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S1 Proof of Theorem 1

The proof of the theorem is based on considering spatio-temporal process as

a multivariate spatial process with multivariate Matérn covariance model

Apanasovich, Genton, and Sun (2012) and providing a valid reparame-

terization of a particular case of multivariate Matérn model to include

temporal components. Let us consider a stationary multivariate process



GHULAM A. QADIR AND YING SUN

Y(s) = {Y1(s), . . . , Yp(s)}T, s ∈ Rd, with mutlivariate Matérn covariance

model:

Cov{Yi(s), Yj(s + h)} = Cij(h) = ρijσiσjM(h | αij, νij), (S1.1)

where the validity conditions on the model parameters ρij, σi, αij and νij, i, j

= 1, . . . , p, p ≥ 1, are provided in Theorem 1 of Apanasovich et al. (2012).

In particular, we consider the following model version derived from Corol-

lary 1(b) of Apanasovich et al. (2012):

Cij(h) =
βijσiσjα

d
ijΓ(

νi+νj
2

)

α
d/2
ii α

d/2
jj

√
Γ(νi)Γ(νj)

M{h | αij, (νi+νj)/2}, νi, σi > 0, i = 1, . . . , p,

(S1.2)

which is valid if: (1) (βij)
p
i,j=1 forms a nonnegative definite matrix and

(2) (−α−2
ij )pi,j form a conditional nonnegative definite matrix. Now, let

βij = 1, i, j = 1, . . . , p, and σi = σ > 0, i = 1, . . . , p, in (S1.2), we get:

Cij(h) = σ2
αdijΓ(

νi+νj
2

)

α
d/2
ii α

d/2
jj

√
Γ(νi)Γ(νj)

M{h | αij, (νi + νj)/2}, (S1.3)

which is valid if (−α−2
ij )pi,j forms a conditional nonnegative definite matrix.

Now, let us consider a spatio-temporal process Y (s, t), s ∈ Rd, t ∈ R

such that Y (s, ti) = Yi(s) for any arbitrary time-point ti. Also, let ζ(ti, tj)

be any positive valued function of time-pairs ti, tj. Corresponding adap-

tation of notations in (S1.3), i.e. Cij(h) = C(h, ti, tj), αij = ζ(ti, tj), νi =
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νs(ti), leads to the following covariance function:

C(h, ti, tj) = σ2 ζ(ti, tj)
dΓ{νs(ti)+νs(tj)

2
}

ζ(ti, ti)d/2ζ(tj, tj)d/2
√

Γ{νs(ti)Γ(νs(tj)}
× (S1.4)

M{h | ζ(ti, tj),
νs(ti) + νs(tj)

2
},

which is valid if νs(t) > 0, t ∈ R, and −1/ζ(ti, tj)
2 forms a conditionally

nonnegative definite matrix for all ti, tj ∈ R.

Now, since − 1
ζ(ti,tj)2

needs to form conditionally nonnegative definite

matrix for all ti, tj ∈ R, it equivalently means 1
ζ(ti,tj)2

needs to form condi-

tionally negative definite (cnd) matrix for all ti, tj ∈ R. Therefore, we can

use positive Bernstein functions ψ(w) > 0, w ≥ 0, to parameterize 1
ζ(ti,tj)2

.

We let 1
ζ(ti,tj)2

= {ψ(|ti−tj |2)

αs
2 +

1/α2
s(ti)+1/α2

s(tj)

2
− ψ(0)

αs
2 }, αs > 0, αs(t) > 0, t ∈ R.

To prove that the aforementioned parameterization is a valid parameteri-

zation, we need to show that {ψ(|ti−tj |2)

αs
2 +

1/α2
s(ti)+1/α2

s(tj)

2
− ψ(0)

αs
2 }, αs >

0, αs(t) > 0, t ∈ R is conditionally negative definite.

As per (Bhatia and Jain, 2015, .S2), there is a one-to-one relation

between Bernstein functions and cnd functions, i.e.,“A function ψ(·) on

(0,∞) is a Bernstein function if and only if the function f(w) = ψ(‖w‖2)

is continuous and cnd on Rd for every d ≥ 1. Therefore, ψ(|ti − tj|2) is a

cnd function.
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Now, to show the conditional negative definiteness of
1/α2

s(ti)+1/α2
s(tj)

2
, let

xi ∈ C, such that
∑

i xi = 0, then,

∑
i

∑
j

xi
1/α2

s(ti) + 1/α2
s(tj)

2
x∗j

=
1

2

∑
i

xi
1

α2
s(ti)

∑
j

x∗j +
1

2

∑
j

x∗j
1

α2
s(tj)

∑
i

xi = 0

Therefore,
1/α2

s(ti)+1/α2
s(tj)

2
always forms conditionally negative definite ma-

trix. Additionally, when
∑

i xi = 0,
∑

i

∑
j xiψ(0)x∗j = ψ(0)

∑
i xi
∑

j x
∗
j =

0. Now combining all the three term, we get

∑
i

∑
j

xi
1

ζ(ti, tj)2
x∗j =

∑
i

∑
j

xi{
ψ(|ti − tj|2)

αs
2 +

1/α2
s(ti) + 1/α2

s(tj)

2
−ψ(0)

αs
2 }x

∗
j

=

[∑
i

∑
j

xi
ψ(|ti − tj|2)

αs
2 x∗j +

∑
i

∑
j

xi
1/α2

s(ti) + 1/α2
s(tj)

2
x∗j

−
∑
i

∑
j

xi
ψ(0)

αs
2 x
∗
j

]
≤ 0.

Therefore, 1
ζ(ti,tj)2

= {ψ(|ti−tj |2)

αs
2 +

1/α2
s(ti)+1/α2

s(tj)

2
− ψ(0)

αs
2 }, αs > 0, αs(t) >

0, t ∈ R is a valid parametrization. Consequently, letting 1
ζ(ti,tj)2

= {ψ(|ti−tj |2)

αs
2 +

1/α2
s(ti)+1/α2

s(tj)

2
− ψ(0)

αs
2 }, αs > 0, αs(t) > 0, t ∈ R in (S1.4) proves Theorem 1.

Note that, if we replace the time-varying functions αs(t) > 0 and νs(t) > 0

with space-time varying functions αs(s, t) > 0 and νs(s, t) > 0, respec-

tively, the parameterization for 1
ζ(ti,tj)2

would still be valid and the resulting

space-time covariance would be nonstationary both in space and time.
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S2 Random Composite Likelihood Estimation

Let X(s, t), s ∈ Rd, t ∈ R be a zero mean Gaussian spatio-temporal pro-

cess, and XS,T denote the vector of the process X, observed at the set

of locations S = {s1, . . . , sns} ⊂ Rd, ns ≥ 1, and the set of time-points

T = {t1, . . . , tnt} ⊂ R, nt ≥ 1, i.e., XS,T = {X(s, t); s ∈ S, t ∈ T }.

The total number of data points is denoted as N = ns · nt. The log-

likelihood function for XS,T is given as: `(θ | XS,T ) = −{log det Σ(θ) +

XT
S,T Σ(θ)−1XS,T +N. log 2π}/2, where Σ(θ) is the N ×N covariance ma-

trix for XS,T , defined through a spatio-temporal covariance function which

depends on the set of parameters θ. The maximum likelihood estima-

tion of θ requires computing: θ̂ML = argmaxθ `(θ | XST ), generally done

through numerical optimization routines which involve iterative evaluation

of `(θ | XST ). The optimization becomes computationally challenging

in case both or either of ns and nt are large, as Σ(θ) then becomes a

large covariance matrix and the iterative evaluation of `(θ |XS,T ) becomes

time-prohibitive. Additionally, storing an extremely large sized covariance

matrix Σ(θ) can exhaust the available memory of the machine, thus mak-

ing the optimization impracticable. A widely used approximate solution to

curtail this computational issue is to adopt composite likelihood methods

(Vecchia, 1988; Stein et al., 2004; Varin et al., 2011; Eidsvik et al., 2014),



GHULAM A. QADIR AND YING SUN

in which the optimization is carried out over the product of component

likelihoods.

In this work, we too implement the estimation by the means of com-

posite likelihood where the collection of component likelihoods is chosen

randomly. Specifically, we randomly create equisized subsets Sij ⊂ S, i =

1, . . . , Rs, j = 1, . . . ,MS, and Tij ⊂ T , i = 1, . . . , Rt, j = 1, . . . ,Mt, such

that for each i = 1, . . . , Rs: ∪Ms
j=1Sij = S, Sik∩Sil = φ,∀ k 6= l, and for each

i = 1, . . . , Rt: ∪Mt
j=1Tij = T , Tik ∩ Til = φ,∀ k 6= l. Here, Ms and Mt govern

the size of subsets of S and T , respectively, whereas Rs and Rt denote the

number of randomly created mutually exclusive and exhaustive partitions

of S and T , respectively. Based on those subsets, we define the following

random composite log-likelihood (RCL) function:

`RC(θ |XS,T ) =

∑Rs

i=1

∑Ms

j=1 `(θ |XSij ,T )

2
+

∑Rt

i=1

∑Mt

j=1 `(θ |XS,Tij)
2

,

(S2.1)

and the RCL estimate of θ is then obtained as θ̂RCL = argmaxθ `RC(θ |

XST ). For large spatio-temporal datasets, computation and optimization

of `RC(θ | XST ) is relatively more feasible than that of `(θ | XST ) as

the former includes smaller-sized covariance matrices because the compo-

nent log-likelihoods are based only on the subset of the data. Additionally,

`RC(θ | XST ) can also easily utilize the parallel architecture of modern
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machines to simultaneously compute the component log-likelihoods, which

would lead to further computational speed up. The functions `RC(θ |XST )

and `(θ |XST ) become increasingly similar for smaller values Ms and Mt,

therefore, smaller Ms and Mt leads to more accurate but slower estima-

tion. Note that if Ms = Mt = 1, then `RC(θ | XST ) = `(θ | XST )

as Ms = 1 =⇒ Rs = 1 and Mt = 1 =⇒ Rt = 1. Therefore, the

values of Ms,Mt, Rs and Rt should be chosen by considering the trade-

off between accuracy and speed. For our simulation study, we specify

Ms = 20, Rs = 15,Mt = 19 and Rt = 1, whereas, for our data applica-

tion, we specify Ms = 69, Rs = 2,Mt = 52 and Rt = 1.

In the following subsection, we now provide an exposition on the prop-

erties of `RC(θ |XS,T ) wherein, we prove that the random composite like-

lihood score function is always an unbiased estimating function for θ, i.e.,

E{∂`RC(θ|XS,T )

∂θr
} = 0. In addition, we have also included the evaluation for

the Hessian of `RC(θ |XS,T ) and the variance of θ̂RCL.

S2.1 Score and Hessian for RCL

Let ΣSij ,T and ΣS,Tij denote the covariance matrices (that depends on the

parameters θ) for XSij ,T and XS,Tij , respectively.

Under zero-mean Gaussianity, we have (ignoring the scalar terms that
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do not contain θ):

`RC(θ |XS,T ) =

[ Rs∑
i=1

Ms∑
j=1

{−1

2
log(|ΣSij ,T |)−

1

2
XT
Sij ,T Σ−1

Sij ,TXSij ,T }(S2.2)

+
Rt∑
i=1

Mt∑
j=1

{−1

2
log(|ΣS,Tij |)−

1

2
XT
S,TijΣ

−1
S,TijXS,Tij}

]
× 1

2

Let θr denote the rth entry of the parameter vector θ, then we differen-

tiate (S2.2) with respect to θr to obtain the score function:

∂`RC(θ |XS,T )

∂θr
=

1

2
×
[ Rs∑
i=1

Ms∑
j=1

{−1

2

∂ log(|ΣSij ,T |)
∂θr

− (S2.3)

1

2

∂XT
Sij ,T Σ−1

Sij ,TXSij ,T

∂θr
}+

Rt∑
i=1

Mt∑
j=1

{−1

2

∂ log(|ΣS,Tij |)
∂θr

−

1

2

∂XT
S,TijΣ

−1
S,TijXS,Tij

∂θr
}
]

In what follows, we will make use of the following formulas : (a)

∂ log(|Σ|)
∂θr

= trace(Σ−1 ∂Σ
∂θr

), (b) ∂YT Σ−1Y
∂θr

= −YTΣ−1 ∂Σ
∂θr

Σ−1Y and (c) E(YTBY)

= trace(BΣY ), where ΣY is the covariance matrix for Y. Using (a) and (b)

in (S2.3), we get:
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∂`RC(θ |XS,T )

∂θr
=

1

2
×
[ Rs∑
i=1

Ms∑
j=1

{−1

2
trace(Σ−1

Sij ,T
∂ΣSij ,T

∂θr
) (S2.4)

+
1

2
XT
Sij ,T Σ−1

Sij ,T
∂ΣSij ,T

∂θr
Σ−1
Sij ,TXSij ,T }+

Rt∑
i=1

Mt∑
j=1

{−1

2
trace(Σ−1

S,Tij
∂ΣS,Tij
∂θr

) +

1

2
XT
S,TijΣ

−1
S,Tij

∂ΣS,Tij
∂θr

Σ−1
S,TijXS,Tij}

]

Now using the formula (c) and taking expectation over both sides in

(S2.4), we get:

E
{∂`RC(θ |XS,T )

∂θr

}
=

1

2
×
[ Rs∑
i=1

Ms∑
j=1

{−1

2
trace(Σ−1

Sij ,T
∂ΣSij ,T

∂θr
) (S2.5)

+
1

2
trace(Σ−1

Sij ,T
∂ΣSij ,T

∂θr
Σ−1
Sij ,T ΣSij ,T )}

+
Rt∑
i=1

Mt∑
j=1

{−1

2
trace(Σ−1

S,Tij
∂ΣS,Tij
∂θr

) +

1

2
trace(Σ−1

S,Tij
∂ΣS,Tij
∂θr

Σ−1
S,TijΣS,Tij)}

]
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E
{∂`RC(θ |XS,T )

∂θr

}
=

1

2
×
[ Rs∑
i=1

Ms∑
j=1

{−1

2
trace(Σ−1

Sij ,T
∂ΣSij ,T

∂θr
) + (S2.6)

1

2
trace(Σ−1

Sij ,T
∂ΣSij ,T

∂θr
)}

+
Rt∑
i=1

Mt∑
j=1

{−1

2
trace(Σ−1

S,Tij
∂ΣS,Tij
∂θr

) +
1

2
trace(Σ−1

S,Tij
∂ΣS,Tij
∂θr

)}
]

= 0

Therefore, the random composite score is always an unbiased es-

timating function for θ.

Now, let us consider the second derivative of (S2.2) by using the for-

mulas (d): dtrace(AB) = trace(dA.B) + trace(A.dB) and (e) ∂Σ−1

∂θr
=

−Σ−1 ∂Σ
∂θr

Σ−1:
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∂2`RC(θ |XS,T )

∂θr∂θs
=

1

2
×
[ Rs∑
i=1

Ms∑
j=1

{−1

2
trace(Σ−1

Sij ,T
∂2ΣSij ,T

∂θr∂θs
) (S2.7)

+
1

2
trace(Σ−1

Sij ,T
∂ΣSij ,T

∂θs
Σ−1
Sij ,T

∂ΣSij ,T

∂θr
)

+
1

2
XT
Sij ,T Σ−1

Sij ,T
∂2ΣSij ,T

∂θr∂θs
Σ−1
Sij ,TXSij ,T −

XT
Sij ,T Σ−1

Sij ,T
∂ΣSij ,T

∂θs
Σ−1
Sij ,T

∂ΣSij ,T

∂θr
Σ−1
Sij ,TXSij ,T }

+
Rt∑
i=1

Mt∑
j=1

{−1

2
trace(Σ−1

S,Tij
∂2ΣS,Tij
∂θr∂θs

) +

1

2
trace(Σ−1

S,Tij
∂ΣS,Tij
∂θs

Σ−1
S,Tij

∂ΣS,Tij
∂θr

)

+
1

2
XT
S,TijΣ

−1
S,Tij

∂2ΣS,Tij
∂θr∂θs

Σ−1
S,TijXS,Tij −

XT
S,TijΣ

−1
S,Tij

∂ΣS,Tij
∂θs

Σ−1
S,Tij

∂ΣS,Tij
∂θr

Σ−1
S,TijXS,Tij}

]
Now taking expectation on both sides of (S2.7), we get:

E
{∂2`RC(θ |XS,T )

∂θr∂θs

}
=

1

2
×
[ Rs∑
i=1

Ms∑
j=1

{−1

2
trace(Σ−1

Sij ,T
∂2ΣSij ,T

∂θr∂θs
) + (S2.8)

1

2
trace(Σ−1

Sij ,T
∂ΣSij ,T

∂θs
Σ−1
Sij ,T

∂ΣSij ,T

∂θr
)

+
1

2
trace(Σ−1

Sij ,T
∂2ΣSij ,T

∂θr∂θs
)− trace(Σ−1

Sij ,T
∂ΣSij ,T

∂θs
Σ−1
Sij ,T

∂ΣSij ,T

∂θr
)}

+
Rt∑
i=1

Mt∑
j=1

{−1

2
trace(Σ−1

S,Tij
∂2ΣS,Tij
∂θr∂θs

) +

1

2
trace(Σ−1

S,Tij
∂ΣS,Tij
∂θs

Σ−1
S,Tij

∂ΣS,Tij
∂θr

)

+
1

2
trace(Σ−1

S,Tij
∂2ΣS,Tij
∂θr∂θs

)− trace(Σ−1
S,Tij

∂ΣS,Tij
∂θs

Σ−1
S,Tij

∂ΣS,Tij
∂θr

)}
]
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E
{∂2`RC(θ |XS,T )

∂θr∂θs

}
= (S2.9)

1

2
×
[ Rs∑
i=1

Ms∑
j=1

{−1

2
trace(Σ−1

Sij ,T
∂ΣSij ,T

∂θs
Σ−1
Sij ,T

∂ΣSij ,T

∂θr
)}

+
Rt∑
i=1

Mt∑
j=1

{−1

2
trace(Σ−1

S,Tij
∂ΣS,Tij
∂θs

Σ−1
S,Tij

∂ΣS,Tij
∂θr

)}
]

Therefore, the negative expected Hessian H(θ) is given as:

H(θ) = −E
{∂2`RC(θ |XS,T )

∂θr∂θs

}

=
1

4
×
[ Rs∑
i=1

Ms∑
j=1

{trace(Σ−1
Sij ,T

∂ΣSij ,T

∂θs
Σ−1
Sij ,T

∂ΣSij ,T

∂θr
)}+

Rt∑
i=1

Mt∑
j=1

{trace(Σ−1
S,Tij

∂ΣS,Tij
∂θs

Σ−1
S,Tij

∂ΣS,Tij
∂θr

)}
]

(S2.10)

Typically, for the asymptotically normal estimators which result from

unbiased estimating functions, the associated asymptotic covariance for the

estimator has a sandwich form (Godambe, 1960; Eidsvik et al., 2014) under

the expanding asymptotics paradigm, and therefore: θ̂RCL ∼ N(θ, G−1),

G(θ) = H(θ)J−1(θ)H(θ)

where J(θ) = var(
∂`RC(θ|XS,T )

∂θr
)

Let us now compute the variance of the score function:

We rewrite (S2.4) by absorbing non-random terms into a constant C,
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and denoting LrSij ,T = Σ−1
Sij ,T

∂ΣSij ,T

∂θr
Σ−1
Sij ,T , and LrS,Tij = Σ−1

S,Tij
∂ΣS,Tij
∂θr

Σ−1
S,Tij ,

we get:

∂`RC(θ |XS,T )

∂θr
=

1

2
×
[ Rs∑
i=1

Ms∑
j=1

{1

2
XT
Sij ,T L

r
Sij ,TXSij ,T }

+
Rt∑
i=1

Mt∑
j=1

{1

2
XT
S,TijL

r
S,TijXS,Tij}

]
+ C (S2.11)

Now, we take the variance on both sides of (S2.11) by using the formu-

las: (f): var(Y TBY ) = 2trace(BΣYBΣY ) and (g): cov(Y TBrY, Y
TBsY ) =

2trace(BrΣYBsΣY ), we get:

var(
∂`RC(θ |XS,T )

∂θr
) =

1

16
×
[
var[

Rs∑
i=1

Ms∑
j=1

{XT
Sij ,T L

r
Sij ,TXSij ,T }]

+var[
Rt∑
i=1

Mt∑
j=1

{XT
S,TijL

r
S,TijXS,Tij}] +

cov(
Rs∑
i=1

Ms∑
j=1

{XT
Sij ,T L

r
Sij ,TXSij ,T },

Rt∑
k=1

Mt∑
l=1

{XT
S,TklL

r
S,TklXS,Tkl})

]
(S2.12)

Let us first simplify var[
∑Rs

i=1

∑Ms

j=1{X
T
Sij ,T L

r
Sij ,TXSij ,T }]:
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var[
Rs∑
i=1

Ms∑
j=1

{XT
Sij ,T L

r
Sij ,TXSij ,T }] = (S2.13)

Rs∑
i=1

var(
Ms∑
j=1

XT
Sij ,T L

r
Sij ,TXSij ,T )

+
Rs∑

l 6=m=1

cov(
Ms∑
j=1

XT
Slj ,T L

r
Slj ,TXSlj ,T ,

Ms∑
n=1

XT
Smn,T L

r
Smn,TXSmn,T )

var[
Rs∑
i=1

Ms∑
j=1

{XT
Sij ,T L

r
Sij ,TXSij ,T }] = (S2.14)

Rs∑
i=1

Ms∑
j=1

var(XT
Sij ,T L

r
Sij ,TXSij ,T )

+
Rs∑
i=1

Ms∑
j 6=j′

cov(XT
Sij ,T L

r
Sij ,TXSij ,T ,X

T
Sij′ ,T L

r
Sij′ ,TXSij′ ,T )

+
Rs∑

l 6=m=1

Ms∑
j=1

Ms∑
n=1

cov(XT
Slj ,T L

r
Slj ,TXSlj ,T ,X

T
Smn,T L

r
Smn,TXSmn,T )

var[
Rs∑
i=1

Ms∑
j=1

{XT
Sij ,T L

r
Sij ,TXSij ,T }] = (S2.15)

2
Rs∑
i=1

Ms∑
j=1

trace(LrSij ,T ΣSij ,T L
r
Sij ,T )

+2
Rs∑
i=1

Ms∑
j 6=j′

trace(LrSij ,T ΣSij ,Sij′ ,T L
r
Sij′ ,T ΣSij ,Sij′ ,T )

+2
Rs∑

l 6=m=1

Ms∑
j=1

Ms∑
n=1

trace(LrSlj ,T ΣSij ,Smn,T L
r
Smn,T ΣSij ,Smn,T ),
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where ΣSij ,Smn,T is the covariance matrix for (XT
Sij ,T ,X

T
Sij′ ,T )T ,

LrSij ,T =

LrSij ,T 0

0 0

 , LrSij′ ,T =

0 0

0 LrSij′ ,T


Similarly, we get:

var[
Rt∑
i=1

Mt∑
j=1

{XT
S,TijL

r
S,TijXS,Tij}] = (S2.16)

2
Rt∑
i=1

Mt∑
j=1

trace(LrS,TijΣS,TijL
r
S,Tij)

+2
Rt∑
i=1

Mt∑
j 6=j′

trace(LrS,TijΣS,Tij ,Tij′L
r
S,TijΣS,Tij ,Tij′ )

+2
Rt∑

l 6=m=1

Mt∑
j=1

Mt∑
n=1

trace(LrS,TljΣS,Tij ,TmnL
r
S,Tmn

ΣS,Sij ,Tmn)

and

Rs∑
i=1

Ms∑
j=1

Rt∑
k=1

Mt∑
l=1

cov(XT
Sij ,T L

r
Sij ,TXSij ,T ,X

T
S,TklL

r
S,TklXS,Tkl) =

2
Rs∑
i=1

Ms∑
j=1

Rt∑
k=1

Mt∑
l=1

trace(LrSij ,T ΣSij ,T ,S,TklL
r
S,TklΣSij ,T ,S,Tkl), (S2.17)

where ΣSij ,T ,S,Tkl is the covariance matrix of (XT
Sij ,T ,X

T
S,Tkl)

T

Therefore, by using (S2.15),(S2.16) and (S2.17), we can obtain the di-

agonal entries of J(θ):
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var(
∂`RC(θ |XS,T )

∂θr
) =

1

8
×

[
Rs∑
i=1

Ms∑
j=1

trace(LrSij ,T ΣSij ,T L
r
Sij ,T )

+
Rs∑
i=1

Ms∑
j 6=j′

trace(LrSij ,T ΣSij ,Sij′ ,T L
r
Sij′ ,T ΣSij ,Sij′ ,T )

+
Rs∑

l 6=m=1

Ms∑
j=1

Ms∑
n=1

trace(LrSlj ,T ΣSij ,Smn,T L
r
Smn,T ΣSij ,Smn,T )

+
Rt∑
i=1

Mt∑
j=1

trace(LrS,TijΣS,TijL
r
S,Tij)

+
Rt∑
i=1

Mt∑
j 6=j′

trace(LrS,TijΣS,Tij ,Tij′L
r
S,TijΣS,Tij ,Tij′ )

+
Rt∑

l 6=m=1

Mt∑
j=1

Mt∑
n=1

trace(LrS,TljΣS,Tij ,TmnL
r
S,Tmn

ΣS,Sij ,Tmn)

+
Rs∑
i=1

Ms∑
j=1

Rt∑
k=1

Mt∑
l=1

trace(LrSij ,T ΣSij ,T ,S,TklL
r
S,TklΣSij ,T ,S,Tkl)

]
. (S2.18)

Similarly, we can obtain the off-diagonal entries of J(θ) and plug it in the

formula of the G(θ) to obtain the variance of the parameter estimates θ̂RCL.

S3 Temporal Nonstationary Effects of αs(t) and νs(t)

Firstly, let us fix: (i) νs(t) = νf , t ∈ R, (ii) αs(tr) = αr; αs(tj) = αf , tj 6=

tr ∈ R, for any arbitrary reference time point tr, and (iii) αs = αf in

Equation 3.4 of the main manuscript, then the temporal covariance of the
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reference time-point tr with any other time point tj is given as:

C(0, tr, tj) =
σ2(

α2
f

α2
r
)d/4

{ψ(|tr − tj|2)− ψ(0) + 1
2
(1 +

α2
f

α2
r
)}d/2

, for all tj ∈ R. (S3.1)

Note that it is reasonable here to fix αs = αf even under the aforementioned

choice of constraint for αs, as αs =
∑

ti∈T αs(ti)/T ≈ αf , provided that T

includes a large number of training points and αr is not extremely different

from αf . The function in (S3.1) expresses covariance of a reference time

point tr with any other time point tj ∈ R as a function of L1 distance

between them, i.e., |tr − tj| , and the term αf/αr counter-balances the

scale of the covariance and the rate of covariance decay with increasing

distance |tr − tj|. For instance, if αr < αf , then for non-zero temporal

lags, the scale of covariance is increased and the rate of covariance decay

is decreased through the term αf/αr in the numerator and denominator

of (S3.1), respectively. Therefore, the function αs(t), not only denotes the

spatial scale of purely spatial Matérn covariance at time t, but also governs

the scaling and rate of temporal covariance decay away from the time point

t. Next, we fix (i) αs(t) = αf , t ∈ R, (ii) αs = αf , and (iii) ν(tr) =

νr; ν(tj) = νf , tj 6= tr ∈ R in Equation 3.4 of the main manuscript, we get:

C(0, tr, tj) =
σ2Γ(

νr+νf
2

)√
Γ(νr)Γ(νf ){ψ(|tr − tj|2)− ψ(0) + 1}d/2

, for all tj ∈ R,

(S3.2)



GHULAM A. QADIR AND YING SUN

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

| tr − tj |

C
(0

, 
t r

, 
t j)

αf =15, αr =10

αf =15, αr =12

αf =15, αr =15

αf =15, αr =18

αf =15, αr =20

(a)

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

| tr − tj |

C
(0

, 
t r

, 
t j)

νf =1.0, νr =1.0

νf =1.0, νr =1.5

νf =1.0, νr =2.0

νf =1.0, νr =2.5

νf =1.0, νr =3.0

(b)

Figure 1: (a) The purely temporal covariance function in (S2.5) as a function of |tr − tj |

for different choices of αf and αr. (b) The purely temporal covariance function in (S2.6)

as a function of |tr − tj | for different choices of νf and νr. For both (a) and (b), we have

fixed σ = 1 and ψ(w) = (3w0.5 + 1).

where the terms νr and νf control the scale of the temporal covariance such

that the covariance is scaled down if νr 6= νf and the magnitude of this

downscaling is directly proportional to the difference between νf and νr.

Hence, the function νs(t) also plays a twofold role where on one hand it

controls the smoothness of the purely spatial Matérn covariance at time

t, on the other hand, it regulates the scaling of temporal covariance at

non-zero temporal lags.

These effect of αs(t) and νs(t) on the purely temporal covariance func-

tion is also illustrated with examples in Figure 1. For σ = 1 and ψ(w) =

(3w0.5 + 1), Figure 1(a) and Figure 1(b) show the temporal covariance
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function in (S3.1) for different combinations of (αf , αr) and the tempo-

ral covariance function in (S3.2), for different combinations of (νf , νr),

respectively. In particular, the illustrated combinations are (αf , αr) ∈

{(15, 10), (15, 12), (15, 15), (15, 18), (15, 20)} and (νf , νr) ∈ {(1, 1), (1, 1.5), (1

, 2), (1, 2.5), (1, 3)}, where we consider (αf , αr) = (15, 15) and (νf , νr) =

(1, 1) as the base cases for studying their effects. As shown in Figure 1(a),

for the cases when αf > αr, i.e., (αf , αr) ∈ {(15, 10), (15, 12)}, the rate of

covariance decay is decreased and the scaling is increased compared to the

base case, whereas for the cases αf < αr, i.e., (αf , αr) ∈ {(15, 18), (15, 20)},

the rate of covariance decay is increased and the scaling is decreased. More-

over, the effect is stronger when the difference between αf and αr is higher.

Similarly, relative to the base case, the scale of the covariance is clearly de-

creased in Figure 1(b) for (νf , νr) ∈ {(1, 1.5), (1, 2), (1, 2.5), (1, 3)} and the

decrease is the highest when νr is the farthest from νf , i.e., (νf , νr) = (1, 3).
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S4 Extended Discussion from the Simulation Study

S4.1 Temporal nonstationarity of the data generating models in

the simulation study

In terms of the purely temporal covariance of the data generating model as

shown in Figure 2, the specified αs(t) and νs(t) impart nonstationarity in

Case 1, Case 2 and Case 3, and stationarity in Case 4. In particular, the

temporal covariance becomes stronger at the middle of Dt for Case 1, and

at the higher end of Dt for Case 2 and Case 3.
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Figure 2: The purely temporal covariance of the true data generating model as a function

of time pairs (ti, tj), ti, tj ∈ Dt, for all the four cases. The white lines represent the

contours at levels: 0.75, 0.5 and 0.25. The purely temporal covariance in Case 1, Case

2 and Case 3 is nonstationary, as the covariance decay is slower in the middle of Dt for

Case 1, and the covariance decay is slower at the higher end of Dt for Case 2 and Case 3.

The purely temporal covariance in Case 4 is stationary, as the structure remain constant

throughout t.
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S4.2 Additional Figures from the Simulation Study

An example realization of Z for all the four cases from the simulation study

presented in the main manuscript can be found in Figures 3–6.

S4.3 RCL parameter estimates from the simulation study

Table 1 reports the average and standard deviation of parameter estimates

over the 100 simulation runs, for all the three candidate models under the

four simulation cases. The parameter estimates of σ, γ and β under the

Gneit.M model are close to their respective true values in all the four cases,

however, since the Gneit.M model is misspecified for the time-varying part

αs(t) and νs(t) of the true data generating model, the respective constant

estimates are not comparable to the true functions in Cases 1–3. Albeit,

for Case 4 where the true αs(t) and νs(t) are constant, the corresponding

estimates under the Gneit.M model are almost equal to their true values.

Among the three candidate models, Sep.M is the most extreme misspecifica-

tion of the true process in all the four cases, and consequently its parameter

estimates exhibit the strongest disagreement with their respective true val-

ues in all the four cases. All the parameter estimates from the candidate

Tvar.M shown in Table 1 are nearly equal to their corresponding true val-

ues, in all the four cases. Note that the average estimate and standard
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Figure 3: An example of a simulated realization of Z from Case 1.
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Figure 4: An example of a simulated realization of Z from Case 2.
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Figure 5: An example of a simulated realization of Z from Case 3.
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Figure 6: An example of a simulated realization of Z from Case 4.
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deviation entries for αs(t) and νs(t) are left blank under the Tvar.M since

the comparison of true and estimated functional parameters αs(t) and νs(t)

under Tvar.M is shown in Figure 3 of the main manuscript. The entry for

the average estimate and standard deviation of β under Sep.M is left blank

because β = 0 for separable model.

S5 Polynomial Order Selection

In our study, the time-varying functions αs(t) and νs(t) are specified as

exp(pαn.α(t)) and exp(pαn.ν(t)), respectively, where pαk (t) and pνk(t) are both

k-degree polynomials of t. The selection of an appropriate value for n.α

and n.ν is crucial for this polynomial-based specification. In this section,

we provide detailed guidelines to ensure an empirically informed, sufficiently

flexible, and computationally feasible choice of values for n.α and n.ν.

We begin by estimating the spatial scale α̂i and smoothness parame-

ter ν̂i of the Matérn covariance function independently for each time point

ti ∈ T. Since our proposed model results in a purely Matérn spatial co-

variance for each time point, the estimated parameters α̂i and ν̂i should

align with the time-varying functions αs(ti) and νs(ti), ti ∈ T. There-

fore, to determine suitable polynomial orders, we fit regression models

log(α̂i) ∼ pαn.α(ti) and log(ν̂i) ∼ pνn.ν(ti) for increasing values of n.α ≥ 0 and
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n.ν ≥ 0. Additionally, to achieve balanced flexibility in both time-varying

spatial smoothness and spatial scale, we impose the constraint n.α = n.ν

on our choice of polynomial orders in the simulation study and the data ap-

plication. By jointly analyzing the fitted polynomials through the adjusted

R2 values, visual inspection of the fits, and computational complexity of

the resulting time-varying model, we make an informed decision regarding

the appropriate orders.

In our simulation study, we fit polynomials of orders n.α = n.ν =

0, 1, 2, 3, 4, 5, for the four cases. For the data application, we fit a polyno-

mial of order n.α = n.ν = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. The selection of the

optimal order is based on the adjusted R2 values, aiming to strike a balance

between model flexibility and computational feasibility. We choose the low-

est possible order such that the next higher order provides a negligible or

no increase in the adjusted R2 value.

The plots for the fitted polynomials in the four simulation cases are

shown in Figures 7–10, and the equivalent plot for the data application is

shown in Figure 11. The corresponding adjusted R2 values for the simu-

lation cases and the data application are reported in Table 2 and Table 3,

respectively.

For Case 1 and Case 2, as shown in Figure 7 and Figure 8, the quadratic
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polynomial visually captures the variation of α̂i and ν̂i well. The adjusted

R2 values also support the use of a quadratic polynomial, as higher orders

do not significantly increase the adjusted R2.

In Case 3, the quadratic polynomial seems insufficient to capture the

variation of α̂i and ν̂i, as evident from the fitted polynomials in Figure 9.

The cubic polynomial appears to be a better fit. The adjusted R2 values

in Table 2 also support the use of a cubic polynomial, as higher orders do

not lead to a noticeable increase in adjusted R2.

For Case 4, we opt for the quadratic polynomial despite the highest

adjusted R2 values in Table 2 being attributed to the fifth-order polynomial.

Our decision is informed by the exploratory plots illustrated in Figure 10.

The range of α̂i and ν̂i is quite narrow and lacks any discernible pattern

that would justify the use of a polynomial of a higher degree. Considering

these empirical observations, a quadratic polynomial seems to be a judicious

selection.

Similarly, for the data application, a fifth-order polynomial strikes a

balance between model flexibility and computational feasibility, as observed

from Figure 11 and Table 3.



S5. POLYNOMIAL ORDER SELECTION

Figure 7: Exploratory plots for the selection on polynomial orders n.α and n.ν in Case

1. The estimates log(α̂i) (left) and log(ν̂i) are based on the average over 100 simulation

runs. Colored curves depict polynomial fits of varying degrees.

Figure 8: Exploratory plots for the selection on polynomial orders n.α and n.ν in Case

2. The estimates log(α̂i) (left) and log(ν̂i) are based on the average over 100 simulation

runs. Colored curves depict polynomial fits of varying degrees.
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Table 1: Average and standard deviation of parameter estimates over the 100 simulation

runs.

Parameter/ True value/ Mean (std. dev.) of the parameter estimates

Cases Function True specification Tvar.M Gneit.M Sep.M

Case 1 σ 1 0.99 (0.04) 0.99 (0.04) 0.96 (0.04)

γ 0.60 0.60 (0.02) 0.61 (0.02) 0.61 (0.02)

β 0.80 0.75 (0.15) 0.79 (0.12) –

δ 0.10 0.17 (0.17) 0.18 (0.17) 1.05 (0.15)

αs(t) 20 + 15 sin(πt20 ) – 15.16 (2.06) 25.90 (1.99)

νs(t) 0.5 + sin(πt20 ) – 0.94 (0.09) 1.40 (0.11)

Case 2 σ 1 0.99 (0.03) 0.99 (0.03) 0.96 (0.03)

γ 0.60 0.60 (0.02) 0.60 (0.01) 0.60 (0.01)

β 0.80 0.79 (0.14) 0.86 (0.09) –

δ 0.10 0.16 (0.17) 0.11 (0.08) 1.03 (0.11)

αs(t) 25− 10t – 18.12 (1.87) 32.64 (2.82)

νs(t) 0.5 + t – 0.76 (0.07) 1.23 (0.13)

Case 3 σ 1 1.00 (0.03) 0.98 (0.04) 0.96 (0.04)

γ 0.60 0.60 (0.02) 0.59 (0.01) 0.59 (0.01)

β 0.80 0.83 (0.13) 0.90 (0.09) –

δ 0.10 0.10 (0.10) 0.07 (0.09) 1.03 (0.13)

αs(t) 20− 10 exp(10t−5)
1+exp(10t−5) – 11.35 (1.62) 18.52 (2.18)

νs(t) 0.5 + exp(10t−5)
1+exp(10t−5) – 0.56 (0.06) 0.73 (0.08)

Case 4 σ 1 0.99 (0.03) 1.00 (0.03) 0.97 (0.03)

γ 0.60 0.60 (0.01) 0.60 (0.01) 0.60 (0.01)

β 0.80 0.75 (0.11) 0.78 (0.08) –

δ 0.10 0.17 (0.15) 0.14 (0.12) 1.00 (0.11)

αs(t) 20 – 20.51 (2.56) 38.65 (2.76)

νs(t) 1 – 1.03 (0.10) 1.83 (0.17)
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Figure 9: Exploratory plots for the selection on polynomial orders n.α and n.ν in Case

3. The estimates log(α̂i) (left) and log(ν̂i) are based on the average over 100 simulation

runs. Colored curves depict polynomial fits of varying degrees.

Figure 10: Exploratory plots for the selection on polynomial orders n.α and n.ν in Case

4. The estimates log(α̂i) (left) and log(ν̂i) are based on the average over 100 simulation

runs. Colored curves depict polynomial fits of varying degrees.
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Figure 11: Exploratory plots for the selection on polynomial orders n.α and n.ν in the

data application. The estimates log(α̂i) (left) and log(ν̂i) are based on the average over

100 training sets. Colored curves depict polynomial fits of varying degrees.

Table 2: Adjusted R2 values for polynomial fits of varying degrees (n.α and n.ν) over

averaged independent temporal estimates for log(α̂i) and log(ν̂i), for the four cases of

the simulation study. The first entry in each cell represents the adjusted R2 for the

polynomial fit on independent temporal estimates for log(α̂i), while the second entry

represents the adjusted R2 for the polynomial fit on independent temporal estimates for

log(ν̂i). The final choices considered in the simulation study are shown in bold.

Case n.α = n.ν = 1 n.α = n.ν = 2 n.α = n.ν = 3 n.α = n.ν = 4 n.α = n.ν = 5

Case 1 0.068, 0.106 0.982,0.994 0.982, 0.994 0.987, 0.998 0.988, 0.999

Case 2 0.950, 0.920 0.955,0.932 0.954, 0.931 0.953, 0.932 0.950, 0.932

Case 3 0.942, 0.944 0.957, 0.941 0.990,0.990 0.995, 0.990 0.995, 0.998

Case 4 0.194, 0.077 0.451,0.548 0.640, 0.702 0.615, 0.680 0.732, 0.736
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Table 3: Adjusted R2 values for polynomial fits of varying degrees (n.α and n.ν) over

averaged independent temporal estimates for log(α̂i) and log(ν̂i), for the data applica-

tion. The first entry in second column represents the adjusted R2 for the polynomial

fit on independent temporal estimates for log(α̂i), while the second entry represents the

adjusted R2 for the polynomial fit on independent temporal estimates for log(ν̂i). The

final choice considered in the data application is shown in bold.

n.α = n.ν Adjusted R2

1 0.000, 0.000

2 0.280, 0.400

3 0.388, 0.391

4 0.545, 0.441

5 0.598,0.473

6 0.658, 0.511

7 0.688, 0.500

8 0.686, 0.574

9 0.701, 0.574

10 0.695, 0.619
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