Sufficient variable screening for ultrahigh-dimensional right censored data via independence measures

Baoying Yang¹, Qingcong Yuan^{2,4}, and Xiangrong Yin³

¹Southwest Jiaotong University, ²Miami University, ³University of Kentucky and ⁴Biostatistics and Programming

Supplementary Material

In this supplementary file, section A.1 provides the comprehensive computation of equations (1), (2), and (3); Section A.2 gives an estimation of $G(t|\mathbf{X})$ across various scenarios; Section A.3 presents rigorous proofs for Theorems 1, 2, and 3. Section A. 4 contains additional simulation instances, real data analysis, and corresponding results.

A.1 Detailed Calculation of Equations (3.1), (3.2), and (3.3)

Calculation of Equation (3.1) To obtain that $dcov_{\alpha}^{2}(X_{\alpha}, T) = dcov_{\alpha}^{2}(X_{\alpha}, Y)$, we need to prove that,

$$S_{1} = E\left[\frac{\delta\delta'}{G(T|\mathbf{X})G(T'|\mathbf{X}')} \|X_{\alpha} - X_{\alpha}'\|_{d_{X_{\alpha}}} \|T - T'\|_{d_{T}}\right] = E\left(\|X_{\alpha} - X_{\alpha}'\|_{d_{X_{\alpha}}} \|Y - Y'\|_{d_{Y}}\right),$$

$$S_{2} = E\|X_{\alpha} - X_{\alpha}'\|_{d_{X_{\alpha}}} E\left[\frac{\delta\delta'}{G(T|\mathbf{X})G(T'|\mathbf{X}')} \|T - T'\|_{d_{T}}\right] = E\|X_{\alpha} - X_{\alpha}'\|_{d_{X_{\alpha}}} E\|Y - Y'\|_{d_{Y}},$$

$$S_{3} = E\left[\frac{\delta\delta'\delta''}{G(T|\mathbf{X})G(T'|\mathbf{X}')G(T''|\mathbf{X}'')} \|X_{\alpha} - X_{\alpha}'\|_{d_{X_{\alpha}}} \|T - T''\|_{d_{T}}\right] = E\left(\|X_{\alpha} - X_{\alpha}'\|_{d_{X_{\alpha}}} \|Y - Y''\|_{d_{Y}}\right)$$

In detail,

$$S_{1} = E\left(\frac{\delta\delta'}{G(T|\mathbf{X})G(T'|\mathbf{X}')} \|X_{\alpha} - X_{\alpha}'\|_{d_{X_{\alpha}}} \|T - T'\|_{d_{T}}\right)$$

$$= E\left[E\left(\frac{\delta\delta'}{G(T|\mathbf{X})G(T'|\mathbf{X}')} \|X_{\alpha} - X_{\alpha}'\|_{d_{X_{\alpha}}} \|T - T'\|_{d_{T}} | (\mathbf{X}, \mathbf{X}', Y, Y')\right)\right]$$

$$= E\left[\|X_{\alpha} - X_{\alpha}'\|_{d_{X_{\alpha}}} E\left(\frac{\delta\delta'\|T - T'\|_{d_{T}}}{G(T|\mathbf{X})G(T'|\mathbf{X}')} | (\mathbf{X}, \mathbf{X}', Y, Y')\right)\right]$$

$$= E\left[\frac{\|X_{\alpha} - X_{\alpha}'\|_{d_{X_{\alpha}}} \|Y - Y'\|_{d_{T}}}{G(Y|\mathbf{X})G(Y'|\mathbf{X}')} Pr\left(\delta = 1, \delta' = 1 | (\mathbf{X}, \mathbf{X}', Y, Y')\right)\right]$$

$$= E\left[\frac{\|X_{\alpha} - X_{\alpha}'\|_{d_{X_{\alpha}}} \|Y - Y'\|_{d_{T}}}{G(Y|\mathbf{X})G(Y'|\mathbf{X}')} Pr\left(\delta = 1 | (\mathbf{X}, Y)\right) Pr\left(\delta' = 1 | (\mathbf{X}', Y')\right)\right]$$

$$= E\left[\frac{\|X_{\alpha} - X_{\alpha}'\|_{d_{X_{\alpha}}} \|Y - Y'\|_{d_{T}}}{G(Y|\mathbf{X})G(Y'|\mathbf{X}')} Pr\left(C > Y | (\mathbf{X}, Y)\right) Pr\left(C' > Y' | (\mathbf{X}', Y')\right)\right]$$

$$= E\left(\|X_{\alpha} - X_{\alpha}'\|_{d_{X_{\alpha}}} \|Y - Y'\|_{d_{T}}\right)$$

$$S_{2} = E \|X_{\alpha} - X_{\alpha}'\|_{d_{X_{\alpha}}} E \left[\frac{\delta \delta'}{G(T|\mathbf{X})G(T'|\mathbf{X}')} \|T - T'\|_{d_{T}} \right]$$
$$= E \|X_{\alpha} - X_{\alpha}'\|_{d_{X_{\alpha}}} E \left[E \left(\frac{\delta \delta'}{G(T|\mathbf{X})G(T'|\mathbf{X}')} \|T - T'\|_{d_{T}} \mid (\mathbf{X}, \mathbf{X}', Y, Y') \right) \right]$$
$$= E \|X_{\alpha} - X_{\alpha}'\|_{d_{X_{\alpha}}} E \left[\frac{\|Y - Y'\|_{d_{T}}}{G(Y|\mathbf{X})G(Y'|\mathbf{X}')} Pr\left(\delta = 1, \delta' = 1 \mid (\mathbf{X}, \mathbf{X}', Y, Y')\right) \right]$$
$$= E \|X_{\alpha} - X_{\alpha}'\|_{d_{X_{\alpha}}} E \|Y - Y'\|_{d_{T}}$$

$$S_{3} = E\left(\frac{\delta\delta'\delta''}{G(T|\mathbf{X})G(T'|\mathbf{X}')G(T''|\mathbf{X}'')} \|X_{\alpha} - X'_{\alpha}\|_{d_{X_{\alpha}}} \|T - T''\|_{d_{T}}\right)$$

$$= E\left[E\left(\frac{\delta\delta''}{G(T|\mathbf{X})G(T'|\mathbf{X}')G(T''|\mathbf{X}'')} \|X_{\alpha} - X'_{\alpha}\|_{d_{X_{\alpha}}} \|T - T''\|_{d_{T}} | (\mathbf{X}, \mathbf{X}', \mathbf{X}'', Y, Y', Y'')\right)\right]$$

$$= E\left[\frac{\|X_{\alpha} - X'_{\alpha}\|_{d_{X_{\alpha}}} \|Y - Y''\|_{d_{T}}}{G(Y|\mathbf{X})G(Y'|\mathbf{X}')G(Y''|\mathbf{X}'')} Pr(\delta = 1, \delta' = 1, \delta'' = 1 | (\mathbf{X}, \mathbf{X}', \mathbf{X}'', Y, Y', Y''))\right]$$

$$= E\left(\|X_{\alpha} - X'_{\alpha}\|_{d_{X_{\alpha}}} \|Y - Y''\|_{d_{T}}\right),$$

where $G(t|\mathbf{X}) \stackrel{\text{\tiny def}}{=} P(C > t|\mathbf{X})$ is the survival function of censoring time C.

Calculation of Equation (3.2) To obtain that $dcov_{\alpha}^{*2}(\mathbf{U},\mathbf{W}) = dcov_{\alpha}^{2}(\mathbf{U},\mathbf{V})$, we

need to prove that,

$$S_{1} = E\left(\frac{\delta\delta'}{G(T|\mathbf{X})G(T'|\mathbf{X}')}\|\mathbf{U} - \mathbf{U}'\|_{d_{\mathbf{U}}}\|\mathbf{W} - \mathbf{W}'\|_{d_{\mathbf{V}}}\right) = E\left(\|\mathbf{U} - \mathbf{U}'\|_{d_{\mathbf{U}}}\|\mathbf{V} - \mathbf{V}'\|_{d_{\mathbf{V}}}\right),$$

$$S_{2} = E\|\mathbf{U} - \mathbf{U}'\|_{d_{\mathbf{U}}}E\left[\frac{\delta\delta'}{G(T|\mathbf{X})G(T'|\mathbf{X}')}\|\mathbf{W} - \mathbf{W}'\|_{d_{\mathbf{V}}}\right] = E\|\mathbf{U} - \mathbf{U}'\|_{d_{\mathbf{U}}}E\|\mathbf{V} - \mathbf{V}'\|_{d_{\mathbf{V}}},$$

$$S_{3} = E\left(\frac{\delta\delta'\delta''}{G(T|\mathbf{X})G(T'|\mathbf{X}')G(T''|\mathbf{X}')}\|\mathbf{U} - \mathbf{U}'\|_{d_{\mathbf{U}}}\|\mathbf{W} - \mathbf{W}''\|_{d_{\mathbf{V}}}\right) = E\left(\|\mathbf{U} - \mathbf{U}'\|_{d_{\mathbf{U}}}\|\mathbf{V} - \mathbf{V}''\|_{d_{\mathbf{V}}}\right),$$

In detail,

$$S_{1} = E\left(\frac{\delta\delta'}{G(T|\mathbf{X})G(T'|\mathbf{X}')} \|\mathbf{U} - \mathbf{U}'\|_{d_{\mathbf{U}}} \|\mathbf{W} - \mathbf{W}'\|_{d_{\mathbf{V}}}\right)$$

$$= E\left[E\left(\frac{\delta\delta'}{G(T|\mathbf{X})G(T'|\mathbf{X}')} \|\mathbf{U} - \mathbf{U}'\|_{d_{\mathbf{U}}} \|\mathbf{W} - \mathbf{W}'\|_{d_{\mathbf{V}}} | (\mathbf{X}, \mathbf{X}', Y, Y')\right)\right]$$

$$= E\left[\|\mathbf{U} - \mathbf{U}'\|_{d_{\mathbf{U}}} E\left(\frac{\delta\delta'}{G(T|\mathbf{X})G(T'|\mathbf{X}')} \|\mathbf{W} - \mathbf{W}'\|_{d_{\mathbf{V}}} | (\mathbf{X}, \mathbf{X}', Y, Y')\right)\right]$$

$$= E\left[\frac{\|\mathbf{U} - \mathbf{U}'\|_{d_{\mathbf{U}}} \|\mathbf{V} - \mathbf{V}'\|_{d_{\mathbf{V}}}}{G(Y|\mathbf{X})G(Y'|\mathbf{X}')} Pr\left(\delta = 1, \delta' = 1 | (\mathbf{X}, \mathbf{X}', Y, Y')\right)\right]$$

$$= E\left[\frac{\|\mathbf{U} - \mathbf{U}'\|_{d_{\mathbf{U}}} \|\mathbf{V} - \mathbf{V}'\|_{d_{\mathbf{V}}}}{G(Y|\mathbf{X})G(Y'|\mathbf{X}')} Pr\left(\delta = 1|(\mathbf{X}, Y)\right) Pr\left(\delta' = 1 | (\mathbf{X}', Y')\right)\right]$$

$$= E\left(\|\mathbf{U} - \mathbf{U}'\|_{d_{\mathbf{U}}} \|\mathbf{V} - \mathbf{V}'\|_{d_{\mathbf{V}}}\right)$$

$$S_{2} = E \|\mathbf{U} - \mathbf{U}'\|_{d_{\mathbf{U}}} E \left[\frac{\delta \delta'}{G(T|\mathbf{X})G(T'|\mathbf{X}')} \|\mathbf{W} - \mathbf{W}'\|_{d_{\mathbf{V}}} \right]$$
$$= E \|\mathbf{U} - \mathbf{U}'\|_{d_{\mathbf{U}}} E \left[E \left(\frac{\delta \delta'}{G(T|\mathbf{X})G(T'|\mathbf{X}')} \|\mathbf{W} - \mathbf{W}'\|_{d_{\mathbf{V}}} \mid (\mathbf{X}, \mathbf{X}', Y, Y') \right) \right]$$
$$= E \|\mathbf{U} - \mathbf{U}'\|_{d_{\mathbf{U}}} E \left[\frac{\|\mathbf{V} - \mathbf{V}'\|_{d_{\mathbf{V}}}}{G(Y|\mathbf{X})G(Y'|\mathbf{X}')} Pr\left(\delta = 1, \delta' = 1 \mid (\mathbf{X}, \mathbf{X}', Y, Y')\right) \right]$$
$$= E \|\mathbf{U} - \mathbf{U}'\|_{d_{\mathbf{U}}} E \|\mathbf{V} - \mathbf{V}'\|_{d_{\mathbf{V}}}$$

$$\begin{split} S_{3} &= E\left(\frac{\delta\delta'\delta''}{G(T|\mathbf{X})G(T'|\mathbf{X}')G(T''|\mathbf{X}'')} \|\mathbf{U} - \mathbf{U}'\|_{d_{\mathbf{U}}} \|\mathbf{W} - \mathbf{W}''\|_{d_{\mathbf{V}}}\right) \\ &= E\left[E\left(\frac{\delta\delta'\delta''}{G(T|\mathbf{X})G(T'|\mathbf{X}')G(T''|\mathbf{X}'')} \|\mathbf{U} - \mathbf{U}'\|_{d_{\mathbf{U}}} \|\mathbf{W} - \mathbf{W}''\|_{d_{\mathbf{V}}} \mid (\mathbf{X}, \mathbf{X}', \mathbf{X}'', Y, Y', Y'')\right)\right] \\ &= E\left[\frac{\|\mathbf{U} - \mathbf{U}'\|_{d_{\mathbf{U}}}}{G(Y|\mathbf{X})G(Y'|\mathbf{X}')G(Y''|\mathbf{X}'')} E\left(\delta\delta'\delta''\|\mathbf{W} - \mathbf{W}''\|_{d_{\mathbf{V}}} \mid (\mathbf{X}, \mathbf{X}', \mathbf{X}'', Y, Y', Y'')\right)\right] \\ &= E\left[\frac{\|\mathbf{U} - \mathbf{U}'\|_{d_{\mathbf{U}}} \|\mathbf{V} - \mathbf{V}''\|_{d_{\mathbf{V}}}}{G(Y|\mathbf{X})G(Y'|\mathbf{X}')G(Y''|\mathbf{X}'')} Pr\left(\delta = 1, \delta' = 1, \delta'' = 1 \mid (\mathbf{X}, \mathbf{X}', \mathbf{X}'', Y, Y', Y'')\right)\right] \\ &= E\left(\|\mathbf{U} - \mathbf{U}'\|_{d_{\mathbf{U}}} \|\mathbf{V} - \mathbf{V}''\|_{d_{\mathbf{V}}}\right) \end{split}$$

Calculation of Equation (3.3)

The numerator of $S_{1,s}$ is:

$$E\left[\frac{\delta\delta'}{G(T|\mathbf{X})G(T'|\mathbf{X}')} \|X_{\alpha} - X'_{\alpha}\|_{d_{X_{\alpha}}} \|\mathbf{X}_{-\alpha} - \mathbf{X}'_{-\alpha}\|_{d_{\mathbf{X}_{-\alpha}}} \mathbf{1}\{T \in [l_{s-1}, l_s)\} \mathbf{1}\{T' \in [l_{s-1}, l_s)\}\right]$$

=
$$E\left[\|X_{\alpha} - X'_{\alpha}\|_{d_{X_{\alpha}}} \|\mathbf{X}_{-\alpha} - \mathbf{X}'_{-\alpha}\|_{d_{\mathbf{X}_{-\alpha}}} E\left(\frac{\delta\delta'}{G(T|\mathbf{X})G(T'|\mathbf{X}')} \mathbf{1}\{T \in [l_{s-1}, l_s)\} \mathbf{1}\{T' \in [l_{s-1}, l_s)\} | (\mathbf{X}, \mathbf{X}')\right)\right]$$

The last term inside the expectation above can be derived as follows:

$$E\left(\frac{\delta\delta'}{G(T|\mathbf{X})G(T'|\mathbf{X}')}\mathbf{1}\{T \in [l_{s-1}, l_s)\}\mathbf{1}\{T' \in [l_{s-1}, l_s)\}|(\mathbf{X}, \mathbf{X}')\right)$$

= $E\left[E\left(\frac{\delta\delta'}{G(T|\mathbf{X})G(T'|\mathbf{X}')}\mathbf{1}\{T \in [l_{s-1}, l_s)\}\mathbf{1}\{T' \in [l_{s-1}, l_s)\}|(Y, Y', \mathbf{X}, \mathbf{X}')\right)|((\mathbf{X}, \mathbf{X}'))\right]$
= $E\left[\frac{1}{G(Y|\mathbf{X})G(Y'|\mathbf{X}')}\mathbf{1}\{Y \in [l_{s-1}, l_s)\}\mathbf{1}\{Y' \in [l_{s-1}, l_s)\}Pr(Y < C, Y' < C'|(Y, Y', \mathbf{X}, \mathbf{X}'))|((\mathbf{X}, \mathbf{X}'))\right]$
= $E(\mathbf{1}\{Y \in [l_{s-1}, l_s)\}\mathbf{1}\{Y' \in [l_{s-1}, l_s)\}|(\mathbf{X}, \mathbf{X}')),$

Thus, the numerator of $S_{1,s}$ has the following equivalence, which shows its connection with the noncensored case:

$$E\left[\frac{\delta\delta'}{G(T|\mathbf{X})G(T'|\mathbf{X}')} \|X_{\alpha} - X'_{\alpha}\|_{d_{X_{\alpha}}} \|\mathbf{X}_{-\alpha} - \mathbf{X}'_{-\alpha}\|_{d_{\mathbf{X}_{-\alpha}}} \mathbf{1}\{T \in [l_{s-1}, l_s)\} \mathbf{1}\{T' \in [l_{s-1}, l_s)\}\right]$$

=
$$E\left[\|X_{\alpha} - X'_{\alpha}\|_{d_{X_{\alpha}}} \|\mathbf{X}_{-\alpha} - \mathbf{X}'_{-\alpha}\|_{d_{\mathbf{X}_{-\alpha}}} E\left(\mathbf{1}\{Y \in [l_{s-1}, l_s)\} \mathbf{1}\{Y' \in [l_{s-1}, l_s)\} | (\mathbf{X}, \mathbf{X}')\right)\right]$$

=
$$E\left[E\left(\|X_{\alpha} - X'_{\alpha}\|_{d_{X_{\alpha}}} \|\mathbf{X}_{-\alpha} - \mathbf{X}'_{-\alpha}\|_{d_{\mathbf{X}_{-\alpha}}} \mathbf{1}\{Y \in [l_{s-1}, l_s)\} \mathbf{1}\{Y' \in [l_{s-1}, l_s)\} | (\mathbf{X}, \mathbf{X}')\right)\right]$$

=
$$E\left[\|X_{\alpha} - X'_{\alpha}\|_{d_{X_{\alpha}}} \|\mathbf{X}_{-\alpha} - \mathbf{X}'_{-\alpha}\|_{d_{\mathbf{X}_{-\alpha}}} \mathbf{1}\{Y \in [l_{s-1}, l_s)\} \mathbf{1}\{Y' \in [l_{s-1}, l_s)\}\right]$$

Following similar proofs as above, the denominator of $S_{1,s}$ is:

$$E\left[\frac{\delta\delta'}{G(T|\mathbf{X})G(T'|\mathbf{X}')}\mathbf{1}\{T \in [l_{s-1}, l_s)\}\mathbf{1}\{T' \in [l_{s-1}, l_s)\}\right]$$

= $E\left[E\left(\frac{\delta\delta'}{G(T|\mathbf{X})G(T'|\mathbf{X}')}\mathbf{1}\{T \in [l_s, l_{s+1})\}\mathbf{1}\{T' \in [l_{s-1}, l_s)\}|(\mathbf{X}, \mathbf{X}')\right)\right]$
= $E\left[E\left(\mathbf{1}\{Y \in [l_{s-1}, l_s)\}\mathbf{1}\{Y' \in [l_{s-1}, l_s)\}|(\mathbf{X}, \mathbf{X}')\right)\right]$
= $E\left(\mathbf{1}\{Y \in [l_{s-1}, l_s)\}\mathbf{1}\{Y' \in [l_{s-1}, l_s)\}\right)$
= $Pr\{Y \in [l_{s-1}, l_s)\}Pr\{Y' \in [l_{s-1}, l_s)\}.$

Thus,

$$S_{1,s} = \frac{E\left[\|X_{\alpha} - X'_{\alpha}\|_{d_{X_{\alpha}}} \|\mathbf{X}_{-\alpha} - \mathbf{X}'_{-\alpha}\|_{d_{\mathbf{X}_{-\alpha}}} \mathbf{1}\{Y \in [l_{s-1}, l_s)\} \mathbf{1}\{Y' \in [l_{s-1}, l_s)\}\right]}{Pr\{Y \in [l_{s-1}, l_s)\} Pr\{Y' \in [l_{s-1}, l_s)\}}$$
$$= E\left[\|X_{\alpha} - X'_{\alpha}\|_{d_{X_{\alpha}}} \|\mathbf{X}_{-\alpha} - \mathbf{X}'_{-\alpha}\|_{d_{\mathbf{X}_{-\alpha}}} |Y, Y' \in [l_{s-1}, l_s)\right]$$

Following a similar approach, we can prove that $S_{2,s}$ and $S_{3,s}$ have similar results as $S_{1,s}$. Therefore, equation (3.3) holds.

A.2 Estimation for $G(t|\mathbf{X})$

To estimate $G(t|\mathbf{X})$, the simplest approach is to assume that $G(t|\mathbf{X}) = G(t)$. Following Zhou and Zhu (2017), we will explore other cases for estimating $G(t|\mathbf{X})$ and identify the corresponding conditions required for the proof of Theorems.

1. Assume that $G(t|\mathbf{X}) = G(t)$.

Similar assumptions were also employed by He et al. (2013), Song et al. (2014), Zhou and Zhu (2017), and Zhang et al. (2018). With this assumption, estimating $G(t|\mathbf{X})$ amounts to estimating G(t).

2. Instead of using $G(t|\mathbf{X})$, we use $G_{\alpha}(t|X_{\alpha}) = Pr(C > t|X_{\alpha})$.

This assumption was suggested by He et al. (2013) and Zhou and Zhu (2017). The direct utilization of $G(t|\mathbf{X})$ may encounter computational challenges when dealing with high dimensional data. Additionally, this assumption leads to rank consistency and sure screening properties. In the subsequent discussions, we present various estimators for $G_{\alpha}(t|X_{\alpha})$, depending on the characteristics of X_{α} . For details, a) Regarding a categorical or discrete random variable X_{α} with a finite number of potential values, we can estimate $G_{\alpha}(t|X_{\alpha})$ within each level or category of X_{α} through the classical Kaplan-Meier method. For example, if X_{α} has H categories, the estimator for each category can be denoted as $\widehat{G}_{\alpha}(t|X_{\alpha} = h)$, where $h = 1, 2, \dots, H$.

b) A continuous random variable X_{α} can be sliced into H nonoverlapping and non-

random intervals. Employing similar ideas as in the categorical/discrete case, we can estimate $G_{\alpha}(t|X_{\alpha})$ using the Kaplan-Meier method. We denote the slices as I_1, \ldots, I_H , and assume that $G_{\alpha}(t|X_{\alpha} = x) = G_{\alpha}(t|X_{\alpha} \in I_h)$ for $x \in I_h$. The estimator for each slice can be denoted as $\widehat{G}_{\alpha}(t|X_{\alpha} \in I_h)$.

3. It is possible to posit a semiparametric model, such as a proportional hazards model, and then estimate $G(T|\mathbf{X})$ based on the fitted model. This approach is straightforward to employ, and as long as the model is correctly specified, and the resulting estimator of the survival function is consistent. This assumption was suggested by Lu and Li (2011).

4. Assume that $G(T|\mathbf{X}) = G(T|B\mathbf{X})$, where B is a $d \times p$ matrix with d < n.

To directly estimate $G(T|\mathbf{X})$, the kernel smoothing method is a useful nonparametric method. However, the kernel smoothing method performs optimally only in low dimensional scenarios. Hence, it is necessary to reduce the dimension first. The simplest approach is double slicing proposed by Li (1991) to reduce the dimension of \mathbf{X} . It is equivalent to the usual sliced inverse regression (SIR) method, except that Y is partitioned within each subsample. Although the double slicing SIR is simple to use, it imposes some restrictive conditions and relies on a nonparametric estimation of the conditional survival function of Y given \mathbf{X} , which itself is computationally complicated. Xia et al. (2010) developed a dimension reduction method for censored survival data based on kernel estimation of the conditional hazard function, but this method may suffer from the curse of dimensionality when the number of predictors is large.

Once the dimension is reduced from p to r, following Beran (1981) and Dabrowska (1989), we apply d-dimension kernel smoothing on $\widehat{B}_d \mathbf{X}$ to obtain the estimate of $G(t|\widehat{B}_d \mathbf{X})$.

$$G(t|\widehat{B}_{d}\mathbf{X}) = \prod_{i=1}^{n} \{1 - \frac{w_{ni}(x;h_{n})}{\sum_{k=1}^{n} I(T_{k} \ge T_{i})w_{nk}(x;h_{n})} \}^{I(T_{i} \le t,\delta_{i}=0)}$$

with

$$w_{ni}(x;h_n) = \frac{K(h_n^{-1}\widehat{B}_d(\mathbf{X}_i - x))}{\sum_{j=1}^n K(h_n^{-1}\widehat{B}_d(\mathbf{X}_j - x))} \quad i = 1, \cdots, n,$$

where K is a density function, and $\{h_n\}$ is the bandwidth.

Furthermore, the conditions required for proving the Theorems are as follows, case by case, in detail:

(C3.1) If $G(t | \mathbf{X}) = G(t)$, then we assume $Pr(t \le Y \le C) \ge \tau_0 > 0$ for $t \in [0, T_{\max}]$, where T_{\max} represents the maximum follow-up time. Additionally, $sup\{t : Pr(Y > t) > 0\} \ge sup\{t : pr(C > t) > 0\}$ and $G'_{\alpha}(t)$, the first derivative of $G_{\alpha}(t)$, is uniformly bounded.

(C3.2) If we use $G(t|X_{\alpha})$ instead of $G(t \mid \mathbf{X})$, and assume that X_{α} is categorical or discrete, then we assume $Pr(t \leq Y \leq C \mid X_{\alpha} = h) \geq \tau_0 > 0$ for $t \in [0, T_{\max}]$, where T_{\max} is the maximum follow-up time. Additionally, $sup\{t : Pr(Y > t \mid X_{\alpha} = h) > 0\} \geq sup\{t : pr(C > t|X_{\alpha} = h) > 0\}$ and $G'_{\alpha}(t \mid X_{\alpha} = h)$, the first derivative of $G_{\alpha}(t \mid X_{\alpha} = h)$, is uniformly bounded.

(C3.3) If we use $G(t|X_{\alpha})$ instead of $G(t \mid \mathbf{X})$, and if X_{α} is continuous, we slice the range of X_{α} into H nonoverlapping and nonrandom intervals, denoted as I_1, \dots, I_H , and assume that $G(t|X_{\alpha} = x) = G(t|X_{\alpha} \in I_h)$, for $x \in I_h$. Then we assume $Pr(t \leq Y \leq C \mid X_{\alpha} \in I_h) \geq \tau_0 > 0$ for $t \in [0, T_{\max}]$, where T_{\max} is the maximum follow-up time. Additionally, $sup\{t : Pr(Y > t \mid X_{\alpha} \in I_h) > 0\} \geq sup\{t : pr(C > t|X_{\alpha} \in I_h) > 0\}$ and $G'_{\alpha}(t \mid X_{\alpha} \in I_h)$, the first derivative of $G_{\alpha}(t \mid X_{\alpha} \in I_h)$, is uniformly bounded.

(C3.4) We assume $\inf_x Pr(t \leq Y \leq C \mid \mathbf{X}) \geq \tau_0 > 0$ for $t \in [0, T_{\max}]$, where T_{\max} is the maximum follow-up time. $G(t \mid \mathbf{X})$ has first derivatives with respect to t, which are uniformly bounded away from infinity, and $G(t \mid \mathbf{X})$ has bounded (uniformly in t) secondorder partial derivatives with respect to \mathbf{X} . Additionally, $t_0 \leq \sup\{t : G(t \mid \mathbf{X}) > 0\} \leq t_1$ uniformly in \mathbf{X} for some positive constants t_0 and t_1 , and $\sup\{t : Pr(Y > t \mid \mathbf{X}) > 0\} \geq$ $\sup\{t: G(t \mid \mathbf{X}) > 0\}$ almost surely for **X**.

Conditions (C3.1)-(C3.4) are commonly found in the survival analysis literature to ensure that the Kaplan-Meier estimator and its inverse function are well behaved. Conditions (C3.1)-(C3.3) coincide with the conditions in Zhou and Zhu (2017). Condition (C3.4) is an extension of (C3.3). It is similar to (C6') in He et al. (2013), but the dimension of x considered in (C6') in He et al. (2013) is one dimension.

A.3 Proofs of Theorems

Firstly, we establish Theorem 2 and demonstrate that the results hold dimension-free with regard to variables. Subsequently, we establish the marginal conclusion of Theorem 1 as a specific instance of Theorem 2, which can be proven without difficulty. Finally, we prove the corresponding outcome of Theorem 3.

Lemma 1 (Hoeffding (1963), Deviation bound for U-statistics) Let $g(\mathbf{U}_1, \dots, \mathbf{U}_r)$ be a kernel of the U-statistic U_n , where $U_n = \frac{1}{(n)_r} \sum_{i_r^n} g(\mathbf{U}_{i_1}, \dots, \mathbf{U}_{i_r})$, $n \ge r$, $(n)_r = \frac{n!}{(n-r)!}$ and $\sum_{i_r^n}$ is taken over all r-tuples i_1, \dots, i_r drawn without replacement from $1, \dots, n$. If $a \le g(\mathbf{U}_1, \dots, \mathbf{U}_r) \le b$, then for any t > 0 and w = [n/r] the largest integer contained in n/r, the following bound holds:

$$P\{U_n - EU_n \ge t\} \le \exp(-2wt^2/(b-a)^2).$$
(S0.1)

If we treat $G(t|\mathbf{X})$ as G(t), then we can follow the lemma:

Lemma 2 (Lo and Singh (1986)) Under Condition (C3), the Kaplan-Meier estimator $\widehat{G}(\cdot)$ satisfies: (1) $\sup_{0 \le t \le T} |\widehat{G}(t) - G(t)| = O\{(\frac{\log n}{n})^{\frac{1}{2}}\}$ almost surely;

(2)
$$\frac{1}{\hat{G}(t)} - \frac{1}{G(t)} = \frac{1}{nG(t)^2} \sum_{g=1}^n \xi(T_g, \delta_g, t) + R_n(t)$$
, where $\xi(T_g, \delta_g, t)$, $g = 1, \cdots, n$ are

i.i.d. random variables with mean zero and $\sup_{0 \le t \le T} |R_n(t)| = O\{(\frac{\log n}{n})^{\frac{3}{4}}\}$ almost surely;

(3) $\sup_{0 \le t \le T} \left| \frac{1}{\widehat{G}(t)} - \frac{1}{G(t)} \right| = O\left\{ \left(\frac{\log n}{n} \right)^{\frac{1}{2}} \right\}$ almost surely.

If we reduce the dimension of \mathbf{X} to $\widehat{B}_d \mathbf{X}$, following Beran (1981) we apply d-dimension kernel smoothing on $\widehat{B}_d \mathbf{X}$ to obtain the estimate $G_n(t|\widehat{B}_d \mathbf{X})$.

Under suitable assumptions, Beran (1981) and Dabrowska (1989) established the consistency of their estimates at rates of convergence (which are slower than the square root of n rate) commonly observed in nonparametric regression. The estimation of the conditional distribution of the response variable, given the covariates in the presence of right censoring, typically use the estimator proposed by Beran (1981). This estimator is often referred to as the conditional Kaplan-Meier estimator, can be viewed as a smooth function of the kernel regression estimator that captures the conditional behavior of the observations (Dabrowska (1989)).

Lemma 3 (Beran (1981), uniform consistency) Let $H_{1n}(t|\mathbf{X} = x) = \sum_{i=1}^{n} I(T_i > t, \delta_i = 1)B_{ni}(x)$ and $H_{2n}(t|\mathbf{X} = x) = \sum_{i=1}^{n} I(T_i > t)B_{ni}(x)$ be the strongly consistent estimators of $H_1(t|x) = P(T > t, \delta = 1|\mathbf{X} = x)$ and $H_2(t|x) = P(T > t|\mathbf{X} = x)$, respectively, i.e., for μ -almost all x, $|H_{in}(t^-|x) - H_i(t^-|x)| \longrightarrow 0$ a.s. and $|H_{in}(t^+|x) - H_i(t^+|x)| \longrightarrow 0$ as $n \to \infty$ with $B_{ni}(x)$ is a random set of nonnegative weights depending on covariates only. Suppose $L(z) < \sup\{t : H_2(t|\mathbf{X}) > 0\}$. Then, for μ -almost all x, as $n \to \infty$,

$$sup_{0 \le t \le L(z)} |G_n(t|x) - G(t|x)| \to 0, \ a.s.$$

We first prove Theorem 2, and demonstrate that the results are dimension-free of the variables step by step. Subsequently, from this result, we readily deduce the marginal conclusion presented in Theorem 1. To prove these theorems, it is imperative to initially establish Lemma 4. This lemma 4 establishes a uniform bound for the discrepancies between \hat{u}^*_{α} and the estimators u^*_{α} acquired through the screening step, for all $\alpha = 1, \dots, p$. For random vectors **U** and **W** with dimensions d_u and d_w respectively, as expounded in Section 2.4 of the main paper, the following lemma ascertains the bound

for u_{α}^* within the context of survival data. Specifically, by setting $\mathbf{U} = X_{\alpha}$ and $\mathbf{W} = (T, \mathbf{X}_{-\alpha})$, we can establish Theorem 2; whereas assigning $\mathbf{U} = X_{\alpha}$ and $\mathbf{W} = T$ enables us to substantiate Theorem 1.

Lemma 4 (Bound for u_{α}^* in survival data) Under conditions (C1) and (C3), for any $0 < (\nu + \gamma) < \frac{1}{2}$, there exist positive constants $c_1 > 0$ and $c_2 > 0$ such that

$$Pr\left(\left|\widehat{u}_{\alpha}^{*}-u_{\alpha}^{*}\right| \geq cn^{-\nu}\right)$$

$$\leq O\left(\left[\exp\left\{-c_{1}n^{1-2(\nu+\gamma)}\right\}+n\exp\left(-c_{2}n^{\gamma}\tau_{0}^{2}\right)\right]\right).$$

Proof 1 (of Lemma 4) By the Cauchy-Schwartz inequality and condition (C3), we have

$$S_{1} = E\left(\frac{\delta\delta'}{G(T|\mathbf{X})G(T'|\mathbf{X}')}\|\mathbf{U} - \mathbf{U}'\|_{d_{u}}\|\mathbf{W} - \mathbf{W}'\|_{d_{w}}\right)$$

$$\leq \frac{1}{\tau_{0}^{2}} \{E[\|\mathbf{U} - \mathbf{U}'\|_{d_{u}}^{2}]E[\|\mathbf{W} - \mathbf{W}'\|_{d_{w}}^{2}]\}^{1/2}$$

$$\leq \frac{2}{\tau_{0}^{2}} \{E[\|\mathbf{U}\|_{d_{u}}^{2}]E[\|\mathbf{W}\|_{d_{w}}^{2}]\}^{1/2} = A < \infty$$
(S0.2)

By condition (C1), we have that S_1 is bounded by a constant A, and for any given $\epsilon > 0$, take n large enough such that $\frac{S_1}{n} < 2\epsilon$.

Step 1:

$$\begin{split} \widehat{S}_{1} &= \frac{1}{n^{2}} \sum_{i,j=1}^{n} \frac{\delta_{i} \delta'_{j}}{\widehat{G}_{n}(T_{i} | \mathbf{X}_{i}) \widehat{G}_{n}(T'_{j} | \mathbf{X}'_{j})} \| \mathbf{U}_{i} - \mathbf{U}'_{j} \|_{d_{u}} \| \mathbf{W}_{i} - \mathbf{W}'_{j} \|_{d_{w}}, \\ &= \frac{1}{n^{2}} \sum_{i,j=1}^{n} \frac{\delta_{i} \delta'_{j}}{G(T_{i} | \mathbf{X}_{i}) G(T'_{j} | \mathbf{X}'_{j})} \| \mathbf{U}_{i} - \mathbf{U}'_{j} \|_{d_{u}} \| \mathbf{W}_{i} - \mathbf{W}'_{j} \|_{d_{w}} \\ &+ \frac{1}{n^{2}} \sum_{i,j=1}^{n} \| \mathbf{U}_{i} - \mathbf{U}'_{j} \|_{d_{u}} \| \mathbf{W}_{i} - \mathbf{W}'_{j} \|_{d_{w}} \delta_{i} \delta'_{j} \left(\frac{1}{\widehat{G}_{n}(T_{i} | \mathbf{X}_{i}) \widehat{G}_{n}(T'_{j} | \mathbf{X}'_{j})} - \frac{1}{G(T_{i} | \mathbf{X}_{i}) G(T'_{j} | \mathbf{X}'_{j})} \right) \\ &= \widehat{S}_{11} + \widehat{S}_{12} \end{split}$$

For \widehat{S}_{12} , we have

$$\begin{split} \widehat{S}_{12} &= \frac{1}{n^2} \sum_{i,j=1}^n \|\mathbf{U}_i - \mathbf{U}_j'\|_{d_u} \|\mathbf{W}_i - \mathbf{W}_j'\|_{d_w} \frac{\delta_i \delta_j'}{G(T_i | \mathbf{X}_i) G(T_j' | \mathbf{X}_j')} \left(\frac{G(T_i | \mathbf{X}_i) G(T_j' | \mathbf{X}_j')}{\widehat{G}_n(T_i | \mathbf{X}_i) \widehat{G}_n(T_j' | \mathbf{X}_j')} - 1 \right), \\ &\leq \max_{i,j} \left| \frac{G(T_i | \mathbf{X}_i) G(T_j' | \mathbf{X}_j')}{\widehat{G}_n(T_i | \mathbf{X}_i) \widehat{G}_n(T_j' | \mathbf{X}_j')} - 1 \right| \frac{1}{n^2} \sum_{i,j=1}^n \frac{\delta_i \delta_j'}{G(T_j | \mathbf{X}_j) G(T_j' | \mathbf{X}_j')} \|\mathbf{U}_i - \mathbf{U}_j'\|_{d_u} \|\mathbf{W}_i - \mathbf{W}_j'\|_{d_u} \\ &= \max_{i,j} \left| \frac{G(T_i | \mathbf{X}_i) G(T_j' | \mathbf{X}_j')}{\widehat{G}_n(T_i | \mathbf{X}_i) \widehat{G}_n(T_j' | \mathbf{X}_j')} - 1 \right| \widehat{S}_{11} \end{split}$$

By Condition (C3) and Lemma 2 (or Lemma 3 combined with Taylor expansion), we have that

$$\frac{G(T_i|\mathbf{X}_i)}{\widehat{G}_n(T_i|\mathbf{X}_i)} - 1 = \frac{1}{\widehat{G}(T_i|\mathbf{X}_i)} (G_n(T_i|\mathbf{X}_i) - \widehat{G}(T_i|\mathbf{X}_i)) \to 0,$$

when n goes to infinity. Based on the fact that

$$\frac{AB}{\widehat{A}\widehat{B}} - 1 = \left(\frac{A}{\widehat{A}} - 1\right)\left(\frac{B}{\widehat{B}} - 1\right) + \left(\frac{A}{\widehat{A}} - 1\right) + \left(\frac{B}{\widehat{B}} - 1\right)$$

and S_1 is bounded by a constant, we have

$$\max_{i,j} \left| \frac{G(T_i | \mathbf{X}_i) G(T'_j | \mathbf{X}'_j)}{\widehat{G}_n(T_i | \mathbf{X}_i) \widehat{G}_n(T'_j | \mathbf{X}'_j)} - 1 \right| S_1 = o_p(1) < \epsilon, \quad as \quad n \to \infty.$$

Our goal is to obtain the consistency of \widehat{S}_1 , considering that

$$Pr(|\hat{S}_{1} - S_{1}| \ge 6\epsilon) = Pr(\left|\hat{S}_{11} + max_{i,j} \left| \frac{G(T_{i}|\mathbf{X}_{i})G(T_{j}'|\mathbf{X}_{j}')}{\hat{G}_{n}(T_{i}|\mathbf{X}_{i})\hat{G}_{n}(T_{j}'|\mathbf{X}_{j}')} - 1 \right| \hat{S}_{11} - S_{1} \right| \ge 6\epsilon)$$

$$\leq Pr(\left|\hat{S}_{11} - S_{1}\right| \ge \frac{5\epsilon}{o_{p}(1) + 1})$$

$$\leq Pr(|\hat{S}_{11} - S_{1}| \ge \frac{5\epsilon}{o_{p}(1) + 1})$$

To establish the uniform consistency of \hat{S}_1 , we need the uniform consistency of \hat{S}_{11} . Define

$$\widehat{S}_{11}^{*} = \frac{1}{n(n-1)} \sum_{i \neq j} \frac{\delta_i \delta'_j}{G(T_i | \mathbf{X}_i) G(T'_j | \mathbf{X}'_j)} \| \mathbf{U}_i - \mathbf{U}'_j \|_{d_u} \| \mathbf{W}_i - \mathbf{W}'_j \|_{d_w},$$

which is a usual U-statistic. For $\widehat{S}_{11} = \widehat{S}_{11}^* \frac{n-1}{n}$, it can be easily shown that

$$P(|\widehat{S}_{11} - S_1| \ge 4\epsilon) = P(|\widehat{S}_{11}^* \frac{n-1}{n} - S_1 \frac{n-1}{n} - S_1 \frac{1}{n}| \ge 4\epsilon)$$

$$\le P(|\widehat{S}_{11}^* - S_1| \frac{n-1}{n} \ge 4\epsilon - S_1 \frac{1}{n})$$

$$\le P(|\widehat{S}_{11}^* - S_1| \ge 2\epsilon).$$

Therefore, we show the uniform consistency of \widehat{S}_{11}^* . Let $g_1(\mathbf{U}_i, \mathbf{W}_i, \delta_i; \mathbf{U}_j', \mathbf{W}_j', \delta_j') = \frac{\delta_i \delta_j'}{G(T_i|\mathbf{X}_i)G(T_j'|\mathbf{X}_j')} \|\mathbf{U}_i - \mathbf{U}_j'\|_{d_u} \|\mathbf{W}_i - \mathbf{W}_j'\|_{d_w}$ be the kernel of \widehat{S}_{11}^* . We decompose the kernel

function g_1 into two parts $g_1 = g_1 \mathbf{1}(g_1 \leq M) + g_1 \mathbf{1}(g_1 > M)$, where M will be specified later. Note that \widehat{S}_{11}^* can be written as

$$\widehat{S}_{11}^{*} = \frac{1}{n(n-1)} \sum_{i \neq j} g_{1}(\mathbf{U}_{i}, \mathbf{W}_{i}, \delta_{i}; \mathbf{U}_{j}', \mathbf{W}_{j}', \delta_{j}') \mathbf{1}(g_{1}(\mathbf{U}_{i}, \mathbf{W}_{i}, \delta_{i}; \mathbf{U}_{j}', \mathbf{W}_{j}', \delta_{j}') \leq M)
+ \frac{1}{n(n-1)} \sum_{i \neq j} g_{1}(\mathbf{U}_{i}, \mathbf{W}_{i}, \delta_{i}; \mathbf{U}_{j}', \mathbf{W}_{j}', \delta_{j}') \mathbf{1}(g_{1}(\mathbf{U}_{i}, \mathbf{W}_{i}, \delta_{i}; \mathbf{U}_{j}', \mathbf{W}_{j}', \delta_{j}') > M) = \widehat{S}_{1,1}^{*} + \widehat{S}_{1,2}^{*}$$

Accordingly, we decompose S_1 into two parts

$$S_1 = E[g_1(\mathbf{U}_i, \mathbf{W}_i, \delta_i; \mathbf{U}'_j, \mathbf{W}'_j, \delta'_j) \mathbf{1}(g_1(\mathbf{U}_i, \mathbf{W}_i, \delta_i; \mathbf{U}'_j, \mathbf{W}'_j, \delta'_j) \le M)]$$

+ $E[g_1(\mathbf{U}_i, \mathbf{W}_i, \delta_i; \mathbf{U}'_j, \mathbf{W}'_j, \delta'_j) \mathbf{1}(g_1(\mathbf{U}_i, \mathbf{W}_i, \delta_i; \mathbf{U}'_j, \mathbf{W}'_j, \delta'_j) > M)] = S_{1,1} + S_{1,2}.$

Clearly, $\hat{S}_{1,1}^*$ and $\hat{S}_{1,2}^*$ are unbiased estimators of $S_{1,1}$ and $S_{1,2}$, respectively.

By using the conclusion of Lemma 1 in this supplement, we can obtain the uniform consistency of the bounded two-order U statistic $\widehat{S}_{1,1}^*$ directly. That is,

$$P\{|\widehat{S}_{1,1}^* - S_{1,1}| \ge \epsilon\} \le 2\exp(-2[n/2]\epsilon^2/M^2)$$
(S0.3)

For $S_{1,2}$, with the Cauchy-Schwartz inequality

$$S_{1,2}^{2} \leq E\left\{g_{1}^{2}(\mathbf{U}_{i},\mathbf{W}_{i},\delta_{i};\mathbf{U}_{j}',\mathbf{W}_{j}',\delta_{j}')\right\}Pr\left\{g_{1}(\mathbf{U}_{i},\mathbf{W}_{i},\delta_{i};\mathbf{U}_{j}',\mathbf{W}_{j}',\delta_{j}')>M\right\}$$
$$\leq E\left\{g_{1}^{2}(\mathbf{U}_{i},\mathbf{W}_{i},\delta_{i};\mathbf{U}_{j}',\mathbf{W}_{j}',\delta_{j}')\right\}*I\left\{g_{1}(\mathbf{U}_{i},\mathbf{W}_{i},\delta_{i};\mathbf{U}_{j}',\mathbf{W}_{j}',\delta_{j}')>M\right\}$$

Using the fact that $(a^2 + b^2)/2 \ge (a + b)^2/4 \ge |ab|$ and condition (C3), we have

$$g_{1}^{2}(\mathbf{U}_{i}, \mathbf{W}_{i}, \delta_{i}; \mathbf{U}_{j}', \mathbf{W}_{j}', \delta_{j}') \\ = \left(\frac{\delta_{i}\delta_{j}'}{G(T_{i}|\mathbf{X}_{i})G(T_{j}'|\mathbf{X}_{j}')} \|\mathbf{U}_{i} - \mathbf{U}_{j}'\|_{d_{u}} \|\mathbf{W}_{i} - \mathbf{W}_{j}'\|_{d_{w}}\right)^{2} \\ \leq \frac{1}{\tau_{0}^{4}} \left[(\|\mathbf{U}_{i}\|_{d_{u}} + \|\mathbf{U}_{j}'\|_{d_{u}}) (\|\mathbf{W}_{i}\|_{d_{w}} + \|\mathbf{W}_{j}'\|_{d_{w}}) \right]^{2} \\ \leq \frac{1}{4\tau_{0}^{4}} \left[(\|\mathbf{U}_{i}\|_{d_{u}} + \|\mathbf{U}_{j}'\|_{d_{u}})^{2} + (\|\mathbf{W}_{i}\|_{d_{w}} + \|\mathbf{W}_{j}'\|_{d_{w}})^{2} \right]^{2} \\ \leq \frac{1}{\tau_{0}^{4}} \left(\|\mathbf{U}_{i}\|_{d_{u}}^{2} + \|\mathbf{U}_{j}'\|_{d_{u}}^{2} + \|\mathbf{W}_{i}\|_{d_{w}}^{2} + \|\mathbf{W}_{j}'\|_{d_{w}}^{2} \right)^{2}$$

By condition (C1), we have $E(g_1^2(\mathbf{U}_i, \mathbf{W}_i, \delta_i; \mathbf{U}'_j, \mathbf{W}'_j, \delta'_j)) < \infty$ then $S_{1,2} \leq \epsilon/2$ when *n* is sufficiently large. Consequently,

$$Pr(|\widehat{S}_{1,2}^* - S_{1,2}| > \epsilon) \leq Pr(|\widehat{S}_{1,2}^*| > \epsilon/2).$$
 (S0.4)

It remains to bound the probability $Pr(|\hat{S}_{1,2}^*| > \epsilon/2)$. We observe that the events satisfy

$$\left\{ \left| \widehat{S}_{1,2}^* \right| > \epsilon/2 \right\} \subseteq \left\{ \| \mathbf{U}_i \|_{d_u}^2 + \| \mathbf{W}_i \|_{d_w}^2 > \frac{M\tau_0^2}{2}, \text{ for some } 1 \le i \le n \right\}.$$
(S0.5)

Based on the fact that,

$$M < \widehat{S}_{1,2}^{*} = \frac{1}{n(n-1)} \sum_{i \neq j} g_{1}(\mathbf{U}_{i}, \mathbf{W}_{i}, \delta_{i}; \mathbf{U}_{j}', \mathbf{W}_{j}', \delta_{j}') \mathbf{1}(g_{1}(\mathbf{U}_{i}, \mathbf{W}_{i}, \delta_{i}; \mathbf{U}_{j}', \mathbf{W}_{j}', \delta_{j}') > M)$$

$$\leq E(max_{i,j}g_{1}(\mathbf{U}_{i}, \mathbf{W}_{i}, \delta_{i}; \mathbf{U}_{j}', \mathbf{W}_{j}', \delta_{j}')) \mathbf{1}(g_{1}(\mathbf{U}_{i}, \mathbf{W}_{i}, \delta_{i}; \mathbf{U}_{j}', \mathbf{W}_{j}', \delta_{j}') > M)$$

$$\leq \frac{1}{\tau_{0}^{2}} \left(\|\mathbf{U}_{i}\|_{d_{u}}^{2} + \|\mathbf{U}_{j}'\|_{d_{u}}^{2} + \|\mathbf{W}_{i}\|_{d_{w}}^{2} + \|\mathbf{W}_{j}'\|_{d_{w}}^{2} \right).$$

This means that if the event $|\widehat{S}_{1,2}^*| > \epsilon/2$ occurs, the event $\{ \|\mathbf{U}_i\|_{d_u}^2 + \|\mathbf{W}_i\|_{d_w}^2 > \frac{M\tau_0^2}{2}, \text{ for some } 1 \leq i \leq n \}$ will occur. This verifies that (S0.5) is true.

By invoking the above condition (C1) that $E\{\exp(s||\mathbf{U}||^2_{d_u})\} < \infty$, $E\{\exp(s||\mathbf{W}||^2_{d_w})\} < \infty$, and applying Markov's inequality for s > 0, there must exist a constant C such that

$$\begin{aligned} Pr(|\hat{S}_{1,2}^*| > \epsilon/2) &\leq nPr(\|\mathbf{U}\|_{d_u}^2 + \|\mathbf{W}\|_{d_w}^2 \geq \frac{M\tau_0^2}{2}) \\ &\leq nPr(\|\mathbf{U}\|_{d_u}^2 \geq \frac{M\tau_0^2}{4}) + nPr(\|\mathbf{W}\|_{d_w}^2 \geq \frac{M\tau_0^2}{4}) \\ &\leq nE\left[\frac{\exp(s\|\mathbf{U}\|_{d_u}^2)}{\exp(sM\tau_0^2/4)}\right] + nE\left[\frac{\exp(s\|\mathbf{W}\|_{d_w}^2)}{\exp(sM\tau_0^2/4)}\right] \end{aligned}$$

Then we have

$$Pr(|\widehat{S}_{1,2}^*| > \epsilon/2) \le 2nC \exp(-sM\tau_0^2/4).$$

If we choose that $M = c_1 n^{\gamma}$, with $0 < \gamma < \frac{1}{2} - \nu$, then

$$Pr(|\hat{S}_{11} - S_1| \ge 4\epsilon)$$

$$\le 2nC \exp(-sM\tau_0^2/4) + 2\exp(-2[n/2]\epsilon^2/M^2)$$
(S0.6)
$$= 2nC \exp(-sc_1n^{\gamma}\tau_0^2/4) + 2\exp(-\epsilon^2n^{1-2\gamma}).$$

Combining (S0.6) and (S0.4), we have

$$Pr(|\widehat{S}_1 - S_1| \ge 6\epsilon)$$

$$\le 2nC \exp(-cn^{\gamma}\tau_0^2/4) + 2\exp(-\epsilon^2 n^{1-2\gamma}).$$
(S0.7)

Step 2. Next, we turn to \widehat{S}_2 . We write $S_2 = S_{2,1}S_{2,2}$, where $S_{2,1} = E\{\|\mathbf{U} - \mathbf{U}'\|_{d_u}\}$ and $S_{2,2} = E\{\frac{\delta\delta'}{G(T|\mathbf{X})G(T'|\mathbf{X}')}\|\mathbf{W} - \mathbf{W}'\|_{d_w}\}$. Correspondingly, $\widehat{S}_2 = \widehat{S}_{2,1}\widehat{S}_{2,2}$, where $\widehat{S}_{2,1} = n^{-2}\sum_{i\neq j}\sum_{i\neq j}\sum_{j=1}^{k}\|\mathbf{U}_i - \mathbf{U}_j'\|_{d_u}$, and $\widehat{S}_{2,2} = n^{-2}\sum_{i\neq j}\sum_{i\neq j}\frac{\delta_i\delta_j'}{\widehat{G}(T_i|\mathbf{X}_i)\widehat{G}(T_j'|\mathbf{X}_j')}\|\mathbf{W}_i - \mathbf{W}_j'\|_{d_w}$.

Following arguments for proving (S0.7) in the supplement, we can show that

$$Pr(|\hat{S}_{2,1} - S_{2,1}| \ge 4\epsilon) \le 2nC \exp(-cn^{\gamma}\tau_0^2/4) + 2\exp(-\epsilon^2 n^{1-2\gamma}), \text{ and}$$

$$Pr(|\hat{S}_{2,2} - S_{2,2}| \ge 4\epsilon) \le 2nC \exp(-cn^{\gamma}\tau_0^2/4) + 2\exp(-\epsilon^2 n^{1-2\gamma}).$$
(S0.8)

Condition (C1) ensures that $S_{2,1} \leq \left\{ E(\|\mathbf{U}_i - \mathbf{U}'_j\|_{d_u}^2) \right\}^{1/2} \leq \left\{ 4E(\|\mathbf{U}\|_{d_u}^2) \right\}^{1/2}$ and $S_{2,2} \leq \left\{ E(\|\mathbf{W}_i - \mathbf{W}'_j\|_{d_w}^2) \right\}^{1/2} \leq \left\{ 4E(\|\mathbf{W}\|_{d_w}^2) \right\}^{1/2}$ are uniformly bounded. That is, $\max\left\{ S_{2,1}, S_{2,2} \right\} \leq C$, for some constant C. Using (S0.8) repeatedly, we can easily prove that

$$Pr\{|(\widehat{S}_{2,1} - S_{2,1})S_{2,2}| \ge \epsilon\} \le Pr(|\widehat{S}_{2,1} - S_{2,1}| \ge \epsilon/C)$$

$$\le 2\exp\{-\epsilon^2 n^{1-2\gamma}/(16C^2)\} + 2nC\exp(-cn^{\gamma}\tau_0^2/4),$$
(S0.9)
$$Pr(|S_{2,1}(\widehat{S}_{2,2} - S_{2,2})| \ge \epsilon) \le Pr(|\widehat{S}_{2,2} - S_{2,2}| \ge \epsilon/C)$$

$$\le 2\exp\{-\epsilon^2 n^{1-2\gamma}/(16C^2)\} + 2nC\exp(-cn^{\gamma}\tau_0^2/4),$$

and

$$Pr\{ \left| (\widehat{S}_{2,1} - S_{2,1}) (\widehat{S}_{2,2} - S_{2,2}) \right| \ge \epsilon \}$$

$$\leq Pr(\left| \widehat{S}_{2,1} - S_{2,1} \right| \ge \sqrt{\epsilon}) + Pr(\left| \widehat{S}_{2,2} - S_{2,2} \right| \ge \sqrt{\epsilon})$$
(S0.10)
$$\leq 4 \exp\left(-\epsilon n^{1-2\gamma}/16 \right) + 4nC \exp\left(-cn^{\gamma} \tau_0^2/4 \right).$$

It follows from Bonferroni's inequality that (S0.9) and (S0.10) imply that,

$$Pr\left(\left|\widehat{S}_{2}-S_{2}\right| \geq 3\epsilon\right) = Pr\left(\left|\widehat{S}_{2,1}\widehat{S}_{2,2}-S_{2,1}S_{2,2}\right| \geq 3\epsilon\right)$$

$$\leq Pr\left\{\left|(\widehat{S}_{2,1}-S_{2,1})S_{2,2}\right| \geq \epsilon\right\} + Pr\left\{\left|S_{2,1}(\widehat{S}_{2,2}-S_{2,2})\right| \geq \epsilon\right\}$$

$$+ Pr\left\{\left|(\widehat{S}_{2,1}-S_{2,1})(\widehat{S}_{2,2}-S_{2,2})\right| \geq \epsilon\right\}$$

$$\leq 8\exp\left\{-\epsilon^{2}n^{1-2\gamma}/(16C^{2})\right\} + 8nC\exp\left(-cn^{\gamma}\tau_{0}^{2}/4\right),$$

(S0.11)

where the last inequality holds when ϵ is sufficiently small and C is sufficiently large.

Step 3. The uniform consistency of \widehat{S}_3 remains to be shown. We first study the

following U-statistic:

$$\widehat{S}_{3}^{*} = \frac{1}{n(n-1)(n-2)} \sum_{i < j < l} \left\{ \frac{\delta'_{j} \delta''_{l}}{\widehat{G}_{n}(T'_{j} | \mathbf{X}'_{j}) \widehat{G}_{n}(T''_{l} | \mathbf{X}''_{l})} \| \mathbf{U}_{i} - \mathbf{U}'_{j} \|_{d_{u}} \| \mathbf{W}'_{j} - \mathbf{W}''_{l} \|_{d_{w}} + \frac{\delta_{j} \delta''_{l}}{\widehat{G}_{n}(T'_{j} | \mathbf{X}'_{j}) \widehat{G}_{n}(T''_{l} | \mathbf{X}''_{l})} \| \mathbf{U}_{i} - \mathbf{U}''_{l} \|_{d_{u}} \| \mathbf{W}'_{j} - \mathbf{W}''_{l} \|_{d_{w}} + \frac{\delta_{i} \delta''_{l}}{\widehat{G}_{n}(T_{i} | \mathbf{X}_{i}) \widehat{G}_{n}(T''_{l} | \mathbf{X}''_{l})} \| \mathbf{U}_{i} - \mathbf{U}'_{j} \|_{d_{u}} \| \mathbf{W}_{i} - \mathbf{W}''_{l} \|_{d_{w}} + \frac{\delta_{i} \delta''_{l}}{\widehat{G}_{n}(T_{i} | \mathbf{X}_{i}) \widehat{G}_{n}(T''_{l} | \mathbf{X}''_{l})} \| \mathbf{U}''_{l} - \mathbf{U}'_{j} \|_{d_{u}} \| \mathbf{W}_{i} - \mathbf{W}''_{l} \|_{d_{w}} + \frac{\delta_{i} \delta''_{l}}{\widehat{G}_{n}(T_{i} | \mathbf{X}_{i}) \widehat{G}_{n}(T''_{j} | \mathbf{X}'_{j})} \| \mathbf{U}''_{l} - \mathbf{U}'_{j} \|_{d_{u}} \| \mathbf{W}_{i} - \mathbf{W}'_{l} \|_{d_{w}} + \frac{\delta_{i} \delta'_{j}}{\widehat{G}_{n}(T_{i} | \mathbf{X}_{i}) \widehat{G}_{n}(T''_{j} | \mathbf{X}'_{j})} \| \mathbf{U}''_{l} - \mathbf{U}'_{j} \|_{d_{u}} \| \mathbf{W}_{i} - \mathbf{W}'_{j} \|_{d_{w}} + \frac{\delta_{i} \delta'_{j}}{\widehat{G}_{n}(T_{i} | \mathbf{X}_{i}) \widehat{G}_{n}(T''_{j} | \mathbf{X}'_{j})} \| \mathbf{U}''_{l} - \mathbf{U}'_{j} \|_{d_{u}} \| \mathbf{W}_{i} - \mathbf{W}'_{j} \|_{d_{w}} + \frac{\delta_{i} \delta'_{j}}{\widehat{G}_{n}(T_{i} | \mathbf{X}_{i}) \widehat{G}_{n}(T''_{j} | \mathbf{X}'_{j})} \| \mathbf{U}''_{l} - \mathbf{U}'_{j} \|_{d_{u}} \| \mathbf{W}_{i} - \mathbf{W}'_{j} \|_{d_{w}} + \frac{\delta_{i} \delta'_{j}}{\widehat{G}_{n}(T_{i} | \mathbf{X}_{i}) \widehat{G}_{n}(T''_{j} | \mathbf{X}'_{j})} \| \mathbf{U}''_{l} - \mathbf{U}'_{j} \|_{d_{u}} \| \mathbf{W}_{i} - \mathbf{W}'_{j} \|_{d_{w}} + \frac{\delta_{i} \delta'_{j}}{\widehat{G}_{n}(T_{i} | \mathbf{X}_{i}) \widehat{G}_{n}(T''_{j} | \mathbf{X}'_{j})} \| \mathbf{U}''_{l} - \mathbf{U}_{i} \|_{d_{u}} \| \mathbf{W}_{i} - \mathbf{W}'_{j} \|_{d_{w}} + \frac{\delta_{i} \delta'_{j}}{\widehat{G}_{n}(T_{i} | \mathbf{X}_{i}) \widehat{G}_{n}(T''_{j} | \mathbf{X}'_{j})} \| \mathbf{U}''_{l} - \mathbf{U}_{i} \|_{d_{u}} \| \mathbf{W}_{i} - \mathbf{W}'_{j} \|_{d_{w}} \right\} = \frac{6}{n(n-1)(n-2)} \sum_{i < j < l} g_{3}(\mathbf{U}_{i}, \mathbf{W}_{i}, \delta_{i}; \mathbf{U}'_{j}, \mathbf{W}'_{j}, \delta'_{j}; \mathbf{U}''_{l}, \mathbf{W}''_{l}, \delta''_{l}).$$
(S0.12)

Here, $g_3(\mathbf{U}_i, \mathbf{W}_i, \delta_i; \mathbf{U}'_j, \mathbf{W}'_j, \delta'_j; \mathbf{U}''_l, \mathbf{W}''_l, \delta''_l)$ is the kernel of U-statistic \hat{S}^*_3 . Following the arguments to deal with \hat{S}^*_1 , we decompose g_3 into two parts: $g_3 = g_3 \mathbf{1}(g_3 > M) + g_3 \mathbf{1}(g_3 \le M)$. Accordingly,

$$\begin{aligned} \widehat{S}_3^* &= \frac{6}{n(n-1)(n-2)} \sum_{i < j < l} g_3 \mathbf{1}(g_3 \le M) + \frac{6}{n(n-1)(n-2)} \sum_{i < j < l} g_3 \mathbf{1}(g_3 > M) \\ &= \widehat{S}_{3,1}^* + \widehat{S}_{3,2}^*, \\ S_3 &= E \left\{ g_3 \mathbf{1}(g_3 \le M) \right\} + E \left\{ g_3 \mathbf{1}(g_3 > M) \right\} = S_{3,1} + S_{3,2}. \end{aligned}$$

Following similar arguments for proving (), we can show that

$$Pr(|\hat{S}^*_{3,1} - S_{3,1}| \ge \epsilon) \le 2 \exp(-2\epsilon^2 m'/M^2),$$
 (S0.13)

where m' = [n/3] because $\widehat{S}^*_{3,1}$ is a third-order U-statistic.

Then we deal with $\widehat{S}_{3,2}^*$. We observe that $g_3(\mathbf{U}_i, \mathbf{W}_i; \mathbf{U}_j', \mathbf{W}_j'; \mathbf{U}_l'', \mathbf{W}_l'') \leq \frac{2}{3\tau_0^2} (\|\mathbf{U}_i\|_{d_u}^2 + \|\mathbf{U}_j'\|_{d_u}^2 + \|\mathbf{W}_i\|_{d_w}^2 + \|\mathbf{W}_j'\|_{d_w}^2 + \|\mathbf{W}_l''\|_{d_w}^2)$, which will be smaller than M if $\|\mathbf{U}_i\|_{d_u}^2 + \|\mathbf{W}_i\|_{d_w}^2 \leq \frac{M\tau_0^2}{2}$, for all $1 \leq i \leq n$. Thus, for any $\epsilon > 0$, the events satisfy

$$\left\{ \left| \widehat{S}_{3,2}^* \right| > \epsilon/2 \right\} \subseteq \left\{ \| \mathbf{U}_i \|_{d_u}^2 + \| \mathbf{V}_i \|_{d_v}^2 > M\tau_0^2/2, \text{ for some } 1 \le i \le n \right\}.$$

By using similar arguments to prove (S0.6), it follows that

$$Pr(|\widehat{S}_{3,2}^* - S_{3,2}| > \epsilon) \le Pr(|\widehat{S}_{3,2}^*| > \epsilon/2) \le 2nC \exp(-cM\tau_0^2/4).$$
 (S0.14)

Then, we combine the results (S0.13) and (S0.14) with $M = c_1 n^{\gamma}$ for some $0 < \gamma < 1/2 - \nu$ to obtain that

$$Pr\left(\left|\widehat{S}_{3}^{*}-S_{3}\right| \geq 2\epsilon\right) \leq 2\exp\left(-2\epsilon^{2}n^{1-2\gamma}/3\right) + 2nC\exp\left(-cn^{\gamma}\tau_{0}^{2}/4\right). \quad (S0.15)$$

By the definition of \widehat{S}_3 ,

$$\widehat{S}_3 = \frac{(n-1)(n-2)}{n^2} \left\{ \widehat{S}_3^* + \frac{1}{(n-2)} \widehat{S}_1^* \right\}.$$

Thus, using similar techniques to deal with \widehat{S}_1 , we can obtain that

$$Pr\left(\left|\widehat{S}_{3}-S_{3}\right| \ge 4\epsilon\right) = Pr\left\{\left|\frac{(n-1)(n-2)}{n^{2}}\left(\widehat{S}_{3}^{*}-S_{3}\right) - \frac{3n-2}{n^{2}}S_{3}\right. + \frac{n-1}{n^{2}}\left(\widehat{S}_{11}^{*}-S_{1}\right) + \frac{n-1}{n^{2}}S_{1}\right| \ge 4\epsilon\right\}$$

Using similar arguments for dealing with S_1 , we can show that S_3 is also uniformly bounded. Taking n large enough such that $\{(3n-2)/n^2\}S_3 \leq \epsilon$ and $\{(n-1)/n^2\}S_1 \leq \epsilon$, then

$$Pr(|\widehat{S}_{3} - S_{3}| \ge 4\epsilon) \le Pr(|\widehat{S}_{3}^{*} - S_{3}| \ge \epsilon) + Pr\{|\widehat{S}_{11}^{*} - S_{1}| \ge \epsilon\}$$

$$\le 4\exp(-\epsilon^{2}n^{1-2\gamma}/6) + 4nC\exp(-cn^{\gamma}\tau_{0}^{2}/4).$$
(S0.16)

The last inequality follows from (S0.7) and (S0.15). This, together with (S0.7), (S0.11)and Bonferroni's inequality, implies

$$Pr\{ \left| (\widehat{S}_{1} + \widehat{S}_{2} - 2\widehat{S}_{3}) - (S_{1} + S_{2} - 2S_{3}) \right| \ge \epsilon \}$$

$$\le Pr(\left| \widehat{S}_{1} - S_{1} \right| \ge \epsilon/4) + Pr(\left| \widehat{S}_{2} - S_{2} \right| \ge \epsilon/4) + Pr(\left| \widehat{S}_{3} - S_{3} \right| \ge \epsilon/4)$$
(S0.17)
$$= O\{ \exp(-c_{1}\epsilon^{2}n^{1-2\gamma}) + n\exp(-c_{2}n^{\gamma}\tau_{0}^{2}) \},$$

for some positive constants c_1 and c_2 . The convergence rate of the numerator of \hat{u}^*_{α} , $\alpha = 1, \dots, p$ is now achieved. Following similar arguments, we can obtain the convergence rate of the denominator. In effect the convergence rate of \hat{u}^*_{α} has the same form as (S0.17).

Proof 2 (of Theorem 2) Based on the bound of \hat{u}^* , where $\mathbf{U} = X_{\alpha}$ and $\mathbf{W} = (T, \mathbf{X}_{-\alpha})$,

 $we\ have$

$$Pr(|\widehat{u}_{\alpha}^* - u_{\alpha}^*| \ge \epsilon) \le O\left\{\exp\left(-c_1\epsilon^2 n^{1-2\gamma}\right) + n\exp\left(-c_2n^{\gamma}\tau_0^2\right)\right\},\$$

for $\alpha = 1, 2, \dots, p$, with c being the positive constants. If we take $\epsilon = cn^{-\nu}$ with $0 < (\nu + \gamma) < \frac{1}{2}$, then we have

$$Pr(\max_{1 \le \alpha \le p} |\widehat{u}_{\alpha}^{*} - u_{\alpha}^{*}| \ge cn^{-\nu}) \le p \max_{1 \le \alpha \le p} Pr(|\widehat{u}_{\alpha}^{*} - u_{\alpha}^{*}| \ge cn^{-\nu})$$
$$\le O\left\{ p \left[\exp\left(-c_{1}n^{1-2(\nu+\gamma)}\right) + n \exp\left(-c_{2}n^{\gamma}\tau_{0}^{2}\right) \right] \right\}.$$

Denote $\zeta^* = \min_{\alpha \in \mathcal{D}^*} u_{\alpha}^* - \max_{\alpha \in \bar{\mathcal{D}}^*} u_{\alpha}^*$, under condition (C2*), $\zeta^* \ge 2cn^{-\nu} \ge 0$, Then

$$Pr(\max_{\alpha\in\bar{\mathcal{D}}^{*}}\widehat{u}_{\alpha}^{*} < \min_{\alpha\in\mathcal{D}^{*}}\widehat{u}_{\alpha}^{*})$$

$$=1 - Pr(\max_{\alpha\in\bar{\mathcal{D}}^{*}}\widehat{u}_{\alpha}^{*} \geq \min_{\alpha\in\mathcal{D}^{*}}\widehat{u}_{\alpha}^{*})$$

$$=1 - Pr(\max_{\alpha\in\bar{\mathcal{D}}^{*}}\widehat{u}_{\alpha}^{*} - \max_{\alpha\in\bar{\mathcal{D}}^{*}}u_{\alpha}^{*} \geq \min_{\alpha\in\mathcal{D}^{*}}\widehat{u}_{\alpha}^{*} - \min_{\alpha\in\mathcal{D}^{*}}u_{\alpha}^{*} + \zeta^{*})$$

$$\geq 1 - \left[Pr(\max_{\alpha\in\bar{\mathcal{D}}^{*}}|\widehat{u}_{\alpha}^{*} - u_{\alpha}^{*}| \geq \zeta^{*}/2) + Pr(\max_{\alpha\in\mathcal{D}^{*}}|\widehat{u}_{\alpha}^{*} - u_{\alpha}^{*}| \geq \zeta^{*}/2)\right]$$

$$\geq 1 - O\left\{2p\left[\exp\left(-c_{1}n^{1-2(\nu+\gamma)}\right) + n\exp\left(-c_{2}n^{\gamma}\tau_{0}^{2}\right)\right]\right\}.$$

Next we show that

$$Pr(\mathcal{D}^* \subseteq \widehat{\mathcal{D}}^*) \ge 1 - O(s_n \left[\exp\left(-c_1 n^{1-2(\nu+\gamma)}\right) + n \exp\left(-c_2 n^{\gamma} \tau_0^2\right) \right]),$$

where s_n is the cardinality of \mathcal{D}^* .

If $\mathcal{D}^* \not\subseteq \widehat{\mathcal{D}}^*$, there must exist an $\alpha \in \mathcal{D}^*$ such that $u_{\alpha}^* \geq 2cn^{-\nu}$, but $\widehat{u}_{\alpha}^* \leq cn^{-\nu}$ to ensure that $|u_{\alpha}^* - \widehat{u}_{\alpha}^*| \geq cn^{-\nu}$ for some $\alpha \in \mathcal{D}^*$. This means that the event satisfies $\mathcal{D}^* \not\subseteq \widehat{\mathcal{D}}^* \subseteq \{|u_{\alpha}^* - \widehat{u}_{\alpha}^*| \geq cn^{-\nu}, \text{ for some } \alpha \in \mathcal{D}^*\}$. Then we have $\mathcal{E}_n = \{\max_{\alpha \in \mathcal{D}^*} |u_{\alpha}^* - \widehat{u}_{\alpha}^*| \leq cn^{-\nu}\} \subseteq \{\mathcal{D}^* \subseteq \widehat{\mathcal{D}}^*\}.$

$$Pr(\mathcal{D}^* \subseteq \widehat{\mathcal{D}}^*) \ge Pr(\mathcal{E}_n) = 1 - Pr(\mathcal{E}_n^c)$$
$$= 1 - Pr(\min_{\alpha \in \mathcal{D}^*} |u_\alpha^* - \widehat{u}_\alpha^*| \ge cn^{-\nu})$$
$$= 1 - s_n Pr(|u_\alpha^* - \widehat{u}_\alpha^*| \ge cn^{-\nu})$$
$$\ge 1 - O(s_n \left[\exp\left(-c_1 n^{1-2(\nu+\gamma)}\right) + n \exp\left(-c_2 n^{\gamma} \tau_0^2\right)\right]).$$

To prove Theorem 1, we can use a special case of Theorem 2, with $\mathbf{U} = X_{\alpha}$, and $\mathbf{W} = T$. It includes the rank consistence of marginal measure \hat{u} , and the sure screening property. The details of Theorem 1 are included in the main paper.

To prove Theorem 3, apart from the additional conditions included in the main manuscript, the following Lemma 5 is also needed:

Lemma 5 (Bound for $u_{\alpha,s}^{\mathcal{J}}$ in survival data) For slice s, under conditions (C1), (C3), (C4^{**}), and (C5^{**}), for any $0 < \gamma < \frac{1}{2} - \nu$, there exist positive constants $c_1 > 0$ and $c_2 > 0$ such that

$$Pr\left(\left|\widehat{u}_{\alpha,s}^{\mathcal{J}} - u_{\alpha,s}^{\mathcal{J}}\right| \ge cn^{-\nu}\right)$$

$$\le O\left(\left[\exp\left\{-c_{1}\tau_{0}^{4}n^{1-2(\nu+\gamma)}\right\} + n\exp\left(-c_{2}n^{\gamma}\tau_{0}^{2}\right)\right]\right).$$

Proof 3 (of Lemma 5) Similar to the bound proof for \widehat{S}_1 in Lemma 4, we can obtain the bound for the numerator of the first term $\widehat{S}_{1,s}$ in $\widehat{u}_{\alpha,s}^{\mathcal{J}}$, and denote it as $\widehat{S}_{1,s,n}$, except that each random variable is in the s-th slice, i.e. $i, j, l \in \mathcal{V}_s$. That is

$$Pr(|\widehat{S}_{1,s,n} - S_{1,s,n}| \ge 6\epsilon)$$

$$\le 2nC \exp(-cn^{\gamma}\tau_0^2/4) + 2\exp(-\epsilon^2 n^{1-2\gamma}).$$
(S0.18)

Consider the denominator of $\widehat{S}_{1,s}$ in $\widehat{u}_{\alpha,s}^{\mathcal{J}}$, denoted as $\widehat{S}_{1,s,d}$,

$$\begin{split} \widehat{S}_{1,s,d} = & \frac{1}{n^2} \sum_{i,j \in \mathcal{V}_s} \frac{\delta_i \delta'_j}{\widehat{G}_n(T_i | \mathbf{X}_i) \widehat{G}_n(T'_j | \mathbf{X}'_j)} \\ = & \frac{1}{n^2} \sum_{i,j \in \mathcal{V}_s} \frac{\delta_i \delta'_j}{G(T_i | \mathbf{X}_i) G(T'_j | \mathbf{X}'_j)} \\ &+ & \frac{1}{n^2} \sum_{i,j \in \mathcal{V}_s} \delta_i \delta'_j \left(\frac{1}{\widehat{G}_n(T_i | \mathbf{X}_i) \widehat{G}_n(T'_j | \mathbf{X}'_j)} - \frac{1}{G(T_i | \mathbf{X}_i) G(T'_j | \mathbf{X}'_j)} \right), \\ = & \widehat{S}_{11,d} + \widehat{S}_{12,d} \end{split}$$

Under condition (C3), $\widehat{S}_{11,d} \geq \tau_0^2$ has a lower bound, and $\widehat{S}_{12,d} \to 0$ as n is sufficiently

large, so

$$Pr(|\hat{S}_{1,s} - S_{1,s}| \ge 6\epsilon)$$

$$\le Pr(|\hat{S}_{1,s,n} - S_{1,s,n}| \ge 6\epsilon\tau_0^2)$$

$$\le 2nC \exp(-cn^{\gamma}\tau_0^2/4) + 2\exp(-\epsilon^2\tau_0^4 n^{1-2\gamma})$$

$$\le 2nC \exp(-c_2n^{\gamma}\tau_0^2/4) + 2\exp(-c_1\epsilon^2\tau_0^4 n^{1-2\gamma}).$$

(S0.19)

The rest of the proof for Lemma 5 is almost the same as that of Lemma 4 for u_{α}^* .

 $\begin{aligned} & \operatorname{Proof} \mathbf{4} \text{ (of Theorem 3) } Define \ u_{\alpha,s}^{**} = \mathcal{I}_{t \in [l_{s-1}, l_s)} \{ (X_{\alpha}, \mathbf{X}_{-\alpha}) \mid T = t \}, \ for \ a \ specific \\ & t \in [l_{s-1}, l_s), \\ & Pr(|\widehat{u}_{\alpha,s}^{\mathcal{J}} - u_{\alpha,s}^{**}| \geq \epsilon) \leq Pr(|\widehat{u}_{\alpha,s}^{\mathcal{J}} - u_{\alpha,s}^{\mathcal{J}}| \geq \frac{\epsilon}{2}) + Pr(|u_{\alpha,s}^{\mathcal{J}} - u_{\alpha,s}^{**}| \geq \frac{\epsilon}{2}) \\ & = Pr(|\widehat{\mathcal{I}}\{(X_{\alpha}, \mathbf{X}_{-\alpha})|T \in [l_{s-1}, l_s)\} - \mathcal{I}\{(X_{\alpha}, \mathbf{X}_{-\alpha})|T \in [l_{s-1}, l_s)\}| \geq \frac{\epsilon}{2}) \\ & + Pr(|\mathcal{I}\{(X_{\alpha}, \mathbf{X}_{-\alpha})|T \in [l_{s-1}, l_s)\} - \mathcal{I}_{t \in [l_{s-1}, l_s)}\{(X_{\alpha}, \mathbf{X}_{-\alpha})|T = y\}| \geq \frac{\epsilon}{2}) \end{aligned}$

$$=I_1+I_2.$$

In term I_1 , for each $s, s = 1, \dots, S$, the rank consistency of $\widehat{u}_{\alpha,s}^{\mathcal{J}}$ can be obtained directly, by replacing $(T, \mathbf{X}_{-\alpha})$ in Theorem 2 with $\mathbf{X}_{-\alpha}$. That is, under conditions (C1) and (C3),

$$I_1 = Pr(|\widehat{u}_{\alpha,s}^{\mathcal{J}} - u_{\alpha,s}^{\mathcal{J}}| \ge \frac{\epsilon}{2}) \le O\left\{\exp\left(-\frac{c_1}{4}\tau_0^4\epsilon^2 n^{1-2\gamma}\right) + n\exp\left(-c_2n^{\gamma}\tau_0^2\right)\right\}$$

For the s-th sample quantile slice, if the empirical cumulative distribution of $F_n(t)$ and the cumulative distribution F(t) are sufficiently close, i.e. for any $\epsilon > 0$, the event $A = \sup_y |F_n(t) - F(t)| < \frac{\epsilon}{2}$ occurs, then, we have event $B = \{\frac{1}{S} - \epsilon \leq P(T \in [l_{s-1}, l_s)) \leq \frac{1}{S} + \epsilon\}$, and event B meets the condition of (C5^{**}). In fact, for any $\epsilon > 0$, if the event $A = \sup_y |F_n(t) - F(t)| < \frac{\epsilon}{2}$, following Lemma 4 in Mai and Zou (2015), we have

$$Pr(l_{s-1} \le T < l_s) = Pr(\frac{s-1}{S} \le F_n(T) < \frac{s}{S})$$
$$\le Pr(\frac{s-1}{S} - \frac{\epsilon}{2} \le F(T) < \frac{s}{S} + \frac{\epsilon}{2})$$
$$= \frac{1}{S} + \epsilon.$$

Similarly, we have

$$Pr(l_{s-1} \le T < l_s) = Pr(F(l_{s-1}) \le F(T) < F(l_s))$$
$$= F(l_s) - F(l_{s-1})$$
$$\ge F_n(l_s) - \frac{\epsilon}{2} - (F_n(l_{s-1}) + \frac{\epsilon}{2})$$
$$= \frac{1}{S} - \epsilon.$$

Furthermore, we have $Pr(B) \ge Pr(A) \ge 1 - 2\exp(-\frac{1}{2}n\epsilon^2)$ by the Dvoretzky-Kiefer-Wolfowitz inequality.

Based on event B, i.e. $\frac{1}{S} - \epsilon \leq P(T \in [l_{s-1}, l_s)) \leq \frac{1}{S} + \epsilon$, the event $D = \{ |\mathcal{I}\{(X_{\alpha}, \mathbf{X}_{-\alpha})|T \in [l_{s-1}, l_s)\} - \mathcal{I}_{t \in [l_{s-1}, l_s)}\{(X_{\alpha}, \mathbf{X}_{-\alpha})|T = t\} | \leq \frac{\epsilon}{2} \}$ occurs, i.e. $B \subset D$. Actually, for any $t \in [l_{s-1}, l_s)$,

$$\begin{aligned} |\mathcal{I}\{(X_{\alpha}, \mathbf{X}_{-\alpha})|T \in [l_{s-1}, l_s)\} - \mathcal{I}_{t \in [l_{s-1}, l_s)}\{(X_{\alpha}, \mathbf{X}_{-\alpha})|T = t\}| \\ \leq |\sup_{t \in [l_{s-1}, l_s)} \mathcal{I}\{(X_{\alpha}, \mathbf{X}_{-\alpha})|T = t\} - \inf_{t \in [l_{s-1}, l_s)} \mathcal{I}\{(X_{\alpha}, \mathbf{X}_{-\alpha})|T = t\}| \\ \leq \frac{\epsilon}{2}, \end{aligned}$$

the last inequality follows from the condition $(C5^{**})$.

$$Pr(D) = Pr(|\mathcal{I}\{(X_{\alpha}, \mathbf{X}_{-\alpha})|T \in [l_{s-1}, l_s)\} - \mathcal{I}_{t \in [l_{s-1}, l_s)}\{(X_{\alpha}, \mathbf{X}_{-\alpha})|T = t\}| \le \frac{\epsilon}{2})$$

$$\ge Pr(B) \ge Pr(A) \ge 1 - 2\exp(-\frac{1}{2}n\epsilon^2)$$

Therefore, we have that

$$I_{2} = Pr(|\mathcal{I}\{(X_{\alpha}, \mathbf{X}_{-\alpha})|T \in [l_{s-1}, l_{s})\} - \mathcal{I}_{t \in [l_{s-1}, l_{s})}\{(X_{\alpha}, \mathbf{X}_{-\alpha})|T = t\}| \ge \frac{\epsilon}{2})$$

= 1 - Pr(D) \le 2 \exp(-\frac{1}{2}n\epsilon^{2})

Combining the bounds for I_1 and I_2 , we have

$$Pr(|\widehat{u}_{\alpha,s}^{\mathcal{J}} - u_{\alpha,s}^{**}| \ge \frac{\epsilon}{2}) \le O\left\{\exp\left(-c_1\tau_0^4\epsilon^2 n^{1-2\gamma}\right) + n\exp\left(-c_2n^{\gamma}\tau_0^2\right) + \exp\left(-c_3n\epsilon^2\right)\right\}$$

Similar to the proof of Theorem 2, if we take $\epsilon = cn^{-\nu}$ for any $0 < (\nu + \gamma) < \frac{1}{2}$, there exists a positive constant c > 0 such that

$$Pr(\max_{1 \le \alpha \le p} |\widehat{u}_{\alpha,s}^{\mathcal{J}} - u_{\alpha,s}^{**}| \ge cn^{-\nu}) \le O\left\{p\left[\exp\left(-c_1\tau_0^4 n^{1-2(\gamma+\nu)}\right) + n\exp\left(-c_2n^{\gamma}\tau_0^2\right) + \exp\left(-c_3n^{1-2\nu}\right)\right]\right\}$$

Furthermore, we have

$$\begin{split} ⪻(\max_{1 \leq \alpha \leq p} |\widehat{u}_{\alpha}^{**} - u_{\alpha}^{**}| \geq cn^{-\nu}) \\ &\leq Pr(\max_{1 \leq \alpha \leq p} |\frac{1}{S} \sum_{s=1}^{S} \widehat{u}_{\alpha,s}^{\mathcal{J}} - \frac{1}{S} \sum_{s=1}^{S} u_{\alpha,s}^{\mathcal{J}}| \geq cn^{-\nu}) \\ &\leq pPr(|\frac{1}{S} \sum_{s=1}^{S} \widehat{u}_{\alpha,s}^{\mathcal{J}} - \frac{1}{S} \sum_{s=1}^{S} u_{\alpha,s}^{\mathcal{J}}| \geq cn^{-\nu}) \\ &\leq pPr(\max_{1 \leq s \leq S} |\widehat{u}_{\alpha,s}^{\mathcal{J}} - u_{\alpha,s}^{\mathcal{J}}| \geq cn^{-\nu}) \\ &= pPr(\max_{1 \leq s \leq S} |\widehat{\mathcal{I}}\{(X_{\alpha}, \mathbf{X}_{-\alpha})|T \in [l_{s-1}, l_s)\} - \mathcal{I}\{(X_{\alpha}, \mathbf{X}_{-\alpha})|T \in [l_{s-1}, l_s)\}| \geq cn^{-\nu}) \\ &\leq pPr(\max_{1 \leq s \leq S} |\widehat{\mathcal{I}}\{(X_{\alpha}, \mathbf{X}_{-\alpha})|T \in [l_{s-1}, l_s)\} - \mathcal{I}\{(X_{\alpha}, \mathbf{X}_{-\alpha})|T = t\}| \geq cn^{-\nu}) \\ &\leq pPr(\sup_{t \in [l_{s-1}, l_s)} |\widehat{\mathcal{I}}\{(X_{\alpha}, \mathbf{X}_{-\alpha})|T \in [l_{s-1}, l_s)\} - \mathcal{I}\{(X_{\alpha}, \mathbf{X}_{-\alpha})|T = t\}| \geq cn^{-\nu}) \\ &\leq pPr(|\widehat{u}_{\alpha,s}^{\mathcal{J}} - u_{\alpha,s}^{**}| \geq cn^{-\nu}) \\ &\leq O(p \left[\exp\left(-c_{1}\tau_{0}^{4}n^{1-2(\gamma+\nu)}\right) + n \exp\left(-c_{2}n^{\gamma}\tau_{0}^{2}\right) + \exp\left(-c_{3}n^{1-2\nu}\right)\right]) \\ Under \ condition \ (C2^{**}), \ denote \ \delta = \min_{\alpha \in \mathcal{D}^{**}} u_{\alpha}^{**} - \max_{\alpha \in \bar{\mathcal{D}}^{**}} u_{\alpha}^{**}, \ then \end{split}$$

$$Pr(\max_{\alpha\in\bar{\mathcal{D}}^{**}}\widehat{u}_{\alpha}^{**}\geq\min_{\alpha\in\mathcal{D}^{**}}\widehat{u}_{\alpha}^{**})$$

=
$$Pr(\max_{\alpha\in\bar{\mathcal{D}}^{**}}\widehat{u}_{\alpha}^{**}-\max_{\alpha\in\bar{\mathcal{D}}^{**}}u_{\alpha}^{**}\geq\min_{\alpha\in\mathcal{D}^{**}}\widehat{u}_{\alpha}^{**}-\min_{\alpha\in\mathcal{D}^{**}}u_{\alpha}^{**}+\delta)$$

$$\leq Pr(\max_{\alpha\in\bar{\mathcal{D}}^{**}}|\widehat{u}_{\alpha}^{**}-u_{\alpha}^{**}|\geq\delta/2)+Pr(\max_{\alpha\in\mathcal{D}^{**}}|\widehat{u}_{\alpha}^{**}-u_{\alpha}^{**}|\geq\delta/2)$$

$$\leq 2p\left[\exp\left(-c_{1}\tau_{0}^{4}n^{1-2(\gamma+\nu)}\right)+n\exp\left(-c_{2}n^{\gamma}\tau_{0}^{2}\right)+\exp\left(-c_{3}n^{1-2\nu}\right)\right].$$

Under conditions (C1), (C3), (C2^{**}), (C4^{**}), and (C5^{**}), similar to the proof of Theorem 2, we have that

$$Pr(\mathcal{D}^{**} \subseteq \widehat{\mathcal{D}}^{**}) \ge 1 - O(s_n \left[\exp\left(-c_1 \tau_0^4 n^{1-2(\gamma+\nu)}\right) + n \exp\left(-c_2 n^{\gamma} \tau_0^2\right) + \exp\left(-c_3 n^{1-2\nu}\right) \right]),$$

where s_n is the cardinality of \mathcal{D}^{**} .

A.4 Additional Simulation Examples

In this section, additional simulation examples and real data analysis results are presented. Table 1 shows the results of Example 1 in the main text with p = 2000.

Example 1 Assuming a general transformation model for survival time T described in Song et al. (2014) and Liu et al. (2018), we have $H(T) = -\beta^{\top} \mathbf{X} + \epsilon$, where $H(t) = \log\{0.5(\exp(2t) - 1)\}$, and $\epsilon \sim N(0, 1)$. Here, $\beta^{\top} = (-1, -0.9, \mathbf{0}_6, 0.8, 1, \mathbf{0}_{p-10})$, with $\mathbf{0}_p$ referring to a zero vector of length p, such that only four predictors are active. $\mathbf{X} = (X_1, \ldots, X_p)^{\top} \sim N(0, \Sigma)$, and $\Sigma = (\sigma_{ij})_{p \times p}$ with $\sigma_{ij} = 0.8^{|i-j|}$. The censoring time $C \sim U(0, 100)$. We set n = 100, 200, p = 1000, 2000. The results are exhibited in Table 2.

Example 2 This example follows Example 2 in main text. Tables (3)-(13) contain the additional simulation results for Example 2 (a) and the simulation results for Example 2 (b)-(d).

Table 14 represents the identified gene IDs based on different variable screening methods utilized on the training set for the real data analysis presented in the main text.

Example 3 This is an additional illustration of real data analysis. We applied our proposed procedures to diffuse large-B-cell lymphoma(DLBCL) dataset, which was studied by Rosenwald et al. (2002). To identify genes that have an influence on patient survival risk, DLBCL is one of the most common types of lymphoma in adults in the United

-	10 01- 01 01			, 3		, u		r				···-·· 1	
				\mathcal{P}_s			\mathcal{P}_{a}			\mathcal{P}_s	\mathcal{P}_{a}		
		X_1	X_2	X_3	X_4	X_5	ALL	X_1	X_2	X_3	X_4	X_5	ALL
	n	= 100	, p = 2	000, C.	$R \approx 0.$	019		n = 2	00, p =	2000,	$CR \approx$	0.019	
	CDC	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	CDC_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	CDC_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	QaSIS	0.935	1.000	0.995	0.990	0.945	0.870	1.000	1.000	1.000	1.000	1.000	1.000
	CSIR	0.525	0.755	0.775	0.705	0.600	0.325	0.990	0.995	1.000	0.995	0.985	0.970
	RCDCS	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	CRSIS	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	SVSIR	0.960	1.000	0.995	0.995	0.980	0.945	1.000	1.000	1.000	1.000	1.000	1.000
	CRIS	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	KM	0.990	0.990	1.000	1.000	0.990	0.985	1.000	1.000	1.000	1.000	1.000	1.000
	IPOD	0.985	1.000	1.000	1.000	0.995	0.980	1.000	1.000	1.000	1.000	1.000	1.000
	LQ	0.965	0.980	0.960	0.975	0.975	0.870	1.000	1.000	1.000	1.000	1.000	1.000
	$ISIS_C$	0.840	0.888	0.934	0.918	0.824	0.530	0.984	0.976	0.986	0.986	0.978	0.910

Table 1: Simulation results of \mathcal{P}_s and \mathcal{P}_a for Example 1 in main text with p = 2000.

States (Rosenwald et al., 2002). The dataset is available from: http://www-stat. stanford. edu/~tibs/superpc/staudt. html. DLBCL data has also been utilized by Zhu et al. (2011), He et al. (2013) and Zhou and Zhu (2017). It consists of survival times for n = 240 DLBCL patients following chemotherapy, as well as gene expression measurements for p = 7399 genes obtained from complementary DNA microarrays for each individual patient. The survival rate after standard chemotherapy is approximately $35 \sim 40\%$, During the exploratory data analysis, all gene expression levels have been standardized to have a mean of zero and a standard deviation of one. Following Rosenwald et al. (2002), Zhu et al. (2011), He et al. (2013) and Zhou and Zhu (2017), we divided this dataset into a training set with $n_1 = 160$ patients and a testing set with the remaining $n_2 = 80$ patients. Specifically, various screening procedures were applied to the training data, and select out $[n_1/\log(n_1)] = 31$ genes. These selected covariates are denoted by $\mathbf{X}_{\widehat{\mathbf{D}}}$. Table 15 in Appendix A.4 summarizes the first 31 screened genes. Gene IDs 2409 and 1969 were chosen by the one-stage screening procedures, while genes with IDs 2308 and 2306 were selected by all two-stage screening procedures. This suggests a strong association between these genes and patient survival times, although they were not chosen by the marginal methods.

The p-values of the log-rank test can be found in the final column of Table 16. Based on the p-values, all screening methods successfully identify subgroups that exhibit differences in survival times. Table 16 summarizes the C-statistic, along with its standard deviations, and the lower and upper bounds for different methods. The standard deviation (SD) of the C-statistic is obtained using a perturbation resampling method with 200 replicates. Figure 1 illustrates the C-statistic for various marginal methods, one-stage methods and twostage methods. These methods demonstrate moderate predictive power, as the C-statistic is approximately 0.80 throughout. Notably, the one-stage and two-stage procedures yield higher C-statistic values compared to the marginal methods, with the one-stage procedure exhibiting particularly promising results. The green dashed lines in the figure are generally similar or above the marginal line. Among all the methods, the CSIR and CRSIS methods exhibit slightly better overall performance. This confirms the importance of focusing on gene IDs 2308,2306, 2409 and 1969, which were selected by the one-stage and two-stage procedures, in future research. Furthermore, the proposed method, which combines the CSIR measure in the marginal stage and the DC-based measure in the one-stage or twostage, enhances the performance of CSIR in Zhou and Zhu (2017). Specifically, CRSIS^M₂ stands out as the best among all competitors.

Bibliography

Bair, E. and Tibshirani, R. (2004). Semi-supervised methods to predict patient survival from gene expression data. *PLoS Biol* 2,e108.

Beran, R. (1981). Nonparametric regression with randomly censored survival data.

- Cook, R. D. and Ni, L. (2005). Sufficient dimension reduction via inverse regression: A minimum discrepancy approach. Journal of the American Statistical Association 100, 410–428.
- Dabrowska, D. M. (1989). Uniform consistency of the kernel conditional kaplan-meier estimate. *The Annals of Statistics* **17**, 1157–1167.
- Gannoun, A. and Saracco, J. (2003). An asymptotic theory for sir α method. *Statistica Sinica* **13**, 297–310.
- He, X., Wang, L. and Hong, H. G. (2013). Quantile-adaptive model-free variable screening for high-dimensional heterogeneous data. Annals of Statistics 41, 342–369.

- Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58, 13–30.
- Li, K. C. (1991). Sliced inverse regression for dimension reduction. Journal of the American Statistical Association 86, 316–327.
- Li, R., Zhong, W. and Zhu, L. (2012). Feature screening via distance correlation learning. Journal of the American Statistical Association 107, 1129–1139.
- Liu, J., Zhang, J. and Zhao, X. (2018). A new nonparametric screening method for ultrahigh-dimensional survival data. *Computational Statistics and Data Analysis* 119, 74–85.
- Lo, S. H. and Singh. K. (1986). The product-limit estimator and the bootstrap: some asymptotic representations. *Probability Theory and Related Fields* **71**, 455–465.
- Lu, W. and Li. L. (2011). Sufficient dimension reduction for censored regressions. Biometrics 67, 513–523.
- Mai, Q. and Zou. H. (2015). The fused kolmogorov filter: A nonparametric model-free screening method. The Annals of Statistics 43, 1471–1497.
- Rosenwald, A., Wright, G. and Chan, W. C. Connors, J. M. Campo, E. Fisher,
 R. I.Gascoyne, R. D.Muller-Hermelink, H. K.Smeland, E. B.Giltnane, J. M...Staudt,
 L. M.(2002). The use of molecular profiling to predict survival after chemotherapy for
 diffuse large-b-cell lymphoma. New England Journal of Medicine 346, 1937–1947.
- Song, R., Lu, W., Ma. S.and Jeng, X. J. (2014). Censored rank independence screening for high-dimensional survival data. Biometrika 101, 799–814.

- Uno, H., Cai, T., Pencina, M. J., D'Agostino. R. B. and Wei, L. J. (2011). On the c-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. *Statistics in medicine* **30**, 1105–1117.
- Xia, Y., Zhang, D., and Xu, J. (2010). Dimension reduction and semiparametric estimation of survival models. Journal of the American Statistical Association 105, 278–290.
- Zhang, J., Yin, G., Liu, Y. and Wu, Y. (2018). Censored cumulative residual independent screening for ultrahigh-dimensional survival data. Lifetime data analysis **24**, 273–292.
- Zhou, T. and Zhu, L. (2017). Model-free feature screening for ultrahigh dimensional censored regression. Statistics and Computing 27, 947–961.
- Zhu, L. P., Li, L., Li, R. and Zhu, L. X. (2011). Model-free feature screening for ultrahighdimensional data. Journal of the American Statistical Association 106, 1464–1475.

Model		\mathcal{F}	P_s		\mathcal{P}_{a}	Mo	del	\mathcal{P}_s		\mathcal{P}_a
	X_1	X_2	X_9	X_{10}	ALL	X_1	X_2	X_9	X_{10}	ALL
n = 100, j	p = 1000	, d = [n/	log(n)], 0	$CR \approx 0.0$	008	n = 20	0, p = 10	00, d = [a]	n/log(n)	$, CR \approx 0.008$
CDC	1.000	1.000	0.994	1.000	0.994	1.000	1.000	1.000	1.000	1.000
CDC_1	1.000	1.000	0.992	1.000	0.992	1.000	1.000	1.000	1.000	1.000
CDC_2	1.000	1.000	0.992	1.000	0.992	1.000	1.000	1.000	1.000	1.000
QaSIS	0.946	0.894	0.810	0.910	0.652	1.000	1.000	0.998	1.000	0.998
CSIR	0.734	0.628	0.508	0.630	0.218	0.988	0.968	0.938	0.980	0.900
RCDCS	1.000	1.000	0.992	0.998	0.992	1.000	1.000	1.000	1.000	1.000
CRSIS	1.000	1.000	0.998	1.000	0.998	1.000	1.000	1.000	1.000	1.000
SVSIR	1.000	1.000	0.956	0.992	0.954	1.000	1.000	1.000	1.000	1.000
CRIS	1.000	1.000	0.998	1.000	0.998	1.000	1.000	1.000	1.000	1.000
KM	0.990	0.976	0.946	0.988	0.916	1.000	1.000	1.000	1.000	1.000
IPOD	0.996	0.982	0.934	0.986	0.904	1.000	1.000	1.000	1.000	1.000
LQ	0.988	0.986	0.964	0.986	0.932	1.000	1.000	1.000	1.000	1.000
$ISIS_C$	0.994	0.974	0.904	0.996	0.872	1.000	1.000	1.000	1.000	1.000
n = 100, j	p = 2000	, d = [n/	log(n)], 0	$CR \approx 0.0$	008	n = 20	0, p = 20	00, d = [a]	n/log(n)	$, CR \approx 0.008$
CDC	1.000	1.000	0.995	1.000	0.995	1.000	1.000	1.000	1.000	1.000
CDC_1	1.000	1.000	0.995	1.000	0.995	1.000	1.000	1.000	1.000	1.000
CDC_2	1.000	1.000	0.995	1.000	0.995	1.000	1.000	1.000	1.000	1.000
QaSIS	0.920	0.825	0.615	0.825	0.410	1.000	1.000	1.000	1.000	1.000
CSIR	0.645	0.555	0.405	0.500	0.110	0.985	0.950	0.865	0.950	0.795
RCDCS	1.000	1.000	0.991	1.000	0.991	1.000	1.000	1.000	1.000	1.000
CRSIS	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
SVSIR	1.000	1.000	0.920	0.980	0.910	1.000	1.000	1.000	1.000	1.000
CRIS	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
KM	0.990	0.980	0.945	0.965	0.895	0.995	0.995	0.995	0.995	0.995
IPOD	0.990	0.975	0.915	0.950	0.860	1.000	1.000	1.000	1.000	1.000
LQ	0.990	0.990	0.955	0.970	0.905	1.000	1.000	1.000	1.000	1.000
$ISIS_C$	0.990	0.964	0.898	0.970	0.834	1.000	1.000	1.000	1.000	1.000

Table 2: Simulation results of \mathcal{P}_s and \mathcal{P}_a for Example 1 in Appendix.

Table 3: Simulation results of \mathcal{P}	$_s$ and \mathcal{P}_a for	r Example 2 (a)	Continued.
--	------------------------------	-----------------	------------

			r = 0.5					r=0.8		
		\mathcal{F}	r_s		\mathcal{P}_{a}		\mathcal{F}	s		\mathcal{P}_{a}
	X_1	X_2	X_3	X_4	ALL	X_1	X_2	X_3	X_4	ALL
		n = 100	, p = 100	0, d = [n]	/log(n)],	$CR \approx 0.$	$01 \sim 0.0$	3		
CDC	0.916	0.93	0.914	0.026	0.02	0.678	0.714	0.670	0.028	0.000
CDC_1	0.912	0.926	0.908	0.958	0.734	0.664	0.696	0.654	0.990	0.288
CDC_2	0.912	0.926	0.908	0.990	0.762	0.664	0.698	0.654	0.988	0.290
QaSIS	0.562	0.566	0.530	0.314	0.038	0.102	0.106	0.110	0.356	0.000
CSIR	0.288	0.334	0.310	0.008	0.000	0.152	0.184	0.178	0.002	0.000
RCDCS	0.914	0.926	0.920	0.002	0.000	0.682	0.698	0.692	0.004	0.000
CRSIS	0.928	0.932	0.924	0.000	0.000	0.654	0.650	0.636	0.000	0.000
SVSIR	0.934	0.946	0.938	0.000	0.000	0.738	0.744	0.742	0.000	0.000
CRIS	0.001	0.946	0.944	0.000	0.000	0.770	0.762	0.742	0.000	0.000
KM	0.716	0.722	0.716	0.030	0.000	0.274	0.244	0.764	0.036	0.000
	0.710	0.722	0.774	0.000	0.002	0.214	0.244	0.204	0.030	0.000
1100	0.110	0.782	0.579	0.024	0.008	0.558	0.006	0.314	0.044	0.000
	0.010	0.010	0.576	0.004	0.000	0.114	0.090	0.100	0.046	0.000
1515C	0.045	0.045	0.590	0.000	(1.270)	0.210 CD at 0	0.195	0.203	0.330	0.000
ana	0.005	n = 100	p = 200	[0, d = [n]	/log(n)],	$CR \approx 0.$	$01 \sim 0.0$	3	0.015	0.000
CDC	0.905	0.870	0.830	0.010	0.000	0.660	0.600	0.560	0.015	0.000
CDC_1	0.905	0.870	0.820	0.940	0.615	0.635	0.585	0.535	0.950	0.170
CDC_2	0.905	0.870	0.820	0.985	0.630	0.635	0.585	0.535	0.965	0.180
QaSIS	0.460	0.405	0.390	0.225	0.005	0.095	0.060	0.040	0.205	0.000
CSIR	0.210	0.265	0.280	0.000	0.000	0.070	0.120	0.150	0.000	0.000
RCDCS	0.870	0.875	0.830	0.000	0.000	0.580	0.655	0.575	0.000	0.000
CRSIS	0.905	0.900	0.860	0.000	0.000	0.590	0.575	0.515	0.000	0.000
SVSIR	0.900	0.875	0.855	0.000	0.000	0.650	0.695	0.635	0.000	0.000
CRIS	0.910	0.890	0.850	0.000	0.000	0.685	0.705	0.655	0.000	0.000
KM	0.660	0.655	0.575	0.030	0.005	0.175	0.180	0.180	0.005	0.000
IPOD	0.705	0.680	0.595	0.030	0.005	0.235	0.250	0.180	0.025	0.000
LQ	0.515	0.560	0.470	0.040	0.000	0.090	0.065	0.060	0.050	0.000
$ISIS_C$	0.486	0.486	0.450	0.300	0.103	0.150	0.173	0.140	0.196	0.000
		n = 200	, p = 200	0, d = [n]	/log(n)],	$CR \approx 0.$	$01 \sim 0.0$	3		
CDC	1.000	1.000	1.000	0.035	0.035	0.955	0.945	0.900	0.055	0.025
CDC_1	1.000	1.000	1.000	1.000	1.000	0.955	0.945	0.895	1.000	0.805
CDC_2	1.000	1.000	1.000	1.000	1.000	0.955	0.945	0.895	1.000	0.805
QaSIS	0.905	0.915	0.890	0.575	0.410	0.195	0.245	0.205	0.655	0.015
CSIR	0.595	0.585	0.640	0.005	0.000	0.360	0.330	0.380	0.005	0.000
RCDCS	1.000	1.000	1.000	0.000	0.000	0.950	0.940	0.920	0.005	0.005
CRSIS	1.000	1.000	0.990	0.000	0.000	0.940	0.895	0.875	0.000	0.000
SVSIR	1 000	1 000	0.995	0.000	0.000	0.965	0.960	0.945	0.000	0.000
CRIS	1.000	1.000	1 000	0.000	0.000	0.905	0.975	0.940	0.000	0.000
KM	0.065	0.070	0.000	0.000	0.000	0.310	0.510	0.500	0.000	0.000
IPOD	0.005	0.075	0.005	0.100	0.035	0.400	0.510	0.560	0.100	0.010
100	0.975	0.975	0.995	0.030	0.005	0.070	0.000	0.300	0.155	0.010
	0.975	0.980	0.975	0.140	0.155	0.220	0.265	0.275	0.170	0.010
1313C	0.980	0.965	0.960	0.960	0.950	0.560	0.510	0.565	0.780	0.220
ana	0.490	n = 10	0, p = 20	a = [2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	$n/\log(n)$	$J, Ch \approx 0$	$0.1 \sim 0.3$	0.220	0.015	0.000
CDC	0.480	0.530	0.380	0.005	0.005	0.415	0.415	0.320	0.015	0.000
CDC_1	0.465	0.505	0.355	0.670	0.060	0.400	0.405	0.315	0.765	0.030
CDC_2	0.465	0.505	0.355	0.975	0.085	0.400	0.410	0.315	0.960	0.040
QaSIS	0.095	0.100	0.100	0.030	0.000	0.030	0.090	0.065	0.090	0.000
USIR	0.210	0.305	0.330	0.000	0.000	0.075	0.130	0.155	0.000	0.000
RUDUS	0.835	0.820	0.740	0.000	0.000	0.535	0.570	0.495	0.005	0.000
CRSIS	0.87	0.85	0.76	0.00	0.00	0.525	0.520	0.475	0.000	0.000
SVSIR	0.890	0.865	0.840	0.000	0.000	0.635	0.660	0.615	0.000	0.000
CRIS	0.880	0.875	0.815	0.000	0.000	0.680	0.715	0.635	0.000	0.000
KM	0.645	0.670	0.575	0.025	0.000	0.180	0.180	0.175	0.005	0.000
IPOD	0.665	0.670	0.570	0.025	0.000	0.230	0.250	0.180	0.025	0.000
LQ	0.475	0.520	0.460	0.045	0.005	0.105	0.050	0.050	0.050	0.000
$ISIS_C$	0.393	0.410	0.343	0.253	0.046	0.126	0.140	0.123	0.183	0.000
		n = 20	0, p = 20	00, d = [n/log(n)	$], CR \approx 0$	$0.1 \sim 0.3$			
CDC	0.750	0.675	0.820	0.010	0.005	0.770	0.780	0.760	0.040	0.010
CDC_1	0.750	0.670	0.820	0.920	0.320	0.765	0.775	0.760	0.995	0.430
CDC_2	0.750	0.670	0.825	1.000	0.360	0.765	0.775	0.760	1.000	0.435
QaSIS	0.515	0.425	0.510	0.380	0.045	0.150	0.210	0.210	0.555	0.005
CSIR	0.650	0.670	0.695	0.005	0.000	0.365	0.365	0.395	0.005	0.000
RCDCS	1.000	0.995	0.985	0.000	0.000	0.955	0.925	0.895	0.005	0.005
CRSIS	1.000	0.995	0.990	0.000	0.000	0.925	0.860	0.860	0.000	0.000
SVSIR	1.000	1.000	1.000	0.000	0.000	0.970	0.955	0.945	0.000	0.000
CRIS	1.000	1.000	1.000	0.000	0.000	0.965	0.975	0.950	0.000	0.000
KM	0.965	0.965	0.975	0.085	0.080	0.465	0.505	0.515	0.105	0.015
IPOD	0.975	0.970	0.980	0.095	0.090	0.550	0.545	0.550	0.130	0.015
LQ	0.975	0.960	0.955	0.130	0.115	0.260	0.285	0.255	0.180	0.000
ISISC	0.966	0.980	0.963	0.953	0.923	0.526	0.493	0.520	0.756	0.166

Table 4: Simulation results of \mathcal{P}_s and \mathcal{P}_a for Example 2 (b) with p = 1000.

			r = 0.5					r = 0.8		
		Ŧ	r_s		\mathcal{P}_{a}		\mathcal{F}	r_s		\mathcal{P}_{a}
	X_1	X_2	X_3	X_4	ALL	X_1	X_2	X_3	X_4	ALL
		n = 100	, p = 100	0, d = [n]	/log(n)],	$CR \approx 0.$	$01 \sim 0.0$	3		
CDC	0.930	0.940	0.942	0.034	0.024	0.728	0.750	0.744	0.054	0.014
CDC_1	0.916	0.940	0.936	0.952	0.772	0.720	0.734	0.724	0.980	0.372
CDC_2	0.916	0.940	0.936	0.974	0.784	0.720	0.734	0.724	0.984	0.372
QaSIS	0.674	0.664	0.632	0.142	0.034	0.280	0.284	0.256	0.150	0.004
CSIR	0.316	0.330	0.312	0.002	0.000	0.142	0.166	0.134	0.002	0.000
RCDCS	0.916	0.926	0.922	0.046	0.034	0.688	0.714	0.704	0.076	0.018
CRSIS	0.932	0.956	0.936	0.000	0.000	0.680	0.646	0.664	0.000	0.000
SVSIR	0.958	0.958	0.944	0.020	0.016	0.782	0.788	0.776	0.028	0.002
CRIS	0.958	0.968	0.954	0.024	0.020	0.794	0.798	0.790	0.026	0.006
KM	0.780	0.774	0.788	0.030	0.010	0.400	0.432	0.386	0.058	0.002
IPOD	0.810	0.814	0.816	0.026	0.010	0.448	0.470	0.428	0.056	0.006
LQ	0.658	0.640	0.636	0.028	0.004	0.180	0.176	0.198	0.012	0.002
$ISIS_C$	0.796	0.733	0.773	0.676	0.323	0.370	0.320	0.350	0.440	0.020
		n = 200	, p = 100	0, d = [n]	/log(n)],	$CR \approx 0.$	$01 \sim 0.0$	3		
CDC	1.000	1.000	1.000	0.124	0.124	0.986	0.983	0.968	0.199	0.175
CDC_1	1.000	1.000	1.000	1.000	1.000	0.986	0.982	0.968	1.000	0.937
CDC_2	1.000	1.000	1.000	1.000	1.000	0.986	0.982	0.968	1.000	0.937
QaSIS	0.978	0.982	0.978	0.394	0.372	0.624	0.578	0.588	0.498	0.120
CSIR	0.696	0.714	0.736	0.004	0.000	0.328	0.374	0.396	0.002	0.000
RCDCS	1.000	1.000	0.998	0.212	0.212	0.972	0.962	0.964	0.376	0.338
CRSIS	1.000	1.000	1.000	0.006	0.006	0.968	0.958	0.944	0.006	0.006
SVSIR	1.000	1.000	1.000	0.076	0.076	0.994	0.992	0.990	0.102	0.100
CRIS	1.000	1.000	1.000	0.066	0.066	0.996	0.992	0.988	0.090	0.088
KM	0.996	0.986	0.982	0.080	0.078	0.798	0.774	0.776	0.136	0.062
IPOD	0.998	0.990	0.990	0.086	0.084	0.832	0.824	0.848	0.150	0.084
LQ	0.974	0.974	0.952	0.062	0.052	0.568	0.560	0.538	0.046	0.012
$ISIS_C$	0.976	0.966	0.980	0.993	0.920	0.670	0.670	0.596	0.870	0.273
		n = 20	0, p = 10	00, d = [a]	n/log(n)	$], CR \approx 0$	$0.1 \sim 0.3$			
CDC	0.830	0.830	0.824	0.048	0.034	0.630	0.636	0.614	0.084	0.026
CDC_1	0.820	0.824	0.822	0.866	0.494	0.622	0.636	0.610	0.844	0.218
CDC_2	0.820	0.824	0.822	1	0.552	0.622	0.636	0.610	1.000	0.242
QaSIS	0.738	0.754	0.736	0.228	0.122	0.352	0.398	0.366	0.240	0.010
CSIR	0.708	0.738	0.750	0.004	0.000	0.334	0.382	0.394	0.002	0.000
RCDCS	1.000	0.998	0.998	0.186	0.186	0.950	0.934	0.940	0.332	0.266
CRSIS	1.000	0.998	1.000	0.006	0.006	0.944	0.932	0.908	0.004	0.004
SVSIR	1.000	1.000	0.998	0.078	0.078	0.990	0.984	0.980	0.112	0.106
CRIS	1.000	1.000	1.000	0.066	0.066	0.984	0.978	0.980	0.084	0.080
KM	0.992	0.988	0.978	0.078	0.076	0.780	0.770	0.782	0.142	0.068
IPOD	0.992	0.990	0.994	0.084	0.082	0.830	0.816	0.844	0.144	0.080
LQ	0.974	0.976	0.958	0.074	0.058	0.532	0.566	0.538	0.058	0.014
$ISIS_C$	0.986	0.986	0.973	0.976	0.926	0.660	0.676	0.593	0.886	0.223

Figure 1: Estimated C statistic for DLBCL data with different methods

Table 5: Simulation results of \mathcal{P}_s	and \mathcal{P}_a for Example 2	(b) with $p = 2000$
r = 0.5		r = 0.8

			\mathcal{P}_{s}		\mathcal{P}_{a}		Ŧ	P_s		\mathcal{P}_{a}
	X_1	X_2	X_3	X_4	ALL	X_1	X_2	X_3	X_4	ALL
		n =	100, p =	2000, d = [n/l]	og(n)], C	$R \approx 0.01$	~ 0.03			
CDC	0.930	0.920	0.880	0.010	0.005	0.625	0.730	0.600	0.010	0.000
CDC_1	0.930	0.905	0.855	0.950	0.695	0.620	0.725	0.575	0.955	0.245
CDC_2	0.930	0.905	0.855	0.945	0.685	0.620	0.725	0.575	0.965	0.235
QaSIS	0.570	0.580	0.535	0.065	0.000	0.190	0.200	0.215	0.100	0.000
CSIR	0.190	0.255	0.290	0.000	0.000	0.060	0.120	0.105	0.000	0.000
RCDCS	0.895	0.885	0.830	0.015	0.005	0.560	0.630	0.560	0.020	0.005
CRSIS	0.930	0.940	0.875	0.000	0.000	0.590	0.600	0.525	0.000	0.000
SVSIR	0.930	0.930	0.870	0.000	0.000	0.670	0.765	0.645	0.000	0.000
CRIS	0.930	0.940	0.885	0.005	0.000	0.705	0.780	0.695	0.000	0.000
KM	0.690	0.725	0.590	0.015	0.000	0.275	0.325	0.240	0.020	0.000
IPOD	0.740	0.760	0.605	0.015	0.000	0.295	0.360	0.295	0.025	0.000
LQ	0.580	0.505	0.480	0.020	0.000	0.115	0.115	0.125	0.010	0.000
$ISIS_C$	0.760	0.736	0.700	0.5766667	0.273	0.300	0.296	0.280	0.313	0.013
		n =	200, p =	$2000, d = \lfloor n/l$	og(n)], C	$R \approx 0.01$	~ 0.03			
CDC	1.000	1.000	1.000	0.070	0.070	0.980	0.950	0.935	0.145	0.125
CDC_1	1.000	1.000	1.000	1.000	1.000	0.980	0.950	0.935	1.000	0.870
CDC_2	1.000	1.000	1.000	1.000	1.000	0.980	0.950	0.935	1.000	0.870
QaSIS	0.955	0.945	0.955	0.265	0.230	0.500	0.485	0.485	0.325	0.040
Danag	0.585	0.635	0.650	0.010	0.000	0.290	0.270	0.340	0.000	0.000
apala	1.000	1.000	1.000	0.125	0.125	0.945	0.955	0.920	0.240	0.205
CRSIS	1.000	1.000	1.000	0.005	0.005	0.955	0.915	0.915	0.000	0.000
SVSIR	1.000	1.000	1.000	0.050	0.050	0.980	0.975	0.955	0.080	0.065
KM	0.000	0.000	0.070	0.050	0.050	0.990	0.985	0.970	0.040	0.035
	1.000	0.990	0.970	0.055	0.055	0.070	0.710	0.090	0.095	0.040
10	0.065	0.985	0.985	0.055	0.055	0.730	0.785	0.775	0.100	0.045
	0.905	0.970	0.950	1.000	0.030	0.410	0.435	0.400	0.020	0.000
15150	0.900	0.965	0.980 - 100 n -	-2000 d - [n]	[log(n)]	$TR \approx 0.1$	0.020	0.023	0.810	0.233
CDC	0.505	0.540	0 455	2000, u = [n]	0 000	0.230	0.325	0.205	0.010	0.000
CDC_1	0.000	0.540	0.430	0.475	0.000	0.230	0.325	0.200	0.010	0.000
CDC_{0}	0.495	0.520	0.430	0.925	0.085	0.230	0.325	0.200	0.950	0.010
OaSIS	0.180	0.185	0.115	0.025	0.000	0.110	0.060	0.080	0.050	0.000
CSIR	0.195	0.270	0.310	0.000	0.000	0.080	0.130	0.105	0.000	0.000
RCDCS	0.865	0.875	0.780	0.015	0.005	0.485	0.580	0.445	0.025	0.000
CRSIS	0.895	0.915	0.820	0.000	0.000	0.515	0.555	0.405	0.000	0.000
SVSIR	0.915	0.915	0.855	0.005	0.000	0.640	0.755	0.605	0.005	0.000
CRIS	0.920	0.910	0.885	0.005	0.000	0.690	0.730	0.645	0.005	0.000
KM	0.700	0.745	0.565	0.015	0.000	0.250	0.345	0.225	0.020	0.000
IPOD	0.740	0.765	0.600	0.015	0.000	0.285	0.355	0.300	0.025	0.000
LQ	0.605	0.495	0.445	0.015	0.000	0.135	0.135	0.150	0.015	0.000
$ISIS_C$	0.720	0.696	0.630	0.483	0.186	0.250	0.267	0.230	0.273	0.006
Ũ		<i>n</i> =	= 200, p =	= 2000, d = [n/	log(n)], C	$CR \approx 0.1$	~ 0.3			
CDC	0.805	0.745	0.82 0	0.035	0.020	0.585	0.540	0.505	0.055	0.015
CDC_1	0.805	0.740	0.820	0.845	0.400	0.580	0.530	0.500	0.795	0.140
CDC_2	0.805	0.740	0.820	1.000	0.455	0.580	0.530	0.505	1.000	0.145
QaSIS	0.650	0.625	0.675	0.095	0.025	0.305	0.265	0.230	0.145	0.000
CSIR	0.585	0.670	0.685	0.010	0.000	0.290	0.280	0.340	0.000	0.000
RCDCS	1.000	1.000	0.995	0.100	0.100	0.930	0.920	0.880	0.205	0.150
CRSIS	1.000	1.000	1.000	0.005	0.005	0.905	0.850	0.865	0.000	0.000
SVSIR	1.000	1.000	1.000	0.050	0.050	0.980	0.980	0.940	0.060	0.050
CRIS	1.000	1.000	1.000	0.045	0.045	0.980	0.975	0.950	0.040	0.030
KM	0.985	0.975	0.975	0.060	0.060	0.675	0.690	0.685	0.095	0.040
IPOD	1.000	0.980	0.985	0.055	0.055	0.735	0.760	0.760	0.095	0.045
LQ	0.965	0.965	0.945	0.040	0.030	0.470	0.435	0.435	0.045	0.000
$ISIS_C$	0.986	0.970	0.966	1.000	0.926	0.620	0.580	0.583	0.796	0.173

Table 6:	Simul	ation re	sults o	f \mathcal{P}_s an	d \mathcal{P}_a fo	or Exar	nple 2	(c) with	h p = 1	000
			r = 0.5					r = 0.8		
		\mathcal{F}	s		\mathcal{P}_{a}		\mathcal{F}	r_s		\mathcal{P}_{a}
	X_1	X_2	X_3	X_4	ALL	X_1	X_2	X_3	X_4	ALL
		n = 100	, p = 100	0, d = [n]	/log(n)],	$CR \approx 0.$	$01 \sim 0.0$	3		
CDC	0.910	0.908	0.916	0.016	0.012	0.688	0.682	0.646	0.060	0.006
CDC_1	0.906	0.894	0.910	0.952	0.688	0.676	0.66	0.628	0.994	0.306
CDC_2	0.906	0.894	0.910	1.000	0.728	0.676	0.66	0.628	1.000	0.306
QaSIS	0.754	0.678	0.696	0.006	0.002	0.256	0.230	0.190	0.006	0.000
CSIR	0.452	0.474	0.452	0.000	0.000	0.212	0.244	0.230	0.000	0.000
RCDCS	0.966	0.970	0.954	0.002	0.002	0.688	0.736	0.682	0.000	0.000
CRSIS	0.990	0.988	0.986	0.000	0.000	0.840	0.836	0.824	0.000	0.000
SVSIR	0.988	0.980	0.980	0.004	0.004	0.864	0.866	0.870	0.000	0.000
CRIS	0.988	0.982	0.972	0.004	0.004	0.788	0.796	0.786	0.000	0.000
KM	0.842	0.852	0.830	0.004	0.000	0.326	0.300	0.280	0.004	0.000
IPOD	0.854	0.866	0.844	0.002	0.002	0.318	0.306	0.282	0.004	0.000
LQ	0.904	0.908	0.904	0.006	0.004	0.388	0.394	0.348	0.002	0.000
$ISIS_C$	0.800	0.790	0.773	0.993	0.440	0.300	0.290	0.300	0.630	0.010
		n = 200	, p = 100	0, d = [n]	/log(n)],	$CR \approx 0.$	$01 \sim 0.0$	3		
CDC	1.000	1.000	0.998	0.006	0.006	0.966	0.974	0.964	0.064	0.046
CDC_1	1.000	1.000	0.998	1.000	0.998	0.966	0.970	0.964	1.000	0.910
CDC_2	1.000	1.000	0.998	1.000	0.998	0.966	0.970	0.964	1.000	0.910
QaSIS	0.992	0.990	0.990	0.036	0.036	0.650	0.662	0.632	0.004	0.000
CSIR	0.880	0.922	0.918	0.000	0.000	0.576	0.628	0.606	0.000	0.000
RCDCS	1.000	1.000	1.000	0.024	0.024	0.952	0.952	0.950	0.000	0.000
CRSIS	1.000	1.000	1.000	0.024	0.024	0.978	0.978	0.972	0.000	0.000
SVSIR	1.000	1.000	1.000	0.020	0.020	0.988	0.990	0.990	0.000	0.000
CRIS	1.000	1.000	1.000	0.022	0.022	0.972	0.966	0.968	0.000	0.000
KM	1.000	0.996	0.996	0.026	0.026	0.724	0.726	0.742	0.010	0.004
IPOD	0.998	0.998	0.998	0.032	0.032	0.732	0.748	0.746	0.010	0.008
LQ	1.000	1.000	1.000	0.046	0.046	0.844	0.820	0.832	0.010	0.006
$ISIS_C$	1.000	0.996	0.996	1.000	0.993	0.776	0.793	0.786	0.823	0.710
		n = 20	0, p = 10	00, d = [n/log(n)	$], CR \approx 0$	$0.1 \sim 0.3$			
CDC	0.630	0.594	0.654	0.054	0.004	0.544	0.548	0.572	0.114	0.000
CDC_1	0.624	0.590	0.646	0.792	0.202	0.534	0.544	0.564	0.834	0.196
CDC_2	0.624	0.590	0.646	1.000	0.276	0.536	0.544	0.564	1.000	0.256
QaSIS	0.516	0.530	0.512	0.034	0.004	0.240	0.246	0.214	0.008	0.000
CSIR	0.926	0.950	0.944	0.000	0.000	0.648	0.688	0.662	0.000	0.000
RCDCS	1.000	0.998	1.000	0.020	0.020	0.890	0.898	0.892	0.000	0.000
CRSIS	1.000	1.000	1.000	0.004	0.004	0.964	0.954	0.946	0.000	0.000
SVSIR	1.000	1.000	1.000	0.012	0.012	0.986	0.984	0.980	0.000	0.000
CRIS	1.000	1.000	1.000	0.008	0.008	0.956	0.956	0.954	0.000	0.000
KM	0.994	0.998	0.992	0.030	0.030	0.660	0.678	0.668	0.006	0.002
IPOD	0.994	1.000	0.996	0.028	0.028	0.676	0.692	0.694	0.006	0.006
LQ	1.000	1.000	1.000	0.044	0.044	0.800	0.782	0.788	0.006	0.006
$ISIS_C$	0.996	1.000	1.000	1.000	0.996	0.786	0.823	0.783	0.856	0.687

Table 7.	Simulation	regulte	of \mathcal{D}	and \mathcal{D}	for	Evamr	$l_{0}2$	(c)	with	m —	2000
Table 1.	Simulation	results	$OI P_s$	and P_i	1 101	Examp	ne z (C)	W1011	p =	2000

			r = 0.5	0	a		1	r = 0.8	1	
		τ	7 <u>–</u> 0.5		\mathcal{T}		1	י = 0.0		Ð
	X_{1}	Xo	s Xa	X.		Χ.	Xo	s Xa	X.	
	211	n = 100	n = 200	$0 \ d = [n]$	/log(n)]	$CR \approx 0$	$01 \sim 0.0$	3	114	TILL
CDC	0.865	n = 100 0.855	, p = 200 0.830	0, a = [n] 0.015	0 000	0.570	0.585	0 540	0.035	0.000
CDC_1	0.865	0.835	0.825	0.935	0.550	0.560	0.565	0.535	0.965	0.155
CDC_{2}	0.865	0.835	0.825	1.000	0.575	0.560	0.565	0.535	1.000	0.155
QaSIS	0.625	0.535	0.630	0.010	0.010	0.135	0.130	0.145	0.000	0.000
CSIR	0.350	0.365	0.420	0.000	0.000	0.165	0.195	0.220	0.000	0.000
RCDCS	0.940	0.940	0.950	0.000	0.000	0.590	0.645	0.595	0.000	0.000
CRSIS	0.985	0.990	0.980	0.000	0.000	0.810	0.800	0.000	0.000	0.000
SVSIR	0.980	0.980	0.975	0.000	0.000	0.795	0.825	0.780	0.000	0.000
CRIS	0.975	0.975	0.980	0.000	0.000	0.730	0.730	0.725	0.000	0.000
KM	0.800	0.770	0.775	0.010	0.010	0.265	0.225	0.200	0.000	0.000
IPOD	0.800	0.795	0.760	0.015	0.005	0.270	0.220	0.220	0.000	0.000
LO	0.860	0.865	0.850	0.005	0.000	0.345	0.305	0.255	0.000	0.000
$LSLS_C$	0.776	0.743	0.713	0.993	0.360	0.236	0.276	0.246	0.677	0.010
10100	0.110	n = 200	n = 200	0.d = [n]	/log(n)]	$CR \approx 0$	0.210 $01 \sim 0.0$	3	0.011	0.010
CDC	1.000	1.000	0.995	0.010	0.010	0.950	0.925	0.935	0.045	0.025
CDC_1	1.000	1.000	0.995	1.000	0.995	0.950	0.925	0.925	1.000	0.835
CDC_2	1 000	1 000	0.995	1 000	0.995	0.950	0.925	0.925	1 000	0.835
OaSIS	0.975	0.985	0.995	0.020	0.015	0.505	0.530	0.520	0.000	0.000
CSIR	0.835	0.825	0.845	0.000	0.000	0.535	0.520	0.560	0.000	0.000
RCDCS	1.000	1.000	1.000	0.005	0.005	0.945	0.945	0.955	0.000	0.000
CRSIS	1 000	1 000	1 000	0.005	0.005	0.985	0.980	0.980	0.000	0.000
SVSIR	1.000	1.000	1.000	0.010	0.010	0.990	0.990	0.980	0.000	0.000
CRIS	1.000	1.000	1.000	0.015	0.015	0.980	0.970	0.975	0.000	0.000
KM	0.980	0.990	0.985	0.015	0.015	0.610	0.655	0.635	0.005	0.000
IPOD	0.995	1.000	0.995	0.010	0.010	0.640	0.650	0.635	0.000	0.000
LO	1.000	1.000	1.000	0.020	0.020	0.790	0.785	0.810	0.000	0.000
$LSLS_C$	1.000	0.996	0.993	1.000	0.990	0.773	0.783	0.770	0.837	0.673
10100	11000	n = 10	0.n = 20	00. d = [n/log(n)	$1 CR \approx 1$	$1.1 \sim 0.3$		0.001	0.010
CDC	0.355	0.365	0.290	0.015	0.000	0.205	0.230	0.210	0.040	0.000
CDC_1	0.350	0.345	0.290	0.415	0.020	0.200	0.220	0.205	0.425	0.005
CDC_2	0.350	0.345	0.290	0.965	0.045	0.200	0.215	0.205	0.925	0.015
QaSIS	0.065	0.055	0.045	0.005	0.000	0.030	0.025	0.035	0.000	0.000
CSIR	0.445	0.440	0.515	0.000	0.000	0.235	0.225	0.310	0.000	0.000
RCDCS	0.860	0.880	0.870	0.000	0.000	0.500	0.450	0.440	0.000	0.000
CRSIS	0.950	0.945	0.930	0.000	0.000	0.660	0.680	0.615	0.000	0.000
SVSIR	0.975	0.970	0.960	0.000	0.000	0.760	0.775	0.720	0.000	0.000
CRIS	0.940	0.930	0.950	0.000	0.000	0.670	0.660	0.625	0.000	0.000
KM	0.755	0.700	0.715	0.010	0.010	0.215	0.200	0.190	0.000	0.000
IPOD	0.755	0.695	0.710	0.005	0.000	0.250	0.205	0.175	0.000	0.000
LQ	0.790	0.780	0.795	0.010	0.000	0.275	0.285	0.230	0.000	0.000
$ISIS_C$	0.593	0.623	0.550	0.980	0.143	0.220	0.230	0.213	0.653	0.006
0		n = 20	0, p = 20	00, d = [n/loq(n)	$], CR \approx 0$	$0.1 \sim 0.3$			
CDC	0.570	0.455	0.590	0.025	0.000	0.470	0.475	0.505	0.090	0.000
CDC_1	0.570	0.455	0.585	0.760	0.115	0.465	0.480	0.505	0.800	0.115
CDC_2	0.570	0.45	0.585	1.000	0.170	0.470	0.475	0.505	1.000	0.165
QaSIS	0.350	0.305	0.320	0.010	0.000	0.180	0.145	0.185	0.000	0.000
CSIR	0.900	0.870	0.915	0.000	0.000	0.575	0.600	0.650	0.000	0.000
RCDCS	1.000	1.000	1.000	0.000	0.000	0.875	0.820	0.870	0.000	0.000
CRSIS	1.000	1.000	1.000	0.005	0.005	0.925	0.925	0.940	0.000	0.000
SVSIR	1.000	1.000	1.000	0.000	0.000	0.985	0.990	0.980	0.000	0.000
CRIS	1.000	0.995	1.000	0.000	0.000	0.950	0.960	0.955	0.000	0.000
KM	0.990	0.985	0.990	0.015	0.015	0.580	0.550	0.565	0.005	0.000
IPOD	0.990	0.990	0.990	0.015	0.015	0.560	0.575	0.575	0.000	0.000
LQ	1.000	0.995	1.000	0.020	0.020	0.735	0.735	0.735	0.005	0.005
$ISIS_C$	0.993	0.980	0.983	1.000	0.956	0.756	0.756	0.720	0.833	0.583

Table 8:	Simula	ation res	sults of	\mathcal{P}_s and	d \mathcal{P}_a fo	or Exam	ple 2	(d) with	p = 1	000.
			r = 0.5					r = 0.8		
		\mathcal{P}	, s		\mathcal{P}_{a}		Ŧ	r_s		\mathcal{P}_{a}
	X_1	X_2	X_3	X_4	ALL	X_1	X_2	X_3	X_4	ALL
		n = 100	, p = 100	0, d = [n]	/log(n)]	$, CR \approx 0.$	$01 \sim 0.0$	3		
CDC	0.804	0.786	0.792	0.016	0.002	0.558	0.558	0.548	0.052	0.000
CDC_1	0.788	0.770	0.778	0.400	0.196	0.548	0.536	0.536	0.514	0.076
CDC_2	0.788	0.770	0.778	0.888	0.422	0.548	0.534	0.536	0.922	0.132
QaSIS	0.300	0.256	0.224	0.008	0.000	0.154	0.126	0.130	0.018	0.000
CSIR	0.346	0.396	0.368	0.012	0.000	0.180	0.222	0.226	0.062	0.000
RCDCS	0.910	0.894	0.904	0.006	0.004	0.640	0.622	0.602	0.042	0.006
CRSIS	0.952	0.948	0.952	0.004	0.002	0.764	0.766	0.756	0.042	0.020
SVSIR	0.930	0.930	0.938	0.000	0.000	0.722	0.702	0.706	0.014	0.002
CRIS	0.924	0.930	0.938	0.004	0.002	0.724	0.690	0.696	0.044	0.008
KM	0.754	0.756	0.770	0.004	0.000	0.314	0.298	0.272	0.018	0.000
IPOD	0.610	0.578	0.576	0.008	0.004	0.228	0.232	0.204	0.014	0.000
LQ	0.778	0.774	0.776	0.004	0.002	0.420	0.394	0.372	0.016	0.000
$ISIS_C$	0.480	0.490	0.470	0.933	0.100	0.256	0.240	0.286	0.656	0.020
		n = 200	, p = 100	0, d = [n]	/log(n)]	$, CR \approx 0.$	$01 \sim 0.0$	3		
CDC	0.990	0.992	0.992	0.010	0.010	0.926	0.900	0.904	0.048	0.028
CDC_1	0.990	0.992	0.992	0.832	0.812	0.920	0.896	0.902	0.892	0.664
CDC_2	0.990	0.992	0.992	1.000	0.974	0.920	0.896	0.902	1.000	0.754
QaSIS	0.624	0.612	0.636	0.002	0.002	0.456	0.378	0.428	0.026	0.006
CSIR	0.762	0.808	0.792	0.020	0.012	0.526	0.560	0.552	0.066	0.004
RCDCS	1.000	1.000	1.000	0.000	0.000	0.950	0.946	0.952	0.034	0.026
CRSIS	1.000	1.000	1.000	0.000	0.000	0.990	0.992	0.986	0.032	0.030
SVSIR	1.000	1.000	1.000	0.000	0.000	0.976	0.978	0.980	0.010	0.010
CRIS	1.000	1.000	1.000	0.000	0.000	0.970	0.980	0.978	0.040	0.036
KM	0.984	0.984	0.986	0.002	0.002	0.732	0.748	0.734	0.018	0.002
IPOD	0.894	0.902	0.906	0.014	0.008	0.512	0.458	0.484	0.036	0.000
LQ	0.990	0.998	1.000	0.000	0.000	0.874	0.872	0.856	0.020	0.008
$ISIS_C$	0.970	0.956	0.976	1.000	0.923	0.803	0.806	0.823	0.853	0.733
		n = 20	0, p = 10	00, d = [a]	n/log(n)	$], CR \approx 0$	$0.1 \sim 0.3$			
CDC	0.762	0.744	0.762	0.016	0.000	0.700	0.688	0.686	0.092	0.008
CDC_1	0.756	0.738	0.762	0.868	0.390	0.696	0.682	0.678	0.872	0.316
CDC_2	0.756	0.738	0.762	1	0.430	0.698	0.682	0.678	1.000	0.372
QaSIS	0.400	0.372	0.366	0.018	0.002	0.274	0.224	0.276	0.034	0.002
CSIR	0.766	0.800	0.786	0.026	0.014	0.532	0.552	0.546	0.082	0.008
RCDCS	1.000	0.998	1.000	0.000	0.000	0.948	0.942	0.946	0.032	0.024
CRSIS	1.000	1.000	1.000	0.000	0.000	0.988	0.990	0.988	0.032	0.030
SVSIR	1.000	1.000	1.000	0.000	0.000	0.974	0.976	0.980	0.010	0.010
CRIS	1.000	1.000	1.000	0.002	0.002	0.972	0.976	0.976	0.054	0.046
KM	0.986	0.988	0.990	0.002	0.002	0.728	0.744	0.732	0.016	0.002
IPOD	0.940	0.930	0.958	0.008	0.008	0.588	0.574	0.600	0.038	0.000
LQ	0.994	1.000	0.998	0.000	0.000	0.870	0.872	0.854	0.016	0.004
$ISIS_C$	0.990	0.983	0.997	1.000	0.973	0.783	0.816	0.786	0.836	0.713

Table 9:	Simulation	results o	of \mathcal{P}_s	and \mathcal{P}_a	for	Exam	ple 2	(d)) with	p = 20	000
----------	------------	-----------	--------------------	---------------------	-----	------	-------	-----	--------	--------	-----

			r = 0.5	0	a		-	r = 0.8	1	
		τ	7 = 0.0		T		-	י = 0.0		Ð
	Χ.	X _o	s Xa	Χ.		Χ.	X _a	- s Xa	Χ.	
	M 1	n = 100	n = 200	$\int d - [n]$	/log(n)]	$CR \approx 0$	$01 \sim 0.0$	13	244	MDD
CDC	0.685	n = 100 0.740	p = 200 0 745	0, a = [n]	0.000	0.305	0.475	0 425	0.035	0.000
CDC.	0.675	0.740	0.740	0.000	0.135	0.330	0.460	0.420	0.000	0.000
CDC_1	0.675	0.735	0.740	0.320	0.133	0.390	0.460	0.400	0.410	0.025
OaSIS	0.070	0.135	0.140	0.000	0.000	0.000	0.400	0.400	0.030	0.000
CSIR	0.150	0.135	0.100	0.010	0.000	0.100	0.075	0.100	0.010	0.000
RCDCS	0.240	0.280	0.330	0.015	0.000	0.120	0.175	0.100	0.035	0.000
CPSIS	0.030	0.000	0.815	0.005	0.005	0.470	0.005	0.435	0.035	0.000
CHSIS	0.940	0.920	0.860	0.005	0.003	0.090	0.095	0.025	0.045	0.010
CDIS	0.005	0.885	0.855	0.000	0.000	0.010	0.625	0.575	0.000	0.000
KM	0.905	0.685	0.855	0.005	0.003	0.390	0.035	0.555	0.030	0.000
	0.075	0.000	0.000	0.000	0.000	0.170	0.240	0.195	0.005	0.000
IPOD	0.525	0.480	0.400	0.010	0.000	0.120	0.175	0.125	0.010	0.000
	0.005	0.030	0.070	0.000	0.000	0.290	0.320	0.235	0.010	0.000
1515C	0.550	0.410	0.380	0.900	(1 - 2(2 - 2))	$CR \approx 0$	0.225	0.200	0.090	0.015
ana	0.085	n = 200	p = 200	0, u = [n]	$\int log(n)$	$0.01 \approx 0$	$0.01 \sim 0.0$	0 0 0 0	0.025	0.015
CDC	0.965	1.000	0.905	0.000	0.000	0.830	0.900	0.030	0.025	0.015
CDC_1	0.965	1.000	0.905	1.000	0.750	0.830	0.890	0.825	1.000	0.525
CDC_2	0.985	1.000	0.965	1.000	0.950	0.830	0.890	0.825	1.000	0.620
QUSIS	0.505	0.490	0.510	0.000	0.000	0.300	0.285	0.305	0.010	0.000
Danag	0.000	0.695	0.710	0.015	0.010	0.445	0.410	0.490	0.085	0.000
apala	1.000	1.000	0.985	0.000	0.000	0.885	0.890	0.910	0.015	0.010
CRSIS	1.000	0.995	0.995	0.000	0.000	0.965	0.975	0.950	0.015	0.010
SVSIR	1.000	1.000	0.995	0.000	0.000	0.945	0.945	0.940	0.015	0.015
CRIS	1.000	1.000	0.995	0.000	0.000	0.935	0.945	0.950	0.015	0.015
KM	0.960	0.955	0.965	0.005	0.005	0.660	0.640	0.615	0.000	0.000
IPOD	0.850	0.835	0.820	0.010	0.005	0.405	0.380	0.390	0.005	0.000
LQ	1.000	0.990	0.990	0.000	0.000	0.825	0.805	0.780	0.005	0.000
$ISIS_C$	0.956	0.933	0.920	1.000	0.840	0.810	0.843	0.800	0.893	0.710
ana	0.050	n = 10	0, p = 20	00, d = [n/log(n)	$], CR \approx 1$	$0.1 \sim 0.3$	3	0.045	
CDC	0.370	0.425	0.340	0.015	0.000	0.280	0.260	0.280	0.045	0.000
CDC_1	0.360	0.415	0.310	0.460	0.015	0.270	0.245	0.270	0.420	0.005
CDC_2	0.360	0.415	0.310	0.855	0.030	0.270	0.245	0.270	0.885	0.010
QaSIS	0.090	0.070	0.050	0.000	0.000	0.045	0.055	0.030	0.000	0.000
CSIR	0.265	0.310	0.335	0.015	0.000	0.135	0.185	0.165	0.035	0.000
RCDCS	0.830	0.840	0.805	0.000	0.000	0.455	0.540	0.435	0.035	0.000
CRSIS	0.935	0.905	0.885	0.005	0.000	0.670	0.680	0.600	0.050	0.015
SVSIR	0.915	0.875	0.835	0.000	0.000	0.620	0.625	0.565	0.010	0.005
CRIS	0.910	0.875	0.840	0.015	0.010	0.595	0.615	0.540	0.065	0.005
KM	0.680	0.695	0.605	0.000	0.000	0.175	0.240	0.195	0.005	0.000
IPOD	0.495	0.540	0.450	0.005	0.000	0.115	0.180	0.130	0.000	0.000
LQ	0.730	0.665	0.685	0.000	0.000	0.305	0.320	0.255	0.010	0.000
$ISIS_C$	0.607	0.623	0.537	0.973	0.146	0.206	0.223	0.216	0.596	0.006
		n = 20	0, p = 20	00, d = [n/log(n)	$], CR \approx$	$0.1 \sim 0.3$	3		
CDC	0.695	0.730	0.690	0.005	0.000	0.650	0.585	0.595	0.065	0.000
CDC_1	0.680	0.730	0.685	0.855	0.310	0.650	0.570	0.585	0.810	0.200
CDC_2	0.680	0.730	0.685	1.000	0.325	0.650	0.570	0.585	1.000	0.240
QaSIS	0.250	0.305	0.270	0.000	0.000	0.185	0.205	0.140	0.005	0.000
CSIR	0.650	0.705	0.720	0.020	0.010	0.435	0.425	0.485	0.085	0.000
RCDCS	1.000	0.995	0.985	0.000	0.000	0.885	0.890	0.900	0.015	0.010
CRSIS	1.000	0.995	0.995	0.000	0.000	0.965	0.965	0.945	0.015	0.010
SVSIR	1.000	1.000	0.995	0.000	0.000	0.940	0.945	0.940	0.015	0.015
CRIS	1.000	0.995	0.995	0.015	0.015	0.920	0.940	0.935	0.040	0.035
KM	0.975	0.965	0.975	0.005	0.005	0.660	0.645	0.615	0.000	0.000
IPOD	0.930	0.895	0.915	0.005	0.000	0.475	0.445	0.475	0.005	0.000
LQ	1.000	0.995	0.995	0.000	0.000	0.815	0.800	0.780	0.005	0.000
$ISIS_C$	0.993	0.986	0.983	1.000	0.963	0.760	0.776	0.736	0.813	0.660

Table 10: Combination of existing methods and $CSVS_1$, $CSVS_2$ in Example 2 (a) continuous.

			r = 0.5					r = 0.8		
Model		\mathcal{F}	r_s		\mathcal{P}_{a}		\mathcal{P}_s		\mathcal{P}_{a}	
	X_1	X_2	X_3	X_4	ALL	X_1	X_2	X_3	X_4	ALL
		n = 10	00, p = 20	000, d =	[n/log(n)]	$], CR \approx$	$0.1 \sim 0.3$	3		
$QaSIS_{1}^{M}$	0.075	0.090	0.095	0.660	0.000	0.030	0.085	0.065	0.790	0.000
$QaSIS_{2}^{M}$	0.075	0.090	0.090	0.975	0.000	0.030	0.085	0.065	0.960	0.000
$CSIR_{1}^{M}$	0.210	0.305	0.315	0.660	0.020	0.070	0.125	0.125	0.765	0.000
$CSIR_2^M$	0.210	0.305	0.315	0.975	0.035	0.070	0.125	0.125	0.960	0.000
$RCDCS_{1}^{M}$	0.835	0.815	0.735	0.660	0.310	0.520	0.570	0.485	0.765	0.090
$RCDCS_2^M$	0.835	0.815	0.735	0.975	0.450	0.520	0.575	0.485	0.965	0.110
$CRSIS_1^M$	0.865	0.850	0.760	0.660	0.385	0.510	0.510	0.455	0.765	0.080
$CRSIS_2^M$	0.865	0.850	0.760	0.975	0.550	0.510	0.515	0.455	0.960	0.095
$SVSIR_1^M$	0.870	0.860	0.835	0.660	0.425	0.620	0.650	0.595	0.765	0.190
$SVSIR_2^M$	0.870	0.860	0.835	0.975	0.605	0.620	0.655	0.595	0.965	0.230
$CRIS_1^M$	0.850	0.870	0.815	0.660	0.395	0.670	0.695	0.630	0.765	0.215
$CRIS_2^M$	0.850	0.870	0.815	0.975	0.580	0.670	0.700	0.630	0.960	0.270
KM_1^M	0.615	0.655	0.550	0.665	0.120	0.170	0.155	0.160	0.770	0.005
KM_2^M	0.615	0.655	0.550	0.975	0.185	0.170	0.155	0.160	0.960	0.005
$IPOD_1^M$	0.660	0.665	0.565	0.670	0.125	0.220	0.245	0.175	0.775	0.010
$IPOD_2^M$	0.660	0.665	0.565	0.975	0.190	0.220	0.245	0.175	0.960	0.010
LQ_1^M	0.445	0.485	0.455	0.660	0.040	0.105	0.050	0.050	0.775	0.000
LQ_2^M	0.445	0.485	0.455	0.975	0.060	0.105	0.050	0.050	0.965	0.000
		n = 20	00, p = 20	000, d =	[n/log(n)]	$], CR \approx$	$0.1 \sim 0.3$	3		
$QaSIS_{1}^{M}$	0.510	0.410	0.505	0.930	0.140	0.145	0.205	0.180	0.995	0.010
$QaSIS_{2}^{M}$	0.505	0.410	0.510	1.000	0.150	0.145	0.205	0.185	1.000	0.010
$CSIR_{1}^{M}$	0.640	0.650	0.690	0.925	0.225	0.355	0.360	0.395	0.995	0.060
$CSIR_2^M$	0.640	0.650	0.695	1.000	0.250	0.355	0.360	0.400	1.000	0.060
$RCDCS_{1}^{M}$	1.000	0.995	0.985	0.915	0.900	0.950	0.925	0.890	0.995	0.770
$RCDCS_2^M$	1.000	0.995	0.985	1.000	0.980	0.950	0.925	0.890	1.000	0.775
$CRSIS_1^M$	1.000	0.995	0.99	0.915	0.900	0.920	0.850	0.855	0.995	0.645
$CRSIS_2^M$	1.000	0.995	0.99	1.000	0.985	0.920	0.850	0.855	1.000	0.650
$SVSIR_{1}^{M}$	1.000	1.000	0.995	0.915	0.910	0.965	0.945	0.945	0.995	0.860
$SVSIR_2^M$	1.000	1.000	0.995	1.000	0.995	0.965	0.945	0.945	1.000	0.865
$CRIS_1^M$	1.000	1.000	1.000	0.920	0.920	0.965	0.975	0.945	0.995	0.880
$CRIS_2^M$	1.000	1.000	1.000	1.000	1.000	0.965	0.975	0.945	1.000	0.885
KM_1^M	0.965	0.965	0.965	0.930	0.845	0.455	0.475	0.500	0.995	0.115
KM_2^M	0.965	0.965	0.965	1.000	0.915	0.455	0.475	0.500	1.000	0.115
$IPOD_1^M$	0.975	0.970	0.970	0.930	0.845	0.550	0.530	0.530	0.995	0.140
$IPOD_2^M$	0.975	0.970	0.970	1.000	0.915	0.550	0.530	0.530	1.000	0.140
LQ_1^M	0.975	0.960	0.955	0.930	0.825	0.250	0.285	0.255	0.995	0.000
LQ_2^M	0.975	0.960	0.955	1.000	0.890	0.250	0.285	0.260	1.000	0.000

			r = 0.5					r = 0.8		
		\mathcal{P}	s		\mathcal{P}_{a}		\mathcal{F}	s		\mathcal{P}_{a}
	X_1	X_2	X_3	X_4	ALL	X_1	X_2	X_3	X_4	ALL
o araM		n = 100	, p = 100	$00, d = \lfloor n$	/log(n)],	$CR \approx 0.$	$1 \sim 0.3$			
$QaSIS_1^m$	0.736	0.748	0.734	0.856	0.434	0.356	0.410	0.364	0.840	0.068
$QaSIS_2^m$	0.736	0.748	0.734	1.000	0.468	0.356	0.41	0.364	1.00	0.072
$CSIR_1^M$	0.704	0.730	0.738	0.848	0.332	0.324	0.372	0.388	0.814	0.054
$CSIR_2^M$	0.704	0.730	0.738	1.000	0.376	0.324	0.372	0.388	1.000	0.056
$RCDCS_1^{M}$	1.000	0.998	0.998	0.872	0.868	0.948	0.934	0.938	0.856	0.714
$RCDCS_2^M$	1.000	0.998	0.998	1.000	0.996	0.948	0.934	0.938	1.000	0.828
$CRSIS_{1}^{M}$	1.000	1.000	1.000	0.852	0.852	0.948	0.93	0.912	0.818	0.668
$CRSIS_2^M$	1.000	1.000	1.000	1.000	1.000	0.948	0.93	0.912	1.000	0.810
$SVSIR_{1}^{M}$	1.000	1.000	0.998	0.860	0.858	0.988	0.980	0.978	0.818	0.778
SVSIR ₂ ^M	1.000	1.000	0.998	1.000	0.998	0.988	0.980	0.978	1.000	0.946
$CRIS_{1}^{M}$	1.000	1.000	1.000	0.860	0.860	0.984	0.978	0.98	0.818	0.772
$CRIS_2^M$	1.000	1.000	1.000	1.000	1.000	0.984	0.978	0.98	1.000	0.942
KM_{1}^{M}	0.992	0.986	0.974	0.86	0.824	0.768	0.766	0.778	0.828	0.366
KM_{2}^{M}	0.992	0.986	0.974	1.00	0.954	0.768	0.766	0.778	1.000	0.438
$IPOD_{1}^{M}$	0.992	0.988	0.986	0.852	0.824	0.824	0.794	0.832	0.834	0.448
$IPOD_2^M$	0.992	0.988	0.986	1.000	0.966	0.824	0.794	0.832	1.000	0.534
LQ_{1}^{M}	0.974	0.974	0.958	0.862	0.780	0.528	0.554	0.528	0.82	0.188
LQ_2^M	0.974	0.974	0.958	1.000	0.912	0.528	0.554	0.528	1.00	0.218
o araM		n = 100	, p = 200	$00, d = \lfloor n$	/log(n)],	$CR \approx 0.$	$1 \sim 0.3$			
$QaSIS_1^m$	0.160	0.165	0.095	0.460	0.015	0.115	0.055	0.075	0.405	0.000
$QaSIS_2^m$	0.160	0.165	0.095	0.925	0.020	0.115	0.055	0.075	0.955	0.000
$CSIR_1^M$	0.195	0.260	0.300	0.455	0.005	0.080	0.120	0.105	0.395	0.000
$CSIR_2^M$	0.195	0.260	0.300	0.925	0.015	0.080	0.120	0.105	0.950	0.000
$RCDCS_1^{M}$	0.855	0.865	0.775	0.470	0.295	0.460	0.555	0.435	0.405	0.050
$RCDCS_2^m$	0.855	0.865	0.775	0.925	0.525	0.460	0.555	0.435	0.950	0.100
$CRSIS_{1}^{M}$	0.880	0.915	0.820	0.455	0.325	0.505	0.535	0.410	0.395	0.045
$CRSIS_2^M$	0.880	0.915	0.820	0.925	0.610	0.505	0.535	0.410	0.950	0.115
$SVSIR_1^m$	0.910	0.915	0.855	0.460	0.340	0.630	0.735	0.585	0.395	0.115
$SVSIR_2^m$	0.910	0.915	0.855	0.925	0.660	0.630	0.735	0.585	0.950	0.265
$CRIS_1^M$	0.910	0.910	0.865	0.465	0.335	0.665	0.705	0.635	0.400	0.125
$CRIS_2^{-}$	0.910	0.910	0.865	0.925	0.655	0.665	0.705	0.635	0.950	0.275
KM ₁ KM ^M	0.700	0.745	0.560	0.465	0.155	0.225	0.330	0.225	0.410	0.005
KM_2^{M}	0.700	0.745	0.560	0.925	0.265	0.225	0.330	0.225	0.950	0.020
$IPOD_1$	0.720	0.750	0.595	0.465	0.165	0.270	0.350	0.295	0.405	0.015
$IPOD_2$	0.720	0.750	0.595	0.925	0.275	0.270	0.350	0.295	0.950	0.040
LQ_1 LQ^M	0.595	0.490	0.430	0.475	0.100	0.135	0.125	0.150	0.410	0.010
LQ_2	0.595	0.490 n = 200	0.430 n = 200	0.925	(log(n))	0.135 $CR \sim 0$	1×0.3	0.150	0.950	0.010
$OaSIS^M$	0.635	n = 200	p = 200 0.665	0, u = [n] 0.825	0.275	$0.11 \sim 0.01$	0.265	0.240	0 795	0.025
$QaSIS_1$ $QaSIS^M$	0.635	0.605	0.665	1 000	0.210	0.300	0.200	0.240	1 000	0.020
$CSIB^{M}$	0.585	0.655	0.000	0.825	0.300	0.300	0.200	0.240	0.780	0.030
$CSIR^{M}$	0.585	0.655	0.680	1 000	0.200	0.280	0.270	0.345	1 000	0.010
$BCDCS^M$	0.000	1.000	0.000	0.845	0.230	0.280	0.270	0.345	0.800	0.020
$BCDCS^{M}$	0.000	1.000	0.005	1 000	0.040	0.030	0.010	0.875	1 000	0.005
$CBSIS^M$	1 000	0.995	1 000	0.825	0.330	0.950	0.910	0.875	0.785	0.740
$CRSIS^{M}$	1.000	0.995	1.000	1 000	0.020	0.000	0.860	0.860	1 000	0.680
$SVSIB^M$	1.000	1 000	1.000	0.840	0.840	0.980	0.000	0.000	0.790	0.000
$SVSIR_1^M$	1.000	1.000	1.000	1 000	1 000	0.000	0.070	0.000	1 000	0.100
$CBLS^M$	1.000	1.000	1.000	0.840	0.840	0.980	0.970	0.950	0.785	0.705
$CBLS^{M}$	1.000	1.000	1.000	1.000	1.000	0.980	0.970	0.950	1.000	0.900
KM_{*}^{M}	0.985	0.975	0.975	0.835	0.790	0.670	0.675	0.680	0.780	0.280
KM_{-}^{M}	0.985	0.975	0.975	1.000	0.940	0.670	0.675	0.680	1.000	0.350
$IPOD^{M}$	1.000	0.980	0.985	0.835	0.805	0.720	0.745	0.750	0.785	0.330
$IPOD_{2}^{M}$	1.000	0.980	0.985	1.000	0.965	0.720	0.745	0.750	1.000	0.430
LQ_1^M	0.960	0.960	0.940	0.830	0.725	0.465	0.425	0.420	0.785	0.095
LQ_2^{M}	0.960	0.960	0.940	1.000	0.870	0.465	0.425	0.420	1.000	0.110
~ <u>4</u>										- •

Table 11: Combination of existing methods and $CSVS_1$, $CSVS_2$ in Example 2 (b).

			r = 0.5					r = 0.8		
Model		\mathcal{F}	r_s		\mathcal{P}_{a}		\mathcal{P}_{\cdot}	s		\mathcal{P}_{a}
	X_1	X_2	X_3	X_4	ALL	X_1	X_2	X_3	X_4	ALL
		n = 200	0, p = 10	00, d = [r]	n/log(n)]	$, CR \approx 0$	$.1 \sim 0.3$			
$QaSIS_{1}^{M}$	0.380	0.320	0.360	0.796	0.052	0.176	0.176	0.192	0.826	0.014
$QaSIS_2^M$	0.376	0.318	0.358	1.000	0.056	0.178	0.174	0.190	1.000	0.014
$CSIR_1^M$	0.852	0.888	0.874	0.79	0.518	0.594	0.634	0.640	0.846	0.232
$CSIR_2^M$	0.852	0.888	0.874	1.00	0.660	0.596	0.632	0.638	1.000	0.272
$RCDCS_1^M$	0.998	0.992	0.998	0.782	0.770	0.880	0.888	0.880	0.840	0.574
$RCDCS_2^M$	0.998	0.992	0.998	1.000	0.988	0.880	0.888	0.880	1.000	0.694
$CRSIS_1^{\overline{M}}$	1.000	1.000	1.000	0.784	0.784	0.962	0.952	0.944	0.84	0.728
$CRSIS_2^{\tilde{M}}$	1.000	1.000	1.000	1.000	1.000	0.962	0.952	0.944	1.00	0.872
$SVSIR_{1}^{\overline{M}}$	1.000	1.000	1.000	0.786	0.786	0.976	0.978	0.970	0.828	0.764
$SVSIR_2^{M}$	1.000	1.000	1.000	1.000	1.000	0.976	0.978	0.970	1.000	0.924
$CRIS_{1}^{\tilde{M}}$	1.000	1.000	1.000	0.790	0.790	0.960	0.968	0.95	0.846	0.756
$CRIS_{2}^{M}$	1.000	1.000	1.000	1.000	1.000	0.960	0.968	0.95	1.000	0.896
$KM_1^{\tilde{M}}$	0.980	0.986	0.984	0.786	0.746	0.636	0.642	0.622	0.832	0.238
KM_{2}^{M}	0.980	0.986	0.984	1.000	0.954	0.638	0.64	0.622	1.000	0.286
$IPOD_1^{M}$	0.980	0.988	0.992	0.788	0.752	0.630	0.676	0.632	0.834	0.246
$IPOD_{2}^{M}$	0.980	0.988	0.992	1.000	0.960	0.632	0.674	0.632	1.000	0.294
$LQ_{\star}^{M^2}$	0.986	0.996	0.996	0.784	0.766	0.792	0.782	0.752	0.828	0.404
LQ_{2}^{M}	0.986	0.996	0.996	1.000	0.98	0.792	0.782	0.752	1.000	0.486
142	0.000	n = 100	p = 20	00, d = [r]	n/log(n)	$CR \approx 0$	$.1 \sim 0.3$	0.1.02	11000	0.100
$QaSIS_1^M$	0.035	0.020	0.060	0.410	0.000	0.030	0.015	0.040	0.415	0.000
$QaSIS_2^M$	0.020	0.015	0.050	0.965	0.000	0.020	0.0150	0.040	0.915	0.000
$CSIR_1^{\tilde{M}}$	0.325	0.340	0.380	0.425	0.030	0.170	0.175	0.210	0.435	0.010
$CSIR_{0}^{M}$	0.320	0.335	0.375	0.965	0.045	0.165	0.175	0.210	0.915	0.015
$RCDCS^{M}$	0.734	0.748	0.732	0.434	0.168	0.395	0.410	0.350	0.425	0.035
$BCDCS_{2}^{M}$	0.732	0.748	0.730	0.960	0.384	0.395	0.405	0.350	0.920	0.065
CRSIS	0.875	0.860	0.760	0.420	0.265	0.535	0.560	0.475	0.430	0.055
$CRSIS_{2}^{M}$	0.875	0.860	0.755	0.970	0.575	0.540	0.555	0.475	0.915	0.145
$SVSIR^M$	0.586	0.602	0.590	0.418	0.094	0.395	0.410	0.350	0.010 0.425	0.035
$SVSIR_1$	0.586	0.600	0.590	0.020	0.184	0.305	0.405	0.350	0.120	0.065
$CBIS^{M}$	0.835	0.000	0.845	0.320	0.104	0.555	0.400	0.500	0.320 0.475	0.000
$CBIS^{M}$	0.835	0.82	0.845	0.965	0.200	0.565	0.560	0.52	0.170	0.135
KM^{M}	0.640	0.52	0.565	0.305	0.010	0.000	0.000	0.02	0.325	0.100
KM^{M}	0.635	0.50	0.560	0.965	0.000	0.150	0.200	0.130	0.415	0.000
$IPOD^M$	0.650	0.565	0.500	0.005	0.170	0.170	0.175	0.155	0.315	0.010
$IPOD^{M}$	0.650	0.565	0.54	0.015	0.000	0.170	0.170	0.155	0.415	0.000
IO^{M}	0.685	0.505	0.54	0.905	0.105	0.170	0.170	0.135	0.310	0.010
LQ_1 LQ^M	0.005	0.04	0.045	0.005	0.000	0.245	0.200	0.175	0.420	0.010
LQ_2	0.085	n = 200	0.043 n = 20	$0.903 \\ 00 \ d = [r]$	$\frac{0.233}{10a(n)}$	$CR \approx 0$	$1 \sim 0.3$	0.175	0.915	0.025
$OaSIS^{M}$	0.220	n = 200 0 180	p, p = 20 0.185	00, a = [7] 0 760	0.015	0.090	0.130	0 145	0.800	0.005
$OaSIS^{M}$	0.215	0.170	0.185	1 000	0.015	0.095	0.120	0 145	1 000	0.005
$CSIB^M$	0.210	0.170	0.100	0.760	0.010	0.000	0.120	0.140	0.820	0.000
$CSIR_1^M$	0.780	0.795	0.800	1.000	0.400	0.505	0.000	0.590	1 000	0.120
$BCDCS^M$	0.780	0.795	0.000	0.765	0.500	0.303	0.495	0.330	0.815	0.170
$PCDCS_1$	0.990	0.990	0.980	1.000	0.140	0.845	0.790	0.830	1 000	0.440
$CPSIS^M$	0.990	0.990	0.980	0.760	0.900	0.040	0.780	0.030	0.810	0.555
$C R S I S_1$	0.995	0.990	0.980	1.000	0.730	0.950	0.915	0.940	1.000	0.000
CISIS ₂	1.000	1.000	0.980	1.000	0.905	0.950	0.910	0.940	1.000	0.820
$SVSIR_1$	1.000	1.000	0.995	1.000	0.700	0.945	0.925	0.940	1.000	0.005
CDICM	1.000	1.000	0.995	1.000	0.995	0.940	0.925	0.940	1.000	0.835
$CRIS_1$	1.000	1.000	0.995	1.000	0.770	0.940	0.925	0.920	1.000	0.040
$CRIS_2$	1.000	1.000	0.995	1.000	0.995	0.940	0.925	0.920	1.000	0.815
	0.905	0.975	0.945	0.700	0.080	0.580	0.540	0.000	1.000	0.175
KM_2^{m}	0.965	0.975	0.945	1.000	0.890	0.585	0.535	0.555	1.000	0.225
$IPOD_1^{m}$	0.970	0.975	0.970	0.760	0.705	0.580	0.555	0.580	0.800	0.175
$IPOD_2^m$	0.970	0.975	0.970	1.000	0.915	0.585	0.550	0.580	1.000	0.240
LQ_1^m	0.995	0.975	0.990	0.760	0.735	0.755	0.720	0.710	0.805	0.330
LQ_2^m	0.995	0.975	0.990	1.000	0.960	0.755	0.715	0.710	1.000	0.415

Table 12: Combination of existing methods and $CSVS_1$, $CSVS_2$ in Example 2 (c).

			r = 0.5					r = 0.8		
		\mathcal{P}	s		\mathcal{P}_{a}		\mathcal{F}	r_s		\mathcal{P}_{a}
	X_1	X_{2}	X_3	X_4	ALL	X_1	X_2	X_3	X_4	ALL
o araM		n = 100	, p = 100	$00, d = \lfloor n \rfloor$	/log(n)],	$CR \approx 0.$	$1 \sim 0.3$			
$QaSIS_1^m$	0.400	0.366	0.362	0.866	0.048	0.268	0.218	0.274	0.872	0.026
$QaSIS_2^m$	0.400	0.366	0.362	1.000	0.052	0.270	0.218	0.274	1.000	0.026
$CSIR_{1}^{M}$	0.756	0.792	0.780	0.872	0.412	0.526	0.540	0.530	0.886	0.152
$CSIR_2^M$	0.756	0.792	0.780	1.000	0.470	0.526	0.540	0.530	1.000	0.176
$RCDCS_{1}^{M}$	0.998	0.998	1.000	0.866	0.864	0.942	0.94	0.94	0.876	0.728
$RCDCS_2^M$	0.998	0.998	1.000	1.000	0.996	0.942	0.94	0.94	1.000	0.832
$CRSIS_{1}^{M}$	1.000	1.000	1.000	0.866	0.866	0.986	0.990	0.984	0.874	0.836
$CRSIS_2^M$	1.000	1.000	1.000	1.000	1.000	0.986	0.990	0.984	1.000	0.960
$SVSIR_1^M$	1.000	1.000	1.000	0.866	0.866	0.972	0.974	0.976	0.870	0.800
$SVSIR_2^m$	1.000	1.000	1.000	1.000	1.000	0.972	0.974	0.976	1.000	0.922
$CRIS_1^M$	1.000	1.000	1.000	0.866	0.866	0.968	0.974	0.976	0.878	0.804
$CRIS_2^{m}$	1.000	1.000	1.000	1.000	1.000	0.968	0.974	0.976	1.000	0.918
KM_1	0.986	0.988	0.988	0.800	0.834	0.718	0.730	0.720	0.870	0.344
KM_2^{M}	0.986	0.988	0.988	1.000	0.966	0.718	0.736	0.726	1.000	0.394
$IFOD_1$	0.938	0.920	0.950	1.000	0.720	0.574	0.50	0.580	0.874	0.162
$IPOD_2$	0.938	0.926	0.956	1.000	0.820	0.574	0.50	0.580	1.000	0.208
LQ_1 LO^M	0.994	0.998	0.998	1.000	0.850	0.800	0.870	0.830	1.000	0.558
LQ_2	0.994	0.998 n = 100	0.998	1.000 d = [n]	(log(n))	0.800 $CR \sim 0$	1×0.3	0.830	1.000	0.640
$OaSIS^M$	0.070	n = 100 0.075	p = 200	0, u = [n]	n 000	0.035	0.035	0.050	0.905	0.000
$QaSIS^{M}$	0.070	0.075	0.000	1 000	0.000	0.035	0.035	0.050	1 000	0.000
$CSIB^M$	0.070	0.075	0.030	0.895	0.000	0.035	0.035 0.170	0.050	0.910	0.000
$CSIR^{M}$	0.200	0.305	0.335	1 000	0.020	0.115	0.170	0.165	1 000	0.010
$BCDCS^M$	0.200	0.830	0.330	0.455	0.030 0.245	0.430	0.520	0.100 0.425	0.400	0.020
$BCDCS^{M}_{1}$	0.825	0.830	0.790	0.850	0.450	0.430	0.520	0.120 0.425	0.880	0.025
$CBSLS^M$	0.025	0.000	0.150	0.000 0.460	0.400	0.450	0.655	0.420	0.000 0.420	0.110
$CBSIS_{1}^{M}$	0.935	0.905	0.855	0.850	0.630	0.655	0.655	0.595	0.880	0.240
SVSIR ^M	0.905	0.860	0.830	0.455	0.315	0.600	0.610	0.540	0.400	0.070
$SVSIR_{2}^{M}$	0.905	0.860	0.830	0.850	0.565	0.600	0.610	0.540	0.875	0.170
$CRIS^{\tilde{M}}_{*}$	0.895	0.870	0.835	0.460	0.320	0.580	0.605	0.520	0.425	0.075
$CRIS_{2}^{M}$	0.895	0.870	0.835	0.850	0.565	0.580	0.605	0.520	0.885	0.165
$KM_1^{\tilde{M}}$	0.640	0.640	0.600	0.895	0.190	0.170	0.205	0.125	0.905	0.005
$KM_2^{\frac{1}{M}}$	0.640	0.640	0.600	1.000	0.215	0.170	0.205	0.125	1.000	0.005
$IPOD_1^{M}$	0.490	0.495	0.445	0.890	0.075	0.110	0.180	0.110	0.905	0.005
$IPOD_2^{\frac{1}{M}}$	0.490	0.495	0.445	1.000	0.090	0.110	0.180	0.110	1.000	0.005
$LQ_1^{M^2}$	0.770	0.710	0.700	0.890	0.310	0.245	0.305	0.215	0.905	0.045
LQ_2^M	0.770	0.710	0.700	1.000	0.350	0.245	0.305	0.215	1.000	0.045
• 2		n = 200	, p = 200	00, d = [n]	/log(n)],	$CR \approx 0.$	$1 \sim 0.3$			
$QaSIS_1^M$	0.235	0.210	0.310	0.990	0.005	0.175	0.165	0.170	0.980	0.010
$QaSIS_2^M$	0.235	0.210	0.315	1.000	0.005	0.175	0.165	0.170	1.000	0.010
$CSIR_1^M$	0.690	0.720	0.745	0.990	0.345	0.460	0.420	0.465	0.980	0.100
$CSIR_2^M$	0.690	0.720	0.750	1.000	0.350	0.460	0.420	0.470	1.000	0.105
$RCDCS_1^M$	1.000	0.995	0.985	0.855	0.840	0.880	0.890	0.900	0.815	0.600
$RCDCS_2^M$	1.000	0.995	0.985	1.000	0.980	0.880	0.890	0.900	1.000	0.710
$CRSIS_1^M$	1.000	0.995	0.995	0.855	0.845	0.965	0.965	0.940	0.815	0.720
$CRSIS_2^M$	1.000	0.995	0.995	1.000	0.990	0.965	0.965	0.940	1.000	0.875
$SVSIR_{1}^{M}$	1.000	1.000	0.995	0.855	0.850	0.940	0.945	0.940	0.815	0.705
$SVSIR_2^M$	1.000	1.000	0.995	1.000	0.995	0.940	0.945	0.940	1.000	0.830
$CRIS_{1}^{M}$	1.000	0.995	0.995	0.860	0.850	0.920	0.935	0.935	0.815	0.680
$CRIS_2^M$	1.000	0.995	0.995	1.000	0.990	0.920	0.935	0.935	1.000	0.805
KM_1^M	0.975	0.980	0.970	0.990	0.935	0.600	0.610	0.585	0.980	0.255
KM_2^M	0.975	0.980	0.970	1.000	0.940	0.600	0.610	0.585	1.000	0.265
$IPOD_{1}^{M}$	0.905	0.905	0.895	0.990	0.720	0.470	0.450	0.430	0.980	0.115
$IPOD_2^M$	0.905	0.905	0.895	1.000	0.725	0.470	0.450	0.430	1.000	0.120
LQ_1^M	1.000	1.000	0.995	0.990	0.985	0.815	0.765	0.755	0.980	0.500
LQ_2^M	1.000	1.000	0.995	1.000	0.995	0.815	0.765	0.755	1.000	0.515

Table 13: Combination of existing methods and $CSVS_1$, $CSVS_2$ in Example 2 (d)

Table 14: Selected genes ID based on different screening methods.

QaSIS	4398 8	136	3122	1190	2968	9287	8380	2344	530	8908	5336	6364	5828	575	7523	3455	1987	9068	7241	7634	483	4066
QaSIS_1^M	4398 8	136	3122	1190	2968	9287	8380	2344	530	8908	5336	6364	5828	575	7523	3455	1987	9068	7241	7634	6231	491
${\rm QaSIS}_2^M$	4398 8	136	3122	1190	2968	9287	8380	2344	530	8908	5336	6364	5828	575	7523	3455	1987	9068	7241	7634	2425	6594
CSIR	1804 8	370	7951	5746	4054	6666	7027	5894	7207	1000	9479	1746	5756	7366	4118	9074	2720	168	8460	6395	947	5975
CSIR_1^M	1804 8	870	7951	5746	4054	6666	7027	5894	7207	1000	9479	1746	5756	7366	4118	9074	2720	168	8460	6395	6231	491
CSIR_2^M	1804 8	870	7951	5746	4054	6666	7027	5894	7207	1000	9479	1746	5756	7366	4118	9074	2720	168	8460	6395	2425	6594
RCDCS	3633 5	746	8312	2397	3846	5960	7295	1425	7207	3342	8150	7583	1951	7895	1977	2620	1000	1453	8727	6649	2429	870
RCDCS_1^M	3633 5	746	8312	2397	3846	5960	7295	1425	7207	3342	8150	7583	1951	7895	1977	2620	1000	1453	8727	6649	5926	447
RCDCS_2^M	3633 5	746	8312	2397	3846	5960	7295	1425	7207	3342	8150	7583	1951	7895	1977	2620	1000	1453	8727	6649	2292	6278
CRSIS	659 4	873	2956	5746	6017	2353	1977	1000	5960	8150	1460	7895	2397	4805	9786	3633	1211	8814	6649	2720	10375	8312
CRSIS_1^M	659 4	873	2956	5746	6017	2353	1977	1000	5960	8150	1460	7895	2397	4805	9786	3633	1211	8814	6649	2720	5926	447
CRSIS_2^M	659 4	873	2956	5746	6017	2353	1977	1000	5960	8150	1460	7895	2397	4805	9786	3633	1211	8814	6649	2720	2292	6278
SVSIR	1000 8	870	8312	5149	3846	9485	10375	947	7559	1785	2966	6567	1512	2167	5894	1631	10567	3575	7528	8523	3041	2041
${\rm SVSIR}_1^M$	1000 8	870	8312	5149	3846	9485	10375	947	7559	1785	2966	6567	1512	2167	5894	1631	10567	3575	7528	8523	5926	447
${\rm SVSIR}_2^M$	1000 8	870	8312	5149	3846	9485	10375	947	7559	1785	2966	6567	1512	2167	5894	1631	10567	3575	7528	8523	2292	6278
CRIS	7674 7	207	8326	1746	8460	7215	7366	10209	3342	3739	9065	1425	4081	3633	2367	8024	4833	7684	2335	9074	9912	5131
CRIS_1^M	7674 7	207	8326	1746	8460	7215	7366	10209	3342	3739	9065	1425	4081	3633	2367	8024	4833	7684	2335	9074	5926	447
CRIS_2^M	7674 7	207	8326	1746	8460	7215	7366	10209	3342	3739	9065	1425	4081	3633	2367	8024	4833	7684	2335	9074	2292	6278
KM	3012 9	148	8814	2720	8727	9700	7469	5975	1746	3633	7951	56	1460	5746	2956	10096	5149	168	3033	2731	5303	4136
KM_1^M	3012 9	148	8814	2720	8727	9700	7469	5975	1746	3633	7951	56	1460	5746	2956	10096	5149	168	3033	2731	6231	491
KM_2^M	3012 9	148	8814	2720	8727	9700	7469	5975	1746	3633	7951	56	1460	5746	2956	10096	5149	168	3033	2731	2425	6594
IPOD	8727 3	633	10375	7559	9700	9074	5450	9479	5241	8312	3033	8487	6923	9653	6440	3353	6055	3684	3805	947	1327	5821
IPOD_1^M	8727 3	633	10375	7559	9700	9074	5450	9479	5241	8312	3033	8487	6923	9653	6440	3353	6055	3684	3805	947	6231	491
IPOD_2^M	8727 3	633	10375	7559	9700	9074	5450	9479	5241	8312	3033	8487	6923	9653	6440	3353	6055	3684	3805	947	2425	6594
LQ	9399 5	975	870	8814	4118	1460	2720	1327	1746	2531	5756	5969	10567	675	7469	2041	8326	9367	9279	9283	3633	8523
LQ_1^M	9399 5	975	870	8814	4118	1460	2720	1327	1746	2531	5756	5969	10567	675	7469	2041	8326	9367	9279	9283	6231	491
LQ_2^M	9399 5	975	870	8814	4118	1460	2720	1327	1746	2531	5756	5969	10567	675	7469	2041	8326	9367	9279	9283	2425	6594
CDC	5926 4	147	10375	1986	7515	6941	7592	4018	1357	659	9913	3787	3187	2892	2409	2213	9449	6095	8640	2353	7322	5226
\mathbf{CDC}_1^M	5926 4	147	10375	1986	7515	6941	7592	4018	1357	659	9913	3787	3187	2892	2409	2213	9449	6095	8640	2353	7322	5226
CDC_2^M	5926 4	147	10375	1986	7515	6941	7592	4018	1357	659	9913	3787	3187	2892	2409	2213	9449	6095	8640	2353	2292	6278
$ISIS_c$	581 6	635	1781	1977	2001	2595	2605	3327	4585	4704	4741	4982	5653	5719	5772	6980	7335	9257	9353	9953	10027	10090

Table 15: Selected gene IDs for DLBCL data based on different screening methods.

 $QaSIS \quad 5849 \ 871 \ 6217 \ 6145 \ 1021 \ 5957 \ 126 \quad 129 \ 1614 \ 1140 \ 2521 \ 2517 \ 6196 \ 2338 \ 6976 \ \ 616 \ \ 1328 \ 1163 \ 2598 \ 1361 \ 7118 \ 5980 \ 2252 \ 2501 \ 5289 \ 1155 \ 2154 \ 3202 \ 2588 \ 6904 \ \ 799 \ 1000\ 1000 \$ $QaSIS_1^M 5849 \ 871 \ 62176145 \ 1021 \ 5957 \ 126 \ 129 \ 16141140 \ 2521 \ 25176196 \ 23386976 \ 616 \ 1328 \ 1163 \ 2598 \ 1361 \ 7118 \ 5980 \ 2252 \ 2501 \ 5289 \ 1155 \ 2154 \ 3202 \ 2588 \ 2409 \ 1969 \ 1060 \$ $QaSIS_{2}^{M} \ 5849 \ 871 \ 6217 \ 6145 \ 1021 \ 5957 \ 126 \ 129 \ 1614 \ 1140 \ 2521 \ 2517 \ 6196 \ 2338 \ 6976 \ 616 \ 1328 \ 1163 \ 2598 \ 1361 \ 7118 \ 5980 \ 2252 \ 2501 \ 5289 \ 1155 \ 2154 \ 3202 \ 2588 \ 2308 \ 23$ $CSIR_1^M \ 1831\ 2579\ 6365\ 1825\ 1994\ 3822\ 4131\ 7098\ 1456\ 3820\ 3821\ 1841\ 6134\ 2239\ 1660\ 4202\ 1819\ 3801\ 2541\ 6133\ 1639\ 1662\ 1671\ 2532\ 3799\ 1664\ 1681\ 1740\ 3802\ 2409\ 1969\ 3801\ 2541\ 6133\ 1639\ 1662\ 1671\ 2532\ 3799\ 1664\ 1681\ 1740\ 3802\ 2409\ 1969\ 3801\ 2541\ 6133\ 1639\ 1662\ 1671\ 2532\ 3799\ 1664\ 1681\ 1740\ 3802\ 2409\ 1969\ 3801\ 2541\ 6133\ 1639\ 1662\ 1671\ 2532\ 3799\ 1664\ 1681\ 1740\ 3802\ 2409\ 1969\ 3801\ 2541\ 6133\ 1639\ 1662\ 1671\ 2532\ 3799\ 1664\ 1681\ 1740\ 3802\ 2409\ 1969\ 3801\ 2541\ 6133\ 1639\ 1662\ 1671\ 2532\ 3799\ 1664\ 1681\ 1740\ 3802\ 2409\ 1969\ 3801\ 2541\ 6133\ 1639\ 1662\ 1671\ 2532\ 3799\ 1664\ 1681\ 1740\ 3802\ 2409\ 1969\ 3801\ 2541\ 6133\ 1639\ 1662\ 1671\ 2532\ 3799\ 1664\ 1681\ 1740\ 3802\ 2409\ 1969\ 3801\ 2541\ 6133\ 1639\ 1662\ 1671\ 2532\ 3799\ 1664\ 1681\ 1740\ 3802\ 2409\ 1969\ 1664\ 1681\ 1740\ 3802\ 2409\ 1969\ 1664\ 1681\ 1740\ 3802\ 2409\ 1969\ 1664\ 1681\ 1740\ 3802\ 2409\ 1969\ 1664\ 1681\ 1740\ 3802\ 2400\ 1860\$ $CSIR_2^M \ 1831\ 2579\ 6365\ 1825\ 1994\ 3822\ 4131\ 7098\ 1456\ 3820\ 3821\ 1841\ 6134\ 2239\ 1660\ 4202\ 1819\ 3801\ 2541\ 6133\ 1639\ 1662\ 1671\ 2532\ 3799\ 1664\ 1681\ 1740\ 3802\ 2308\ 2306\ 51660\ 4202\ 1819\ 3801\ 2541\ 6133\ 1639\ 1662\ 1671\ 2532\ 3799\ 1664\ 1681\ 1740\ 3802\ 2308\ 2306\ 5160\ 4202\ 1819\ 3801\ 2541\ 6133\ 1639\ 1662\ 1671\ 2532\ 3799\ 1664\ 1681\ 1740\ 3802\ 2308\ 2306\ 5160\ 4202\ 1819\ 3801\ 2541\ 6133\ 1639\ 1662\ 1671\ 2532\ 3799\ 1664\ 1681\ 1740\ 3802\ 2308\ 2306\ 5160\ 4202\ 1819\ 3801\ 2541\ 6133\ 1639\ 1662\ 1671\ 2532\ 3799\ 1664\ 1681\ 1740\ 3802\ 2308\ 2306\ 5160\ 4202\ 1819\ 4300\ 1560\ 4202\ 1819\ 4300\ 1560\ 4202\ 1819\ 4300\ 1560\ 4202\ 1819\ 4300\ 1810\ 4300$ $\mathrm{RCDCS}_{1}^{M}\ 2579\ 50\ 4131\ 1825\ 1994\ 3787\ 1819\ 2479\ 1097\ 958\ 394\ 1965\ 3430\ 2576\ 2672\ 1023\ 2532\ 1086\ 4232\ 1029\ 3822\ 7251\ 1832\ 1831\ 7055\ 1841\ 6903\ 1995\ 4148\ 2409\ 1969\ 1896\ 18$ $RCDCS^M_{2579} \hspace{0.5cm} 50 \hspace{0.5cm} 4131182519943787181924791097 \hspace{0.5cm} 958 \hspace{0.5cm} 394 \hspace{0.5cm} 19653430 \hspace{0.5cm} 257626721023 \hspace{0.5cm} 25321086 \hspace{0.5cm} 42321029 \hspace{0.5cm} 38227251 \hspace{0.5cm} 18321831 \hspace{0.5cm} 7055 \hspace{0.5cm} 1841 \hspace{0.5cm} 6903 \hspace{0.5cm} 19954148 \hspace{0.5cm} 2308 \hspace{0.5cm} 2306 \hspace{0.5cm} 2306 \hspace{0.5cm} 18321 \hspace{0.5cm} 18311 \hspace{0.5cm} 18321$ $CRSIS \quad 1819 \\ 1825 \\ 2672 \\ 1456 \\ 290 \\ 1994 \\ 394 \\ 2576 \\ 2674 \\ 2671 \\ 1841 \\ 50 \\ 368 \\ 5775 \\ 1986 \\ 2479 \\ 2673 \\ 6365 \\ 2958 \\ 7251 \\ 3470 \\ 3367 \\ 4131 \\ 2532 \\ 1029 \\ 3821 \\ 1965 \\ 2570 \\ 5621 \\ 1900 \\ 3866 \\ 5775 \\ 1986 \\ 2479 \\ 2673 \\ 6365 \\ 2958 \\ 7251 \\ 3470 \\ 3367 \\ 4131 \\ 2532 \\ 1029 \\ 3821 \\ 1965 \\ 2570 \\ 5621 \\ 1900 \\ 3866 \\ 5775 \\ 1986 \\ 2479 \\ 2673 \\ 6365 \\ 2958 \\ 7251 \\ 3470 \\ 3367 \\ 4131 \\ 2532 \\ 1029 \\ 3821 \\ 1965 \\ 2570 \\ 5621 \\ 1900 \\ 3866 \\ 5775 \\ 1986 \\ 2479 \\ 2673 \\ 6365 \\ 2958 \\ 7251 \\ 3470 \\ 3367 \\ 4131 \\ 2532 \\ 1029 \\ 3821 \\ 1965 \\ 2570 \\ 5621 \\ 1900 \\ 3866 \\ 1900 \\ 1900 \\ 3866 \\ 1900 \\ 1900 \\ 1000$ $\mathrm{CRSIS}_{1}^{M} \ 1819 \ 1825 \ 2672 \ 1456 \ 290 \ 1994 \ 394 \ 2576 \ 2674 \ 2671 \ 1841 \ 50 \ 368 \ 5775 \ 1986 \ 2479 \ 2673 \ 6365 \ 2958 \ 7251 \ 3470 \ 3367 \ 4131 \ 2532 \ 1029 \ 3821 \ 1965 \ 2570 \ 5621 \ 2409 \ 1969 \ 1000\ 1$ CRSIS^M 1819 1825 2672 1456 290 1994 394 2576 2674 2671 1841 50 368 5775 1986 2479 2673 6365 2958 7251 3470 3367 4131 2532 1029 3821 1965 2570 5621 2308 2306 ${\rm SVSIR}_1^M \ {\rm 4131\,6134\,3822\,3787\,2902\,4232\,6135\,4193\,6133\,4149\,4202\,3832\,3820\,3821\,6903\,4148\,4192\,7227\,1192\,3824\,3774\,4416\,3799\,4183\,3810\,4150\,3775\,6193\,4200\,2409\,1969}$ $\mathrm{SVSIR}_2^{M} \hspace{0.1cm} 4131\hspace{0.1cm} 6134\hspace{0.1cm} 3822\hspace{0.1cm} 3787\hspace{0.1cm} 2902\hspace{0.1cm} 4232\hspace{0.1cm} 6135\hspace{0.1cm} 4194\hspace{0.1cm} 94202\hspace{0.1cm} 3832\hspace{0.1cm} 3821\hspace{0.1cm} 6903\hspace{0.1cm} 4148\hspace{0.1cm} 4192\hspace{0.1cm} 7227\hspace{0.1cm} 1192\hspace{0.1cm} 3824\hspace{0.1cm} 3774\hspace{0.1cm} 4416\hspace{0.1cm} 3799\hspace{0.1cm} 4183\hspace{0.1cm} 3810\hspace{0.1cm} 4150\hspace{0.1cm} 3775\hspace{0.1cm} 6193\hspace{0.1cm} 4200\hspace{0.1cm} 2308\hspace{0.1cm} 2308$ CRIS CRIS^M 2579145625322425701926722958256972511653 80 21821664 290 19861662269467405970161221062959242666251874738011481663562124091969 ${\rm CRIS}_2^M \ {\rm 2579} 1456 \ {\rm 2532} \ {\rm 2425} \ {\rm 7019} \ {\rm 2672} \ {\rm 2958} \ {\rm 2569} \ {\rm 7251} \ {\rm 1653} \ {\rm 80} \ {\rm 2182} \ {\rm 1664} \ {\rm 290} \ {\rm 1986} \ {\rm 1662} \ {\rm 2694} \ {\rm 6740} \ {\rm 5970} \ {\rm 1612} \ {\rm 2106} \ {\rm 2959} \ {\rm 2426} \ {\rm 6625} \ {\rm 1874} \ {\rm 7380} \ {\rm 1148} \ {\rm 1663} \ {\rm 5621} \ {\rm 2308} \ {\rm 2306} \ {\rm 2306} \ {\rm 1148} \ {\rm 1663} \ {\rm 1662} \ {\rm 1662} \ {\rm 1662} \ {\rm 1664} \ {\rm$ КМ KM_1^M $1653\,2255\,4149\,4193\,2239\,1235\,1831\,4277\,5655\,6519\,1830\,4131\,5715\,1572\,6498\,133\,2579\,2569\,2442\,4148\,2155\,2532\,1775\,1664\,3787\,1645\,50\,1832\,3917\,2409\,1969$ KM_2^M IPOD $IPOD_1^M$ $6519\,1653\,1830\,1831\,6733\,\,773\,\,1645\,1832\,4149\,5361\,3540\,2005\,4048\,2569\,2239\,4733\,4133\,4131\,3707\,2155\,4148\,2156\,7281\,5655\,6338\,2079\,4036\,4823\,2511\,2409\,1969$ $IPOD_{2}^{M}$ LQ LQ_1^M $2579\,6134\,5655\,1994\,4131\,1819\,5298\,6956\,1086\,5364\,1023\,4148\quad 50\quad 4149\ 958\ 5775\,4277\,2532\,4232\ 281\ 1831\,6903\,1985\,4202\,2674\,1830\,2902\,3832\,3787\,2409\,1969$ LQ_2^M

Table 16:	The C-statistic for DLBCL data with different screening methods	•
	C-statistic standard error lower bound of C upper bound of $C = p$ value	

QaSIS	0.695	0.084	0.531	0.859	0.00132
$QaSIS_1^M$	0.744	0.090	0.567	0.921	4.281e-05
$QaSIS_2^M$	0.697	0.074	0.553	0.842	0.000342
ĊSIŔ	0.795	0.068	0.662	0.928	9.179e-09
$CSIR_1^M$	0.816	0.078	0.663	0.969	4.438e-08
$CSIR_2^M$	0.801	0.077	0.651	0.951	9.321e-10
RCDCS	0.777	0.078	0.625	0.929	3.069e-06
$RCDCS_1^M$	0.778	0.070	0.641	0.915	7.637e-06
$RCDCS_2^M$	0.761	0.067	0.630	0.892	2.146e-06
CRSIS	0.810	0.082	0.650	0.971	2.240e-10
$CRSIS_1^M$	0.818	0.070	0.681	0.954	3.463e-14
$CRSIS_2^M$	0.822	0.062	0.699	0.944	1.217e-08
$SVSIar{R}$	0.743	0.071	0.604	0.883	2.458e-05
$SVSIR_1^M$	0.791	0.075	0.644	0.938	3.239e-05
$SVSIR_2^M$	0.750	0.077	0.599	0.901	1.886e-05
CRIS	0.785	0.079	0.630	0.939	3.451e-06
$CRIS_1^M$	0.805	0.076	0.657	0.953	1.095e-08
$CRIS_2^M$	0.792	0.099	0.598	0.986	8.451e-05
KM	0.767	0.075	0.621	0.913	0.000438
KM_1^M	0.775	0.074	0.630	0.920	2.211e-06
KM_2^M	0.755	0.073	0.612	0.898	1.188e-06
IPOD	0.707	0.071	0.567	0.846	0.00043
$IPOD_1^M$	0.715	0.086	0.546	0.883	7.912e-06
$IPOD_2^M$	0.695	0.074	0.550	0.839	0.00034
LQ^{-}	0.777	0.069	0.641	0.913	1.081e-05
LQ_1^M	0.784	0.084	0.619	0.950	1.243e-08
LQ_2^M	0.755	0.069	0.621	0.890	2.106e-06