858
(oracle) B1 0.007 0.144 0.144 0.950 0.900 0.006 0.152 0.145 0.944 0.900
Br <0.001 0.141 0.145 0.950 0.906 -0.003 0.154 0.146 0.940 0.878
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S6 OSRE for high dimensional generalized linear model

This section will consider statistic inference for a single coefficient in a high-dimensional
generalized linear model. Consider n i.i.d samples (X, Y;) with X; = (X;1,..., X, )" € Ren
and Y; € {0, 1}, where one of X’s is one and the others have mean zero for k > 1. Y; follows

a binomial distribution with mean

PlY; =1] X <ZXZ] m), (S6.1)

where G is the link function, 3, = (5%,,..., 6an)T is the vector of parameters. Similarly, let
Fo={f(x) = §i1 x;f;} be alinear functional class equipped with an inner product defined

as former section. Suppose fno(®) = 5", x;5}; € F;, is unique maximizer of P{m(X,Y, f)},

ofns)]

P{Vm(X,,Y;, fao)[h]} = P {l,(Ys, X7 BL0)(Xi)}

where m (X, Y, f) is the log-likelihood function defined as

G< §Z1Xij ;g)
1—G( "X )

7=1 J=nj

m(X,Y, f) =Y;log

+log |1

Clearly, we have

where
L G G'()
R FeTP YR s R reTes
and
P{V2 (X, Y, fao) [P, heol } P{l" (Yi,XiTﬁno) h1<Xi)h2(Xi)}a
where

loo(y, @) = yHi(2) — Ha(x),

G"(x)G(x) (1 = G(x)) — (1 = 2G(x)) G ()

Hle) = C(x) (1 - G())
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and

_ G@"@)(1 = G(z)) + G*(x)
(1-G(x))’

HQ(Z)Z')

Without loss of generality, suppose that we are interested in the first component of 3,,,.
Then, similar to former section, §,(f) = 3%, which is equivalent to Ple] X' X f(X)]. Since

m is the log-likelihood function, we can construct h’ as

W (X, Y) = —(P{g1,(X)}) ™ g2u(X,Y), (S6.2)
where
gin(X) = X1 — (X | X2, X5, ..., X)),
9on(X,Y) = LM (Y, X T Bp) (X1 — m(Xa| Xo, X, -, XG,,)-
To see this,
PV m(Z, fuo) (b, Xa]} =(Pgi, (X)) PI(X1 = 7[Xa] Xp, X5, ., X, ]) X
=(Pgin (X)) Pl(X1 — m(X1] X2, X5, .., X))
=1
and for k > 1,

P{V*m(Z, o)}, Xi]} =(Pgi (X)) ' P[(Xy — [ X1 | Xo, X3, ..., X)) Xi] = 0.
Consequently, for any h, € F, with h,(x) = > 7", z;7;, We obtain

In other words, h; satisfies Condition 3.
Without loss of generality, we suppose the parameter we are interested in is the first

coordinate of linear parameter. Suppose the vector parameter 3, is sparse, then the initial
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estimator En can be estimated using the Lasso method:

~ . 1 <&
B3, = arg min {E ;Z(Xi,Yi,ﬁ) + 2)\Hﬁ|]1} , (56.3)

ﬁeRPn

where [(X;,Y;, 8) = Yilog [G (X[ 8) / (1 - G (X[ B))]+log (1 — G (X7 B)), 18Il = >4, 15
is the [;-norm on RP» and A > 0 is a penalty parameter.

Similar to the estimation of A} in (S5.2), we can estimate b} in (56.2) with Lasso.

G(X) = 1 (Y XTB,) (X1 = F(Xi|Xs, ., X))

? Pn

gt (v XTB, ) (6 - XT)).
where X is as defined in former section and 7] should satisfies
= n 4 L X - Wy Xl S6.4
7 = arg min, 57 Wa, X1 = W5 X amlls + Al ¢, (56.4)

where W3 is diagonal matrix with (i, j)-th element U (XT3,). Similarly, we estimate

Pg?,(X) using (S5) by replacing X with W5 X as
R = Wy Xy — Wy X702 /n + A
Consequently, the estimator for A} is given as
ha(X) = —Gua(X) /7%
Then, the one-step regularized estimator for (5,91 is
- - 1< - P ~
oo = B+ 5 R (vi. xTB,) (X -2 Xijﬁ1j> (v XTB,).
i= j=

where B\m is the first element of the initial Lasso estimator Bn The OSRE is exactly the

same as the de-biased Lasso estimator for generalized linear model in Van de Geer et al.

(2014).
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Obviously, when G(z) = exp(z)/(1 + exp(x)),
exp ( Al Xijﬁ:g)

P{Vm(X,,Y, fno)lh]} = P Y — h(X;) ¢,

and
exp< §i1 Xij ;g)

P{V*m(X,Y;, fao)[h1, ho]} = —P 571 (X5)he(X5)

To simplify the notation, let U;(x) = exp(z)/(1 + exp(x))?. Then, we have
h(X) = =(P {g{,(X)}) " g20(X), (56.5)

where

9in(X) = Xy — 7(X1| X2, X3, X)),
9on(X) = Uy H(XTB,0) (X1 — m(X1| Xs, X, ..., X,,,).

Then, the one-step regularized estimator for (5,91 is
exp (X ?@)
1+ exp (X ZTEH>

_ R 1 n Y - N Pn N
6711 = Bnl + E 27_1 2U 1(X1Tﬁn) (le - Z2Xij771j) Y; -
= i=

S6.1 Theorem and proof of OSRE for high-dimensional generalized linear mod-

els

To state the asymptotic properties for the OSRE, we need the following additional assump-

tions.
B.11 With probability larger than 1 — p~,
min {G(X7 Bo), 1 — G(XTBo)} > ca,

for 1 < ¢ < n and some small positive constant ¢, € (0, 1).
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Theorem 2. Suppose that Conditions B.1 - B.4, B.9-B.11 hold true. Furthermore, \ <

V108 p/m in (S6.3) and X =< \/1og pn/n in (S6.4). Then
\/ﬁ(gnl - BnOl) & N(Oa 62)7
where ¢ = P(I" (Y, X" 8,,)) 1, .

Proof. In order to prove this theorem, we need to verify all the conditions we have listed
before. Conditions A.1 - A.3 have been verified in former statements. Thus, the remaining
conditions to verify are Conditions A.4 - A.7.

Since A < \/m and condition B.1, B.2, B.4, B.11 hold, by applying proposition 1

of Guo et al. (2021), we have

7

where C' > 0 is a positive constant. Combing with condition B.2, \/ﬁd?n)(]/”;, fno) = 0,(1)

< CSO(logpn/n)1/2> >1-p," —exp(—cin),
1

which verifies Condition A.4. We now
P{V*m(Z, fu0)lln = i F — Fuol }
——p{, (v XIg) it (Vi XTB,) B, — 7258, - 8))
== P{(0 = %) SB, B} + 0y (B~ 72)"S(B, - B7))
where v% = (1,m51)" /iy, Mm%, can maximize P|[Wg X1—Wpg X _1n|3, 7, = P||Wg,,X1—
Ws X _1mi|3 and 7, = (1,7;)7/72. Conditions B.1, B.2, B.9 holds, by applying The-
orem 3.2 of Van de Geer et al. (2014) and A = V1ogp,/n consequent ||, — il =

0, (V/s1Tog D).

Thus, we have

Vil =7 5B, ~ 87)] = 0, (LI, (56.6)
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~

We use sy = O(n®/logp,) and s; = O(n®/logp,) to obtain that v/n|(7, —~v5)T2(8, —
B.)| = 0,(1). This verifies Condition A.5.

To verify Condition A.6, recalling that for h(X) = —X T4,
m(Z, f)lh] = =P {l, (v;, X{B}) X"~} .

Therefore, apply similar decomposition like (S3.5), we have

i=1

= ﬁ Z G'(XTB AL X, XT(B, — B,) — ViAL P(G'(XTB)XXT) (B, — B,)
Z’AYTX £

= > IO X X8, B - (X8 X X B
z:l
% > |G XTBI XXI(8, - B,) - v P(G(XTB)XXT)(8; - B,)]
1=1

+Vn(v;, =7, PG (X8 X XT)(8;, - B,) Z»?TX i,

where £, = Y; — e(X 1 3%). As we have illustrated in section S5, conditions B.1 - B.3 lead to

equation (S5.9). Then

Jn % > G(XIB)F, — ) X X[ (8] - B,)
= (S6.7)
g@ % ;@n — )T X,XT (B, — B,)| < min(s, >1%

Let X; = X;\/G'(X,37), &5 = 15 X: X7 and 2% = P(X:X;T), By applying lemma
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6.2 of Javanmard and Montanari (2014a) , we have

Hz*fli* o IH — Op logpn )
n n o n

Then, we have

2= [CXI B XX (8, - B) - v PG X8 X XN, B) H
i=1 (56.8)

1 *— 1O * 2 S0
<= TS = D] 18; = Bulh 54/ ogpn,
Thus, combing equations (56.6), (S6.7) and (S6.8) and applying Conditions B.4 and B.9,
we have

1 & - N . -~ -
2= 3 (Y- XIB,) XI5, — ViPk (Y - XB)X'S,
=1

n

1 ~T
=— n X i€i + 0p(1).
v i=1
Thus, verifying Condition A.6 is equivalent to proving the equicontinuity of the right-hand
side of the above expression, which have been proved in Section S3.

Condition A.7 follows naturally from condition B.10 and B.11. Here, we have finished

the proof of Theorem 2. O

S6.2 Simulation study with high-dimensional generalized linear models

In this section we will conduct simulation study for high-dimensional generalized linear model.
We use similar setting as section 4.1 in the main text . In this setting, we generate p = 100
covariates consisting of K = p/q groups, each group with ¢ variables. For ¢ variables in the
kth group, denoted by Xj1, ..., Xiq, they are generated as

(wk]’ + tuk)

Ak =7y

y Wiy ~ U(O, 1),uk € U(O, 1).

In this way, we generate a sequence of blocked covariates. Y follows binominal distribution

with mean X7 3*. We set t = 0.5 so the correlation between any two X’s in the same block
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Table 2: Simulation results based on 500 replicates for high-dimensional generalized linear models.

n Case method Bias SE ESE CP95 CP90

100 (a)  PSI 0.691  1.221 0516  0.884 0.792
OSRE  -0.055 0.464 0408  0.932 0.866

(b)  PSI 0731 1242 0576 0918 0.842
OSRE  -0.005 0.456 0441  0.954 0.910

(c)  PSI 1519 2803  0.963 0.93  0.858
OSRE  -0.045 0472 0459  0.958 0.926

(d)  PSI 6.477 10.017 27366.613 0.948 0.888

OSRE  -0.087 0.470 0.469 0.956  0.910

200 (a) PSI 0.310  0.410 0.268 0.748  0.654
OSRE  -0.003 0.241 0.203 0.908  0.842

(b) PSI 0.317  0.438 0.286 0.746  0.652
OSRE  -0.004 0.279 0.227 0.910 0.842

(¢) PSI 0.428  0.572 0.332 0.758  0.634
OSRE  -0.010 0.288 0.263 0.946 0.894

(d) PSI 0.572  0.780 0.383 0.728  0.640

OSRE  -0.032 0.310 0.286 0.938  0.902

is p = 0.2, but they are independent if from different blocks. Similar situations as those in
section 4.1 are considered as follow

(a) ¢ =2and B* = (1,1,1,0,...,0)T.

(b) g =4 and 8" = (1,1,1,0,...,0)T.

(c) ¢g=4and B =(1,1,1,1,0,...,0) .

(d) ¢=4and B8 =(1,1,1,1,1,0,...,0)T.

To illustrate our proposed method, we focus on inference for the coefficient of the first
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covariate given by fj. We consider sample size n = 100 and 200 replicate each scenario 500
times in the simulation study.

To calculate OSRE, the initial estimate for 3’s is based on the generalized Lasso regression.
The tuning parameter is selected by minimizing cross-validation error. The estimate for h}
is also obtained from a Lasso regression with cross validation, but the tuning parameter is
set to be a factor of the cross-validation optimal parameter. Similar to the choice of high
dimensional linear model, we choose a factor of 279 in the simulation. To examine the
inference performance of the proposed method, we report the coverage rate of confidence
intervals for OSRE. For comparisons, we also report the coverage rate of the ad-hoc post-
selection inference (PSI) by treating selected variables in the Lasso method as the only
variable in the logistic regression model.

In Table 2, we report the simulation results of Bias, standard errors (SEs), estimated
standard errors (ESEs) the coverage probabilities based on (1 —«)-confidence intervals, where
a = 0.10 and 0.05, respectively. CP95 represents coverage rates of 95% confidence intervals
and CP90 is the results of 90% confidence interval. We use robust estimator to estimate
Bias, SE and ESE. Our proposed method has much smaller bias than PSI. Besides, SE and
ESE are inflated in case (d) when sample size n = 100 even they are calculated through
robust methods. As shown in the table, post-selection inference (PSI) performs very poorly
in all of the cases even when sample size equals to 200. Instead, the coverage probabilities of
the confidence intervals based on OSRE are reasonably close to the nominal levels no matter
n = 100 or 200 in all of the cases. This illustrates that out proposed method is also valid for

high-dimensional generalized liner model.
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S7 Additional numerical example for partial linear model

Section 3.2 in the main text illustrates the example of high-dimensional additive model. It
will be also interesting to expand the situation to partial linear model. Since X7 is a covariate
with linear effect, thus we suppose

Pn

Y =p+ Xap] + Z Joi(Xi5) + €4,

j=2
where f is a constant and ¢; is the error term with mean zero and finite variance 0. Thus,
X, is the linear part and (Xs,...,X,) are the non-linear parts of Y.

Obviously, the difference between this semi-parametric model and NAM is that X; should
be used instead of B-spline bases of X;. Thus, the estimator are similar as the one in the main
text by replacing the B-spline bases with X itself. Table 3 shows the relative bias (Bias),
standard errors (SE), estimated standard errors (ESE), the coverage rates of OSREs and PSI
based on 500 replicates. CP95 is the coverage rates of 95% confidence interval while CP90 is
that of 90% confidence intervals. We can find similar results as the those in non-parametric
additive models. Both of the methods have small relative biases. While the ESEs of ad-hoc
method(PSI) are smaller than SEs. The coverage probabilities of OSREs are reasonably close
to the nominal levels for linear or non-linear parameters when sample size n = 200. In the

meanwhile, PSI has coverage probabilities lower than (1 — «) for all cases.

S8 Additional results for real data application

We fit both linear model and additive model to this data to test whether any significant
linear or nonlinear association exists between any gene and TRIM32. All covariates are

standardized by their ranges so the values are between 0 and 1. Linear model fitting is the
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Table 3: Simulation results based on 500 replication for high-dimensional partial linear models.

Parameter n p  Method Bias SE ESE CP90 CP95

B85 200 O PSI -0.010 0.543 0.505 0.842 0.912
OSRE -0.005 0.84 0.769 0.868 0.928

0.2 PSI -0.002 0.825 0.702 0.870 0.924

OSRE -0.036 1.154 1.055 0.886 0.944

400 O PSI -0.002 0.371 0.351 0.892 0.948

OSRE -0.004 0.619 0.597 0.908 0.954

0.2 PSI -0.005 0.530 0.500 0.878 0.912

OSRE -0.003 1.062 0.965 0.902 0.952

[ fi2(x)dz 200 0 TS -0.006 1.128 0.873 0.854 0.908
OSRE 0.036 1598 1.864 0.926 0.96

0.2 PSI 0.021 1.126 0.890 0.884 0.928

OSRE 0.049 1775 1938 0.916 0.958

400 O PSI 0.006 0.746 0.615 0.886 0.938

OSRE 0.034 1.159 1.189 0.920 0.964

0.2 PSI 0.007 0.718 0.632 0.884 0.946

OSRE 0.011 1.236 1.279 0.936 0.958




S8. ADDITIONAL RESULTS FOR REAL DATA APPLICATIONS5

same as in the first simulation study where the penalty parameter for Lasso estimation is
based on cross validation. OSRE for each regression coefficient in the linear model is then
calculated as in the simulation study and its variance is estimated using the proposed method.
To fit nonparametric additive model, we use cubic splines with six evenly distributed knots
in [0, 1] to estimate each additive components. To test the importance of each covariate, we
calculate OSRE for the summary of each functional component as [ fZ(z)dz,k=1,...,p. In
the estimation, the tuning parameter is chosen using BIC.

Table 4 summarizes the estimated parameters and their associated p-values, which are
computed based on normal distributions. Since the parameter we are interested in is the
integral of squared functions, the OSRE for the additive model is about the square of the
OSRE for the coefficients in the linear model. This table shows that a total of 25 genes are
selected by the linear model but the additive identify 13 important genes. Among those genes,
9 are statistically significant in the linear model if using 0.05 as the significance level but 7
are significant in the additive. Only gene 1367777_at is shown to be significantly associated
with TRIM32 for both models.

To further see how these selected genes are associated with TRIM32 in the two model,
Figure 1 plots locally weighted scatterplot smoothing estimates for the significant variables
claimed in the additive model. The plot indicates that both 1368228 _at and 1379971 _at reveal
nonlinear associations with TRIM32. We also observe a clear linear relationship between

TRIM32 and 1367777 _at, the only gene that is tested to be significant both models.
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Table 4: Parameter inference in the microarray data analysis.

Probe

1384035_at

1368136-at

1398370_at

1376261 _at

1379982_at

1367777_at

1368228_at

1380137_at

1384139_at

1379971 _at

1388491 _at

1375642_at

1369414_at

1372674 at

1370205_at

1373887_at

1389910_at

1382223_at

1377836-at

1368165_at

1369978_at

1367483_at

1372248 _at

1373117_at

1372925_at

1390411_at

1375833 at

1372443_at

1393736_at

1378125_at

1370261 _at

1371551 _at

1371752 at

OSRE
8.34e-06
5.52e-06
4.04e-05
4.89e-06
9.28e-06
8.45e-05
9.13e-06
1.18e-06
8.95e-06
1.65e-05
1.18e-05
8.62e-06

1.88e-05

NAM
Standard Error
6.29e-05
1.66e-05
8.09e-05
1.23e-04
7.24e-05
4.68e-04
3.61e-05
1.18e-05
7.60e-05
4.29e-05
2.85e-05
3.96e-05

1.54e-04

p-value
0.148
<0.001
<0.001
0.665
0.162
0.049
0.006
0.274
0.199
<0.001
<0.001
0.018

0.183

OSRE

1.11e-03

9.63e-03

8.40e-03

2.33e-03

9.37e-03
-2.54e-04
1.19e-02
4.36e-03
1.63e-03
5.41e-03
1.26e-02
4.57e-03
8.34e-04
1.02e-03
4.85e-03
8.09e-03
-6.47e-03
-8.18e-03
1.83e-03
-1.93e-03
-1.10e-02
2.71e-03
-7.62e-03

1.34e-03

Lasso

Standard Error

4.25e-02

4.03e-02

3.45e-02

4.55e-02

4.87e-02
4.04e-02
5.72e-02
3.93e-02
5.99e-02
6.03e-02
6.72e-02
5.60e-02
4.28e-02
4.32e-02
3.92e-02
4.68e-02
3.33e-02
3.80e-02
8.39e-02
5.53e-02
3.58e-02
3.15e-02
3.62e-02

4.15e-02

p-value

0.775

0.009

0.008

0.576

0.036
0.945
0.024
0.226
0.767
0.328
0.041
0.373
0.832
0.797
0.177
0.059
0.034
0.019
0.812
0.704
0.001
0.348
0.022

0.725
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Figure 1: Scatter plots between NAM selected genes and TRIM32.
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