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S1 Proofs

Let TZ =
∑4

i=1(Zi+1 − Zi)
2, where Z1, ..., Z4 are i.i.d. standard normal

sample and Z5 = Z1. First, a lemma.

Lemma 1. For i.i.d. random samples TZ1 , ..., TZn from TZ with respective

order statistics TZ(1)
≤ ... ≤ TZ(n)

, we have

(TZ(n)
− dn)/6 →d Λ,

where dn = 6[log n + 1
3
log(log n) − log Γ(4/3)], Λ is a standard Gumbel

distribution with the distribution function Λ(x) = exp(−e−x) and Γ(x) =∫∞
0

tx−1e−t dt is the Gamma function.
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Proof. Denote E1 = (Z2−Z1)
2+(Z4−Z3)

2, E2 = (Z2−Z3)
2+(Z4−Z1)

2,

then E1, E2 ∼ Γ(1, 1/4) and corr(E1, E2) = 0.5.

By Kotz and Neumann (1963), Kotz and Adams (1964), the distribution

of TZ =
∑4

i=1(Zi+1 − Zi)
2 = E1 + E2 is Γ(4/3, 1/6).

For the maximum TZ(n)
of the random sample, it is easy to check that

TZ is in the set of von Mises distributions and thus we have P (TZn ≤

cnx + dn) →d Λ as n → ∞. Using the same method as in Example 3.3.29

of Embrechts, Klüppelberg, and Mikosch (2013), we have the following

equation:

1

6
dn −

1

3
log dn = log(Cn),

where C = (61/3Γ(4
3
))−1.

By solving for dn, we obtain dn = 6[log n + 1
3
log(log n) − log Γ(4/3)],

and cn = 6.

Remark 1. According to the high–dimensional strong invariance principle

in El Machkouri et al. (2013), when the µi are the same, k2
n(Tn)/σ

2 →d

Γ(4/3, 1/6), then (k2
n max(Tn)/σ

2 − dn)/6 →d Λ for an i.i.d. sample from

Tn. Here Λ is standard Gumbel distribution with the distribution function

Λ(x) = exp(−e−x).

Now we come to the setting in which a standard normal sample is

distributed in a high-dimensional space (WLOG, a two–dimensional space),
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Figure 1: Setting for i.i.d. standard normal samples.

where in each row and column we have (n1+1) and (n2+1) i.i.d. standard

normal samples Zij, as shown in Figure 1.

For each 2×2 sub-square in the space, we calculate a respective TZ . (For

example, TZ11 is the calculated result of the most left-bottom 2 × 2 block,

that is, TZ11 = (Z11 − Z12)
2 + (Z12 − Z22)

2(+Z22 − Z21)
2 + (Z21 − Z11)

2.)

In such a setting, we have n = n1n2 TZ samples, denoted as TZij
. The

locations of the TZij
s are shown in Figure 2. Here, we note that such TZij

are (2, 2)-independent, which means that TZij
is only dependent on TZi+c,j+c

,

where c = −1, 0, 1.

Lemma 2. In such spatial and dependency setting of TZij
, when n → ∞,
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Figure 2: Setting for (2,2)-dependent TZij
s.

we have

(maxTZij
− dn)/6 →d Λ

where Λ and dn are defined as in Lemma A.1.

Proof. Without loss of generality, we suppose n1 = n2 =
√
n. First,

we transform the index of TZij
to one dimension row by row: TZr = TZij

,
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where r = (i − 1)
√
n + j. The samples are TZ1 , ..., TZn and are (

√
n + 1)-

dependent. We denote a single TZn ’s distributional function as F and see

that limn→∞ n[1− F (dn + cnx)] = e−x, and, for any given TZi
, i = 1, ..., n,

there are at most eight TZj
s, j ̸= i that are dependent on TZi

. Such TZj
s

satisfy | j − i |≤
√
n + 1. By Theorem 3.7.1 of Galambos (1987), select

τ(sn, un) = 1 when sn <
√
n + 1, and τ(sn, un) = 0 when sn ≥

√
n + 1,

and sn/n → 0. The τ function satisfies Equation (59) and the conditions in

Theorem 3.7.1 of Galambos (1987). Finally, we need to verify that Equation

(62) in Galambos (1987) is satisfied. It suffices to show that Equation (64)

holds when u → ∞, and Xi is TZi
. For those TZj

independent of TZ1 , the

limit holds as it equals limu→∞(1− F (u)) = 0. In addition, when u → ∞,

0 < λ < 0.09,

P (TZ1 > u, (Z1 − Z√
n+2)

2 ≤ λu) = P ((Z1 − Z2)
2 + (Z2 − Z√

n+3)
2

+ (Z√
n+3 − Z√

n+2)
2 > (1− λ)u)

≤ P ((Z1−Z2)
2+(Z2−Z√

n+3)
2+(Z√

n+3−Z√
n+2)

2+(Z5−Z6)
2 > (1−λ)u).

Note that R1 := (Z1 − Z2)
2 + (Z√

n+3 − Z√
n+2)

2 ∼ Γ(1, 1/4), R2 :=

(Z2 − Z√
n+3)

2 + (Z5 − Z6)
2 ∼ Γ(1, 1/4), and corr(R1, R2) =

√
2/4, then

R1 +R2 ∼ Γ(1.4775, 0.185). Thus, P (R1+R2>(1−λ)u)
P (TZ1>u)

∼ eu/6−0.185u(1−λ) as u is

sufficiently large. When 0 < λ < 0.09, we have P (TZ1 > u, (Z1−Z√
n+2)

2 ≤
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λu) = o(P (TZ1 < u)). Therefore

P (TZ1 > u, TZ2 > u) ≤ P (TZ1 > u, (Z1 − Z√
n+2)

2 ≤ λu)

+ P (TZ2 > u, (Z1 − Z√
n+2)

2 > λu).

As our construction TZ2 is independent of Z1 and Z√
n+2, P (TZ1 >

u, TZ2 > u) = o(P (TZ1 < u)). Thus, we have verified all of the conditions

in Theorem 3.7.1 of Galambos (1987). Therefore, arrangement of TZn in

Figure A.2 with a
√
n+1 dependence also has an extreme value convergence,

as follows:

(max(TZn)− dn)/6 →d Λ.

Here, TZn is as same as our target series TZij
.

Remark 2. If the (
√
n + 1)2 Zis are not arranged in a square, that is,

we have n = n1n2 TZ ’s distributed in n1 rows and n2 columns, then it

is easy to see that the series {TZn} is (min(n1, n2) + 1)-dependent, and

min(n1, n2) <
√
n. The conditions in Galambos (1987), as well as Lemma

A.2, continues to hold.

Proof of Theorem 1. (i)(a) In the two-dimensional sample space, the

sample size is n = n1n2 with n1 rows and n2 columns, and the block-

ing length is kn. In one block we have k2
n samples. First, we need to

ensure kn/n1 → 0, and kn/n2 → 0, Denote [n/k2
n] = m, [n1/kn] = m1,
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[n2/kn] = m2, when m,m1,m2 → ∞ we also have

(max(TZm)− dm)/6 →d Λ.

Denote a vector l = (l1, l2), where l1 = 1, · · · ,m1, l2 = 1, · · · ,m2. Dl =

D(l1,l2) = [(l1−1)kn, l1kn])×[(l2−1)kn, l2kn), and Sl = S(l1,l2) =
∑

XiI(i∈Dl),

Denote Al = A(l1,l2) = S(l1,l2)/k
2
n. To study the convergence of Ĝn, we

need the error bound of 1-dimensional strong invariance principle from Wu

(2007), so we write the index i of error term ϵi = ϵ(i1,i2) to be one dimension,

which is expressed as τ . Without loss of generality, to avoid tedious discus-

sion of the cases when the samples locate on the boundaries of blocks, we

assume the left-bottom point of first block is (0.5, 0.5) and the block length

kn to be an integer, a bijection b(i) from {i = (i1, i2), i1 = 1, ..., n1, i2 =

1, ..., n2} to {τ : τ = 1, ..., n = n1n2} is constructed as

τ = b(i1, i2) = ϕ(i2, kn)n1 + ϕ(i1, kn)kn + (i2 − ϕ(i2, kn)− 1)kn + (i1 − ϕ(i1, kn)),

where ϕ(a, b) = [a−0.5
b

]b, a, b ∈ N. The bijection b ensures that a set of

all locations i in a same block is transformed to a set of consecutive one-

dimensional indexes.

By the same way, the index i of i.i.d. random variables ηi can be con-

verted to one-dimensional τ . Then, as ϵi = g(ηi−j, j ∈ Z2) for a measurable

function g and the transformation b(i) from (i1, i2) to τ is piecewise linear,
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there exists a measurable function g1 s.t. ϵτ = g1(ητ−ζ , ζ ∈ Z). Denote an

i.i.d. copy of ητ by η′τ , and define

η∗τ =


ητ , if τ ̸= 0 ,

η′τ , if τ = 0 ,

with ϵ∗τ = g1(η
∗
τ−ζ , ζ ∈ Z). We transform the index i, l into one dimension

by τ = b(i) and Dl2(m2−1)+l1 := D(l1,l2) respectively, and let Ut = ∪t
l=1Dl.

Following Wu (2007) and Wu and Zhao (2007), we describe the Brown-

ian motion in terms of in the strong invariance principle as B, and as Zl,n =

Z(l1,l2),n = k−1
n (B(|Ul2(m2−1)+l1 |) − B(|Ul2(m2−1)+l1−1|)), l1 = 1, ...,m1, l2 =

1, ..,m2, as the error process {ϵi} satisfies ∆4 < ∞, || ϵi−ϵ∗i ||4≤ n−1(i1i2)
−2,

then for some constant C, {ϵτ} = {ϵb(i)} satisfies
∑n

τ=1 τ || ϵτ − ϵ∗τ ||4<

n
∑n

τ=1 || ϵτ−ϵ∗τ ||4= n
∑

i∈Z2∩[1,n]2 || ϵi−ϵ∗i ||4≤ C
∑

i1=1,...,n1, i2=1,...,n2
(i1i2)

−2 <

∞ when n, n1, n2 → ∞. it is determined that

A(l1,l2) = σk−1
n Z(l1,l2),n+k−2

n

∑
j1,j2=0,...,kn−1

µ(
(l1 − 1)kn + j1

n1

,
(l2 − 1)kn + j2

n2

)

+ k−2
n oAS(n

1/4 log n). (S1.1)

when the error term {ϵi} satisfies ∆2 < ∞, and {ϵτ} = {ϵb(i)} satisfies∑n
τ=1 τ || ϵτ − ϵ∗τ ||4< ∞.

As µ() is α-order Hölder continuous, that is, |µ(i) − µ(j)| ≤ ||i − j||α,
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we have

knσ
−1[A(l1+1,l2) − A(l1,l2)] = Z(l1+1,l2),n − Z(l1,l2),n

+OAS(k
(1+α)
n /nα

1 + k−1
n n1/4 log n), (S1.2)

knσ
−1[A(l1,l2+1) − A(l1,l2)] = Z(l1,l2+1),n − Z(l1,l2),n

+OAS(k
(1+α)
n /nα

2 + k−1
n n1/4 log n), (S1.3)

knσ
−1[A(l1+1,l2+1) − A(l1,l2+1)] = Z(l1+1,l2+1),n − Z(l1,l2+1),n

+OAS(k
(1+α)
n /nα

1 + k−1
n n1/4 log n), (S1.4)

knσ
−1[A(l1+1,l2+1) − A(l1+1,l2)] = Z(l1+1,l2+1),n − Z(l1+1,l2),n

+OAS(k
(1+α)
n /nα

2 + k−1
n n1/4 log n). (S1.5)

We need k
(1+α)
n /min(n1, n2)

α + k−1
n n1/4 log n → 0, as we can see that

when min(n1, n2)n
−1/4 → ∞ and kn ∼ np when p > 1/4, such α > 1 exist.

So, we square both sides of the equations (S1.1)–(S1.4), and then sum the

four squared equations, which gives

k2
nσ

−2{[A(l1+1,l2)−A(l1,l2)]
2+[A(l1,l2+1)−A(l1,l2)]

2+[A(l1+1,l2+1)−A(l1,l2+1)]
2

+[A(l1+1,l2+1)−A(l1+1,l2)]
2} = [Z(l1+1,l2),n−Z(l1,l2),n]

2+[Z(l1,l2+1),n−Z(l1,l2),n]
2

+ [Z(l1+1,l2+1),n − Z(l1,l2+1),n]
2 + [Z(l1+1,l2+1),n − Z(l1+1,l2),n]

2

+OAS(k
(1+α)
n /min (n1, n2)

α + k−1
n n1/4 log n)2. (S1.6)
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The discrepancy measurement k2
nTn(xl1 , yl2)/σ

2 is on the left-hand side of

Equation (S1.5). It converges almost surely to the right-hand side of Equa-

tion (S1.5), which is the TZl1l2
in the Figure 2. By taking the maximum

of both sides, when n → ∞, m1 = n1/kn → ∞, m2 = n2/kn → ∞, µ is

α-order Hölder continuous, k
(1+α)
n /min(n1, n2)

α + k−1
n n1/4 log n → 0, and

the extreme-valued test statistic, maxTn, satisfies:

(k2
n max(Tn)/σ

2 − dm)/6 →d Λ.

(i)(b) As b(i) is piecewise linear, the process ϵτ is a linear process and we

can write it as ϵτ =
∑∞

ζ=0 αζητ−ζ . And for a constant C2,
∑n

ζ=1

√∑n
ρ=ζ α

2
ρ ≤

n
√∑

j∈Z2∩[1,n]2 α(i− j)2 < C2

√∑
j∈Z2∩[1,n]2 e

−2max(|j1|,|j2|) < ∞ when n, n1, n2 →

∞ as α(i− j) = O(n−1e−max(|j1|,|j2|)). From Proposition 2 in Wu (2007), the

last item in (S1.1) could be further shrink to oAS(n
1/q). Then the last item

in (S1.6) is OAS(k
(1+α)
n /min (n1, n2)

α + k−1
n n1/q)2. We can derive (2.5) if

(2.6) holds.

(ii) For a given level λ ∈ (0, 1), let gλ = − log(− log(1 − λ)) be the

(1− λ)-th quantile of a standard Gumbel distribution. From Theorem 1(i)

we reject the null hypothesis µ(·) ∈ Hα(I) if

Ĝn >
σ2(6gλ + dm)

k2
n

. (S1.7)

Consider the local alternative, that is, there exists a subset B of I = [0, 1]2,
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such that mini∈B,j∈Bc |µ(i) − µ(j)| ≥ C where the constant C > 0 is the

change-size. The location indexes for the observations in B is denoted as

Bn = B ∩ {( i
n1
, j
n2
) | i = 1, ..., n1, j = 1, ..., n2} with a cardinality |Bn|. As

µ(·) ∈ PHα(0, 1), similar arguments in the proof of Theorem 1(i) yield

maxE(Tn) >
1

4
C2|Bn|/k2

n +O(kn/min(n1, n2))
α .

If the area of B is positive, log n = o(n), and k
(1+α)
n /min(n1, n2)

α +

k−1
n n1/4 log n → 0 holds, then n = O(|Bn|) (as the area of B is positive,

|Bn| = A1n with a constant A1), and it follows that (S1.7) holds with

probability approaching 1.

Proof of Theorem 2. Denote the median of TZ by M0. From Lemma

A.1, we know that M0 is the median of Γ(4/3, 1/6), so that M0 ≈ 6.1.

Denote m1 = [n1/kn],m2 = [n2/kn], and construct (m1 + 1)(m2 + 1)

i.i.d. standard normal random variables, which are Z1, ..., Z(m1+1)(m2+1), and

arrange them in a (m1 + 1)(m2 + 1) matrix, m1 ≤ m2. Construct T
′
i to be

the sum of the squared differences of any 2× 2 submatrix of Zi. (e.g: T
′
1 =

(Z2−Z1)
2+(Zm1+3−Z2)

2+(Zm1+2−Zm1+3)
2+(Z1−Zm1+2)

2). Then, there

will bem1×m2 T
′
i , and T ′

i is (m1+1) dependent. DenoteMn = median(T ′
i ),

by Ruymgaart (2002), then we know that Mn−M0 ∼ Op(kn/max(n1, n2)),

so that Mn − M0 ∼ Op(kn/
√
n). Here, we need kn = o(

√
n) to ensure
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convergence.

Next, square the differences of Ai = A(i1,i2) as in the proof of Theorem

1, and sum the squared (S1.1)-(S1.4). Thus, for the median, we have:

median(Tn) = Mn
σ2

k2
n

+OAS(k
2α
n /min(n2

1, n
2
2)

2α + k−4
n n1/2 log2 n).

When k2α+2
n /min(n2

1, n
2
2)

α + k−2
n n1/2 log2 n → 0, the median estimator σ̂2

2

of long-run variance converges almost surely, so it converges in probability.

For α > 1, we can find the kn that satisfies the convergence.

(For example, when n1 ∼ n2 ∼
√
n, and α = 2, if kn ∼ n0.3, the

convergence is | σ̂2
2 − σ2 |= oAS(n

−1/10 log2 n)).

S2 Simulation Results for Center-Jump Cases

From the results, we see that the extreme-valued test and ISE test are both

effective when the breaking region is large and located at the centre of the

sample region (see Figures 3–6 for an illustration).

References
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