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S1 Monte Carlo Experiments

We investigate the finite sample performance of the proposed estimation

procedure and the developed test using Monte Carlo simulations, where we

compare the suggested estimation procedure to the traditional parametric

modal regression without considering the error structure and the correspon-

ding mean estimation. The bandwidth for the original parametric modal re-

gression is chosen by the plug in method with the help of the asymptotically

optimal bandwidth expression in Remark 4; see Ullah et al. (2021).

We simulate 200 datasets from each data generating process (DGP)

with sample sizes of n = 200, 400, 600, or 1000. In order to evaluate the

finite sample performance, we calculate the mean, the average of the esti-

mated standard errors (SE) as well as the mean squared errors (MSE) for

each estimator and average them across 200 simulations. We also compare
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SE to the sample standard deviation of the estimators (SD).

DGP 1 (fixed order) In this simulated example, we illustrate the finite

sample performance of the proposed estimator with a known AR order.

The data are generated from

Yt = θ1X1,t + θ2X2,t + εt, (S1.1)

where θ1 = 1, θ2 = 2, and Xt follows a multivariate normal distribution

with two components that are independently standard normal distributed.

The error term εt adheres to an AR process of order d = 1 or d = 2

εt =
d∑

j=1

βjεt−j + ηt, (S1.2)

where ηt is produced from: (1) standard normal distribution (N(0, 1)),

(2) t distribution with degrees of freedom 3 (t(3)), (3) mixture Laplace

distribution (0.8Lp(0, 1)+0.2Lp(0, 4)), and (4) mixture normal distribution

(0.9N(0, 1) + 0.1N(0, 5)), respectively. We focus on the case in which β1 =

0.8 and β2 = −0.5 to guarantee the stationarity assumption for the model of

the error terms. Since the order of the AR process is assumed to be known

in this example, we directly apply the kernel-based objection function (2.8)

for estimating. We set the initial values of parameters in simulations based

on mean and median estimates and find that the final estimation results do

not differ significantly. For simplicity, the initial values for the coefficients

are thus set to be mean estimates for all cases.
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Table S1: Results of Simulations—DGP 1

Sample Size Traditional Proposed

θ1 (SE) MSE θ2 (SE) MSE θ1 (SE) MSE θ2 (SE) MSE

ηt ∼ N(0, 1) d = 1

n=200 1.2490 (0.4423) 0.2169 1.9577 (0.4649) 0.2169 0.9888 (0.2036) 0.0414 2.0293 (0.3595) 0.1294

n=400 1.0689 (0.3360) 0.1199 2.0345 (0.3812) 0.1458 1.0005 (0.1594) 0.0253 1.9796 (0.2601) 0.0677

n=600 1.0687 (0.3032) 0.0962 1.9853 (0.3395) 0.1149 0.9800 (0.1287) 0.0169 2.0162 (0.2023) 0.0410

n=1000 1.0364 (0.2747) 0.0764 2.0081 (0.3246) 0.1049 0.9918 (0.1043) 0.0109 2.0089 (0.1889) 0.0356

d = 2

n=200 0.9865 (0.2517) 0.0632 1.9877 (0.4013) 0.1604 0.9794 (0.1752) 0.0310 1.9864 (0.3521) 0.1236

n=400 0.9816 (0.2226) 0.0497 1.9873 (0.3394) 0.1148 0.9950 (0.1368) 0.0186 2.0100 (0.2710) 0.0732

n=600 0.9955 (0.2009) 0.0402 2.0084 (0.3146) 0.0985 0.9970 (0.1225) 0.0149 1.9907 (0.2328) 0.0540

n=1000 1.0104 (0.1951) 0.0380 1.9927 (0.2940) 0.0861 0.9933 (0.0857) 0.0073 2.0117 (0.1855) 0.0344

ηt ∼ t(3) d = 1

n=200 1.1694 (0.6830) 0.4928 2.0037 (0.5183) 0.2673 0.9809 (0.2497) 0.0624 1.9876 (0.4757) 0.2253

n=400 1.1013 (0.4540) 0.2154 1.9848 (0.4183) 0.1743 0.9972 (0.2035) 0.0412 2.0149 (0.3259) 0.1059

n=600 1.0140 (0.4287) 0.1831 2.0337 (0.4054) 0.1646 0.9958 (0.1582) 0.0249 1.9794 (0.2957) 0.0874

n=1000 1.0808 (0.3451) 0.1250 2.0364 (0.3744) 0.1408 0.9922 (0.1322) 0.0175 1.9943 (0.2168) 0.0468

d = 2

n=200 0.9706 (0.2587) 0.0674 1.9452 (0.4536) 0.2077 1.0034 (0.2262) 0.0509 2.0037 (0.4043) 0.1627

n=400 0.9984 (0.2347) 0.0548 2.0072 (0.3833) 0.1462 1.0131 (0.1578) 0.0249 1.9983 (0.3163) 0.0996

n=600 1.0278 (0.2160) 0.0472 1.9546 (0.3713) 0.1393 0.9855 (0.1495) 0.0224 2.0036 (0.2746) 0.0750

n=1000 1.0066 (0.2076) 0.0429 1.9945 (0.3243) 0.1047 0.9934 (0.1201) 0.0144 1.9977 (0.2089) 0.0434

ηt ∼ 0.8Lp(0, 1) + 0.2Lp(0, 4) d = 1

n=200 1.2364 (0.6140) 0.4310 2.0027 (0.5595) 0.3115 1.0016 (0.2813) 0.0787 2.1007 (0.5263) 0.2857

n=400 1.0711 (0.4580) 0.2138 2.0046 (0.4734) 0.2230 0.9641 (0.2141) 0.0469 2.0496 (0.4043) 0.1651

n=600 1.0482 (0.4130) 0.1720 2.0191 (0.3953) 0.1559 0.9868 (0.2023) 0.0409 2.0145 (0.3368) 0.1131

n=1000 1.0010 (0.3487) 0.1210 2.0396 (0.3828) 0.1474 0.9917 (0.1532) 0.0234 2.0007 (0.2896) 0.0835

d = 2

n=200 0.9652 (0.2773) 0.0777 1.9795 (0.4838) 0.2333 0.9983 (0.2405) 0.0575 1.9827 (0.4553) 0.2065

n=400 0.9877 (0.2626) 0.0688 1.9536 (0.4239) 0.1810 1.0026 (0.2097) 0.0437 1.9782 (0.3687) 0.1358

n=600 0.9861 (0.2486) 0.0617 2.0487 (0.3972) 0.1593 1.0137 (0.1836) 0.0337 2.0331 (0.2983) 0.0897

n=1000 1.0002 (0.2164) 0.0466 1.9999 (0.3492) 0.1213 1.0008 (0.1467) 0.0214 2.0109 (0.2714) 0.0734

ηt ∼ 0.9N(0, 1) + 0.1N(0, 5) d = 1

n=200 1.1776 (0.4697) 0.2510 1.9742 (0.4272) 0.1823 0.9677 (0.2168) 0.0478 1.9991 (0.3830) 0.1459

n=400 1.0787 (0.3205) 0.1084 1.9935 (0.3902) 0.1516 1.0228 (0.1514) 0.0233 2.0163 (0.2926) 0.0855

n=600 1.0476 (0.3105) 0.0982 2.0058 (0.3772) 0.1416 0.9831 (0.1310) 0.0174 2.0206 (0.2424) 0.0589

n=1000 1.0405 (0.2835) 0.0816 2.0132 (0.3189) 0.1014 0.9922 (0.1100) 0.0121 2.0134 (0.1721) 0.0297

d = 2

n=200 1.0258 (0.2603) 0.0681 1.9578 (0.3759) 0.1424 0.9591 (0.1868) 0.0364 1.9847 (0.3472) 0.1202

n=400 0.9902 (0.2250) 0.0505 1.9653 (0.3599) 0.1301 0.9831 (0.1446) 0.0211 1.9904 (0.2521) 0.0633

n=600 1.0054 (0.2121) 0.0448 2.0312 (0.3419) 0.1173 1.0092 (0.1180) 0.0139 1.9721 (0.2276) 0.0516

n=1000 1.0003 (0.1850) 0.0341 1.9808 (0.2817) 0.0793 0.9978 (0.0978) 0.0095 1.9735 (0.1956) 0.0388
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Figure S1: Ratio SE/SD of DGP 1

The simulation results are summarized in Table S1, showing that both

traditional and proposed methods can reasonably estimate parameters (in

terms of bias). This is expectable because the AR process has no effect on

the values of the modal coefficients in this simulation case. For example, let
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εt = β1εt−1 + ηt. With ignoring the serial correlation, the modal regression

line will be Mode(Yt | Xt) = XT
t θ + Mode(εt | Xt) based on the current

information induced by the event at time t. Taking into account the serial

correlation, we can have Mode(Yt | Ft−1) = XT
t θ+β1εt−1 with the assump-

tion that Mode(ηt | Ft−1) = 0 based on the information induced by all

events before time t. Because mode does not have the additive property, it

is difficult to guarantee that Mode(εt | Xt) and Mode(β1εt−1 + ηt | Xt) will

be the same. However, the value of θ is unaffected according to the model

setting. Note that the estimates of unknown parameters become closer to

the true values and the SE and MSE of each estimator in all settings

decrease as the sample size n increases, which agrees with the asymptotic

results in Section 3. Furthermore, the results demonstrate that the de-

veloped estimator is more efficient (with smaller SE and MSE) than the

traditional modal regression estimator, especially for the AR(1) error pro-

cess, where traditional modal regression estimators are slightly biased with

small sample sizes. Finally, we compare SE to SD for the modal regression

coefficients to check the accuracy of the estimated SE. We plot the ratio

of SE over SD in Figure S1. The results indicate that the ratio is close to

one and does not differ significantly between the compared two estimation

methods. Thus, the proposed method performs reasonably well.
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DGP 2 (order selection) In this simulation example, we present the fi-

nite sample performance of the developed estimation procedure with order

selection. For each sampling scheme, the proposed estimation procedures

without order selection and with SCAD penalty function are compared with

regard to the efficiency improvement. In addition, we report the oracle re-

sult as a benchmark, where the true AR coefficients and order are known.

The data are generated from the following parametric regression

Yt = θ1X1,t + θ2X2,t + εt, (S1.3)

where θ1 = 2, θ2 = 3, and Xt follows a multivariate normal distribution

with two components being independently standard normal distributed.

The error process εt is an AR process of order d = 10 or d = 20

εt =
d∑

j=1

βjεt−j + ηt, (S1.4)

where ηt is set to be the same as in DGP 1 (four different distributions). Our

goal is to inspect whether the suggested estimation procedure with order

selection can specify the model correctly and enhance estimation efficiency.

We thus concentrate on the case where β1 = 0.5 and all other βj’s are zero.

According to the estimation procedure, we choose d = 25 as an upper bound

for order in the first step estimation. For each simulation, an estimate whose

absolute value is less than 10−4 is shrunk to 0, that is, the corresponding

regression variables are removed.
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Table S2: Results of Simulations—DGP 2

Sample Size d = 10 d = 20

Without Selection With Selection Oracle Without Selection With Selection Oracle

ηt ∼ N(0, 1)

n=200 0.2404 0.2037 0.1885 0.2723 0.2311 0.1993

n=400 0.1667 0.1414 0.1358 0.1542 0.1189 0.1071

n=600 0.1221 0.1049 0.1028 0.1004 0.0886 0.0788

n=1000 0.0686 0.0604 0.0594 0.0725 0.0625 0.0561

ηt ∼ t(3)

n=200 0.2824 0.2129 0.2072 0.2907 0.2339 0.2084

n=400 0.1577 0.1327 0.1289 0.1800 0.1267 0.1138

n=600 0.1019 0.0799 0.0741 0.1509 0.1076 0.0977

n=1000 0.0676 0.0573 0.0563 0.0773 0.0616 0.0556

ηt ∼ 0.8Lp(0, 1) + 0.2Lp(0, 4)

n=200 0.3696 0.3132 0.3069 0.3231 0.2838 0.2577

n=400 0.2211 0.1764 0.1692 0.2174 0.1862 0.1645

n=600 0.1445 0.1344 0.1227 0.1587 0.1334 0.1352

n=1000 0.1085 0.0977 0.0950 0.1129 0.0922 0.0883

ηt ∼ 0.9N(0, 1) + 0.1N(0, 5)

n=200 0.2476 0.1921 0.1883 0.2569 0.2206 0.2058

n=400 0.1512 0.1253 0.1179 0.1571 0.1274 0.1165

n=600 0.1173 0.1018 0.1012 0.1266 0.1091 0.0947

n=1000 0.0778 0.0655 0.0610 0.0820 0.0749 0.0655

The results are summarized in Table S2, where theMSEs for all param-

eters are reported. It can be observed that the finite sample performances

of the estimation procedure with order selection are very close to those of

the oracle cases, which is consistent with the theoretical results. Particu-

larly, the proposed estimation procedure with order selection can specify

AR order accurately for different error distributions and achieve a smaller

MSE than the procedure without order selection. This achievement is more

prominent for moderate sample size, such as n = 200. With a large sample

size, the gain for the developed method in terms of MSE is not very big.
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This is to be expected because all methods can estimate coefficients more

precisely with the large sample size. Also, the difference between d=10 and

d=20 is not remarkable. This implies that the proposed estimation proce-

dure is not very sensitive to the assumption of the AR order provided that

a variable selection for the AR error is conducted.

Remark S1. The developed two-step estimation procedure can be iterated

to achieve better finite sample performance in practice. However, based on

Monte Carlo simulation results, one iteration is enough to obtain the well

finite sample performance.

DGP 3 (AR test) To demonstrate the good performance of the suggested

test, we generate data from

Yt = θ1X1,t + θ2X2,t + εt, (S1.5)

where θ1 = 1, θ2 = 3, andXt follows a multivariate normal distribution with

two components being independently standard normal distributed. For the

sake of simplicity, we assume that the error process εt is an AR process of

order d = 1
εt = β1εt−1 + ηt, (S1.6)

where ηt follows the same distribution shown in DGP 1 (four different dis-

tributions) and β1 = {0, 0.1, 0.2, · · · , 0.9}. Thus, the limiting distribution

of the proposed modal residual-based test under H0 is the X 2 distribution

with one degree of freedom. When β1 = 0 (size performance), the specified
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Figure S2: Power and Size of DGP 3

alternative hypothesis collapses into the null hypothesis, indicating the

nonexistence of AR error structure; when β1 is far from 0 (power performa-

nce), the existence of AR error structure is revealed. We adopt the boot-

strap procedure illustrated in Remark 6 with 200 replications of the boot-
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strap sampling and consider the significance levels α=0.1, 0.05 and 0.01 to

investigate the size and power of the developed test. Due to the computa-

tional cost, we only report the results for n =200 or 400 with fixed lag one

used in the auxiliary regression.

The simulation results for the suggested test in terms of size (Type I

error) and power are reported in Figure S2, which clearly demonstrates that

the proposed test performs quite well for all considered error distributions.

Particularly, when the null hypothesis is true, the size of the developed

test is fairly close to the significance level, regardless of the choice of error

distribution; as we move away from the null hypothesis, the power increases

quickly. Furthermore, the power increases as the sample size increases and

the curves exhibit similar patterns under different error variables. It is

important to note that there is likely a considerable small sample effect

that is dominating in the test, which necessitates a large sample size in

order to achieve better power results using bootstrap.

One might curious on the effect of using different values for d in the

auxiliary regression. We then conduct the test with d = 4. The results are

shown in Table S3, from which we can conclude that the developed test has

the desired invariance property with respect to the value of order in terms

of size. The rejection frequency does not vary much with d. Nevertheless,
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with a large value d, a large sample size is suggested to be utilized to avoid

the effect of a small number of degrees of freedom.

Table S3: Rejection Frequence (%) of the Test

Order d = 1 d = 4

N(0, 1) t(3)
0.8Lp(0, 1)

+0.2Lp(0, 4)

0.9N(0, 1)

+0.1N(0,5)
N(0, 1) t(3)

0.8Lp(0, 1)

+0.2Lp(0, 4)

0.9N(0, 1)

+0.1N(0,5)

α = 1%

n=200 3.0 1.0 2.0 2.5 2.5 2.0 1.5 3.0

n=400 2.5 1.0 0.5 1.5 1.5 1.0 1.0 2.5

α = 5%

n=200 4.0 5.5 4.5 5.5 5.5 4.5 5.0 4.0

n=400 4.5 5.0 5.0 5.0 4.5 5.0 4.0 5.5

α = 10%

n=200 7.5 7.5 10.0 9.5 8.5 8.0 8.5 9.0

n=400 9.0 8.5 9.0 9.0 10.5 9.0 9.5 10.0

Remark S2. (Wald-Type Test) Aside from the proposed test, it is natu-

ral to investigate the Wald test by directly examining the variability of the

estimated coefficient β̃. According to the asymptotic results from Theorem

2, it is clear that under certain regularity conditions, ∥β̃ − β0∥ = Op(h
2
1 +

(n0h
3
1)

−1). With n0h
7
1 → 0, it can be obtained that√

n0h3
1(β̃ − β0)

d→ N (0,Ξ),

where Ξ is the asymptotic variance. Following Yao and Li (2014) and Ullah

et al. (2021) to consistently estimate the corresponding density derivatives,

we can get the consistent estimate for the asymptotic variance matrix Ξ,

which is defined as Ξ̂. We then have√
n0h3

1Ξ̂
−1
(β̃ − β0)

d→ N (0, Id),

where Id is an identity matrix with dimension d × d and ∥
√

n0h3
1Ξ̂

−1
(β̃ −
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β0)∥2
d→ X 2

d . Based on this, we can verify the presence of an AR error

structure by looking at the parameter β. The similar modal-based bootstrap

methodology in Remark 6 can be utilized to implement such a test. Note

that both tests do not rely on the distributional assumptions of the errors.

DGP 4 (compared with mean estimation) To illustrate the advantage of

the proposed modal estimation compared to the traditional mean estima-

tion, we generate data according to the following model

Yt = 1 + θXt + εt, (S1.7)

where the coefficient θ = 1 and the covariate Xt follows a uniform distribu-

tion U [0, 1]. The error term εt follows an AR(2) process, which is

εt = 0.8εt−1 − 0.5εt−2 + ηt. (S1.8)

Different from the symmetric error in DGP 1, we let ηt follow a mix-

ture normal distribution 0.5N(−1, 2.52) + 0.5N(1, 0.52) with E(η) = 0 and

Mode(η) = 1. Therefore, the modal and mean coefficients in (S1.8) are

different by a constant. For simplicity, the initial values for the coefficients

are set to be mean estimates when conducting modal estimation.

The simulation results with 200 repetitions are shown in Table S4. With

autocorrelation issue and i.i.d. ηt, although the parameter estimates from

mean and mode are the same (the intercept is different), it shows that the

proposed modal estimators are more efficient with the finite sample size,
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reflecting in smaller SE and MSE. This is expectable since modal esti-

mation intends to capture the “most likely” value, which is also consistent

with the results reported in empirical analysis in Section 5. Note that with

the above model setting, the mean and modal coefficients only differ in

constant. But practically, it is difficult to know whether error terms really

rely on covariates. For instance, if ηt depends on covariate Xt, we should

expect that modal estimate is different from mean estimate when the error

distribution is skewed. Then, modal regression can be used to supplement

mean regression to uncover some distinguishing features of the data.

Table S4: Results of Estimations—DGP 4

Mean Traditional Proposed

Sample Size θ (SE) MSE(θ) θ (SE) MSE(θ) θ (SE) MSE(θ)

n=200 0.9904 (0.2458) 0.0602 0.9646 (0.4554) 0.2076 0.9909 (0.1982) 0.0392

n=400 1.0079 (0.1771) 0.0313 1.0147 (0.3315) 0.1095 1.0141 (0.1439) 0.0208

n=600 0.9718 (0.1379) 0.0197 0.9636 (0.2981) 0.0897 0.9894 (0.1188) 0.0141

n=1000 1.0037 (0.1034) 0.0107 0.9904 (0.24611) 0.0603 1.0106 (0.0902) 0.0082

We then assess the prediction performance by comparing with the mean

prediction and the prediction procedure suggested by the editor, i.e., con-

duct prediction by using the least squares method to estimate θ and then

using the residuals to estimate the mode of η (denoted as combined predic-

tion in Table S5). We report the coverage probabilities of prediction inter-

vals of length 0.1σ, 0.2σ, and 0.5σ with σ =
√

V ar(η) ≈ 2, respectively.
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We follow the same DGP process as above but implement the out-of-sample

prediction for the additional n data points with 200 repetitions. The results

reported in Table S5 indicate that the proposed modal regression provides

higher coverage probabilities compared to mean regression and the combi-

ned prediction procedure suggested by the editor, which is consistent with

the observations in Ullah et al. (2021). Note that if we have the skewed

distribution, it is expected that modal prediction should get better results

compared to mean prediction, since modal prediction is trying to capture

the “most likely” results (narrow prediction interval), while mean prediction

is capturing average values (widen prediction interval). Similar prediction

advantage has been observed in empirical analysis in Section 5.

Table S5: Results of Predictions—DGP 4

Width Sample Mean Prediction Proposed Modal Prediction Combined Prediction

0.1σ n=200 0.03 0.075 0.05

n=400 0.035 0.085 0.045

n=600 0.03 0.07 0.04

n=1000 0.035 0.07 0.05

0.2σ n=200 0.06 0.17 0.105

n=400 0.055 0.155 0.1

n=600 0.06 0.165 0.1

n=1000 0.065 0.15 0.1

0.5σ n=200 0.25 0.33 0.295

n=400 0.26 0.36 0.3

n=600 0.28 0.39 0.325

n=1000 0.275 0.39 0.34

Remark S3. (Modal Prediction Interval)We theoretically discuss how

to construct asymmetric prediction intervals for new observations based on
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the modal regression. For the simplicity of explanation, we assume that the

error distribution of ε is independent of X. Let ε̂1, · · · , ε̂n be the residuals

of the modal regression estimate. We use ε̂[i] to denote the ith smallest

value of the residuals. The traditionally used mean prediction interval with

confidence level 1−α for a new covariateXnew is [Xnewθ̂+ε̂[n1], Xnewθ̂+ε̂[n2]],

where n1 = ⌊nα/2⌋ and n2 = n− n1. This symmetric method will be ideal

if the regression error distribution is symmetric. Since the modal regression

focuses on the highest conditional density region, we propose the following

method for modal regression to use the information of skewed error density

to construct prediction intervals. Suppose f̂(·) is a kernel density estimate

of ε based on the residuals ε̂1, · · · , ε̂n. We find the indexes k1 < k2 such that

k2 − k1 = n2 − n1 = ⌈n(1 − α)⌉ and f̂(ε̂[k1]) ≈ f̂(ε̂[k2]) (using the iterative

process). The proposed modal prediction interval for a new covariate Xnew

is then [Xnewθ̂ + ε̂[k1], Xnewθ̂ + ε̂[k2]].

S2 Convergence of the Penalized MEM Algorithm

We briefly discuss the convergence (a sufficiently small change in the param-

eters or the kernel-based objective function) of the proposed penalized MEM

algorithm. From the existing results, we know that Qn0(·(g+1)) ≥ Qn0(·(g)).

However, this monotonicity may lead to unsatisfied results because the value
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of the objective function could remain at the same value at any interaction.

Unlike the discussion in MEM Algorithm 1, we in what follows show that

if we can have a set of stationary points in the space of parameters, then

Qn0(·(g+1)) > Qn0(·(g)). Particularly, we follow the classical EM algorithm

to define a stationary point of the function QP
n0
(β) as any point of β where

the gradient vector is zero (Wu, 1983; Lim and Oh, 2014). Let M(β) be

the point-to-set map (a function from points to subsets) implicitly defined

by the algorithm that goes from β̂(g) to β̂(g+1) for any point β̂(g) . We have

the following result.

Lemma 1. With an initial value β̂(0), let β̂(g) = M g(β̂(0)) denote the corre-

sponding mapping. If QP
n0
(β) = QP

n0
(M(β)) holds only for stationary points

β of QP
n0

and if β̂∗ is a limit point of the sequence {β̂(g)} such that M(β) is

continuous at β̂∗, then β̂∗ is a stationary point of QP
n0
(β).

Proof. Let Θβ denote the set of limit points of the sequence {β̂(g)}. For

any β̂∗ ∈ Θβ, through the process of passing to a subsequence, we obtain

β̂(gm) → β̂∗. Since the value of QP
n0
(β̂(gm)) is increasing in the iteration indi-

cator (a hill-climbing algorithm increasing if parameter is not a stationary

point), the quantity will converge to a limit as m → −∞. Thus, taking

limits in the inequalities QP
n0
(β̂(gm+1)) ≥ QP

n0
(M(β̂(gm))) ≥ QP

n0
(β̂(gm)) pro-

duces QP
n0
(β̂∗) = QP

n0
(limm→∞M(β̂(gm))) with the assumption that the limit
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exists. If M(β) is continuous at β̂∗, we have QP
n0
(β̂∗) = QP

n0
(M(β̂∗)).

There is no general convergence theorem for the MEM algorithm be-

cause convergence depends on the starting point. Different from the Newton-

Raphson algorithm, which requires calculating the inverse of the Hessian

matrix and has quadratic convergence (|β̂(g+1) − β̂∗| ≤ C|β̂(g) − β̂∗|2 for

C > 0), the convergence of {β̂(g)} to a stationary point of QP
n0
(β) is only

linear (|β̂(g+1) − β̂∗| ≤ C|β̂(g) − β̂∗|).

Lemma 2. If the penalty function pλj
(·) is differentiable, the proposed pe-

nalized MEM Algorithm 2 yields a sequence {β̂(g)} converging to at least the

unique local maximum of QP
n0
(β).

Figure S3: SCAD Function and Derivative

Since we utilize the SCAD penalty in the objective function (Figure S3),

the differentiability condition is satisfied. Thus, we can conclude that the

proposed penalized MEM algorithm at convergence will achieve at least the

local maximum of QP
n0
(β). If we impose the existence of the global unique

mode, the sequence {β̂(g)} converges to the global maximum of QP
n0
(β).
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S3 Extension to Nonparametric Regression

The developed two-step estimation procedure is heavily reliant on the as-

sumption that the relationship between variables can be parametrically

modeled. However, it is well known that for many practical economet-

ric problems, parametric structure may be too restrictive to suffer from

modeling biases or misspecification, and it is more attractive to adopt a

flexible nonparametric form without any prior model structures; see Xiao

et al. (2003) and Su and Ullah (2006). To the best of our knowledge, there

is no research investigating nonparametric modal regression with correlated

errors. Following the “letting the data speak for themselves” principle, we

extend the results to nonparametric modal regression with error terms fol-

lowing a parametric AR process

Yt = m(Xt) + εt, (S3.9)

where Xt ∈ R for avoiding the “curse of dimensionality” and m(·) is an

unknown smooth regression function.

Consistent with the parametric case, we remove the constraints imposed

on the mean and variance of the model errors and are interested in estimat-

ing the modal regression linem(x) givenXt = x. The errors follow the same

AR structure as in (2.4). We concentrate on the AR process with little loss

of generality because both moving average (MA) and ARMA processes can
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be well approximated by an AR process provided that the latent roots of

the MA polynomial lie inside the unit circle (Brockwell and Davis, 1991).

Following the same procedures proposed in the paper, we can estimate the

nonparametric model based on an additive partially linear modal regression

and show that the resultant estimator has similar asymptotic properties to

the estimator of nonparametric modal regression with i.i.d. observations

under some mild conditions. So far as we know, there is no research inves-

tigating additive partially linear modal regression in the literature. Since

B-splines can be used to describe complex, non-linear relationships between

response and explanatory variables, we novelly introduce a B-splines based

procedure for estimating modal regression.

In conjunction with (2.4), we can have

Mode(Yt | Ft−1) = m(Xt) +
d∑

j=1

βj(Yt−j −m(Xt−j)). (S3.10)

To model the unknown function m(·), we implement the B-splines tech-

nique. Let s1, · · · , sM be the M interior knots with s0 < s1 < · · · <

sM < sM+1 and s−(q−1), · · · , s−1 and sM+2, · · · , sM+q be the 2(q − 1) ad-

ditional boundary knots such that s−(q−1) = · · · = s−1 = s0 and sM+1 =

sM+2 = · · · = sM+q, where q is the order of B-splines (for quadratic B-

splines, q = 3). We denote a set of basis functions as {Bi,q(.)}Mi=−(q−1) and

approximate m(Xt) ≈
∑M

i=−(q−1) aiBi(Xt), where
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Bi,q(s) =
s− si

si+q−1 − si
Bi,q−1(s) +

si+q − s

si+q − si+1

Bi+1,q−1(s), (S3.11)

i = −(q − 1), · · · ,M,Bi,1(s) = 1 if s ∈ [sj, sj+1], and Bi,1(s) = 0 otherwise.

We then have the following regression model

Yt ≈
d∑

j=1

βjYt−j +
M∑

i=−(q−1)

ai

[
Bi,q(Xt)−

d∑
j=1

βjBi,q(Xt−j)

]
, (S3.12)

where the parameters are estimated by maximizing the following kernel-

based objective function

1

nhB

n∑
t=1

K

Yt −
∑d

j=1 βjYt−j −
∑M

i=−(q−1) ai

[
Bi,q(Xt)−

∑d
j=1 βjBi,q(Xt−j)

]
hB


(S3.13)

with respect to βj and ai. It is noted that in B-spline smoothing, the interior

knots are typically placed on a grid of equally spaced empirical quantiles.

Although (S3.13) can provide unbiased estimators, we may have efficiency

loss due to the unknown order of AR error terms.

Denote the preliminary estimates from (S3.13) as β̃j and ãi. We can

construct the corresponding estimate ε̂t as

ε̂t = Yt −
M∑

i=−(q−1)

ãiBi,q(Xt). (S3.14)

Then, we can use a penalized kernel-based function associated with band-

width hC to reestimate βj, where the corresponding estimate is defined as

β̂P
j . In the last step, we recalculate ai by maximizing
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1

nhD

n∑
t=1

K

(
Y ∗
t −

∑M
i=−(q−1) aiBi,q(Xt)

hD

)
, (S3.15)

where Y ∗
t = Yt −

∑d
j=1 β̂

P
j ε̂t−j and hD = hD(n) → 0 as n → ∞ is a

bandwidth. The resulting regression has a pseudo-residual term that is un-

correlated. The final estimate of m(·) is m̂(·) =
∑M

i=−(q−1) âiBi,q(Xt), in

which âi is the estimate from (S3.15). The asymptotic theorems can be

derived directly following the procedures in this paper (i.e., using a smaller

bandwidth in the previous stage to control the bias in the preliminary step

of the estimation), where we can show that the resultant estimator has the

oracle property as if the true variables were known in advance, and enjoys

the nice asymptotic properties parallel to the independent error case. Note

that the last step estimation can be considered as a post model selection es-

timation, which is to reduce the estimation bias resulting from simultaneous

shrinkage towards both significant and non-significant AR coefficients.

Remark S4. For the linear mean regression with serial correlation, we can

apply the standard generalized least squares to incorporate the error auto-

correlation function to improve the efficiency of mean estimators. However,

such a method may not be suitable for modal regression unless we impose

a zero conditional mode value on error term and assume the additivity

property for mode satisfied.
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S4 Technical Proofs

S4.1 Proof of Theorem 1

Recall that

1

n0h1

n∑
t=d+1

K

(
Yt −XT

t θ −
∑d

j=1 β̃jYt−j +
∑d

j=1 β̃jX
T
t−jθ

h1

)

=
1

n0h1

n∑
t=d+1

K

(
Yt −XT

t θ −
∑d

j=1 β0jYt−j +
∑d

j=1 β0jX
T
t−jθ + errort

h1

)
,

(S4.16)

where errort =
∑d

j=1 β0jYt−j−
∑d

j=1 β̃jYt−j+
∑d

j=1 β̃jX
T
t−jθ−

∑d
j=1 β0jX

T
t−jθ.

Define δn = h2
1 +
√

(n0h3
1)

−1. Then, it is sufficient to show that for any

given η, there exists a large number constant c such that

P

{
sup
∥µ∥=c

Qn0 (θ0 + δnµ) < Qn0 (θ0)

}
≥ 1− η, (S4.17)

where θ0 is the true parameter and ∥ · ∥ represents the Euclidean distance.

The above equation implies that with probability tending to one, there is a

local maximum in the ball {θ0+δnµ : ∥µ∥ ≤ c}. Using the Taylor expansion,

it follows that

Qn0 (θ0 + δnµ)−Qn0 (θ0)

=
1

n0h1

n∑
t=d+1

K

(
ηt − δnµ

T (Xt −
∑d

j=1 β0jXt−j) + errort

h1

)

− 1

n0h1

n∑
t=d+1

K

(
ηt + errort

h1

)

=
1

n0h1

n∑
t=d+1

[
−K(1)

(
ηt + errort

h1

)(
δnµ

T (Xt −
∑d

j=1 β0jXt−j)

h1

)
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+
1

2
K(2)

(
ηt + errort

h1

)(
δnµ

T (Xt −
∑d

j=1 β0jXt−j)

h1

)2

− 1

6
K(3)

(
η∗t
h1

)(
δnµ

T (Xt −
∑d

j=1 β0jXt−j)

h1

)3 ]

=I1 + I2 + I3,

(S4.18)

where η∗t is between ηt+ errort and ηt+ errort− δnµ
T (Xt−

∑d
j=1 β0jXt−j).

Based on the result Tn = E (Tn)+Op(
√

Var (Tn)), we consider each part of

the above Taylor expansion.

(i) For the first part, which is I1 = 1
n0h1

∑n
t=d+1

[
− K(1)

(
ηt+errort

h1

)
(

δnµT (Xt−
∑d

j=1 β0jXt−j)

h1

)]
, by Taylor expansion, we can rewrite it as

E(I1) =
−δn
h1

E

(
K(1)

(
ηt + errort

h1

)(
µT (Xt −

∑d
j=1 β0jXt−j)

h1

))

=
−δn
h1

E

(
K(1)

(
ηt
h1

)
µT (Xt −

∑d
j=1 β0jXt−j)

h1

+K(2)

(
ηt
h1

)
errortµ

T (Xt −
∑d

j=1 β0jXt−j)

h2
1

+
1

2
K(3)

(
η∗∗t
h1

)
(errort)

2µT (Xt −
∑d

j=1 β0jXt−j)

h3
1

)

=I11 + I12 + I13,

(S4.19)

where η∗∗t is between ηt and ηt + errort. As the order of η∗∗t is the same as

that of ηt, when we do the calculation associated with I13, we instead use

ηt directly. By some direct calculations for each part, we can get
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I11 =
−δn
h1

E

(
K(1)

(
ηt
h1

)
µT (Xt −

∑d
j=1 β0jXt−j)

h1

)
= Op(δnch

2
1).

(S4.20)

I12 =
−δn
h1

E

(
K(2)

(
ηt
h1

)
µT (Xt −

∑d
j=1 β0jXt−j)

h1

errort
h1

)

=
−δn
h1

∫∫
K(2)

(
η

h1

)
µT (Xt −

∑d
j=1 β0jXt−j)

h1

gη(η)
errort
h1

dηdF (X)

=
−δn
h1

∫∫
K (τ) (τ 2 − 1)µT (Xt −

d∑
j=1

β0jXt−j)gη(τh1)
errort
h1

dτdF (X)

=Op(δnch
2
1).

(S4.21)

With the condition that ∥β̃ − β0∥/h2
1 → 0, it can be seen that I11

dominates I12 and I13. Meanwhile, we obtain

δ2n
h2
1

E

(
K(1)

(
ηt
h1

)
µT (Xt −

∑d
j=1 β0jXt−j)

h1

)2

= Op(δ
2
nc

2(h3
1)

−1). (S4.22)

These equations show that I1 = Op(δnch
2
1)+Op(

√
δ2nc

2(n0h3
1)

−1) = Op(δ
2
nc).

(ii) For the second part, which is I2 = 1
n0h1

∑n
t=d+1

(
1
2
K(2)

(
ηt+errort

h1

)
(

δnµT (Xt−
∑d

j=1 β0jXt−j)

h1

)2 )
, we can rewrite it as

E(I2) =
δ2n
2h1

E

(
K(2)

(
ηt + errort

h1

)
(µT (Xt −

∑d
j=1 β0jXt−j))

2

h2
1

)

=
δ2n
2h1

E

(
K(2)

(
ηt
h1

)
(µT (Xt −

∑d
j=1 β0jXt−j))

2

h2
1

+K(3)

(
ηt
h1

)
errort(µ

T (Xt −
∑d

j=1 β0jXt−j))
2

h3
1
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+
1

2
K(4)

(
η∗∗t
h1

)
error2t (µ

T (Xt −
∑d

j=1 β0jXt−j))
2

h4
1

)
= I21 + I22 + I23,

(S4.23)

where η∗∗t is between ηt and ηt + errort. Notice that as the order of η∗∗t is

the same as that of ηt, when we do the calculation associated with I23, we

instead use ηt directly. By some calculations for each part, we can get

I21 =
δ2n
2h1

E

(
K(2)

(
ηt
h1

)
(µT (Xt −

∑d
j=1 β0jXt−j))

2

h2
1

)
= Op((δnc)

2).

(S4.24)

I22 =
δ2n
2h1

E

(
K(3)

(
ηt
h1

)
errort(µ

T (Xt −
∑d

j=1 β0jXt−j))
2

h3
1

)
= op((δnc)

2).

(S4.25)

Meanwhile, we can prove that I23 = op((δnc)
2) as well. Following the

same steps in (i), we obtain the following result

δ4n
4h2

1

E

(
K(2)

(
ηt
h1

)
(µT (Xt −

∑d
j=1 β0jXt−j))

2

h2
1

)2

= Op((δnc)
4(h5

1)
−1).

(S4.26)

With the condition n0h
5
1 → ∞ held, the above equations indicate that

the second part will dominate the first part when we choose c big enough.

(iii) Following the same way, we can calculate the third part. As the

order of η∗t is the same as the order of ηt, by direct calculation, we have

δ3n
6h1

E

K(3)

(
ηt
h1

)
(µT (Xt −

∑d
j=1 β0jXt−j))

3

h3
1

 = Op(δ
3
n). (S4.27)
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δ6n
36h2

1

E

K(3)

(
ηt
h1

)
(µT (Xt −

∑d
j=1 β0jXt−j))

3

h3
1

2

= Op(δ
6
n(h

7
1)

−1).

(S4.28)

These indicate that the second part dominates the third part.

Based on these, we can choose c bigger enough such that I2 dominates

both I1 and I3 with probability 1− η. Because the second term is negative,

P
{
sup∥µ∥=c Qn0 (θ0 + δnµ) < Qn0 (θ0)

}
≥ 1− η holds naturally.

□

S4.2 Proof of Theorem 2

At first, the estimator θ̃ must satisfy

− 1

n0h2
1

n∑
t=d+1

K(1)

(
ηt − (Xt −

∑d
j=1 β0jXt−j)

T (θ̃ − θ0) + errorθ̃t
h1

)
(
Xt −

d∑
j=1

β0jXt−j

)
= 0,

(S4.29)

where errorθ̃t =
∑d

j=1 β0jYt−j−
∑d

j=1 β̃jYt−j+
∑d

j=1 β̃jX
T
t−j θ̃−

∑d
j=1 β0jX

T
t−j θ̃.

By taking Taylor expansion, we can obtain

− 1

n0h2
1

n∑
t=d+1

K(1)

(
ηt
h1

)(
Xt −

d∑
j=1

β0jXt−j

)

+
1

n0h3
1

n∑
t=d+1

K(2)

(
ηt
h1

)(
Xt −

d∑
j=1

β0jXt−j

)

(errorθ̃t − (Xt −
d∑

j=1

β0jXt−j)
T (θ̃ − θ0))
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− 1

n0h2
1

n∑
t=d+1

K(1)

(
ηt
h1

)(
Xt −

d∑
j=1

β0jXt−j

)

+
1

n0h3
1

n∑
t=d+1

K(2)

(
ηt
h1

)(
Xt −

d∑
j=1

β0jXt−j

)

(errorθ̃t − (Xt −
d∑

j=1

β0jXt−j)
T (θ̃ − θ0))

− 1

n0h4
1

n∑
t=d+1

K(3)

(
η̃∗t
h1

)(
Xt −

d∑
j=1

β0jXt−j

)

(errorθ̃t − (Xt −
d∑

j=1

β0jXt−j)
T (θ̃ − θ0))

2 = 0,

(S4.30)

where η̃∗t is between ηt and ηt + errorθ̃t − (Xt −
∑d

j=1 β0jXt−j)
T (θ̃ − θ0).

Assuming ∥β̃ − β0∥/h2
1 → 0, from Theorem 1, we know ∥θ̃ − θ0∥ = Op(δn),

which indicates that |errorθ̃t − (Xt −
∑d

j=1 β0jXt−j)
T (θ̃ − θ0)| = Op(∥θ̃ −

θ0∥) = Op(δn). We can see that the third part, which is associated with

(Xt−
∑d

j=1 β0jXt−j)(error
θ̃
t − (Xt−

∑d
j=1 β0jXt−j)

T (θ̃−θ0))
2, is dominated

by the second part, which is associated with (Xt −
∑d

j=1 β0jXt−j)(error
θ̃
t −

(Xt−
∑d

j=1 β0jXt−j)
T (θ̃− θ0)). We then mainly focus on the first two parts

of the left side of the above equation.

Considering − 1
n0h2

1

∑n
t=d+1K

(1)
(

ηt
h1

)
(Xt−

∑d
j=1 β0jXt−j)+

1
n0h3

1

∑n
t=d+1

K(2)
(

ηt
h1

)
(Xt−

∑d
j=1 β0jXt−j)error

θ̃
t , by direct calculations, we can obtain

E

(
− 1

n0h2
1

n∑
t=d+1

K(1)

(
ηt
h1

)(
Xt −

d∑
j=1

β0jXt−j

)
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+
1

n0h3
1

n∑
t=d+1

K(2)

(
ηt
h1

)(
Xt −

d∑
j=1

β0jXt−j

)
errorθ̃t

)

=− 1

h2
1

∫∫
K(1)

(
η

h1

)(
Xt −

d∑
j=1

β0jXt−j

)
gη(η)dηdF (X)

+
1

h3
1

∫∫
K(2)

(
η

h1

)(
Xt −

d∑
j=1

β0jXt−j

)
gη(η)error

θ̃
t dηdF (X)

=
1

h1

∫∫
K (τ) τ

(
Xt −

d∑
j=1

β0jXt−j

)
gη(τh1)dτdF (X)

− 1

h2
1

∫∫
K (τ) (τ 2 − 1)

(
Xt −

d∑
j=1

β0jXt−j

)
gη(τh1)error

θ̃
t dτdF (X)

=
h2
1

2
E

((
Xt −

d∑
j=1

β0jXt−j

)
g(3)η (0)

)
{1 + op(1)}.

(S4.31)

Considering 1
n0h3

1

∑n
t=d+1K

(2)
(

ηt
h1

)
(Xt−

∑d
j=1 β0jXt−j)(Xt−

∑d
j=1 β0jXt−j)

T ,

by direct calculations, we have

E

 1

n0h3
1

n∑
t=d+1

K(2)

(
ηt
h1

)(
Xt −

d∑
j=1

β0jXt−j

)(
Xt −

d∑
j=1

β0jXt−j

)T


= E

(Xt −
d∑

j=1

β0jXt−j

)(
Xt −

d∑
j=1

β0jXt−j

)T

g(2)η (0)

 .

(S4.32)

Based on the above two equations, we can achieve

θ̃ − θ0 =
h2
1

2

E

(Xt −
d∑

j=1

β0jXt−j

)(
Xt −

d∑
j=1

β0jXt−j

)T

g(2)η (0)

−1
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E

((
Xt −

d∑
j=1

β0jXt−j

)
g(3)η (0)

)
{1 + op(1)}. (S4.33)

Meanwhile, with the condition ∥β̃ − β0∥/h2
1 → 0 held, we can obtain

Var
(
− 1

n0h2
1

n∑
t=d+1

K(1)

(
ηt
h1

)(
Xt −

d∑
j=1

β0jXt−j

)

+
1

n0h3
1

n∑
t=d+1

K(2)

(
ηt
h1

)(
Xt −

d∑
j=1

β0jXt−j

)
errorθ̃t

)

=
1

n0h4
1

∫∫
K(1)2

(
η

h1

)(
Xt −

d∑
j=1

β0jXt−j

)(
Xt −

d∑
j=1

β0jXt−j

)T

gη(η)

dηdF (X)(1 + op(1))

=

∫
τ 2K2(τ)dτ

n0h3
1

E

(Xt −
d∑

j=1

β0jXt−j

)(
Xt −

d∑
j=1

β0jXt−j

)T

gη(0)


(1 + op(1)).

(S4.34)

For the remaining part, we can follow the same idea in Yao and Li (2014)

and Ullah et al. (2021, 2022, 2023) to easily obtain the results.

□

S4.3 Proof of Theorem 3

Following the steps to prove Theorem 1, we define δn = h2
2+
√
(n0h3

2)
−1+an.

Then, it is sufficient to show that for any given η, there exists a large number
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constant c such that

P

{
sup
∥µ∥=c

QP
n0
(β0 + δnµ) < QP

n0
(β0)

}
≥ 1− η. (S4.35)

Using pλj
(0) = 0 and Taylor expansion, it follows that

QP
n0
(β0 + δnµ)−QP

n0
(β0)−

d∑
j=1

[pλj
(|β0j + δnµj|)− pλj

(|β0j|)]

=δnQ
P (1)
n0

(β0)
Tµ+

1

2
δ2nµ

TQP (2)
n0

(β0)
Tµ+

1

6
δ3nµ

TQP (3)
n0

(β∗
0)

TµTµ

−
s∑

j=1

[
δnp

(1)
λj

(|β0j|) sgn (β0j)µj + δ2np
(2)
λj
(|β0j|)µ2

j {1 + op(1)}
]

=M1 +M2 +M3 +M4,

(S4.36)

where ∥β∗
0 − β0∥ ≤ cδn. From the Proof of Theorem 1, we know

M1 = Op(δ
2
nc),M2 = Op(δ

2
nc

2), and M3 = Op(δ
3
n). (S4.37)

By choosing bigger enough c, M2 could domain M1 and M3 with prob-

ability 1− η. Note that M4 is bounded by

√
sδn max

{
p
(1)
λj

(|βj0|) : β0j ̸= 0
}
∥µ∥+ δ2nmax

{
p
(2)
λj

(|βj0|) : β0j ̸= 0
}
∥µ∥2,

(S4.38)

which is also dominated by M2 as max
{
p
(2)
λj

(|β0j|) : β0j ̸= 0
}
→ 0. Because

Q
P (2)
n0 (β0) < 0, we have QP

n0
(β0 + δnµ) < QP

n0
(β0) with probability 1− η for

η > 0 by choosing a sufficiently large c.

□
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S4.4 Proof of Theorem 4

By the property of SCAD penalty function, as λmax → 0, it can be shown

that an = 0 for large n0. Then, according to Theorem 3, it is sufficient to

show that for any βP that satisfies
∥∥βP − β0

∥∥ = Op(δn) and for some small

ϵ = cδn in which δn = h2
2 +

√
(n0h3

2)
−1, when n0 → ∞, with probability

tending to one, we have

∂QP
n0
(β)

∂βP
j

< 0, for 0 < βP
j < ϵ, j = s+ 1, · · · , d, (S4.39)

∂QP
n0
(β)

∂βP
j

> 0, for − ϵ < βP
j < 0, j = s+ 1, · · · , d, (S4.40)

which indicates that the maximizer of QP
n0
(β) gets at βP

j = 0.

Similar to the Proof of Theorem 3, as Q
P (1)
n0 (β0) = Op(δn) and ∥βP −

β0∥ = Op(δn), we can obtain

n0Q
P (1)
n0

(β)− n0p
(1)
λj

(
|βP

j |
)
sgn βP

j

=n0Q
P (1)
n0

(β0) + n0Q
P (2)
n0

(β0)(β0j − βP
j ) +

n0

2
QP (3)

n0
(β∗

0)(β0j − βP
j )

2

− n0p
(1)
λj

(
|βP

j |
)
sgn βP

j

=− n0λj

{
λ−1
j p

(1)
λj

(
|βP

j |
)
sgn βP

j +Op (δn/λj)
}
,

(S4.41)

where β∗
0 is between β and β0. As δ−1

n λj ≥ δ−1
n λmin → ∞ when n0 → ∞

and lim infn0→0 lim infβP
j →0 p

(1)
λj
(|βP

j |)/λj > 0, the sign of the derivation is

completely determined by that of βP
j . This completes the proof.

□
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S4.5 Proof of Theorem 5

From the Proof of Theorem 4, we can know that for j = 1, · · · , s, we have

QP (1)
n0

(β̂P
0′)− p

(1)
λj

(
|β̂P

0′j|
)
sgn β̂P

0′j

=QP (1)
n0

(β0′) +QP (2)
n0

(β0′)(β0′j − β̂P
0′j) +

1

2
QP (3)

n0
(β∗

0)(β0′j − β̂P
0′j)

2

−
{
p
(1)
λj

(|β0′j|) sgn β0′j + (p
(2)
λj

(|β0′j|) + op(1))(β̂
P
0′j − β0′j)

}
.

(S4.42)

Combining the equations, we have

QP (1)
n0

(β0′) +QP (2)
n0

(β0′)(β0′j − β̂P
0′j) +

1

2
QP (3)

n0
(β∗

0)(β0′j − β̂P
0′j)

2

−
{
Ψλ + (Φλ + op(1))(β̂

P
0′j − β0′j)

}
= 0.

(S4.43)

From Theorem 4, following by Slutskys theorem and the central limit

theorem, we know

h2
2

2
M(1) − J(1)(β̂

P
0′ − β0′)−

{
Ψλ + (Φλ + op(1))(β̂

P
0′ − β0′)

}
= 0, (S4.44)

and the asymptotic distribution

√
nh3

2(J(1) + Φλ)

(
β̂P
0′ − β0′ + (J(1) + Φλ)

−1

(
Ψλ −

h2
2

2

g
(3)
η (0)

g
(2)
η (0)

M(1)

))
d→ N

(
0,

gη(0)

g
(2)
η (0)2

∫
t2K2(t)dtJ−1

(1)

)
,

(S4.45)

where J(1) and M(1) are the submatrices of Jβ and Mβ.

□
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S4.6 Proof of Theorem 6

Recall that

Qn0(θ) =
1

n0h3

n∑
t=d+1

K

(
Yt − êTt β̂ −XT

t θ

h3

)

=
1

n0h3

n∑
t=d+1

K

(
Yt − eTβ −XT

t θ + eTβ − êTt β + êTt β − êTt β̂

h3

)
,

(S4.46)

where eTβ− êTt β+ êTt β− êTt β̂ = Op

(
(n0h

3
3)

−1/2
+ h2

3

)
when β = β0. Define

δn = h2
3 +

√
(n0h3

3)
−1. Then, it is sufficient to show that for any given η,

there exists a large number constant c such that

P

{
sup
∥µ∥=c

Qn0 (θ0 + δnµ) < Qn0 (θ0)

}
≥ 1− η. (S4.47)

Following the same steps as the Proof of Theorem 1, with assumption

h2/h3 → 0, we can show ∥θ̂ − θ0∥ ≤ δn.

□

S4.7 Proof of Theorem 7

Recall that if θ̂ is the optimal estimator, it will satisfy the following equation

Qn0(θ) = − 1

n0h2
3

n∑
t=d+1

K

(
Yt − êTt β̂ −XT

t θ̂

h3

)
Xt = − 1

n0h2
3

n∑
t=d+1

K

(
Yt − eTβ −XT

t θ +XT
t θ −XT

t θ̂ + eTβ − êTt β + êTt β − êTt β̂

h3

)
= 0

(S4.48)
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when θ = θ0 and β = β0. By taking Taylor expansion, we can obtain

− 1

n0h2
3

n∑
t=d+1

K(1)

(
ηt
h3

)
Xt +

1

n0h3
3

n∑
t=d+1

K(2)

(
ηt
h3

)
Xt

(XT
t θ −XT

t θ̂ + eTβ − êTt β + êTt β − êTt β̂)

− 1

n0h4
3

n∑
t=d+1

K(3)

(
η̃∗t
h3

)
Xt(X

T
t θ −XT

t θ̂ + eTβ − êTt β + êTt β − êTt β̂)
2 = 0,

(S4.49)

where η̃∗t is between ηt and ηt +XT
t θ −XT

t θ̂ + eTβ − êTt β + êTt β − êTt β̂.

It can be shown that the third term on the left-hand side of the above

equation is dominated by the second term. With the assumption h2/h3 → 0,

we can then follow the same proof steps as those of Proof of Theorem 2 to

achieve the results.

□
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