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In the online supplementary material, we provide proofs of the theoretical results stated within

the paper. Before this, we state and prove two lemmas that are used in the following proofs.

S1. Lemmas

Lemma 1. Let X1, · · · ,Xn ∈ R
p be n i.i.d. random vectors following nor-

mal distribution Np(µ,Σ), and the sample mean vector µ̂ = n−1
∑n

i=1 X i.

Then, the difference between µ̂ and µ can be bounded by

‖µ̂− µ‖2 ≤
√

tr(Σ)

nε

with probability at least 1− ε.

*Corresponding author. (Email: zhaojunlong928@126.com)
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Proof. By the fact µ̂ ∼ Np(µ, n
−1Σ), it is easy to see that

E(‖µ̂− µ‖22) = tr[Cov(µ̂)] = tr

(
1

n
Σ

)
=

1

n
tr(Σ).

Using Markov’s inequality, for any t > 0, we have

P
[
‖µ̂− µ‖22 ≥ t

]
≤ tr(Σ)

nt
.

Then for any ε ∈ (0, 1], we see that tr(Σ)/(nt) ≤ ε is equivalent to t ≥

tr(Σ)/(nε). Thus, we have

‖µ̂− µ‖2 ≤
√

tr(Σ)

nε

with probability at least 1− ε. �

Lemma 2. Let X1, · · · ,Xn ∈ R
p be n > p i.i.d. random vectors fol-

lowing normal distribution Np(µ,Σ), and the sample covariance matrix

Sn = n−1
∑n

i=1(X i − µ)(X i − µ)⊤. Then, the difference between S−1
n and

Θ can be bounded by

‖S−1
n −Θ‖2 ≤ ‖Θ‖2

(
2

√
p

n
+ τ

)

with probability at least 1− c3e
−nτ2 for all τ ∈ (0, 1], where c3 is a positive

constant.

Proof. See the proof of Proposition 11.19 in Wainwright (2019). �
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S2. Proof of Proposition 1

Proof. We first review the results of Dobriban and Sheng (2018). For the el-

liptical model Z = Γ1/2UΣ1/2 ∈ R
m×p, Dobriban and Sheng (2018) showed

the deterministic equivalent of the sample covariance Σ̃−1
∗

≍ epΘ under

following assumptions:

(a) The entries of U are i.i.d. random variables, with zero mean, unit

variance, and finite 8 + ε-th moment, for some ε > 0.

(b) The eigenvalues of Σ and the entries of Γ are uniformly bounded away

from zero and infinity.

(c) As m → ∞, p → ∞ satisfies p/m bounded away from zero and infinity.

Now we prove our conclusions on Σ̃(l) and Σ̃.

Step 1. We prove the conclusions on Σ̃(l) for the following cases: (1)

γ
(l)
p → c ∈ (0, 1), and (2) γ

(l)
p → 0.

Step 1.1. We consider the case (1). For the model in this study, let

{X̃(l)

i = X
(l)
i − µ1, i = 1, · · · , n1l} and {Ỹ (l)

i = Y
(l)
i − µ2, i = 1, · · · , n2l}

be the centralized samples on the lth machine. Thus X̃
(l)

i and Ỹ
(l)

i follow

the same normal distribution Np(0,Σ). Then, the pooled data matrix

Z̃(l) =
(
X̃

(l)⊤

1 , · · · , X̃(l)⊤

n1l
, Ỹ

(l)⊤

1 , · · · , Ỹ (l)⊤

n2l

)⊤
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follows the model UΣ1/2, where the entries of U are i.i.d. random variables

from N(0, 1). Therefore, assumption (a) holds for our setting. One can see

that Z̃(l) is a special case of the elliptical model Z = Γ1/2UΣ1/2, where Γ =

In(l) . This together with condition (i) of (C1) implies that the assumption

(b) holds. Assumption (c) also holds according to the fact γ
(l)
p → c ∈

(0, 1). Remind that Γ = In(l) in our model, thus ep = 1/(1 − γ
(l)
p ) by the

equation 1 = (n(l))−1 tr[epΓ(In(l)+γ
(l)
p epΓ)

−1]. Since the assumptions (a)-(c)

in Dobriban and Sheng (2018) hold for our setting, the sample covariance

Σ̃(l) =
1

n(l)

[
n1l∑

i=1

(X
(l)
i − µ1)(X

(l)
i − µ1)

⊤ +

n2l∑

i=1

(Y
(l)
i − µ2)(Y

(l)
i − µ2)

⊤

]

=(n(l))−1Z̃(l)⊤Z̃(l)

has the deterministic equivalent

(Σ̃(l))−1 ≍ 1

1− γ
(l)
p

Θ. (S2.1)

Step 1.2. We consider the case (2), showing that ‖(Σ̃(l))−1 − Θ‖2 → 0

with probability 1. By Borel–Cantelli Lemma, it is sufficient to show that

for any small ε > 0, limN→∞

∑
n(l)>N P(‖(Σ̃(l))−1 − Θ‖2 > ε) = 0. Now we

prove this result. By Lemma 2, it is shown that for all τ ∈ (0, 1],

P

{
‖(Σ̃(l))−1 −Θ‖2 ≤ ‖Θ‖2

(
2

√
γ
(l)
p + τ

)}
≥ 1− c3e

−n(l)τ2 .

Because the eigenvalues of Σ are bounded away from zero and infinity, we
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have ‖Θ‖2 < c4 for some positive constant c4. Thus,

P

{
‖(Σ̃(l))−1 −Θ‖2 < c4

(
2

√
γ
(l)
p + τ

)}
≥ 1− c3e

−n(l)τ2 .

For any ε ∈ (0, c4], take τ = c−1
4 ε − 2(γ

(l)
p )1/2. Since γ

(l)
p → 0, we have

0 < γ
(l)
p < c−2

4 ε2/16 when n(l) is sufficient large. Then it holds that τ ∈

(c−1
4 ε/2, c−1

4 ε) ⊂ (0, 1]. Thus, we have

P
{
‖(Σ̃(l))−1 −Θ‖2 < ε

}
≥ 1− c3e

−n(l)

(

c−1
4 ε−2

√
γ
(l)
p

)2

> 1− c3e
−n(l)(c−1

4 ε/2)
2

,

when n(l) is sufficient large. It follows that

∑

n(l)>N

P
{
‖(Σ̃(l))−1 −Θ‖2 ≥ ε

}
≤ c3

∑

n(l)>N

e−n(l)(c−1
4 ε/2)

2

,

when N is sufficient large. Moreover, it is easy to see that

∑

n(l)>N

e−n(l)(c−1
4 ε/2)

2

=
∞∑

n(l)=1

e−n(l)(c−1
4 ε/2)

2

−
N∑

n(l)=1

e−n(l)(c−1
4 ε/2)

2

=
e−N(c−1

4 ε/2)
2

e(c
−1
4 ε/2)

2

− 1
→ 0,

as N → ∞. Therefore, we have ‖(Σ̃(l))−1 − Θ‖2 →a.s. 0 as n(l) → ∞.

Consequently, for any matrix sequence Cn with supn ‖Cn‖∗ < ∞, we have

lim
n(l)→∞

| tr[Cn((Σ̃
(l))−1 −Θ)]| ≤ lim

n(l)→∞

‖Cn‖∗‖(Σ̃(l))−1 −Θ‖2 = 0

almost surely. Then by Definition 1, the sample covariance Σ̃(l) has the

deterministic equivalent

(Σ̃(l))−1 ≍ Θ. (S2.2)
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Combining (S2.1) and (S2.2), we conclude that (Σ̃(l))−1 ≍ (1− γ
(l)
p )−1Θ for

γ
(l)
p → c ∈ [0, 1).

Step 2. For the sample covariance Σ̃, note that γp → 0 according to

the condition (ii) of (C1). Similarly to Step 1.2, we have Σ̃−1 ≍ Θ. This

completes the proof. �

S3. Proof of Theorem 1

Proof. Denote Θ̃ = n−1
∑k

l=1 n
(l)(Σ̃(l))−1. According to Proposition 1, we

have

(Σ̃(l))−1 ≍ 1

1− γ
(l)
p

Θ, 1 ≤ l ≤ k.

Then by the calculus rules of deterministic equivalents (Theorem 4.3 in

Dobriban and Sheng (2018)), we obtain that

Θ̃ =
1

n

k∑

l=1

n(l)(Σ̃(l))−1 ≍
k∑

l=1

γp

γ
(l)
p (1− γ

(l)
p )

Θ =
1

1− kγp
Θ. (S3.1)

Since n(l) ≡ n/k for 1 ≤ l ≤ k, we have Θ̃ = k−1
∑k

l=1(Σ̃
(l))−1. To simplify

R̂two, we first decompose (µ̂a − µ2)
⊤Θ̄µ̂d and ∆̄2

p as follows.

(µ̂a − µ2)
⊤Θ̄µ̂d

= [(µa − µ2) + (µ̂a − µa)]
⊤ Θ̄µ̂d

=(µa − µ2)
⊤Θ̄ [µd + (µ̂d − µd)] + (µ̂a − µa)

⊤Θ̄µ̂d

=
1

2
µ⊤

d Θ̄µd +
1

2
µ⊤

d Θ̄(µ̂d − µd) + (µ̂a − µa)
⊤Θ̄µ̂d.

(S3.2)
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Then, we insert the average inverse sample covariance Θ̃ with known µ1

and µ2. Thus, (S3.2) can be further decomposed into

1

2
µ⊤

d Θ̃µd +
1

2
µ⊤

d (Θ̄− Θ̃)µd +
1

2
µ⊤

d Θ̄(µ̂d − µd) + (µ̂a − µa)
⊤Θ̄µd

=∆0,1 +
1

2
∆1 +

1

2
∆2 +∆3,

where ∆0,1 = µ⊤

d Θ̃µd/2, ∆1 = µ⊤

d (Θ̄ − Θ̃)µd, ∆2 = µ⊤

d Θ̄(µ̂d − µd), and

∆3 = (µ̂a − µa)
⊤Θ̄µd. Moreover, it holds that

∆̄2
p =µ̂⊤

d Θ̄ΣΘ̄µ̂d

= [µd + (µ̂d − µd)]
⊤ Θ̄ΣΘ̄µ̂d

=µ⊤

d Θ̄ΣΘ̄ [µd + (µ̂d − µd)] + (µ̂d − µd)
⊤Θ̄ΣΘ̄µ̂d

=µ⊤

d Θ̄ΣΘ̄µd + µ⊤

d Θ̄ΣΘ̄(µ̂d − µd) + (µ̂d − µd)
⊤Θ̄ΣΘ̄µ̂d

=µ⊤

d [Θ̃ + (Θ̄− Θ̃)]Σ[Θ̃ + (Θ̄− Θ̃)]µd + µ⊤

d Θ̄ΣΘ̄(µ̂d − µd)

+(µ̂d − µd)
⊤Θ̄ΣΘ̄µ̂d

=µ⊤

d Θ̃ΣΘ̃µd + 2µ⊤

d (Θ̄− Θ̃)ΣΘ̃µd + µ⊤

d (Θ̄− Θ̃)Σ(Θ̄− Θ̃)µd

+µ⊤

d Θ̄ΣΘ̄(µ̂d − µd) + (µ̂d − µd)
⊤Θ̄ΣΘ̄µ̂d

=µ⊤

d Θ̃ΣΘ̃µd + 2µ⊤

d (Θ̄− Θ̃)ΣΘ̃µd + µ⊤

d (Θ̄− Θ̃)Σ(Θ̄− Θ̃)µd

+(µ̂d + µd)
⊤Θ̄ΣΘ̄(µ̂d − µd)

=∆0,2 + 2∆4 +∆5 +∆6,

(S3.3)

where ∆0,2 = µ⊤

d Θ̃ΣΘ̃µd, ∆4 = µ⊤

d (Θ̄− Θ̃)ΣΘ̃µd, ∆5 = µ⊤

d (Θ̄− Θ̃)Σ(Θ̄−

Θ̃)µd, and ∆6 = (µ̂d +µd)
⊤Θ̄ΣΘ̄(µ̂d −µd). Now we consider the terms ∆i
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successively.

(1) Consider the terms ∆0,1 and ∆0,2. We first show that ∆0,1 = [2(1−

kγp)]
−1µ⊤

d Θµd(1 + o(1)).

Recall that Θ̃ ≍ (1 − kγp)
−1Θ by (S3.1). Let µ̃d = µd/‖µd‖2. Noting

that ∆0,1 = tr(Θ̃µ̃dµ̃
⊤

d )‖µd‖22/2, where ‖µ̃dµ̃
⊤

d ‖∗ = 1, by Definition 1, we

have

1

2
tr(Θ̃µ̃dµ̃

⊤

d )−
1

2(1− kγp)
tr(Θµ̃dµ̃

⊤

d ) →a.s. 0.

Then by the assumption kγp < 1, it follows that

∆0,1 = ‖µd‖22
[

1

2(1− kγp)
tr(Θµ̃dµ̃

⊤

d ) + o(1)

]
=

1

2(1− kγp)
µ⊤

d Θµd(1+o(1)).

Let us consider ∆0,2, showing that ∆0,2 = (1− kγp)
−2µ⊤

d Θµd(1+ o(1)).

Note that ∆0,2 = tr(Θ̃ΣΘ̃µ̃dµ̃
⊤

d )‖µd‖22. Then,

tr(Θ̃ΣΘ̃µ̃dµ̃
⊤

d )−
1

(1− kγp)2
tr(Θµ̃dµ̃

⊤

d )

= tr

(
Θ̃ΣΘ̃µ̃dµ̃

⊤

d − 1

1− kγp
ΘΣΘ̃µ̃dµ̃

⊤

d +
1

1− kγp
Θ̃µ̃dµ̃

⊤

d − 1

(1− kγp)2
Θµ̃dµ̃

⊤

d

)

=tr

[(
Θ̃− 1

1− kγp
Θ

)
ΣΘ̃µ̃dµ̃

⊤

d

]
+

1

1− kγp
tr

[(
Θ̃− 1

1− kγp
Θ

)
µ̃dµ̃

⊤

d

]
.

Denote Bn = ΣΘ̃µ̃dµ̃
⊤

d , then ‖Bn‖∗ = µ̃⊤

d Θ̃Σµ̃d. Recall that Θ̃ ≍ (1 −

kγp)
−1Θ, which together with ‖µ̃d‖2 = 1 and ‖Σ‖∗ < c5 for some constant

c5 implies that

‖Bn‖∗ →a.s.
1

1− kγp
µ̃⊤

d µ̃d.
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Since µ̃⊤

d µ̃d = ‖µ̃d‖22 = 1, we have supn ‖Bn‖∗ < ∞. Therefore, by Defini-

tion 1, we obtain that

tr

[(
Θ̃− 1

1− kγp
Θ

)
ΣΘ̃µ̃dµ̃

⊤

d

]
→a.s. 0.

Similarly, by ‖µ̃dµ̃
⊤

d ‖∗ = ‖µ̃d‖22 = 1, we have

tr

[(
Θ̃− 1

1− kγp
Θ

)
µ̃dµ̃

⊤

d

]
→a.s. 0.

Noting that kγp → c ∈ [0, 1), it follows that

tr(Θ̃ΣΘ̃µ̃dµ̃
⊤

d )−
1

(1− kγp)2
tr(Θµ̃dµ̃

⊤

d ) →a.s. 0.

Thus,

∆0,2 = ‖µd‖22
[

1

(1− kγp)2
tr(Θµ̃dµ̃

⊤

d ) + o(1)

]
=

1

(1− kγp)2
µ⊤

d Θµd(1+o(1)).

(2) We bound the terms ∆1, · · · ,∆6.

(i) Bound ∆1 = µ⊤

d (Θ̄− Θ̃)µd.

It is easy to see that

Σ̂
(l)
two = Σ̃(l) − n1

n
(µ̂1 − µ1)(µ̂1 − µ1)

⊤ − n2

n
(µ̂2 − µ2)(µ̂2 − µ2)

⊤.

Then we have

‖Σ̃(l) − Σ̂
(l)
two‖2 ≤

n1

n
‖(µ̂1 − µ1)(µ̂1 − µ1)

⊤‖2 +
n2

n
‖(µ̂2 − µ2)(µ̂2 − µ2)

⊤‖2

=
n1

n
‖µ̂1 − µ1‖22 +

n2

n
‖µ̂2 − µ2‖22.

(S3.4)
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Denote rn = n1/n ∈ (0, 1), then 1− rn = n2/n. By Lemma 1, we have

‖µ̂1 − µ1‖2 = Op



√

tr(Σ)

rnn


 , ‖µ̂2 − µ2‖2 = Op

(√
tr(Σ)

(1− rn)n

)
.

Since the eigenvalues of Σ satisfy 0 < c1 < λmin(Σ) < λmax(Σ) < c2, we

have tr(Σ) ≤ pλmax(Σ) < pc2. Combining this with (S3.4) and noting that

rn ∈ (0, 1), we see that

‖Σ̃(l) − Σ̂
(l)
two‖2 = Op

(
tr(Σ)

n

)
= Op

(c2p
n

)
= Op (γp) = op(1). (S3.5)

By Lemma 2, we have

‖(Σ̃(l))−1 −Θ‖2 = ‖Θ‖2Op

(√
kγp

)
. (S3.6)

Therefore, (Σ̃(l))−1 can be bounded as

‖(Σ̃(l))−1‖2 ≤ ‖(Σ̃(l))−1 −Θ‖2 + ‖Θ‖2 = ‖Θ‖2
[
Op

(√
kγp

)
+ 1
]
= Op(1),

where we use the fact that ‖Θ‖2 is upper bounded according to (i) of

(C1), and the fact kγp → c. Combining with (S3.5) and reminding Θ̂
(l)
two =

(Σ̂
(l)
two)

−1, it is easy to see that ‖Θ̂(l)
two‖2 = Op(1). Then noticing (S3.5) and

the fact that Θ̂
(l)
two − (Σ̃(l))−1 = (Σ̃(l))−1(Σ̃(l) − Σ̂

(l)
two)Θ̂

(l)
two , we have

‖Θ̂(l)
two − (Σ̃(l))−1‖2 ≤ ‖(Σ̃(l))−1‖2‖Θ̂(l)

two‖2‖Σ̃(l) − Σ̂
(l)
two‖2 = Op (γp) , (S3.7)

for 1 ≤ l ≤ k. Thus,

‖Θ̄− Θ̃‖2 ≤
1

k

k∑

l=1

‖Θ̂(l)
two − (Σ̃(l))−1‖2 = Op (γp) . (S3.8)
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Then by (S3.8), we conclude that

∆1 = µ⊤

d (Θ̄− Θ̃)µd ≤ ‖µd‖22‖Θ̄− Θ̃‖2 = ‖µd‖22Op (γp) .

(ii) Bound ∆2 = µ⊤

d Θ̄(µ̂d − µd).

Since µ̂1 ∼ Np

(
µ1, n

−1
1 Σ

)
, µ̂2 ∼ Np

(
µ2, n

−1
2 Σ

)
, and µ̂1 and µ̂2 are

independent with each other, we have µ̂d ∼ Np

(
µd,
(
n−1
1 + n−1

2

)
Σ
)
. By

Lemma 1, we have

‖µ̂d − µd‖2 = Op

(√(
1

n1

+
1

n2

)
tr(Σ)

)
.

Recall that n1 = rnn, so n−1
1 + n−1

2 = (r−1
n + (1− rn)

−1)n−1. Since tr(Σ) ≤

pλmax(Σ) < pc2 for some constant c2, we have

‖µ̂d − µd‖2 = Op

(√(
1

rn
+

1

1− rn

)
c2 ·

p

n

)
= Op

(√
γp
)
. (S3.9)

Note that ‖Θ̄ − Θ‖2 ≤ k−1
∑k

l=1 ‖Θ̂
(l)
two − Θ‖2. Moreover, for l = 1, · · · , k,

it holds by (S3.6) and (S3.7) that

‖Θ̂(l)
two−Θ‖2 ≤ ‖Θ̂(l)

two−(Σ̃(l))−1‖2+‖(Σ̃(l))−1−Θ‖2 = Op (γp)+Op

(√
kγp

)
.

Thus,

‖Θ̄−Θ‖2 = Op (γp) +Op

(√
kγp

)
= Op(1),

where we use the fact γp → 0 and kγp → c, according to (C1) and (C2).

Then we have

‖Θ̄‖2 ≤ ‖Θ̄−Θ‖2 + ‖Θ‖2 = Op(1). (S3.10)
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By Cauchy–Schwarz inequality, it is easy to see that, for any symmetric

matrix A and vectors x,y with compatible dimensions, we have |x⊤Ay| ≤

(x⊤Ax)1/2(y⊤Ay)1/2 ≤ ‖x‖2‖A‖2‖y‖2. Hence, we obtain that

∆2 = µ⊤

d Θ̄(µ̂d − µd) ≤ ‖µd‖2‖Θ̄‖2‖µ̂d − µd‖2 = ‖µd‖2Op

(√
γp
)

by (S3.9) and (S3.10).

(iii) Bound ∆3. Since µ̂a ∼ Np (µa, ((4n1)
−1 + (4n2)

−1) Σ), we have

‖µ̂a − µa‖2 = Op

(√(
1

4n1

+
1

4n2

)
tr(Σ)

)

by Markov’s inequality. Similarly to (S3.9), we have

‖µ̂a − µa‖2 = Op

(√
γp
)
. (S3.11)

By (S3.10) and (S3.11), it follows that

∆3 = (µ̂a − µa)
⊤Θ̄µd ≤ ‖µ̂a − µa‖2‖Θ̄‖2‖µd‖2 = ‖µd‖2Op

(√
γp
)
.

(iv) Bound ∆4,∆5 and ∆6. Since ‖Σ‖2 and ‖Θ̃‖2 are bounded away

from zero and infinity, by (S3.8) we have

∆4 = µ⊤

d (Θ̄− Θ̃)ΣΘ̃µd ≤ ‖µd‖22‖Θ̄− Θ̃‖2‖Σ‖2‖Θ̃‖2 = ‖µd‖22Op (γp) .

Similarly, since ‖Σ‖2 is bounded away from zero and infinity, by (S3.8) we

have

∆5 = µ⊤

d (Θ̄− Θ̃)Σ(Θ̄− Θ̃)µd ≤ ‖µd‖22‖Θ̄− Θ̃‖22‖Σ‖2 = ‖µd‖22Op

(
γ2
p

)
.
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In addition, by (S3.9) we have

‖µ̂d + µd‖2 ≤ ‖µ̂d − µd‖2 + 2‖µd‖2 = Op

(√
γp
)
+ ‖µd‖2O(1). (S3.12)

This together with (S3.9) and (S3.10) yields that

∆6 =(µ̂d + µd)
⊤Θ̄ΣΘ̄(µ̂d − µd) ≤ ‖µ̂d + µd‖2‖Θ̄‖22‖Σ‖2‖µ̂d − µd‖2

=Op (γp) + ‖µd‖2Op

(√
γp
)
.

(3) We prove the final conclusion. By (S3.2), (S3.3) and limits of ∆i,

we have

(µ̂a − µ2)
⊤Θ̄µ̂d =

1

2(1− kγp)
µ⊤

d Θµd

(
1 + o(1) +Op (γp) +Op

(√
γp
))

,

∆̄2
p =

1

(1− kγp)2
µ⊤

d Θµd

(
1 + o(1) +Op

(
γ2
p

)
+Op (γp) +Op

(√
γp
))
+Op (γp) .

According to the condition (ii) of (C1), we have γp → 0. Note that rn → π1,

1− rn → π2, thus as n → ∞,

Φ

(
(µ̂a − µ2)

⊤Θ̄µ̂d + log(π2/π1)

∆̄p

)
→p Φ

(
δ

2
+

(1− kγp) log(π2/π1)

δ

)
,

(S3.13)

where δ2 = µ⊤

d Θµd. Similarly, we also have

Φ

(
−(µ̂a − µ1)

⊤Θ̄µ̂d + log(π2/π1)

∆̄p

)
→p Φ

(
δ

2
− (1− kγp) log(π2/π1)

δ

)
.

(S3.14)

According to the condition (ii) of (C2), we have kγp → c. Combining

(S3.13) and (S3.14) shows that Âtwo converges to Atwo in probability as

n → ∞.
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Now we show the convergence of Âcen. Taking k = 1 yields that Θ̄ = Θ̂

and ∆̄p = ∆̂p. Thus,

Φ

(
(µ̂a − µ2)

⊤Θ̂µ̂d + log(π2/π1)

∆̂p

)
→p Φ

(
δ

2
+

(1− γp) log(π2/π1)

δ

)
,

Φ

(
−(µ̂a − µ1)

⊤Θ̂µ̂d + log(π2/π1)

∆̂p

)
→p Φ

(
δ

2
− (1− γp) log(π2/π1)

δ

)
.

Recall that γp → 0, so we obtain that Âcen converges to Acen in probability.

Therefore, we conclude that R̂two converges to Atwo/Acen in probability

as n → ∞. This completes the proof. �

S4. Proof of Theorem 2

Proof. As for Âone, we need to show

Φ


 n−1

∑k
l=1 n

(l)(µ̂(l)
a − µ2)

⊤Θ̂(l)µ̂
(l)
d + log(π2/π1)√

(n−1
∑k

l=1 n
(l)Θ̂(l)µ̂

(l)
d )⊤Σ(n−1

∑k
l=1 n

(l)Θ̂(l)µ̂
(l)
d )




→p Φ

(
δ

2
+

(1− kγp) log(π2/π1)

δ

)
.

(S4.1)

The proof is similar to that of Theorem 1. To begin with, we decompose

n−1
∑k

l=1 n
(l)(µ̂(l)

a −µ2)
⊤Θ̂(l)µ̂

(l)
d and (n−1

∑k
l=1 n

(l)Θ̂(l)µ̂
(l)
d )⊤Σ(n−1

∑k
l=1 n

(l)



DISTRIBUTED LINEAR DISCRIMINANT ANALYSIS 15

Θ̂(l)µ̂
(l)
d ) as follows. Recalling that n(l) ≡ n/k, it holds that

1

n

k∑

l=1

n(l)(µ̂(l)
a − µ2)

⊤Θ̂(l)µ̂
(l)
d

=
1

k

k∑

l=1

[(µa − µ2) + (µ̂(l)
a − µa)]

⊤Θ̂(l)µ̂
(l)
d

=
1

k

k∑

l=1

(µa − µ2)
⊤Θ̂(l)[µd + (µ̂

(l)
d − µd)] +

1

k

k∑

l=1

(µ̂(l)
a − µa)

⊤Θ̂(l)µ̂
(l)
d

=
1

2k

k∑

l=1

µ⊤

d Θ̂
(l)µd +

1

2k

k∑

l=1

µ⊤

d Θ̂
(l)(µ̂

(l)
d − µd) +

1

k

k∑

l=1

(µ̂(l)
a − µa)

⊤Θ̂(l)µ̂
(l)
d

=
1

2
µ⊤

d Θ̃µd +
1

2k

k∑

l=1

µ⊤

d (Θ̂
(l) − Θ̃)µd +

1

2k

k∑

l=1

µ⊤

d Θ̂
(l)(µ̂

(l)
d − µd)

+
1

k

k∑

l=1

(µ̂(l)
a − µa)

⊤Θ̂(l)µd

=
1

2
µ⊤

d Θ̃µd +
1

2
µ⊤

d (Θ̄one − Θ̃)µd + µ⊤

d

(
1

k

k∑

l=1

Θ̂(l)(µ̂
(l)
1 − µ1)

)

=∆0,1 +
1

2
∆

(2)
1 +∆7,

(S4.2)

where ∆0,1 is defined in the proof of Theorem 1, ∆
(2)
1 = µ⊤

d (Θ̄one − Θ̃)µd,

∆7 = µ⊤

d [k
−1
∑k

l=1 Θ̂
(l)(µ̂

(l)
1 − µ1)], and Θ̄one = k−1

∑k
l=1 Θ̂

(l). Recall that

Θ̃ = k−1
∑k

l=1(Σ̃
(l))−1 is the average of local inverse sample covariances with

known µ1 and µ2. In addition, due to n(l) ≡ n/k, it holds that

(
1

n

k∑

l=1

n(l)Θ̂(l)µ̂
(l)
d

)⊤

Σ

(
1

n

k∑

l=1

n(l)Θ̂(l)µ̂
(l)
d

)

=

(
1

k

k∑

l=1

Θ̂(l)[µd + (µ̂
(l)
d − µd)]

)⊤

Σ

(
1

k

k∑

l=1

Θ̂(l)µ̂
(l)
d

)
.
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Similarly to the decomposition of (S3.3), the above equation is equal to
(
1

k

k∑

l=1

Θ̂(l)µd

)⊤

Σ

(
1

k

k∑

l=1

Θ̂(l)[µd + (µ̂
(l)
d − µd)]

)

+

(
1

k

k∑

l=1

Θ̂(l)(µ̂
(l)
d − µd)

)⊤

Σ

(
1

k

k∑

l=1

Θ̂(l)µ̂
(l)
d

)

=

(
1

k

k∑

l=1

Θ̂(l)µd

)⊤

Σ

(
1

k

k∑

l=1

Θ̂(l)µd

)

+

(
1

k

k∑

l=1

Θ̂(l)µd

)⊤

Σ

(
1

k

k∑

l=1

Θ̂(l)(µ̂
(l)
d − µd)

)

+

(
1

k

k∑

l=1

Θ̂(l)(µ̂
(l)
d − µd)

)⊤

Σ

(
1

k

k∑

l=1

Θ̂(l)µ̂
(l)
d

)

=

(
1

k

k∑

l=1

[Θ̃ + (Θ̂(l) − Θ̃)]µd

)⊤

Σ

(
1

k

k∑

l=1

[Θ̃ + (Θ̂(l) − Θ̃)]µd

)

+

(
1

k

k∑

l=1

Θ̂(l)(µ̂
(l)
d + µd)

)⊤

Σ

(
1

k

k∑

l=1

Θ̂(l)(µ̂
(l)
d − µd)

)

=µ⊤

d Θ̃ΣΘ̃µd + 2µ⊤

d

(
1

k

k∑

l=1

(Θ̂(l) − Θ̃)

)
ΣΘ̃µd

+µ⊤

d

(
1

k

k∑

l=1

(Θ̂(l) − Θ̃)

)
Σ

(
1

k

k∑

l=1

(Θ̂(l) − Θ̃)

)
µd

+

(
1

k

k∑

l=1

Θ̂(l)(µ̂
(l)
d + µd)

)⊤

Σ

(
1

k

k∑

l=1

Θ̂(l)(µ̂
(l)
d − µd)

)

=µ⊤

d Θ̃ΣΘ̃µd + 2µ⊤

d (Θ̄one − Θ̃)ΣΘ̃µd + µ⊤

d (Θ̄one − Θ̃)Σ(Θ̄one − Θ̃)µd

+

(
1

k

k∑

l=1

Θ̂(l)(µ̂
(l)
d + µd)

)⊤

Σ

(
1

k

k∑

l=1

Θ̂(l)(µ̂
(l)
d − µd)

)

=∆0,2 + 2∆
(2)
4 +∆

(2)
5 +∆8,

(S4.3)
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where ∆0,2 is defined in the proof of Theorem 1, ∆
(2)
4 = µ⊤

d (Θ̄one−Θ̃)ΣΘ̃µd,

∆
(2)
5 = µ⊤

d (Θ̄one− Θ̃)Σ(Θ̄one− Θ̃)µd, and ∆8 = [k−1
∑k

l=1 Θ̂
(l)(µ̂

(l)
d +µd)]

⊤Σ

[k−1
∑k

l=1 Θ̂
(l)(µ̂

(l)
d − µd)].

Remind that the terms ∆0,1 and ∆0,2 have been studied in the proof of

Theorem 1. Then we bound the terms ∆
(2)
i , i = 1, 4, 5, ∆7, and ∆8.

(i) Bound ∆
(2)
1 ,∆

(2)
4 ,∆

(2)
5 . The procedure is similar to that of bounding

∆1,∆4,∆5, where the only difference is that Θ̄ in ∆i is replaced by Θ̄one in

∆
(2)
i .

Noting the fact

Σ̂(l) = Σ̃(l) − n1

n
(µ̂

(l)
1 − µ1)(µ̂

(l)
1 − µ1)

⊤ − n2

n
(µ̂

(l)
2 − µ2)(µ̂

(l)
2 − µ2)

⊤,

it follows that

‖Σ̃(l) − Σ̂(l)‖2 ≤
n1

n
‖(µ̂(l)

1 − µ1)(µ̂
(l)
1 − µ1)

⊤‖2 +
n2

n
‖(µ̂(l)

2 − µ2)(µ̂
(l)
2 − µ2)

⊤‖2

=
n1

n
‖µ̂(l)

1 − µ1‖22 +
n2

n
‖µ̂(l)

2 − µ2‖22.

According to Lemma 1, it holds that

‖µ̂(l)
1 − µ1‖2 = Op



√

tr(Σ)

rnn(l)


 , ‖µ̂(l)

2 − µ2‖2 = Op

(√
tr(Σ)

(1− rn)n(l)

)
.

Since tr(Σ) < pc2 and rn ∈ (0, 1), we have

‖Σ̃(l) − Σ̂(l)‖2 = Op

(
tr(Σ)

n(l)

)
= Op

( c2p
n(l)

)
= Op

(
γ(l)
p

)
= op(1), (S4.4)

where we use the assumption γ
(l)
p = o(1) in (C2). Remind that ‖(Σ̃(l))−1‖2 =

Op(1). Due to (S4.4) and the fact Θ̂(l) = (Σ̂(l))−1, it is easy to see that
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‖Θ̂(l)‖2 = Op(1). Then by Θ̂(l) − (Σ̃(l))−1 = (Σ̃(l))−1(Σ̃(l) − Σ̂(l))Θ̂(l) and

(S4.4), we have

‖Θ̂(l) − (Σ̃(l))−1‖2 ≤ ‖(Σ̃(l))−1‖2‖Θ̂(l)‖2‖Σ̃(l) − Σ̂(l)‖2 = Op

(
γ(l)
p

)
. (S4.5)

Thus,

‖Θ̄one − Θ̃‖2 ≤
1

k

k∑

l=1

‖Θ̂(l) − (Σ̃(l))−1‖2 = Op

(
γ(l)
p

)
. (S4.6)

By (S4.6), we conclude that

∆
(2)
1 = µ⊤

d (Θ̄one − Θ̃)µd ≤ ‖µd‖22‖Θ̄one − Θ̃‖2 = ‖µd‖22Op

(
γ(l)
p

)
.

Since ‖Σ‖2 and ‖Θ̃‖2 are bounded away from zero and infinity, by

(S4.6), we have

∆
(2)
4 = µ⊤

d (Θ̄one−Θ̃)ΣΘ̃µd ≤ ‖µd‖22‖Θ̄one−Θ̃‖2‖Σ‖2‖Θ̃‖2 = ‖µd‖22Op

(
γ(l)
p

)
,

∆
(2)
5 = µ⊤

d (Θ̄one−Θ̃)Σ(Θ̄−Θ̃)µd ≤ ‖µd‖22‖Θ̄one−Θ̃‖22‖Σ‖2 = ‖µd‖22Op

(
(γ(l)

p )2
)
.

(ii) Bound ∆7. Similarly to (S3.9), we have

‖µ̂(l)
1 − µ1‖2 = Op

(√
γ
(l)
p

)
.

Recalling that ‖Θ̂(l)‖2 = Op(1), it follows that
∥∥∥∥∥
1

k

k∑

l=1

Θ̂(l)(µ̂
(l)
1 − µ1)

∥∥∥∥∥
2

≤1

k

k∑

l=1

‖Θ̂(l)(µ̂
(l)
1 − µ1)‖2

≤1

k

k∑

l=1

‖Θ̂(l)‖2‖µ̂(l)
1 − µ1‖2 = Op

(√
γ
(l)
p

)
.

(S4.7)
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By (S4.7), we obtain that

∆7 =µ⊤

d

(
1

k

k∑

l=1

Θ̂(l)(µ̂
(l)
1 − µ1)

)

≤‖µd‖2

∥∥∥∥∥
1

k

k∑

l=1

Θ̂(l)(µ̂
(l)
1 − µ1)

∥∥∥∥∥
2

= ‖µd‖2Op

(√
γ
(l)
p

)
.

(iii) Bound ∆8. Similarly to (S3.9) and (S3.12), we have

‖µ̂(l)
d − µd‖2 = Op

(√
γ
(l)
p

)
, ‖µ̂(l)

d + µd‖2 = Op

(√
γ
(l)
p

)
+ ‖µd‖2O(1).

Therefore, by ‖Θ̂(l)‖2 = Op(1), we have

‖Θ̂(l)(µ̂
(l)
d − µd)‖2 ≤ ‖Θ̂(l)‖2‖µ̂(l)

d − µd‖2 = Op

(√
γ
(l)
p

)

and

‖Θ̂(l)(µ̂
(l)
d + µd)‖2 ≤ ‖Θ̂(l)‖2‖µ̂(l)

d + µd‖2 = Op

(√
γ
(l)
p

)
+ ‖µd‖2O(1).

Consequently, we conclude that

∆8 =

(
1

k

k∑

l=1

Θ̂(l)(µ̂
(l)
d + µd)

)⊤

Σ

(
1

k

k∑

l=1

Θ̂(l)(µ̂
(l)
d − µd)

)

≤
(
1

k

k∑

l=1

‖Θ̂(l)(µ̂
(l)
d + µd)‖2

)
‖Σ‖2

(
1

k

k∑

l=1

‖Θ̂(l)(µ̂
(l)
d − µd)‖2

)

=Op

(
γ(l)
p

)
+ ‖µ̂d‖2Op

(√
γ
(l)
p

)
.

Remind that γ
(l)
p = kγp → c = 0 in Theorem 2, which implies that

these remaining terms (i.e., ∆
(2)
i , i = 1, 4, 5, ∆7, ∆8) are lower order terms

of ∆0,1 and ∆0,2. This completes the proof of (S4.1). Similarly, we also
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have

Φ


− k−1

∑k
l=1(µ̂

(l)
a − µ1)

⊤Θ̂(l)µ̂
(l)
d + log(π2/π1)√

(k−1
∑k

l=1 Θ̂
(l)µ̂

(l)
d )⊤Σ(k−1

∑k
l=1 Θ̂

(l)µ̂
(l)
d )




→p Φ

(
δ

2
− (1− kγp) log(π2/π1)

δ

)
.

Since kγp → 0, Âone converges to

Acen = π1Φ

(
δ

2
− log(π2/π1)

δ

)
+ π2Φ

(
δ

2
+

log(π2/π1)

δ

)

in probability as n → ∞, and Âcen also has the same limit. Therefore, R̂one

converges to one in probability as n → ∞. This completes the proof. �
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