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S0 Implementation codes

NIScodes.zip contains all R and supporting C codes for implementation of

our nonparametric interaction selection, as well as a demo code for one

simulation example to illustrate how the codes are run.

S1 Technical conditions

Condition 1. The kernel function K(x) is bounded and Lipschitz-continuous with a

bounded support.

Condition 2. The density function fj(xj) of Xj is Lipschitz-continuous and bounded

away from 0, and has a bounded support Ωj for j = 1 . . . d.
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Condition 3. For an arbitrary quadruple (Xji1 , Xji2 , Xji3 , Xji4), the joint density of

any two, three, or all of them is Lipschitz-continuous on its support.

Condition 4. For all main and interaction components, mj(·) and mjk(·, ·), 1 ≤

j, k ≤ d, their 1st derivatives (or partial derivatives) exist, and are

bounded and continuous.

Condition 5. The random error has a finite fourth moment, E(|ε|4) <∞.

S2 Normal Equation

In this section, we solve the additive model (1.1) with identifiability con-

dition (1.2) and (1.3) in a theoretical way. Let H be the space of square-

integrable functions of X1, X2, . . . , Xd. For each j = 1, 2, . . . , d, Hj denotes

the Hilbert spaces of univariate square-integrable functions φ(·) satisfying

φ(xj,0) = 0 with inner product 〈φ1, φ2〉 = E(φ1(Xj)φ2(Xj)) for any φ1, φ2 ∈

Hj. For each 1 ≤ j < k ≤ d, Hjk denotes the Hilbert space of bivariate

square-integrable function ψ(·, ·) satisfying ψ(xj,0, ·) = 0, ψjk(·, xk,0) = 0,

ψ(xj,0, xk,0) = 0 with inner product 〈ψ1, ψ2〉 = E(ψ1(Xj, Xk)ψ2(Xj, Xk)) for

any ψ1, ψ2 ∈ Hjk. Obviously, Hj (j = 1, 2, . . . , d) and Hjk (1 ≤ j < k ≤ d)

are subspaces of H. Moreover, H⊕ = H1 ⊕H2 ⊕ . . .⊕Hd ⊕H1,2 ⊕H1,3 ⊕

. . . ⊕ H(d−1)d is a subspace of H and is closed under some technical as-
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sumptions. These Hilbert spaces are also subspaces of HY X , the space of

square-integrable functions of Y , X1, .., Xd.

The optimization problem is to minimize the mean squared error E(Y −

α−m(X))2 with constraintm(X) =
∑d

j=1 mj(Xj)+
∑

1≤j<k≤dmjk(Xj, Xk) ∈

H⊕. Denote the conditional expectation operators E(·|Xj)−E(·|Xj = xj,0)

and E(·|Xj, Xk) − E(·|Xj = xj,0, Xk) − E(·|Xj, Xk = xk,0) + E(·|Xj =

xj,0, Xk = xk,0) on HY X by Pj and Pjk, and they are orthogonal projections

onto Hj and Hjk. We also denote the expectation operator E(·) on HY X

by P0, a project onto the space of constant functions.

Denote the minimizer of m(X) in the aforementioned optimization

problem by m̂(X). Then the minimizer of intercept α is α̂ = E(Y ) −

E(m̂(X)) = P0(Y −
∑d

j=1 mj(Xj)−
∑

1≤j<k≤dmjk(Xj, Xk)). The residual

Y − α̂ − m̂(X) is orthogonal to H⊕. Consequently Y − α̂ − m̂(X) is or-

thogonal to Hj, j = 1, . . . , d and Hjk, 1 ≤ j < k ≤ d. Equivalently, we

have Pj(Y − α̂ − m̂(X)) = 0, j = 1, . . . , d and Pjk(Y − α̂ − m̂(X)) = 0,

1 ≤ j < k ≤ d. The equations can be rewritten as

mj(Xj) = Pj(Y − α̂−
∑
s 6=j

m̂s(Xs)−
∑

1≤s<t≤d

m̂st(Xs, Xt))

for each main effect term and

mjk(Xj, Xk) = Pjk(Y − α̂−
d∑
s=1

m̂s(Xs)−
∑

s<t : (s,t)6=(j,k)

m̂st(Xs, Xt))
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for each interaction effect term.

Then we have the following normal equation for α and (m1, . . . ,md,m1,2, . . . ,m(d−1)d)
T

to minimize MSE:
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Y, (S2.1)

where Pj,k is the same as Pjk and is used to avoid potential confusion.

S3 Backfitting estimator

Denotemj = (mj(X1j), . . . ,mj(Xnj))
T ,mjk = (mjk(X1j, X1k), . . . ,mjk(Xnj, Xnk))

T ,

Y = (Y1, . . . , Yn) and Kh(x) = h−1K(x
h
). Recall that the smoothing matri-

ces for local constant regression are

Sj = (sj(X1j), . . . , sj(Xnj))
T for main effect term;

S̃jk = (s̃jk(X1j, X1k), . . . , s̃jk(Xnj, Xnk))
T for interaction effect term;

S̃j0k = (s̃jk(xj,0, X1k), . . . , s̃jk(xj,0, Xnk))
T ,

S̃jk0 = (s̃jk(X1j, xk,0), . . . , s̃jk(Xnj, xk,0))T for shifting.
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Here

sj(xj) =
(
Khj(X1j − xj), . . . , Khj(Xnj − xj)

)T
/

n∑
i=1

Khj(Xij − xj)

and

s̃jk(xj, xk) =
1

n∑
i=1

Kh̃jk
(Xij − xj)Kh̃jk

(Xik − xk)



Kh̃jk
(X1j − xj)Kh̃jk

(X1k − xk)

Kh̃jk
(X2j − xj)Kh̃jk

(X2k − xk)
...

Kh̃jk
(Xnj − xj)Kh̃jk

(Xnk − xk)


.

We now define the smoothing matrices after the shifting

S∗j = Sj − 1(sj(xj,0))T and S̃∗jk =S̃jk − S̃j0k − S̃jk0 + 1(s̃jk(xj,0, xk,0))T

for each main effect and interaction effect term, respectively. The main

term mi and interaction term mjk can be estimated through the solutions

to the sample version of a part of the normal equation (S2.1)
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Y (S3.1)

by noting Pjα = 0 and Pjkα = 0. Similarly S̃∗j,k is the same as S̃∗jk.

In practice, the backfitting algorithm is used to solve the normal equa-
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tion (S3.1) and the backfitting estimators converge to the solution
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≡M−1CY ,

provided that the inverse of M exist. The intercept α can be estimated by

Y −
∑d

j=1 m̂i −
∑

1≤j<k≤d m̂jk, where Y = 1
n

∑n
i=1 Yi.

For the convenience of presentation, in the following we will not dis-

tinguish main effect term and interaction effect term if they share a same

property. In that case, putting them together we have ď = d+ d(d−1)
2

terms

in total. We use Šj to denote the (either univariate or bivariate) local con-

stant smoothing matrix, Š∗j to denote the local constant smoothing matrix

after shifting, m̌j to denote the component function, and ȟj to denote the

bandwidth for each of these ď terms.

Then the backfitting smoothing matrix for term j ∈ {1, 2, . . . , ď} is

defined by Wj = EjM
−1C. Here Ej is a zero matrix of dimension n× nď

except its jth block being an n×n identity matrix when treated as blocks of

n× n submatrices. The backfitting estimator is given by ̂̌mj = WjY . We

also define m =
∑ď

j=1 m̌j, W =
∑ď

j=1Wj, and the backfitting estimator
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m̂ = WY .

To state the conditions for the existence and uniqueness of the back-

fitting estimators, we define W [−j] as the smoothing matrix for the model

without the jth term. Then if ||Š∗jW [−j]|| < 1 for j = 1, . . . , ď and a matrix

norm ||·||, by Corollary 4.3 of Buja et al. (1989) and Lemma 2.1 of Opsomer

(2000), the backfitting estimators exist, are unique and

Wj = In − (In − S∗jW
[−j])−1(In − S∗j)

= (In − S∗jW
[−j])−1S∗j(In −W [−j]). (S3.2)

S4 PROOFS

Lemma 1. Under Conditions 1-3 in Appendix, if ȟj → 0 and nȟ2
j →∞ as

n → ∞, the following asymptotic approximation holds uniformly over all

elements of the matrices

Š∗j = Šj − 11T/n+ op(11T/n) .

Proof. For main effect term, recall that

sj(xj) =
(
Khj(X1j − xj), . . . , Khj(Xnj − xj)

)T
/

n∑
i=1

Khj(Xij − xj).
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Consider
∑n

i=1 Khj(Xij − xj), we have

E(
n∑
i=1

Khj(Xij − xj)) =
n∑
i=1

∫
1

hj
K(

t− xj
hj

)fj(t)dt

= n

∫
K(u)fj(xj + hju)du

= n

∫
K(u)(fj(xj) +O(hj))du

= n(fj(xj) +O(hj))

and

n∑
i=1

E((Khj(Xij − xj))2) =
n∑
i=1

∫
1

h2
j

K2(
t− xj
hj

)fj(t)dt

=
n∑
i=1

∫
1

hj
K2(u)fj(xj + hju)du

=
n

hj

∫
K2(u)(fj(xj) +O(hj))du

=
n

hj
O(1).

Consequently we have

n∑
i=1

Khj(Xij − xj) = n(fj(xj) +O(hj)) +Op(

√
n

hj
)

= nfj(xj)(1 +O(hj) +Op(

√
1

nhj
))

= nfj(xj)(1 + op(1)).

As defined before, S∗j = Sj − 1(sj(xj,0))T . For vector (sj(xj,0))T , its sth
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entry denoted by sj,s(xj,0) is

sj,s(xj,0) = (
n∑
t=1

Khj(Xtj − xj,0))−1Khj(Xsj − xj,0)

=
1

n
(fj(xj,0)−1Khj(Xsj − xj,0) + op(1)).

Similarly, we have

E(fj(xj,0)−1Khj(Xsj − xj,0)) =

∫
1

hj
fj(xj,0)−1fj(t)K(

t− xj,0
hj

)dt

=

∫
fj(xj,0)−1fj(xj,0 + hju)K(u)du

=

∫
fj(xj,0)−1(fj(xj,0) +O(hj))K(u)du

= 1 +O(hj)

and

E((fj(xj,0)−1Khj(Xsj − xj,0))2) =

∫
1

h2
j

fj(xj,0)−2fj(t)K
2(
t− xj,0
hj

)dt

=

∫
1

hj
fj(xj,0)−2fj(xj,0 + hju)K2(u)du

=
1

hj
O(1).

Then we have fj(xj,0)−1Khj(Xsj − xj,0) = 1 +O(hj) +Op(
√

1
hj

).

Combining the results before, we get

sj,s(xj,0) =
1

n
(fj(xj,0)−1Khj(Xsj − xj,0) + op(1)).

=
1

n
(1 +O(hj) +Op(

√
1

hj
) + op(1))



10 Yushen Dong AND Yichao Wu

=
1

n
+ op(

1

n
).

Consequently we have shown that S∗j = Sj − 11T/n+ op(11T/n).

For interaction effect term,

s̃jk(xj, xk) =
1

n∑
i=1

Kh̃jk
(Xij − xj)Kh̃jk

(Xik − xk)



Kh̃jk
(X1j − xj)Kh̃jk

(X1k − xk)

Kh̃jk
(X2j − xj)Kh̃jk

(X2k − xk)
...

Kh̃jk
(Xnj − xj)Kh̃jk

(Xnk − xk)


.

Consider
∑n

i=1Kh̃jk
(Xij − xj)Kh̃jk

(Xik − xk), we have

E(
n∑
i=1

Kh̃jk
(Xij − xj)Kh̃jk

(Xik − xk))

=
n∑
i=1

∫∫
1

h̃2
jk

K(
s− xj
h̃jk

)K(
t− xk
h̃jk

)fjk(s, t)dsdt

= n

∫∫
K(u)K(v)fjk(xj + h̃jku, xk + h̃jkv)dudv

= n

∫∫
K(u)K(v)(fjk(xj, xk) +O(h̃jk))dudv

= n(fjk(xj, xk) +O(h̃jk))

and

n∑
i=1

E((Kh̃jk
(Xij − xj)Kh̃jk

(Xik − xk))2)

=
n∑
i=1

∫∫
1

h̃4
jk

K2(
s− xj
h̃jk

)K2(
t− xk
h̃jk

)fjk(s, t)dsdt

= n

∫∫
1

h̃2
jk

K2(u)K2(v)fjk(xj + h̃jku, xk + h̃jkv)dudv
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=
n

h̃2
jk

∫∫
K2(u)K2(v)(fjk(xj, xk) +O(h̃jk))dudv

=
n

h̃2
jk

O(1).

Then

n∑
i=1

Kh̃jk
(Xij − xj)Kh̃jk

(Xik − xk) = n(fjk(xj, xk) +O(h̃jk)) +Op(

√
n

h̃2
jk

)

= n(fjk(xj, xk) +O(h̃jk) +Op(

√
1

nh̃2
jk

))

= n(fjk(xj, xk) + op(1)).

For S̃∗jk = S̃jk − S̃j0k − S̃jk0 + 1(s̃jk(xj,0, xk,0))T as defined above, its entry

in the ith row and the sth column, S̃∗jk,(i,s), is

S̃∗jk,(i,s) = S̃jk,(i,s) − S̃j0k,(i,s) − S̃jk0,(i,s) + s̃jk,i(xj,0, xk,0),

where

S̃j0k,(i,s) = (
n∑
t=1

Kh̃jk
(Xtj − xj,0)Kh̃jk

(Xtk −Xik))
−1Kh̃jk

(Xsj − xj,0)Kh̃jk
(Xsk −Xik)

=
1

n
(fjk(xj,0, Xik)

−1Kh̃jk
(Xsj − xj,0)Kh̃jk

(Xsk −Xik) + op(1)),

S̃jk0,(i,s) = (
n∑
t=1

Kh̃jk
(Xtj −Xij)Kh̃jk

(Xtk − xk,0))−1Kh̃jk
(Xsj −Xij)Kh̃jk

(Xsk − xk,0)

=
1

n
(fjk(Xij, xk,0)−1Kh̃jk

(Xsj −Xij)Kh̃jk
(Xsk − xk,0) + op(1)),

s̃jk,i(xj,0, xk,0) = (
n∑
t=1

Kh̃jk
(Xtj − xj,0)Kh̃jk

(Xtk − xk,0))−1Kh̃jk
(Xsj − xj,0)Kh̃jk

(Xsk − xk,0)

=
1

n
(fjk(xj,0, xk,0)−1Kh̃jk

(Xsj − xj,0)Kh̃jk
(Xsk − xk,0) + op(1)).
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By similar argument as in the main effect term case, we obtain

S̃j0k,(i,s) =
1

n
+ op(

1

n
), S̃jk0,(i,s) =

1

n
+ op(

1

n
), s̃jk,i(xj,0, xk,0) =

1

n
+ op(

1

n
).

Combining the results before, we get

S∗jk,(i,s) = Sjk,(i,s) −
1

n
+ op(

1

n
).

In matrix form, we have S∗jk = Sjk−11T/n+op(11T/n) as desired.

Lemma 2. Under Conditions 1-3 in Appendix, if ȟj → 0 and nȟ4
j →∞ as

n → ∞, the following asymptotic approximations hold for all main effect

and interaction effect terms:

Š∗jW
[−j] = Op(11T/n)

(In − Š∗jW
[−j])−1 = In +Op(11T/n) .

Proof. We calculate ŠjŠj′ first. There are three cases: both j and j′ are

main effect terms; both of them are interaction effect terms; there are one

main effect and one interaction effect term. We only show the calculation for

case one in detail. The other two cases can be showed by similar arguments.

If both j and j′ are main terms, the entry in sth row and tth column,
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[SjSj′ ]st, is

[SjSj′ ]st =




sj(X1j)

T

...

sj(Xnj)
T




sj′(X1j′)

T

...

sj′(Xnj′)
T




st

=(
n∑
i=1

(Khj(Xij −Xsj)))
−1

Khj
(X1j −Xsj)

.

.

.

Khj
(Xnj −Xsj)


T  (

∑n
i=1(Kh

j′
(Xij′ −X1j′ )))

−1Kh
j′
(X1j′ −Xtj′ )

.

.

.

(
∑n

i=1(Kh
j′
(Xij′ −Xnj′ )))

−1Kh
j′
(Xnj′ −Xtj′ )


=(

n∑
i=1

(Khj(Xij −Xsj)))
−1

n∑
i′=1

((
n∑
i=1

(Khj′
(Xij′ −Xi′j′)))

−1Khj(Xi′j −Xsj)Khj′
(Xi′j′ −Xtj′))

=
1

n
(fj(Xsj)

−1 + op(1))(
n∑

i′=1

(
1

n
fj′(Xi′j′)

−1Khj(Xi′j −Xsj)Khj′
(Xi′j′ −Xtj′)) + op(1)).

Then as before, we have

E(
n∑

i′=1

(
1

n
fj′(Xi′j′)

−1Khj(Xi′j −Xsj)Khj′
(Xi′j′ −Xtj′)))

=
1

n

n∑
i′=1

∫∫
Khj(z1 −Xsj)Khj′

(z2 −Xtj′)fj′(z2)−1fjj′(z1, z2)dz1dz2

=

∫∫
K(u)K(v)fj′(Xtj′ + hj′v)−1fjj′(Xsj + hju,Xtj′ + hj′v)dudv

=

∫∫
K(u)K(v)(fj′(Xtj′)

−1fjj′(Xsj, Xtj′) +O(hj + hj′))dudv

= fj′(Xtj′)
−1fjj′(Xsj, Xtj′) +O(hj + hj′)

and

n∑
i′=1

E(((
1

n
fj′(Xi′j′)

−1Khj(Xi′j −Xsj)Khj′
(Xi′j′ −Xtj′))

2)
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=
1

n2

n∑
i′=1

∫∫
1

h2
jh

2
j′
K2(

z1 −Xsj

hj
)K2(

z2 −Xtj′

hj′
)fj′(z2)−2fjj′(z1, z2)dz1dz2

=
1

nhjhj′

∫∫
K2(u)K2(v)fj′(Xtj′ + hj′v)−1fjj′(Xsj + hju,Xtj′ + hj′v)dudv

=
1

nhjhj′
O(1).

Consequently we have

n∑
i′=1

(
1

n
fj′(Xi′j′)

−1Khj(Xi′j −Xsj)Khj′
(Xi′j′ −Xtj′))

= fj′(Xtj′)
−1fjj′(Xsj, Xtj′) +O(hj + hj′) +Op(

√
1

nhjhj′
)

= fj′(Xtj′)
−1fjj′(Xsj, Xtj′) + op(1)

and

[SjSj′ ]st =
1

n
(fj(Xsj)

−1 + op(1))(
n∑

i′=1

(
1

n
fj′(Xi′j′)

−1Khj(Xi′j −Xsj)Khj′
(Xi′j′ −Xtj′)) + op(1))

=
1

n
(fj(Xsj)

−1 + op(1))(fj′(Xtj′)
−1fjj′(Xsj, Xtj′) + op(1)) + op(1))

=
1

n
(fj(Xsj)

−1fj′(Xtj′)
−1fj′(Xsj, Xtj′) + op(1)).

Applying similar arguments to the case with two interactions effect terms

and the case with one main effect and one interaction effect term, we get

[SjSj′k]st =
1

n
(fj(Xsj)

−1fj′k(Xtj′ , Xtk)
−1fjj′k(Xsj, Xtj′ , Xtk) + op(1))

and

[SjkSj′k′ ]st =
1

n
(fjk(Xsj, Xsk)

−1fj′k′(Xtj′ , Xtk′)
−1fjj′kk′(Xsj, Xsk, Xtj′ , Xtk′) + op(1)).
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Then by Lemma 1 and a same argument of Lemma 3.2 of Opsomer and

Ruppert (1997), we obtain (In − Š∗j Š
∗
j′)
−1 = In + Op(11T/n) for all main

effect terms and interaction effect terms.

By a similar argument of Theorem 3.1 of Opsomer (2000), we obtain

Š∗jW
[−j] = Op(11T/n)

and

(In − Š∗jW
[−j])−1 = In +Op(11T/n),

which complete the proof.

Lemma 3. Set W̃ = (In − 11T/n)W and An = (W̃ − In)T (W̃ − In).

Under Conditions 1-3 in Appendix, if ȟj → 0 and nȟ4
j → ∞ as n → ∞,

we have RSS = Ỹ TAnỸ +Op(1
T/
√
n)(W̃ − In)Ỹ +Op(1), where RSS =〈

Y − Ŷ ,Y − Ŷ
〉

denotes the residual sum of squares for the backfitting

estimates, Ỹ is the centered response, and An = STS− S− ST + In +Rn

with S =
∑ď

j=1 Šj and Rn = Op(11T/n).

Proof. For the backfitting residual vector, we have

Y − Ŷ = Y − 1α̂− m̂

= Y − 11T

n
Y +

11T

n
WY −WY

= Ỹ +Op(1/
√
n)− W̃Y
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= Ỹ +Op(1/
√
n)− W̃ (Ỹ + 1E(Y ))

= (In − W̃ )Ỹ +Op(1/
√
n).

Then we have RSS = Ỹ TAnỸ + Op(1
T/
√
n)(W̃ − In)Ỹ + Op(1) by defi-

nition. Note that we can rewrite Ỹ = m̃ + ε =
∑ď

j=1 m̃j + ε, where m̃ is

centered m̌j and E(m̃j) = 1 · 0.

By Lemma 1, Lemma 2 and direct matrix multiplication, we have

W̃ = (In − 11T/n)W = (In − 11T/n)
ď∑
j=1

Wj

=
ď∑
j=1

(In − 11T/n)(In − Š∗jW
[−j])−1Š∗j(In −W [−j])

= S +U ,

where S =
∑ď

j=1 Šj and U = Op(11T/n).

Consequently we have

An = (W̃ − In)T (W̃ − In)

= (S +U − In)T (S +U − In)

= STS− S− ST + In +Rn,

where Rn = Op(11T/n) as desired.

Lemma 4. Set B = E[W̃ Ỹ − m̃|X] = (W̃ − In)m̃. Under Conditions

1-4 in Appendix, if ȟj → 0 and nȟ4
j →∞ as n→∞, B = Op(

∑ď
j=1 1ȟj) +
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Op(1/
√
n) uniformly over all elements of the vector.

Proof. Applying the same Taylor expansion approximation as in Theorem

2.1 of Ruppert and Wand (1994), we obtain that

Šjm̃j = m̃j +O(1ȟj),

Š∗jm̃j = (Šj +Op(11T /N))m̃j

= m̃j + ¯̃mjOp(1) +O(1ȟj),

(In − Š∗j)m̃j = ¯̃mjOp(1) +O(1ȟj) = Op(1/
√
N) +O(1ȟj).

SetB = E[W̃ Ỹ −m̃|X] = (W̃−In)m̃ andB(j) = E[W̃jỸ −m̃j|X] =

W̃jm̃− m̃j.

Combining the above results with the formula (S3.2), we obtain

W̃j = (In − 11T/n)Wj = (In − 11T/n)(In − (In − Š∗jW
[−j])−1(In − Š∗j))

= In − 11T/n− (In − 11T/n)(In − Š∗jW
[−j])−1(In − Š∗j),

(In − W̃j)m̃j = ¯̃mj1 + (In − 11T/n)(In − Š∗jW
[−j])−1(In − Š∗j)m̃j

= Op(1/
√
n) + (In − 11T/n)(In − Š∗jW

[−j])−1(Op(1/
√
n) +O(1ȟj),

(In − W̃j)m̃(−j) = ¯̃m(−j)1 + (In − 11T/n)(In − Š∗jW
[−j])−1(In − Š∗j)m̃(−j)

= ¯̃m(−j)1 + (In − 11T/n)(m̃(−j) + (In − Š∗jW
[−j])−1Š∗j(W̃ − In)m̃(−j))

= m̃(−j) + (In − 11T/n)(In − Š∗jW
[−j])−1Š∗jB(−j),

where m̃(−j) and B(−j) are the summation of all component functions and
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conditional bias for the model without the jth term.

Then by the definition and the previous two formulas of (In − W̃j)m̃j

and (In − W̃j)m̃(−j), we obtain

B(j) = W̃j(m̃j + m̃(−j))− m̃j = (W̃j − In)m̃j + W̃jm̃(−j),

= Op(1/
√
n) + (In − 11T/n)(In − Š∗jW

[−j])−1(Op(1/
√
n) +O(1ȟj)− S∗jB(−j)).

Finally, B = O(
∑d̃

j=1 1ȟj) +Op(1/
√
n) holds by Lemma 2 and a recur-

sive argument.

Lemma 5. Under Conditions 1-5 in Appendix, if ȟj → 0 and nȟ4
j →∞ as

n→∞, we have

RSS/n = σ2+Op(
d∑
j=1

h2
j)+Op(

d−1∑
j=1

d∑
k=j+1

h̃2
jk)+Op(

d∑
j=1

1

nhj
)+Op(

d−1∑
j=1

d∑
k=j+1

1

nh̃2
jk

).

(S4.1)

Proof. From Lemma 3, we have

RSS = Ỹ TAnỸ +Op(1
T/
√
n)(W̃ − In)Ỹ +Op(1)

= (m̃+ ε)TAn(m̃+ ε) +Op(1
T/
√
n)(W̃ − In)(m̃+ ε) +Op(1)

= εTAnε+ 2BT (W̃ − In)ε+BTB +Op(1)

= εTAnε+ 2BT (S +Op(11T/n)− In)ε+BTB +Op(1).

By calculating the mean and variance, we have BTB = Op(1 +
∑d̃

j=1 nh
2
j),

BTSε = Op(1 +
∑d̃

j=1

√
nhj), B

Tε = Op(1 +
∑d̃

j=1

√
nhj), and hence
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BT (W̃ − In)ε = Op(1 +
∑d̃

j=1

√
nhj).

Finally, we consider the term εTAnε,

εTAnε = εTSTSε− εTSε− εTSTε+ εTInε+ εTRnε.

We first focus on term S. For main effect term, we have

[Sj]st ≈
1

nhj
f−1
j (Xsj)K(

Xtj −Xsj

hj
),

n∑
s=1

ε2s[Sj]ss ≈
1

nhj

n∑
s=1

ε2sf
−1
j (Xsj)K(0) with mean O(

1

hj
) and deviation Op(

√
1

nh2
j

),

∑
s 6=t

εsεt[Sj]st ≈
1

nhj

∑
s 6=t

εsεtf
−1
j (Xsj)K(

Xtj −Xsj

hj
) with mean 0 and deviation Op(

√
1

hi
).

For interaction effect term, we have

[S̃jk]st ≈
1

nh̃2
jk

f−1
jk (Xsj, Xsk)K(

Xtj −Xsj

h̃jk
)K(

Xtk −Xsk

h̃jk
),

n∑
s=1

ε2s[S̃jk]ss ≈
1

nh̃2
jk

n∑
s=1

ε2sf
−1
jk (Xsj, Xsk)K(0)K(0)

with mean O(
1

h̃2
jk

)and deviation Op(

√
1

nh̃4
jk

),

∑
s 6=t

εsεt[S̃jk]st ≈
1

nh̃2
jk

∑
s 6=t

εsεtf
−1
jk (Xsj, Xsk)K(

Xtj −Xsj

h̃jk
)K(

Xtk −Xsk

h̃jk
)

with mean 0 and deviation Op(

√
1

h̃2
jk

).

Next we consider term STS. As above, we consider all three possible cases.

For the case of two main effect terms, we have

[STj Sj′ ]st ≈
1

n2hjhj′

n∑
i=1

f−1
j (Xij)f

−1
j′ (Xij′)K(

Xsj −Xij

hj
)K(

Xtj′ −Xij′

hj′
),
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n∑
s=1

ε2s[S
T
j Sj′ ]ss ≈

1

n2hjhj′

n∑
s=1

ε2s

n∑
i=1

f−1
j (Xij)f

−1
j′ (Xij′)K(

Xsj −Xij

hj
)K(

Xsj′ −Xij′

hj′
)

with a constant mean and deviation Op(

√
1

n
+

1

n2hjhj′
),

∑
s 6=t

εsεt[S
T
j Sj′ ]st ≈

1

n2hjhj′

∑
s 6=t

εsεt

n∑
i=1

f−1
j (Xij)f

−1
j′ (Xij′)K(

Xsj −Xij

hj
)K(

Xtj′ −Xij′

hj′
)

with mean 0 and deviation Op(

√
1 +

1

nhjhj′
).

For the case with one main effect and one interaction effect term, we have

[STj S̃j′k]st ≈
1

n2hjh̃2
j′k

n∑
i=1

f−1
j (Xij)f

−1
j′k (Xij′ , Xik)

K(
Xsj −Xij

hj
)K(

Xtj′ −Xij′

h̃j′k
)K(

Xtk −Xik

h̃j′k
),

n∑
s=1

ε2s[S
T
j S̃j′k]ss ≈

1

n2hjh̃2
j′k

n∑
s=1

ε2s

n∑
i=1

f−1
j (Xij)f

−1
j′k (Xij′ , Xik)

K(
Xsj −Xij

hj
)K(

Xsj′ −Xij′

h̃j′k
)K(

Xsk −Xik

h̃j′k
)

with a constant mean and deviation Op(

√
1

n
+

1

n2hih̃2
jk

),

∑
s 6=t

εsεt[S
T
j S̃j′k]st ≈

1

n2hjh̃2
j′k

∑
s 6=t

εsεt

n∑
i=1

f−1
j (Xij)f

−1
j′k (Xij′ , Xik)

K(
Xsj −Xij

hj
)K(

Xtj′ −Xij′

h̃j′k
)K(

Xtk −Xik

h̃j′k
)

with mean 0 and deviation Op(

√
1 +

1

nhih̃2
jk

).

For the case with two interaction effect terms, we have

[S̃TjkS̃j′k′ ]st ≈
1

n2h̃2
jkh̃

2
j′k′

n∑
i=1

f−1
jk (Xij, Xik)f

−1
j′k′(Xij′ , Xik′)
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K(
Xsj −Xij

h̃jk
)K(

Xsk −Xik

h̃jk
)K(

Xtj′ −Xij′

h̃j′k′
)K(

Xtk′ −Xik′

h̃j′k′
),

n∑
s=1

ε2s[S̃
T
jkS̃j′k′ ]ss ≈

1

n2h̃2
jkh̃

2
j′k′

n∑
s=1

ε2s

n∑
i=1

f−1
jk (Xij, Xik)f

−1
j′k′(Xij′ , Xik′)

K(
Xsj −Xij

h̃jk
)K(

Xsk −Xik

h̃jk
)K(

Xsj′ −Xij′

h̃j′k′
)K(

Xsk′ −Xik′

h̃j′k′
)

with a constant mean and deviation Op(

√
1

n
+

1

n2h̃2
jkh̃

2
j′k′

),

∑
s 6=t

εsεt[S̃
T
jkS̃j′k′ ]st ≈

1

n2h̃2
jkh̃

2
j′k′

∑
s 6=t

εsεt

n∑
i=1

f−1
jk (Xij, Xik)f

−1
j′k′(Xij′ , Xik′)

K(
Xsj −Xij

h̃jk
)K(

Xsk −Xik

h̃jk
)K(

Xtj′ −Xij′

h̃j′k′
)K(

Xtk′ −Xik′

h̃j′k′
)

with mean 0 and deviation Op(

√
1 +

1

nh̃2
jkh̃

2
j′k′

).

Overall, εTAnε/n = 1
n
εTInε+

1
n
εTRnε+Op(

∑d
j=1

1
nhj

)+Op(
∑d−1

j=1

∑d
k=j+1

1
nh̃2jk

) =

σ2 +Op(
∑d

j=1
1
nhj

) +Op(
∑d−1

j=1

∑d
k=j+1

1
nh̃2jk

) and BTB/n = Op(
∑d

j=1 h
2
j) +

Op(
∑d−1

j=1

∑d
k=j+1 h̃

2
jk). ThenRSS/n = σ2+Op(

∑d
j=1 h

2
j)+Op(

∑d−1
j=1

∑d
k=j+1 h̃

2
jk)+

Op(
∑d

j=1
1
nhj

) +Op(
∑d−1

j=1

∑d
k=j+1

1
nh̃2jk

) holds.

Proof of Theorem 1. Recall that the sets of important main and interaction

effects are denoted byM = {j : mj(·) 6= 0} and I = {(j, k) : mjk(·, ·) 6= 0}.

Then the sets of unimportant main and interaction effects denote by the

complementMc = {1, . . . , d}\M and Ic = {(j, k) : 1 ≤ j < k ≤ d}\I. We

first simplify the formula (S4.1) in Lemma 5 with the following conditions:

under Conditions 1-5 in Appendix, if hj → 0 for j ∈ S = M ∪ I, and
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hj ≥ c0 > 0 for j ∈ N =Mc ∪ Ic and some c0 > 0, then

RSS/n = σ2 +Op(
∑
j∈S

h2
j) +Op(

∑
j∈S

1

nh2
j

). (S4.2)

It can be easily verified by following the detailed proofs of Lemmas 1-5. Here

is some heuristic justification. For any j ∈ N =Mc∪Ic, the corresponding

component function (either a main effect or an interaction effect term) is a

constant and there is no approximation bias for the backfitting estimator

with local constant smoothing. Then the unimportant predictor does not

have any contribution to the total approximation bias. At the same time,

with the condition hj ≥ c0 > 0 for j ∈ N = Mc ∪ Ic, the smoothing

bandwidth for unimportant term is bounded away zero. Then the variance

of unimportant terms is dominated by the variance of important terms with

corresponding smoothing bandwidths shrinking to zero. Consequently we

have equation (S4.2).

Now we are ready to show the selection consistency. In the following, we

use the notion λ̂j = 1

ĥj
for j = 1, . . . , ď. We first prove λ̂j →∞ for j ∈ S by

contradiction. Assume λ̂j′ is bounded from above for some j′ ∈ S. If λ̂j′ is

bounded, RSS/n will converge to σ2 plus a bias. The extra bias comes from

the second term in equation (S4.2) as ĥj′ = 1

λ̂j′
6→ 0 and the corresponding

approximation bias does not shrink to zero. It is a suboptimal as equation

(S4.2) implies if the bandwidths for all important predictors approach zero,
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the RSS/n reaches its optimal value σ2 asymptotically. This proves λ̂j → 0

for j ∈ S.

Before moving to the unimportant terms part, note that the condition

that if τ → ∞, τ4

n
→ 0 as n → ∞, is used to guarantee that the variance

term (third term on the right hand side of formula (S4.2)) is dominated

by the bias term (second term on the right hand side of formula (S4.2)).

Without loss of generality, we assume λ̂j converges for j ∈ N , since oth-

erwise we can consider an convergent subsequence. Next we try to show

that λ̂j → 0 for j ∈ N also by contradiction. Assume there are some

λ̂j 6→ 0 for j ∈ N and set λ́j = λ̂jτ/(τ −
∑

j′∈N λ̂j′) for j ∈ S and λ́j = 0

for j ∈ N . Note that the variance is dominated by the bias and small λ̂j

for j ∈ N does not induce bias, then we only need to consider the bias

induced by the important terms. Note that λ́j diverges to infinity faster

than λ̂j for j ∈ S, hence using the set of λ́s has a smaller bias term. When∑
j∈N λ̂j → ∞, the smaller is in the sense of asymptotic order, and when∑
j∈N λ̂j is bounded, it is in the sense of the multiplying constant in the

asymptotic order. Therefore, λ̂s is a suboptimal. Consequently we have

that λ̂j → 0 for j ∈ N and this finishes the proof.
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