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S1 Illustration referenced in the Introduction

The geometry plays an essential role for the shape of such a sub-manifold.

To illustrate the concept of a principal sub-manifold, consider a set of data

points (xi,1, xi,2, xi,3, xi,4) on S3 ⊂ R4 , where the coordinates (xi,1, xi,2, xi,3) ⊂

R3 of each data point form a rough sinusoid and the fourth coordinate xi,4

is added so that every point lies on a sphere. The data is originally con-

structed by sampling the triplets (xi,1, xi,2, xi,3) ⊂ R3 from the distribution


xi,1

xi,2

xi,3

 =


(i− n/2)/n

sin(2xi,1)/6 + 32U

1 + 1/100V

 , 1 ≤ i ≤ n
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where U and V are independent normal variableN(0, 1/10) andN(0, 1/100).

To lift each point to R4, we add the fourth coordinate so that every point

lies on a sphere satisfying

x2
i,1 + x2

i,2 + x2
i,3 + x2

i,4 = C,

where a shifting parameter C (e.g., 0.45) is chosen such that

√
C − x2

i,1 − x2
i,2 − x2

i,3 ≥ 0.

We still need to normalize the data to guarantee that the data are in S3.

(a) (b)

Figure 1: Visualization of the projected two-dimensional sub-manifold for data on S3.

(a) Principal flow; (b) Principal sub-manifold. The data points are labeled in red, with

the first and second principal flows (in green) going through the starting point. The sub-

manifold (in gray) are the estimated principal sub-manifold. For visualization purpose,

the sub-manifold, the first and second principal direction and the data points have been

projected to the first three eigenvectors of the covariance matrix at the starting point.

The ambient manifold determines some of the inherited geometry of the

projected sub-manifold. In this case, the sub-manifold carries an S-pattern
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S2. PRINCIPAL FLOWS

that mainly stems from the rough sinusoid of the first three coordinates.

Figure 1 shows the data, the superimposed principal flow and the estimated

principal sub-manifold. The starting point (in black) is the center of the

data points (in red). The two green curves (Figure 1(a)) are the first and

second principal flows, while the estimated principal sub-manifold (Figure

1(b)) is highlighted in gray, contrasting the two green principal flows lying

on the surface of the estimated principal sub-manifold. All of them are pro-

jected to the first three eigenvectors of the covariance matrix at the starting

point. The surface is able to bend wherever the curvature of the manifold

changes rapidly. The first principal direction is towards the direction of

maximum variance of the data points, while the surface extends in more

directions that automatically account for more variance of the data points.

S2 Principal flows

Since the concept of a principal sub-manifold is strongly inspired by the

principal flow, see Panaretos et al. (2014), we will review this concept here.

The principal flow yields a one-dimensional, not necessarily geodesic, ap-

proximation of a data set {x1, · · · , xn} ⊂ M. We parameterize the one
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dimensional sub-manifolds as a set of unit speed curves

SubM(A, 1, v,M) =
{
γ : [0, r] → M, γ ∈ C2(M), γ(s) ̸= γ(s′) for s ̸= s′,

γ(0) = A, γ̇(0) = v, ℓ(γ[0, t]) = t for all 0 ≤ t ≤ r ≤ 1
}
, (S2.1)

where γ(0) = A and γ̇(0) = v are initial conditions for γ and ℓ(γ) is the

length of γ. The starting point A can be chosen as the Fréchet sample

mean x̄ or any other point of interest. Then SubM(A, 1, v,M) contains all

smooth curves of length less than 1 with given initial speed and starting

point.

The principal flow is defined by two curves

γ+ = arg sup
γ∈SubM(A,1,v1,M)

∫ ℓ(γ)

0

⟨γ̇(t), e1(γ(t))⟩ dt (S2.2)

γ− = arg inf
γ∈SubM(A,1,v2,M)

∫ ℓ(γ)

0

⟨γ̇(t), e1(γ(t))⟩ dt (S2.3)

where v1 = e1(γ(t)) , v2 = −v1, e1(γ(t)) is the first eigenvector of the co-

variance matrix Σγ(t) at γ(t). The integral for γ− is negative, therefore

the infimum appears in its definition. At each point of γ, γ̇(t) is maxi-

mally compatible to the eigenvector to the largest eigenvalue of the local

covariance matrix at scale h

Σh,γ(t) =
1∑

i κh(xi, γ(t))

n∑
i=1

logγ(t)(xi)⊗ logγ(t)(xi)κh(xi, γ(t)) , (S2.4)

where y ⊗ y := yyT and κh(x, γ(t)) = K(h−1dM(x, γ(t)) with a smooth
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S3. PROOFS OF THEOREMS 3 AND 4

non-increasing kernel K on [0,∞]. All the above definitions are under the

assumption that the first and second eigenvalues of Σh,γ(t) are distinct.

Principal flows achieve higher data fidelity than geodesics and are more

flexible than other curve-fitting approaches in trading off between data fi-

delity and avoiding too high curvature of the curve. The question whether

non-linear variation can be captured in higher dimension has been discussed

(for other assumptions on the embedding data space) under the names of

principal curves or principal surfaces by Hastie and Stuetzle (1989). Note

that principal surfaces are the extension of principal curves to higher di-

mensions in Euclidean space, restricted to a two-dimensional scenario. The

present work is connected to both principal flow and principal surfaces,

using a more general setting than Hastie and Stuetzle (1989).

S3 Proofs of Theorems 3 and 4

Proof of Theorem 3. First, since N̂n is C2, we can use a Taylor expansion

around An to see that for any x ∈ N̂n we have some wx ∈ Ŵn(An) with

|wx| = 1 such that

x = An + |An − x|wx +O(L2
n) .
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Next, we note that since W is C2, we have a constant C > 0, such that

∠
(
Ŵn(An),W (A)

)
≤ ∠

(
Ŵn(An),W (An)

)
+ CdM(An, A)

+O(dM(An, A)
2) .

Now, define the vector wy ∈ W (A) by

wy := argmin
wy∈W (A),|wy |=1

∠ (wx, wy)

and let γA,wy be the integral curve of W starting at A with tangent vector

wy which stays closest to the straight line c(t) := A + wyt. Then define

y := γA,wy(|An − x|) ∈ N . By construction, we now have

y = A+ |An − x|wy +O(L2
n) .

Thus we get the following bound

dM (x, y) ≤ dM(An, A) + |An − x|∠ (wx, wy) +O(L2
n)

≤ dM(An, A) + |An − x|∠
(
Ŵn(An),W (A)

)
+O(L2

n)

≤ dM(An, A) + |An − x|∠
(
Ŵn(An),W (An)

)
+ C|An − x|dM(An, A) + |An − x|O(dM(An, A)

2) +O(L2
n)

≤ (1 + CLn)dM(An, A) + Ln∠
(
Ŵn(An),W (An)

)
+O(LndM(An, A)

2) +O(L2
n) .
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Using this bound, we see that

n1/2dM (x, y) ≤ (1 + CLn)n
1/2dM(An, A) + Lnn

1/2∠
(
Ŵn(An),W (An)

)
+O(n1/2LndM(An, A)

2) +O(n1/2L2
n) .

Now, using the assumptions n1/2dM(An, A) → 0 and n1/4Ln → 0, we get

n1/2dM (x, y) → Lnn
1/2∠

(
Ŵn(An),W (An)

)
,

which goes to 0 in probability due to Theorem 2 as desired.

Proof of Theorem 4. There are vectors wx ∈ Wn(A) with |wx| = 1 and

wy ∈ W (A) with |wy| = 1 such that

x = A+ |A− x|wx +O(L2
n) y = A+ |A− y|wy +O(L2

n) .

In consequence,

dM (x, y) ≤ max(|A− x|, |A− y|)∠ (wx, wy) +O(L2
n)

≤ Ln∠ (Wn(A),W (A)) +O(L2
n) ,

so it remains to show that

n1/4∠ (Wn(A),W (A))
P→ 0 .

Because of σn/hn → 0 and hn → 0, there is a constant C1 such that for

v ∈ TAN0 with |v| = 1 one gets vTΣn,Av → C1h
2
n and a constant C2 such

that for v ∈ NAN0 normal to N0 with |v| = 1 Because of σn/hn → 0 and
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hn → 0, one gets vTΣn,Av → hn for v ∈ TxN0 and |v| = 1 while vTΣn,Av →

σn for v ∈ NxN0 normal to N0 and |v| = 1 one gets vTΣn,Av → C2σ
2
n.

As a result, the eigenvectors of Σn,A corresponding to the k largest

eigenvalues approach the tangent space TxN0 with the maximal angle con-

verging in probability

∠ (Wn(A),W (A)) = arctan

(
C2σn

C1hn

)
Op(1)

⇒ ∠ (Wn(A),W (A)) =

(
C2σn

C1hn

+O
(
σ2
n

h2
n

))
Op(1) .

The claim then follows from n1/4σn/hn → 0.
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S4. PRINCIPAL SUB-MANIFOLDS OF THE HANDWRITTEN DIGITS DATA,
STARTED FROM THE CENTER OF SYMMETRY

S4 Principal sub-manifolds of the handwritten digits

data, started from the center of symmetry
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Figure 2: Principal sub-manifolds of the handwritten digits data, started from the center

of symmetry. Among all the figures: the central figure (in blue) is the center of symmetry;

the horizontal row contains images recovered from the first principal direction of the sub-

manifold; the vertical column is the second principal direction; the main diagonal is the

third principal direction; the other diagonal is the fourth principal direction.
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S5 Angle Between Linear Subspaces

Assume two k-dimensional linear subspaces A,B ⊂ Rd. Let vj :=
∑
α

Ajαwα

any normal vector in A, which means that ∥w∥ = 1. Then, the projection

of this vector to B is given by ṽj =
∑
α,β,l

BjβBlβAlαwα. Let ϕ(v, ṽ) denote

the angle between the two vectors, then ∥ṽ∥ = cosϕ(v, ṽ) and therefore

cos2 ϕ(A,B) = min
v

cos2 ϕ(v, ṽ) = min
v

∑
j

vj · ṽj = min
w

∑
α,β,γ,j,l

wγAjγBjβBlβAlαwα ,

where minimization runs over unit vectors. Since the matrix

(∑
β,j,l

AjγBjβBlβAlα

)
γα

is symmetric and positive semidefinite, the expression is minimized for w

being the eigenvector to the minimal eigenvalue λmin of this matrix. We

therefore note

cos2 ϕ(A,B) = λmin

(∑
β,j,l

AjγBjβBlβAlα

)
γα

⇒ cosϕ(A,B) = λmin

(∑
l

BlβAlα

)
βα

.

In the latter expression, we assume all eigenvalues of

(∑
l

BlβAlα

)
βα

to be

positive, which can be achieved by suitably choosing the signs of spanning

vectors of A and B.

Analogously, note that the angle between a 1-dimensional linear sub-

space A spanned by the unit vector v and a k-dimensional linear subspace
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S6. A LAGRANGIAN FORMULATION

B is given by

cos2 ϕ(A,B) = cos2 ϕ(v, ṽ) =
∑
j

vj · ṽj =
∑
α,j,l

vjBjαBlαvl .

S6 A Lagrangian Formulation

In the following, we will denote components in Rd by latin letters from the

middle of the alphabet and components in N and W ranging from 1 to k

by greek letter from the beginning of the alphabet.

We are aiming to describe a principal sub-manifold in terms of a La-

grangian problem, analogous to Panaretos et al. (2014). To make the idea

precise, we propose the following definition.

Definition 1. Assume a sub-manifold, described by the image of an injec-

tive smooth function

N : Rk ⊃ U → N ⊂ M ⊂ Rd . (S6.5)

In this expression, the image N := {N(t)} is the principal sub-manifold.

We denote the space of local k-dimensional sub-manifolds containing some

point A ∈ M and satisfying ∀N ∈ N : dN (N,A) < ϵ by SubM(A, ϵ, k,M).

Here dN is the metric on N induced by the metric on M.

We denote a generic point in the principal sub-manifold by N , suppress-

ing the argument t, and write Ṅjα := ∇αNj in a slight abuse of notation.
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The main term of the Lagrangian characterizes the compatibility of

the principal sub-manifold with the tensor field W . A simple measure for

goodness of fit at some point N ∈ N is given by the angle between TNN

and W (N), which we will denote by ϕ(TNN ,W (N)). Furthermore, the

Lagrangian will contain two sets of constraints. One set will enforce that

the tangent vectors of TN will always be orthonormal and the second set

consists of the algebraic equations F (N) = 0, restricting to M.

Using the result of Supplement S3, we can formulate the Lagrangian

for the principal sub-manifold as

L1(N, Ṅ) := λmin

(∑
l

Wlβ(N)Ṅlα

)
βα

+
∑
αβ

καβ

(∑
l

ṄlαṄlβ − δαβ

)
+
∑
ν

zνFν(N) .

(S6.6)

For the solution of the dynamic system resulting from this Lagrangian

we have the following result.

Theorem 1. Assume that M = Rd, which means that F ≡ 0, and let

h = ∞. Assume that the first k+1 eigenvalues of Σx,M are distinct for any

point x ∈ M. Then the solution of the dynamic system corresponding to L1

with initial conditions N(0) = A and ∀α : Ṅα(0) = eα(A,Rd) is the affine

space containing A and spanned by
{
e1(A,Rd), e2(A,Rd), . . . , ek(A,Rd)

}
,

the first k eigenvectors of ΣA,M.
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S6. A LAGRANGIAN FORMULATION

Proof. Since h = ∞, we have for any point x ∈ Rd that Wjβ(x) =(
eβ(A,Rd)

)
j
. Assuming the constraint ∀α, β :

∑
l ṄlαṄlβ = δαβ, it is

clear that

λmin

(∑
l

Wlβ(N)Ṅlα

)
βα

≤ 1

where equality holds if and only if ∀α, j : Wjα(N) = Ṅjα. Integrating the

equation Ṅα = eα(A,Rd) with the initial conditions yields the desired affine

subspace. □

However, many complications arise when trying to solve the dynamic

system resulting from this Lagrangian. In particular, the solution strategy

outlined in Panaretos et al. (2014) cannot be applied in this generalized

setting. We will therefore turn to a simpler approach, which aims at con-

structing a principal sub-manifold in terms of a spherical mesh, centered at

the reference point A. This means, that we are looking for curves γ starting

at A, whose tangent vectors γ̇ stay as close as possible to W (γ).

Consider the following set of curves, which encodes the constraints

Γ1,M :=

{
γ : [a, b] → Rd

∣∣∣∣∣ ∑
j

γ̇j γ̇j = 1 and F (γ) = 0

}
. (S6.7)

We then maximize

argmax
γ∈Γ1,M

∑
α,j,l

γ̇jWjα(γ)Wlα(γ)γ̇l . (S6.8)
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We can write this in terms of a Lagrangian, where we square the main

term of the Lagrangian to achieve a simpler formulation

L2(γ, γ̇) :=
∑
α,j,l

γ̇jWjα(γ)Wlα(γ)γ̇l + κ

(∑
j

γ̇j γ̇j − 1

)
+
∑
ν

zνFν(γ) .

(S6.9)

We get the following Theorem for this Lagrangian

Theorem 2. Assume that M = Rd, which means that F ≡ 0, and let

h = ∞. Assume that the first k+1 eigenvalues of Σx,M are distinct for any

point x ∈ M. Then the solutions γα of the dynamic system corresponding

to L2 with initial conditions γ(0) = A and γ̇(0) = eα(A,Rd) span the affine

space containing A and spanned by
{
e1(A,Rd), e2(A,Rd), . . . , ek(A,Rd)

}
,

the first k eigenvectors of ΣA,M.

The Lagrangian L2 is much simpler than L1 and is in fact very similar

to the principal flow Lagrangian. However, the solution technique used in

Panaretos et al. (2014) is not suitable here, therefore we provide a simpler

“greedy” algorithm to approximate principal submanifolds in Section 3.1 of

the article.

For geometric intuition on the Lagrangians, denote the angle between

the k-dimensional tangent space Ṅ from L1 and the tensor field W (N) at

point B as αB and denote the angle between the 1-dimensional tangent
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S6. A LAGRANGIAN FORMULATION

vector γ̇ and W (γ) at point B as α′
B and note that α′

B ≤ αB. Figure

3 illustrates the two angles and compares them to the situation of the

principal flow.

B

A

TBN
TBM

M

N

αB

(a)

M

TBN W (B)
α
L1

γ ⊂ N
B

γ̇ ⊂ TBN
PrW (B)γ̇

N

(b)

M

TBN W (B)

γ ⊂ N
B

γ̇ ⊂ TBN
PrW (B)γ̇

N

α′ L2

(c)

Figure 3: Principal sub-manifolds. (a) Principal flow, αB is the angle between TBN

(k = 1) and W (B) (k = 1); (b) Principal sub-manifold (according to L1), αB is the

angle between TBN (k ≥ 2) and W (B) (k ≥ 2); (c) Principal sub-manifold (according

to L2), α
′
B is the angle between γ̇|B ∈ TBN (k = 1) and W (B) (k ≥ 2).

We conclude this session with a remark on the interpretation of Theo-

rem 1. Theorem 1 shows that, in a flat space, the principal sub-manifold

reduces to the k-dimensional space spanned by the k eigenvectors of ΣA,M

when h = ∞. In this sense, the approach reduces to linear PCA. In con-

nection with the principal flow, recall the similar result (Proposition 5.1,

Panaretos et al. (2014)) where the first order of the principal flow on a

flat space has been shown to coincide with the first principal direction if

the locality parameter h of the tangent covariance matrix is chosen to be

infinity.
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S7 A Greedy Algorithm

Algorithm 1. two-dimensional principal sub-manifold

1. At a point A (mean or other point), use the logarithm map: logA(xi) =

yi.

2. Find the covariance matrix ΣA,M from y1, . . . , yn by (2.9).

3. Let e1(A) and e2(A) be the first and second eigenvector of ΣA,M. Define

Zl = ϵ′ ×
[
cos
(
2lπ/L

)
e1(A) + sin

(
2lπ/L

)
e2(A)

]
,

with l = 1, . . . , L.

4. Use exponential map to map Zl onto M so we get a set of new points

expA(Zl) = Al.

5. Assume that we stay at point Al,i, we are going to find Al,i+1 (Al,0 = A

and Al,1 = Al) via steps (a)-(g)

(a) find ΣAl,i,M.

(b) find e1
(
Al,i

)
and e2

(
Al,i

)
.

(c) find vl,i = logAl,i

(
Al,i−1

)
.

(d) find

ṽl,i =
〈
vl,i, e1

(
Al,i

)〉
e1
(
Al,i

)
+
〈
vl,i, e2

(
Al,i

)〉
e2
(
Al,i

)
S 16
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where ⟨a, b⟩ =∑n
i=1 aibi with a = (a1, . . . , an) and b = (b1, . . . , bn).

(e) let ul,i = ṽl,i (or ul,i = 2ṽl,i − vl,i).

(f) calculate

rl,i = −ϵ′ × ul,i∥∥ul,i

∥∥ .
(g) update

Al,i+1 = expAl,i

(
rl,i
)
.

(h) stop at Al,i+1 when

∥∥logAl,i+1
(xj)

∥∥ > δ or
〈
logAl,i+1

(Al,i), logAl,i+1
(xj)

〉
≥ 0.

for all j = 1, . . . , n.

6. For every l = 1, . . . , L, connect Al,i with Al,i+1 by i we get Al, a ray of

principal sub-manifold.

7. Output: all Al’s as in (3.15), where 1 ≤ l ≤ L.

Remark 1. In Step 3, there is no difference in either forming a circle

or an ellipse for small ϵ′. In case of an ellipse, the axes of ellipse would

be proportional to the first and second eigenvalue of ΣA,M. In case of a k-

dimensional sub-manifold, Step 3 and Step 5(b), (d) will need to be updated

with the first k eigenvectors.
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S8 Convergence of the Greedy Algorithm

First we simplify the algorithm from Appendix S7 to only represent abstract

calculation steps. We call curves defined by this algorithm principal spokes.

Algorithm 2. Algorithm for principal spokes of fixed length L.

1. Start with a point p(0) ∈ M and a tangent vector v(0) ∈ W (p(0)),

2. for i ≥ 0 and writing an orthonormal basis of W (p(i+1)) by vectors

Wα(p
(i+1)) for 1 ≤ α ≤ k let

p(i+1) = expp(i)

(
ϵ′v(i)

)
ũ(i+1) = −logp(i+1)(p(i))

u(i+1) =
k∑

α=1

m∑
j=1

ũ
(i+1)
j Wαj(p

(i+1))Wα(p
(i+1))

v(i+1) =
u(i+1)∥∥u(i+1)

∥∥
3. stop when (j + 1)ϵ′ ≥ L.

Assume a sequence of points (pj)j ∈ M which converges to a point p ∈ M.

Then smoothness of M yields that dg(pj, p) → ∥pj − p∥, where dg is the

geodesic distance. Thus proving any convergence statement in terms of

euclidean distance immediately yields the same convergence statement in

terns of geodesic distance in M.
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Lemma 1. Assume W to be C1 and assume a sequence of points (pj)j ∈ M

which converges to a point p ∈ M. For any vector v ∈ W (p) let vj ∈ W (pj)

define the sequence of its projections. Then the angle between vj and v

decreases as O(∥p− pj∥).

Proof. The claim follows immediately by applying the Taylor expansion

in ∥p − pj∥ to the local spanning vector fields Xj of W . The linear order

dominates for pj → p. □

Lemma 2. Assume W to be C1 and assume a sequence of points p(j) con-

structed by algorithm 2 with fixed ϵ′. Then there is a constant K0 such

that

∥v(j+1) − v(j)∥ ≤ K0ϵ
′ + o(ϵ′). (S8.10)

Proof. The points p(j+1) and p(j) are connected by an arc length parametrized

geodesic γ, which is C2, since M is C2. Let γ(0) = p(j) and γ(ϵ′) = p(j+1)

then v(j) = γ̇(0) and ṽ(j+1) := γ̇(ϵ′) = 1
ϵ′
ũ(j+1) by construction. Since γ̇ is

C1, we can use the Taylor expansion to note that there is a constant A1

such that we have for the angle

∠
(
ṽ(j+1), v(j)

)
≤ A1ϵ

′ + o(ϵ′)

∠
(
v(j+1), PW (p(j+1))v

(j)
)
= ∠

(
PW (p(j+1))ṽ

(j+1), PW (p(j+1))v
(j)
)
≤ A1ϵ

′ + o(ϵ′) .
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From Lemma 1 we conclude that there is a constant A2 such that

∠
(
PW (p(j+1))v

(j), v(j)
)
≤ A2ϵ

′ + o(ϵ′)

∠
(
v(j+1), v(j)

)
≤
(
v(j+1), PW (p(j+1))v

(j)
)
+
(
PW (p(j+1))v

(j), v(j)
)
≤ (A1 + A2)ϵ

′ + o(ϵ′) .

The claim follows immediately since v(j), ṽ(j+1) and v(j+1) are unit vectors.

□

Theorem 3. Assume W to be C2 and assume there is a C2 integral sub-

manifold N of W through p(0). From the fact that M and N are C2 and

from Lemma 1 we can conclude the following uniform bounds in a ball of

radius L around p(0), where PX denotes orthogonal projection onto X and

v is always normalized:

∀ p ∈ M, v ∈ TpM : ∥expp

(
ϵ′v
)
− p− ϵ′v∥ ≤ K2

2
(ϵ′)2 + o((ϵ′)2),

(S8.11)

∀ p ∈ N , v ∈ TpN : ∥PN (p+ ϵ′v)− p− ϵ′v∥ ≤ K2

2
(ϵ′)2 + o((ϵ′)2),

(S8.12)

∀ p, q ∈ M, v ∈ TpN : ∥PWk(q)v − v∥ ≤ K1∥p− q∥+ o(∥p− q∥). (S8.13)

Then the curves of length L starting at γ(0) = p(0) constructed by algo-

rithm 2 converge for step size ϵ′ → 0 to curves that lie within the integral

submanifold of W through p(0).
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Proof. For every point q ∈ N we have TqN = W (q). We show that the

distance of p(s) from N is of order O
(
(ϵ′)2

∑s−1
j=0(1 +K1ϵ

′)j
)
. The proof is

done by induction. Note that we will simply bound the distance between

the points p(j) and some corresponding points q(j) ∈ N . Since these q(j)

need not be the closest points in N to the p(j), we derive, strictly speaking,

upper bounds for the distances of the p(s) from N .

As above let v(0) ∈ W (p(0)) = Tp(0)N the initial direction of the curve.

Then, using that v(0) is tangent to N and p(1) = expp(0)

(
ϵ′v(0)

)
, we get from

equation (S8.11)

∥p(1) − p(0) − ϵ′v(0)∥ =
K2

2
(ϵ′)2 + o((ϵ′)2).

Let q(1) be the orthogonal projection of p(0) + ϵ′v(0) to N , which is unique

for small enough ϵ′. Then by equation (S8.12) we get ∥q(1)−p(0)− ϵ′v(0)∥ =

K2

2
(ϵ′)2 + o((ϵ′)2) and thus ∥q(1) − p(1)∥ ≤ K2(ϵ

′)2 + o((ϵ′)2). This concludes

the beginning of the induction.

Now assume ∥q(s)−p(s)∥ ≤ K2(ϵ
′)2
∑s−1

j=0(1+K1ϵ
′)j+o

(
(ϵ′)2

∑s−1
j=0(1 +K1ϵ

′)j
)

where q(s) is some point on N . As before we have

∥p(s+1) − p(s) − ϵ′v(s)∥ =
K2

2
(ϵ′)2 + o((ϵ′)2).

Let w(s) be the projection of v(s) to Tq(s)N , then equation (S8.13) yields

ϵ′∥w(s) − v(s)∥ ≤ K1ϵ
′∥q(s) − p(s)∥+ o(ϵ′∥q(s) − p(s)∥).
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Let q(s+1) be the orthogonal projection of q(s) + ϵ′w(s) to N . As above

∥q(s+1) − q(s) − ϵ′w(s)∥ =
K2

2
(ϵ′)2 + o((ϵ′)2).

From the above considerations we can thus conclude

∥p(s+1) − q(s+1)∥ ≤ ∥p(s) + ϵ′v(s) − q(s) − ϵ′w(s)∥+K2(ϵ
′)2 + o((ϵ′)2)

≤ ∥q(s) − p(s)∥+K1ϵ
′∥q(s) − p(s)∥+K2(ϵ

′)2 + o(ϵ′∥q(s) − p(s)∥) + o((ϵ′)2)

≤ K2(ϵ
′)2

s∑
j=1

(1 +K1ϵ
′)j +K2(ϵ

′)2 + o

(
(ϵ′)2

s∑
j=1

(1 +K1ϵ
′)j

)
+ o((ϵ′)2

= K2(ϵ
′)2

s∑
j=0

(1 +K1ϵ
′)j + o

(
(ϵ′)2

s∑
j=0

(1 +K1ϵ
′)j

)
.

This concludes the induction step.

Now, note that

s−1∑
j=0

(1 +K1ϵ
′)j =

s−1∑
j=0

j∑
l=0

(
j

l

)
(K1ϵ

′)l =
s−1∑
l=0

(K1ϵ
′)l

s−1∑
j=l

(
j

l

)
=

s−1∑
l=0

(
s

l + 1

)
(K1ϵ

′)l

≤
s−1∑
l=0

sl+1

(l + 1)!
(K1ϵ

′)l =
1

K1ϵ′

s∑
l=1

(K1sϵ
′)l

l!
≤ exp(K1sϵ

′)− 1

K1ϵ′
,

where we use the hockey-stick identity in the first line.

To achieve a curve of length at least L, we need s = ⌈L
ϵ′
⌉ steps of

length ϵ′. The maximum distance of the curve from N is thus bounded by

dmax =
K2(exp(K1L)−1)

K1
ϵ′ + o(ϵ′) which goes to 0 as ϵ′ → 0. □

Remark 2. Note that, by definition of an integral manifold, Ṅjα = Wjα

at every point in N and therefore N can be understood as a principal

submanifold in our setting.
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Corollary 1. Assume W to be C2 and involutive, then there is a C2 integral

submanifold N of W through p(0). Then the curves of length L starting at

γ(0) = p(0) constructed by algorithm 2 converge for step size ϵ′ → 0 to

curves that lie within the integral submanifold of W through p(0).

S9 Reflection versus Projection

To illustrate the properties of the projection and reflection algorithms we

consider the simpler case of the principal flow to make illustration easier.

However, the qualitative results can be generalized to the principal sub-

manifold setting. In general, the projection algorithm will incur an error

proportional to the local curvature of true integral curves of the vector

field W at each step. If the vector field changes strongly, this leads to

an increasingly bad fit. The reflection algorithm does not incur an error

when following a field whose integral curves have constant curvature, which

means they are circles. In the general case, it will incur an error at each

step which is proportional to the change of curvature. In this sense, the

error is of “higher order” and can be expected to be smaller in general.

Figure 4 illustrates three example cases: spherical, elliptical and sinus

integral curves. To highlight the qualitative behaviour, the step sizes of the

algorithms are strongly exaggerated. One can clearly see that the projec-
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tion algorithm determines a curve which successively departs from the true

integral curve. The reflection algorithm, in contrast, stays close to the true

curve. It is thus also much less susceptible to perturbations in the vector

field W .

Figure 4 also shows that the integral curves for the reflection algorithm

are much smoother, if only every second step is taken into account. This is

due to the fact that the curve starts out tangential to the true integral curve,

changes direction after the first step and is then again close to tangential

after the second step, if curvature is only slowly varying. Therefore, the

change of direction after the second step and indeed every even numbered

step is much smaller than after an odd numbered step, if curvature changes

slowly.

S10 Simulated data

To further investigate the behavior of the principal sub-manifold as de-

pendent on the configuration of the data points and the choice of scale

parameter, we considered three sets of examples on S3. We chose this man-

ifold as a “test manifold” since it represents one of the most natural spaces

from which the projected sub-manifold can be well understood, and since it

provides a manifold for which we can compare the principal sub-manifolds
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S10. SIMULATED DATA

(a) (b) (c)

(d) (e) (f)

Figure 4: Comparing the results of the projection and reflection algorithms for a simple

principal flow. The blue lines indicate true integral curves of the principal flow, thus

the local PCA vector field W is always tangential to these lines. The solid blue line is

the curve on which the algorithm starts and which it should ideally follow. The black

points and lines represent steps of the algorithm with projection and the red points and

lines represent steps of the algorithm with reflection. In Figures (a)-(c) all steps of the

reflection algorithm are shown, whereas in Figures (d)-(f) the reflection algorithm uses

halved step size and only every second point is used.

with the principal geodesic. We observe here that the full manifold varia-

tion of the sub-manifold from the data can be very complicated; hence, we

do not look at them on a quantitative basis, but rather investigate them
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qualitatively.

The first set of examples involves five data clouds in S3, each presenting

a different curvature. As the curvature is non-constant, the Fréchet mean

is no longer a good starting point for the principal sub-manifold. Instead,

we choose the center of symmetry for each data set as a starting point. The

first and second data cloud are constructed in a way that the first three

coordinates of each point are concentrated around a one dimensional curve;

the configuration of the third and fourth are such that the points are on

a two-dimensional surface/plane; the fifth one is much more diffuse: the

points lie on a sea-wave-like surface.

For each one of them, a two-dimensional principal sub-manifold was

fitted using three different bandwidths h and the results are presented.

The results indicate that the corresponding sub-manifolds perform well in

capturing the local and global variation. We note that the sub-manifold fits

well for data Cloud 1 no matter what scale of h is used (Figure 6(a)-(c));

the sub-manifold seems to capture a finer structure with a reduced value

for h for data Cloud 2 (Figure 6(d)-(f)): this can be also seen as the first

principal direction evolves with the scale of h. When the surface becomes

two-dimensional for data Clouds 3 and 4, the principal sub-manifolds also

excel: the fitted sub-manifold remains unchanged for different h as the
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surface is flat (Figure 6(g)-(i)), while it picks up the appropriate structure

with a reduced h for the bent surface (Figure 6(j)-(l)); for data Cloud 5

(Figure 6(m)-(o)), it is more obvious that using a sub-manifold is more

appealing than using only a curve or its equivalent; the sub-manifold fits

the data points surprisingly well even with a surface of high curvature.

To probe how a sub-manifold performs with a noisy surface, we created

four sets of data by blurring the sea-wave-like surface aforementioned with

increasing levels of noise. Although the data reside in S3, most of the

variation originates around but not exactly on the surface. By knowing

how the data points lie around the surface, we can get a sense of such

variability. As we should no longer look at the local scale when the points

tend to have large variability, we found a two-dimensional sub-manifold by

choosing an appropriate scale parameter h, potentially a larger one, for each

data set. In Figure 6(a), when there is no noise, it is expected that the sub-

manifold would capture total variation of the data in the projected space.

When the noise increases (Figure 6(b), (c), and (d)), where all points are

more diffused away from the underlying projected surface, the fitted sub-

manifold is, although not a perfect sub-manifold, still well explaining for

total data variability.

The last sets of examples are from a “lifted” ellipsoid in S3. Intuitively,
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(a) (d) (g) (j) (m)

(b) (e) (h) (k) (n)

(c) (f) (i) (l) (o)

Figure 5: Principal sub-manifolds (with superimposed principal directions) for five data

clouds in S3, with different scale parameters. (a)-(c) Principal sub-manifolds (in gray)

and principal directions (in green) for data Cloud 1 (in red) for different values of h

(small, middle, large). (d)-(f), (g)-(i), (j)-(l) and (m)-(o) provide the same information

for data Clouds 2, 3, 4 and 5.
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(a) no noise (b) noise level 1

(c) noise level 2 (d) noise level 3

Figure 6: Principal sub-manifolds (with superimposed principal directions) for four sea

wave sets of data with noise on S3. (a) Principal sub-manifolds with no noise added.

(b), (c) and (d) provide the same information for three different levels of noise.

the four data sets we generated represent different but inter-connected types

of situation: (1) the triplets are well spread out inside the ellipsoid; (2)-(3)

the triplets are mostly being concentrated in the middle of a more flatter

ellipsoid; (4) the triplets are chosen nearly on the diameter of the ellipsoid

(potentially around an ellipse). For case (1) (Figure 7(a)), where most

points are inside the ellipsoid, neither one-dimensional nor two-dimensional

sub-manifold would be a perfect sub-manifold. As the diffusion decreases,

such as in case (2) (Figure 7(b)) and (3) (Figure 7(c)), the sub-manifold of

dimension two appears to be more and more appropriate. In case (4) (Figure

S 29



Zhigang Yao, Benjamin Eltzner, Tung Pham

7(d)), the sub-manifold provides the best fit such that all the projected

data points lie on the sub-manifold. As one has already observed, the

benefit of using a two-dimensional sub-manifold in this example is only

marginal. Arguably though, one can go further, for instance, having a

higher dimensional sub-manifold in case (1) or case (2). Such an extension

of the algorithm would be very natural, but the details of implementing the

algorithm are quite subtle and we choose not to pursue this further.

To contrast the principal sub-manifold with the standard principal

geodesic, we include the results of principal geodesics adjusted to its 2d

version, for the case of Figure 6(j) and Figure 6(m). Specifically, the best h

has been chosen for either method to perform appropriately. It is expected

that the principal geodesic, essentially a principal great circle along its first

and second principal component, is not capable of capturing the curvature

of the manifold; that is, the two principal geodesics (in black) for both

cases (Figure 8(a)) and (Figure 8(b)) tend to deviate from the principal

directions (in green) shortly after the starting point, thus not lying on the

surface. In contrast, the principal sub-manifold handles the curvature well

in both cases.
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(a)
x2
1

2.52
+

x2
2
2

+
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3
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≤ 1 (b)
x2
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+

x2
2
2

+
x2
3
1

≤ 1

(c)
x2
1
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+

x2
2
2

+
x2
3
1

≤ 1 (d)
x2
1
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+

x2
2
2

+
x2
3
1

≤ 1

Figure 7: Principal sub-manifolds (with superimposed principal directions) for four el-

lipsoid sets of data on S3. (a) Principal sub-manifolds (in blue) and principal directions

(in green) for data set (in red) of case (1). (b), (c) and (d) provide the same information

for case (2), (3) and (4).
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(a) (b)

Figure 8: Comparison of principal sub-manifolds and principal geodesics. The principal

geodesics (in black) are superimposed to the principal directions (in green) in the pro-

jected space. Only segments of the principal geodesics are highlighted for visualization

purpose.

S11 Simulations for Different Kernel Bandwidths

In this subsection, we present some simulation results highlighting the in-

fluence of the kernel bandwidth on the results of the principal submanifold

estimation. We sample n points uniformly for the surface of a sphere of unit

radius S2 ⊂ R3 and add Gaussian white noise with a standard deviation

of σ. Then we apply the principal submanifold algorithm with 16 initial

directions with a Gaussian kernel of bandwidth h.

From Figures 9, 10, and 11, one can clearly see that the principal sub-

manifold algorithm requires a bandwidth which is more than a factor of 2

larger than the noise level of the data. For lower bandwidth, the eigenvec-

tors of local PCA become too variable and the two largest eigenvalues may
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(a) h = 0.05 (b) h = 0.1 (c) h = 0.2

(d) h = 0.5 (e) h = 1 (f) h = 2

Figure 9: Principal submanifold results for noise level σ = 0.05 and sample size n =

10 000. One can clearly see that a bandwidth much larger than the noise level but

smaller than the diameter of the sphere, i.e. σ ≪ h ≪ 2 one gets a good fit to the

sphere. For small bandwidths the eigenvectors to the two largest eigenvalues are in some

cases not tangential to the sphere, leading to erratic direction changes of the rays. For

large bandwidths, the opposite side of the sphere starts to contribute substantially to

the local PCA, leading to curves that do not follow the curvature of the sphere, but are

instead too straight.

not correspond to vectors whose span is close to tangential to the underly-

ing sphere. For large bandwidths, which are less than a factor of 2 below

the diameter of the sphere, the whole data set contributes to the local PCA,
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(a) h = 0.05 (b) h = 0.1 (c) h = 0.2

(d) h = 0.5 (e) h = 1 (f) h = 2

Figure 10: Principal submanifold results for noise level σ = 0.05 and sample size n =

1000. In comparison to the simulation with n = 10 000, the results are more bandwidth

dependent but intermediate bandwidths h = 0.2 and h = 0.5 still yield excellent results.

leading to too weak dependence of eigenvectors on the neighborhood of a

point and thus to too slow variation of the eigenspaces. As a result, the

lines curve much less than the sphere does and therefore progressively move

away from the data. These two effects are to be expected and constitute

fundamental limitations of any local neighborhood approach.

By comparing Figures 9, 10, and 11, one can see that the bandwidth

dependence is exacerbated by reducing the sample size. However, even for
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(a) h = 0.05 (b) h = 0.1 (c) h = 0.2

(d) h = 0.5 (e) h = 1 (f) h = 2

Figure 11: Principal submanifold results for noise level σ = 0.05 and sample size n = 100.

Even in these extremely sparse data sets, intermediate bandwidths h = 0.2 and h = 0.5

still yield quite good results and recover the spherical shape.

n = 100 the intermediate bandwidths h = 0.2 and h = 0.5 still achieve re-

markably good results. This underscores the potential strength of principal

submanifolds as a means of identifying low dimensional structure in data

sets even of moderate size.
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S12 Principal variation on the MNIST data set

This section presents a detailed exploration of the principal sub-manifolds

within the MNIST handwritten digit dataset, a comprehensive repository of

handwritten digits widely utilized for the development and testing of vari-

ous image processing algorithms. The dataset, accessible at https://yann.

lecun.com/exdb/mnist/, encompasses a collection of 70,000 grayscale im-

ages, each of 28×28 pixel resolution, depicting digits from “0” to “9”.

In this analysis, we specifically focus on the digit “3” to demonstrate

the variability inherent in handwriting styles. This choice is motivated by

the digit’s capacity to exhibit a wide range of variations, such as differences

in inclination angles, stroke thickness, opening sizes, and the curvature of

junctions. Through the analysis of 7,141 instances of the digit “3” from the

MNIST dataset, we construct the principal sub-manifold centered around

the digit’s mean and examine it across four principal directions, see Figure

12. This approach allows us to systematically describe the morphological

changes of the digit “3” across distinct dimensions of variation.

The first principal direction reveals a significant variation in the incli-

nation of the digit “3”, transitioning from a leftward lean at the top to a

rightward orientation. The second principal direction highlights a trans-

formation in the corners of the “3”, ranging from smooth to pronouncedly

S 36

https://yann.lecun.com/exdb/mnist/
https://yann.lecun.com/exdb/mnist/


S12. PRINCIPAL VARIATION ON THE MNIST DATA SET

Figure 12: Principal sub-manifolds of the digit “3” extracted from the MNIST dataset,

originating from the dataset’s mean. Each row illustrates the variation of the principal

sub-manifolds across distinct principal directions, sequentially ordered from the first to

the fourth principal direction, from the top row to the bottom. The digit displayed

within a red frame at the center of each row denotes the mean.

sharp angles. In the third dimension, we observe the two semi-circular arcs

of the “3” evolving from fuller to more slender forms, indicating a variation

in the digit’s overall robustness. Finally, the fourth direction underscores

changes in stroke thickness, illustrating a spectrum from markedly thick to

fine lines.

This multifaceted analysis not only underscores the diversity of hand-

writing styles captured within the MNIST dataset but also demonstrates
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the utility of principal sub-manifold analysis in uncovering the underlying

patterns of variation in digital representations of handwritten digits. Such

insights are invaluable for enhancing the accuracy and robustness of ma-

chine learning models in tasks related to handwriting recognition and image

processing.

S13 Principal variation of leaf growth

We also considered a landmark data set consisting of leaf growth, collected

from three Clones and a reference tree of young black Canadian poplars at

an experimental site at the University of Göttingen (http://stochastik.

math.uni-goettingen.de/~huckeman/ishapes_1.0.1.tar.gz). The land-

mark configurations of the leaves were collected from three Clones (‘C1’,

‘C2’, ‘C3’) and a reference tree (‘r’) collected at two different levels: breast

height (Level 1) and the crown (Level 2). They consist of the shapes of

27 leaves (nine from Level 1 and eighteen from Level 2) from Clone 1; of

22 leaves (six from Level 1 and sixteen from Level 2) from Clone 2; and of

24 leaves (eighteen from Level 1 and seventeen from Level 2) from Clone

3 as well as of the shapes of 21 leaves (thirteen from Level 1 and eigh-

teen from Level 2) from the reference tree, all of which have been recorded

non-destructively over several days during a major portion of their growing
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period of approximately one month. There are four landmarks correspond-

ing to quadrangular configuration at petiole, tip, and largest extensions

orthogonal to the connecting line. Figure 13 represents the four landmarks

extracted from the contour image of each leaf on a flat plane, the four land-

marks contain, in particular, the information of length, width, vertical and

horizontal asymmetry.

Although it is known that the leaf growth of the genetically identical

trees along a period of time reveals a non-Euclidean pattern Huckemann

(2011), the study only focused on the mean geodesic difference (therefore

essentially a one-dimensional variation), which is used for the discrimi-

nant analysis across the trees. However, the shape change along differ-

ent directions—especially the principal directions in shape space—has not

been fully explored. We will investigate the shape variation using princi-

pal sub-manifold among three Clones and the reference tree. As can be

expected (see in Section 2.2 in the paper), each landmark configuration,

represented by a polygon in Figure 13, corresponds to a point in Kendall

shape space. We focus on the non-geodesic shape variation primarily in

vertical and horizontal direction of the leaf growth, the analysis of which

requires a multi-dimensional scale treatment.

As all the leaves are very young, we first combine the leaves from the
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(d)

Figure 13: Leaf growth over a growing period of Clone 1 (a), Clone 2 (b), Clone 3 (c), and

a reference tree (d). (a) Four landmarks on the leaf of Clone 1 have been connected and

represented by a polygon at each growing period (27 polygons totally); (b)-(d) provide

the same information for Clone 2 (22 polygons), Clone 3 (24 polygons) and the reference

tree (31 polygons).

breast height and crown for each tree. For each tree, a principal sub-

manifold is found, where two principal directions are extracted from the
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(h)

Figure 14: Principal sub-manifolds of the leaf growth data. (a) First principal direction

obtained from the combined leaves at breast height and the crown of the reference tree;

(b) Second principal direction obtained from the combined leaves at breast height and

the crown of the reference tree. (c)-(h) provide the same information for Clone 1, 2 and

3.

fitted sub-manifold. The two principal directions are then transformed to

the preshape space and all the landmarks recovered are superimposed. Re-

sults for all the three Clones and the reference tree are displayed in Figure

14. The leaves of the reference tree exhibit two main kinds of variation: the

first one tends to follow the horizontal direction with some effects along the

vertical direction at tip. This can be well seen by the first principal direction
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Figure 15: Principal sub-manifolds of the leaf growth data. Row 1 (reference tree): first

principal direction at breast height; second principal direction at breast height; first

principal direction at the crown; second principal direction at the crown. Row 2 - Row

4 provide the same information for Clone 1, 2 and 3.

in Figure 14(a); the second one concentrates on petiole, which is displayed

by the second principal direction in Figure 14(b). The three Clones reveal
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different patterns of variation from the reference tree; between them, each

differs from the other. Clone 1 shows more variation at the petiole and

the left extension in the first principal direction, while the second principal

direction shows more variation at the right extension; the two principal di-

rections of Clone 2 behave more similarly as that of the reference tree, with

some other variation appearing in the second principal direction of Clone 2

at the right extension and the tip; unlike Clone 1 and 2, variation in both

vertical and horizontal directions appear evenly in either the first or the

second principal direction for Clone 3. The same analysis for the leaves at

breast height and crown alone has also been performed separately with a

similar outcome, as shown in Figure 15, the result suggesting no different

conclusion.

S14 Introduction to landmark shape spaces

Here we introduce the notion of landmark shape spaces, which are used in

one of the applications below. From the shape analysis point of view, land-

mark coordinates retain the geometry of a certain point configuration. The

landmarks are observations, which are usually positions or correspondences

on an object in an appropriate coordinate system. See, e.g., Dryden and

Mardia (1998) for an accessible overview for a rapid introduction. Consider
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a suitable ordered set of k landmarks of an object, namely a k-ad (where

k ≥ 2), with each landmark lying in Rd′ . That is,

z =
{
zj ∈ Rd′ : 1 ≤ j ≤ k

}
,

To compare the shapes of objects described by k landmarks zj, one can

define the Kendall shape space Σk
d′ of configurations, which are invariant

under translation, scaling, and rotation. This is achieved by transforming

k-ads, z = (zT1 , . . . , z
T
k )

T , to points on the unit sphere:

Translation invariance: z∗ = ((z1 − z̄)T , . . . , (zk − z̄)T )T , where

z̄ = 1
k

∑k
j=1 zj

Scale invariance: zpre =
z∗

∥z∗∥

Rotation invariance: [z] = Rzpre for R := idk⊗R̃ with the Kronecker

product ⊗ and R̃ ∈ SO(d′). For d′ = 2 this reduces to [z] = R(θ)zpre

or [z] = eiθzpre if R2 is identified with C, where −π < θ ≤ π.

Remark 3. Kendall shape space only leads to a manifold if d′ = 2, therefore

we restrict to d′ = 2 here: the translation and scale invariant zpre ∈ S2k−3 ⊂

R2k−2 is called the preshape of z. Centering the data to achieve translation

invariance reduces dimension by 2 and projecting to the unit sphere S2k−3 ={
v ∈ R2k−2 : ∥v∥ = 1

}
to achieve scale invariance reduces dimension by 1.

Then, [z] is the shape of z given by the orbit of the preshape zpre under

S 44



BIBLIOGRAPHY

rotation. Σk
2 is a quotient space of S

2k−3 with dimension 2k−4 of equivalence

classes of k-ads.
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