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Supplementary Material

In the online supplementary material, we provide proofs of the theoretical results stated within

the paper. Before this, we state and prove two lemmas that are used in the following proofs.

S1. Lemmas

Lemma 1. Let X4, --- , X, € R? be n i.i.d. random vectors following nor-
mal distribution N,(p,%), and the sample mean vector i =n='> " X,

Then, the difference between f1 and p can be bounded by

tr(3)

ne

16— pfly <

with probability at least 1 — €.
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Proof. By the fact 1 ~ N,(p,n~'Y), it is easy to see that

Bl pl) = trlCov(i)] = tr (—2) ~ L)

Using Markov’s inequality, for any ¢ > 0, we have

tr(X)

nt

Pllla—pl;=1] <

Then for any € € (0,1], we see that tr(X)/(nt) < ¢ is equivalent to t >

tr(X)/(ne). Thus, we have

. tr(32)
16— pll, <
ne
with probability at least 1 — . 0
Lemma 2. Let X,,---,X,, € RP be n > p i.i.d. random wvectors fol-

lowing normal distribution N,(p,X), and the sample covariance matriz
Sp=n"tY" (X — p)(X; —p)'. Then, the difference between S, ' and

© can be bounded by

I3, — 0l < ol (/2 + )

with probability at least 1 — cse™T for all 7 € (0,1], where cg is a positive

constant.

Proof. See the proof of Proposition 11.19 in [Wainwright/ (2019). O
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S2. Proof of Proposition 1

Proof. We first review the results of [Dobriban and Sheng (2018). For the el-
liptical model Z = I''/2U%.1/2 € R™*?, [Dobriban and Sheng (2018) showed
the deterministic equivalent of the sample covariance i;l = €,0 under

following assumptions:

(a) The entries of U are i.i.d. random variables, with zero mean, unit

variance, and finite 8 4+ e-th moment, for some € > 0.

(b) The eigenvalues of 3 and the entries of I are uniformly bounded away

from zero and infinity.

(¢) Asm — oo, p — oo satisfies p/m bounded away from zero and infinity.

Now we prove our conclusions on £ and ¥.

Step 1. We prove the conclusions on >0 for the following cases: (1)

’yz(;l) —c€(0,1), and (2) 7,9) — 0.

Step 1.1. We consider the case (1). For the model in this study, let
(X=X —pi=1 gy and (V) = Y0 — i = 1 )
be the centralized samples on the /th machine. Thus X Z(»l) and f"El) follow

the same normal distribution NV,(0,X). Then, the pooled data matrix

Z) _ (XY)T,... x0T g0t

sy Lx g o

Y

) 2|

~ (l)T) T
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follows the model UX'/2, where the entries of U are i.i.d. random variables
from N(0,1). Therefore, assumption (a) holds for our setting. One can see
that Z0 is a special case of the elliptical model Z = TY2UXY/2 where T’ =

I,). This together with condition (i) of (C1) implies that the assumption

n

(b) holds. Assumption (c¢) also holds according to the fact W e

(0,1). Remind that I' = I,,o) in our model, thus e, = 1/(1 — 'yl(,l)) by the
equation 1 = (n) ! trfe,['(I, 0 +7,()l)epf‘)*1]. Since the assumptions (a)-(c)

in IDobriban and Sheng (2018) hold for our setting, the sample covariance

niy n2y

= 1 ! ! ! !
=0 :W Z(XE) - le)(XE - Hl)T + Z(Yz(’) - NJ2)<Y§) - ,Uw2>T
i=1 i=1

=(n)=1ZOT Zz®
has the deterministic equivalent

(D0 - — O (S2.1)

Step 1.2. We consider the case (2), showing that ||(§3(l))‘1 — 02— 0
with probability 1. By Borel-Cantelli Lemma, it is sufficient to show that
for any small & > 0, imy 00 3,02y P(I(E@)"1 = 6]l; > &) = 0. Now we

prove this result. By Lemma [2] it is shown that for all 7 € (0, 1],

PLIE") " el <0 (277 +7) | 21— e

Because the eigenvalues of Y are bounded away from zero and infinity, we
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have ||©]|2 < ¢4 for some positive constant ¢,. Thus,

P{IE) =0l <ar (25 47) p 21— e

For any ¢ € (0,cq], take 7 = ¢;'e — 2(7")V2. Since 75" — 0, we have

0 < %2” < ¢;%€%/16 when n¥) is sufficient large. Then it holds that 7 €

(c;'e/2,¢;te) € (0,1]. Thus, we have
2
= O (e lemon /oD B
P{IED) " =0 <eh>1-cpe (Vi) ) et

when n® is sufficient large. It follows that

Z P{ Z(l — 0O, > g} < ¢ Z €_n<l) 'e/2) ’

nO>N nO>N

when N is sufficient large. Moreover, it is easy to see that

N

o0

1) l (.1 2

Z I C le/2)’ Z —n®(e;te/2)” _ Z o~ (eite/2)
—-N

n>N nO=1

(chs/Q)
=5 — 0,
e(cgla/Q) 1

as N — oo. Therefore, we have ||(§](l))*1 — 0Ol2 —as 0as n) — oco.

Consequently, for any matrix sequence C,, with sup,, ||Cy ||« < oo, we have

lim | tr[C,((59) ! — ©)] < lim |Gl I(E0) ! =l =0

n(M) =00 n)—
almost surely. Then by Definition 1, the sample covariance >® has the

deterministic equivalent

(1t =<e. (S2.2)
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Combining (S2.1)) and (82.2), we conclude that (S?)~! < (1 — )10 for
'y](;l) —ce[0,1).

Step 2. For the sample covariance i, note that v, — 0 according to
the condition (ii) of (C1). Similarly to Step 1.2, we have 7' < ©. This

completes the proof. ([l

S3. Proof of Theorem 1

Proof. Denote O =n"! Zlen(l)(i(l))*l. According to Proposition 1, we

have

~ 1
()~ < —3©, 1<i<k
L=

Then by the calculus rules of deterministic equivalents (Theorem 4.3 in

Dobriban and Sheng (2018)), we obtain that

_ 1 k k 1
— EZ Z =1 k%@. (S3.1)

=1 1 - % )
Since n® = n/k for 1 <1 < k, we have © = k=1 S°F_(2®)~1. To simplify

Riwo, we first decompose (ft, — pt) ' Ofr, and A? as follows.

(fty — 1) " Ofy
= [(kg — B2) + (it — 1)) Oty

(93.2)
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Then, we insert the average inverse sample covariance © with known g,

and p,. Thus, (§3.2) can be further decomposed into

1 ~ ]_ = ~ 1 A/ A ~ a
St Ottg + 51 (O = O)ptg + 5 Oitg = pa) + (2 — 1) Ot
1 1
=Ag1 + A1 + Ay + Ag,
2 2
where Aoy = ) Opy/2, Ay = ) (© — Oy, Ay = p)O(f1y — py), and

As = (ft, — p,) "Op,. Moreover, it holds that

=115 00 [y + (frq — pg)] + (fra — 1g) ' OTOf1,

=1q OXOp, + g OXO (frg — pg) + (g — py)  OXOf,

= [0+ (0 = O)|L[O + (6 — O)]py + 1y OO (fry — pry)

(g — pa) ' OXOhy (53.3)
=g OO, + 211 (© — ©)SOp, + pj (6 — O)T(O — O)py

11 OXO (frg — pa) + (fra — Ba) ' OXOf1y

=g OO, + 211 (O — ©)SOp, + pj (6 — O)T(6 — O)py

=Ag2 + 204 + A5 + Ag,

where Agy = ] OXOp,, Ay = ) (6 — 0)LOp,, As = pu) (6 —0)L(6 —

O)py, and Ag = (fuz+ py) 'OXO(f1, — py). Now we consider the terms A
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successively.
(1) Consider the terms Ag; and Ags. We first show that Ag; = [2(1 —
b)) 3 Opsa(1 + 0(1)).
Recall that © =< (1 — kv,)~'© by (83d). Let fiy = poy/||pgll2. Noting
that Ag; = tr(é[bdﬁ;)HudH%/Q, where |1yt ||» = 1, by Definition 1, we
have

1 ~T 1 ~T
Zt - -

Then by the assumption kv, < 1, it follows that

tr(Ofgd) + 0o(1)| = = pT Oy (1+0(1)).

1
Aoy = a3
071 Hl’l'dHQ 2( 2(1 _kryp)

1 —kvp)
Let us consider Ao, showing that Ags = (1 —kv,) 2] Opy(1+0(1)).

Note that Ags = tr(OXO fiyft,) )| tty]|2. Then,

- 1 o
tr(OXOfyfty ) — A=k tr(Oftqfty )
p
~ ~ ~ 1 ~_ 1 .
=tr (QE@MNJ 1o OO f1; + WGMW} - m(%#d#g)
p p p

Denote B, = YOy, , then || By, = fiy OSf,. Recall that © = (1 —
kv,) 1O, which together with ||ft,]l2 = 1 and ||X||. < ¢ for some constant
c5 implies that

I .
—m”’;“’d'

[Bnlls —a.s.
n|(|* a.s 1_ »
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Since f1, ft; = ||f14]|? = 1, we have sup,, || B, ||« < oo. Therefore, by Defini-

tion 1, we obtain that

~ 1 ~
tr K@ T @> zemdp,}} —as 0.
p
Similarly, by [|ftaftq ||« = || all3 = 1, we have

~ 1 o
tr [(@ 1ok @) udug} —a.s. 0.

p

Noting that kv, — ¢ € [0, 1), it follows that

r(OSOfifa] ) — m t(Oftgfi]) —vas. 0.
Thus,
Boz = sl | oy @i + o1)| = sl Opsy(1+0(1)).
’ (1 = kyp)? (1= ky)?
(2) We bound the terms Ay, - -+, Ag.
(i) Bound A, = p) (6 — O)py.
It is easy to see that
Shoo = B0 = 2 = )ity = )T = " (i = 11a) iy — o)

Then we have
SO _$O § < My . T na, . N T
XY — o2 < gH(ul — ) (g — ) 2+ gll(uz — o) (fby — pg) |2

Ty, ~ na .
= ?th - N1||§ + g“l@ - H’QH;

(S3.4)
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Denote r,, = ny/n € (0,1), then 1 — r,, = ny/n. By Lemma [I], we have

R tr( X R tr(X
s — palla = 0, [ (/2] \ru2—u2|12=op( #>

) (1 —=r)n
Since the eigenvalues of ¥ satisfy 0 < ¢; < Apin(X) < Anax(X) < c2, we
have tr(X) < pAnax(X) < pco. Combining this with (§3.4]) and noting that

€ (0,1), we see that

50 =500 =0, (") =0, () = 0,6 = ay1). (539

By Lemma 2] we have

IE0) =6, = 10120, (VE) - (83.6)

Therefore, (50)~! can be bounded as

IED) s < [EO) = 0l + 18]l = 18]z [0 (vE) +1] = 0,(1),

where we use the fact that ||©]|2 is upper bounded according to (i) of

(C1), and the fact kv, — ¢. Combining with (S3.5) and reminding el

two —

(1 Y=1 it is easy to see that ||O) ||y = O,(1). Then noticing (S3.5) and

the fact that 6, — (£0) = (S0) (50 — £

two two

)é(l) , we have

two

182, — €)Ml < 1ED) ™ ol8D, I E® — £, 1l = 0, (3), (83.7)

two

for 1 <1 < k. Thus,

[CEC/FE Z 1650 — ()72 = Op (39) (S3.8)
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Then by (S3.8)), we conclude that
Ar =1 (0 = Oty < [l1gll3110 — Bllz = [lpaall305 (1) -

(ii) Bound Ay = p) O(fr; — py)-
Since fi; ~ N (N1a”flz)a fro ~ N, (/1,2,7612), and f1; and fi, are
independent with each other, we have f1; ~ N, (ud, (nfl + n;l) Z). By

Lemma, [I we have

1£2q — Hall2 = O, <\/(nil + n%) tr(Z)) .

Recall that ny = r,n, sony' +ny' = (r;t 4+ (1 —7,)"Hn~L Since tr(3) <

PAmax(2) < peg for some constant ¢y, we have

[£rq — pall, = Op (\/<%+ 1—17“n) C2'§> =0p (\/7_) (53.9)

Note that [|© — O, < k™! Zle ||é(l) — Ol|2. Moreover, for { =1,---  k,

two
it holds by (S3.6) and (S3.7) that

185 =612 < 80 = EO) 2+ ED) =62 = 0, (1) +0, (V) -
Thus,

16 = ©ll: = 0, (1) + Oy (VA3 ) = 0,(1),
where we use the fact 7, — 0 and kv, — ¢, according to (C1) and (C2).

Then we have

1©]2 < 16 = O]z + 6]l = O,(1). (83.10)
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By Cauchy—Schwarz inequality, it is easy to see that, for any symmetric
matrix A and vectors x, y with compatible dimensions, we have |z Ay| <

(xTAx)2(y " Ay)'/2 < ||z||2||All2]|y||2. Hence, we obtain that
Ag = pi O (g — 1a) < [Ball2lOll2l g = Ballz = [ all205 (V75)

by (£3.9) and (53.10).

(ii1) Bound Ag. Since fi, ~ Ny (fby, ((4n1)~! + (4nz)~1) ), we have

I, — pall2 = O, <\/ (i + i) tr@))

by Markov’s inequality. Similarly to (S3.9), we have

ie = all2 = Op (v72) - (53.11)
By (S83.10) and (S3.11)), it follows that

As = (fog = o) Ot < |lsg — tra 21Ol rall2 = 14l 205 (V73) -

(iv) Bound Ay, As and Ag. Since ||X[|2 and [|©]|; are bounded away

from zero and infinity, by (S3.8]) we have
Ay =g (0 = 0)20p, < ||1all2© = Ol Z[2118]2 = [|al305 (1) -

Similarly, since ||X||2 is bounded away from zero and infinity, by (S3.8)) we

have

As = pi (0= 0)Z(0 = O)py < [|1all310 = OIBIISIl2 = 1al305 (37) -
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In addition, by (S3.9) we have

g + prallz < 112a — pall2 + 2l pall2 = Op (V) + [1al20(1).  (S3.12)
This together with (§3.9) and (S3.10)) yields that
Do =(f1g + 1g) OZO(fag — pg) < |l fsa+ pall2llOIEIZN2] g — pall2

=0, (717) + ””d”?Op (\/7_17) .
(3) We prove the final conclusion. By (S3.2)), (S3.3) and limits of A,

we have
(10 = 1) Oty = 5=l Oma (1+0(1) + 0, () + O, (V)
A} = i Oma (14 0(1) + 0, (3) + 0, (3)+ 0, (V7)) +0, ().

According to the condition (i7) of (C1), we have v, — 0. Note that r,, — 1,

1—1r, — m9, thus as n — o0,

o (Bt Ot oo/ g (3., (1= oyl loton/m))

P

(S3.13)

where 62 = p ] O p,. Similarly, we also have

o (_(ﬂa — 1) "Ofty + log(m/m)) Lo (5 C(1—ky) log(ﬁg/m)) |

A 2 5

P

(S3.14)
According to the condition (i7) of (C2), we have kv, — c¢. Combining
(S3.13) and (S3.14) shows that Apwo converges to Aupo in probability as

n — oQ.
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Now we show the convergence of flcen. Taking k = 1 yields that © = )

and A, = Ap. Thus,

A 2 )

P

o ((ﬂa —Mz)T@ﬂdJrlog(Wz/m)) o (5 (1=) logw/m))’

2 )

o (_(/la — 1) Oty + 1og<7r2/m>> s (é 1) logm/m)) |
A

P

Recall that «, — 0, so we obtain that Acen converges to A.., in probability.
Therefore, we conclude that Rtwo converges t0 Ao/ Acen in probability

as n — 0o. This completes the proof. 0]

S4. Proof of Theorem 2

Proof. As for flone, we need to show

R T BRI RS
Vot S n80a)) TR S 080 ) (g4
5oQ —lwp) og(ﬁz/ﬁ)
—>p<1>(—+ 5 >

2

The proof is similar to that of Theorem 1. To begin with, we decompose

ntoF O (a0 —py) OO LY and (n ' 08, n@OO AN TR (nt 0F 0@
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6" 1)) as follows. Recalling that n) = n/k, it holds that
LS, 0050 50 ;0
=~ (g — ) 'OV
1 k
Y A ~
=2 D M0 = o) + () — 1)) 7OV )
1 T
! A ~ (1
= Dbt = )"0 ar ] )+ 7 3 ) O
=1 =
1 & 1 & 1
_ A -
T LR R B R T TR S T TR N R i

=ohd Ottt 57 > 1 (00 = Oy + oD i 0y — py)

(54.2)
where Ay ; is defined in the proof of Theorem 1, A(IQ) = ) (Oone — (:))ud,
Ar = pl k8 00EY — p)], and O, = k71 F OO, Recall that
0=k S (2M)~1 is the average of local inverse sample covariances with

known g, and . In addition, due to n¥ = n/k, it holds that
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Similarly to the decomposition of (S3.3]), the above equation is equal to

% T
1 ~ 1 ~ .
(E E @(l)ﬂ'd> b (E § CR [1q + (H&l) - Md)])

:u;ézé#’d + 2“’21—((:)0716 - é)Zéﬂd + ”;(éone - G)>2((:)one - @)/J’d
T ] k
l) - o _
( Z o 7+ K ) (k; Z CR 27 >

=Ngy + 208 + AP 4 A,
(54.3)
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where Ag - is defined in the proof of Theorem 1, Af) = 1) (Opne —(:))Eéud,
zﬁ”zuﬂ@m—éﬂmlm—émwmﬁAs [ 30 00 (g + )] TS
Ko, 00 (g — py)).

Remind that the terms Ay ; and A2 have been studied in the proof of
Theorem 1. Then we bound the terms AEZ), i=1,4,5, A7, and Ag.

(7) Bound Af), A4 ,A 2 The procedure is similar to that of bounding
Ay, Ay, As, where the only difference is that © in A, is replaced by ©,,. in
A®,

Noting the fact

50— 50 _ a0
n

~ (1)

N9 ~ (1
- Hl)(ﬂ() - N1)T - ?(/“1’2 - N2)<Ng) - N2)T7

it follows that

o~ l ~ (1 l ~ (1
=0 — 0], <—||( W) (@) — )T ||2+—||( G — ) (1Y — )T

1y~ N0
= 2 =l + 28 - w3
According to Lemma (Il it holds that
1 — o =0, [ JEEL] 140 — ol =0, [ [ —EE_
| 2y M2 = O, PON [ £ Hslle = O, (1- Tn)n(l) :

Since tr(X) < pce and 1, € (0,1), we have

< S tr(X) cop
=0 =200, =0, (W =0, (n(l)> 0, (1) = 0,(1),  (S4.4)

where we use the assumption " = o(1) in (C2). Remind that [|(S®)~!|, =

O,(1). Due to (S4.4) and the fact 00 = (E0)~1 it is easy to see that
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16Dy = O,(1). Then by 6@ — (EM)~L = (TO)~1(SO — £MYED and
(S4.4), we have
160 = (ED) 2 < JED) M| €V 20 = SOl = 0, (1) . (54.5)
Thus,
_ . 1o ~ -
[Gone = Oll2 < > 109 = (ZO) Mo = 0, (1) - (S4.6)
=1
By (84.6), we conclude that
A?) = N}(éone - é)l’*d < H/v“d”%”éone - éHQ = H“‘d”gOp (7;51)) .
Since ||X||s and ||©]|, are bounded away from zero and infinity, by
(S4.46)), we have
AY = 17 (Oone—=0)50pt, < |13 €une =Bl [ZI1211l = llpall30, (1)
A = 17 (B0ne=0)5(0-0)pay < [|1l131Oene=BIBNIZ 1> = llal30, (4)?) -

(it) Bound A;. Similarly to (§3.9), we have

i~ mlla= 0, (V4"
Recalling that [|©0)]], = 0,(1), it follows that

<
2 l

N ~ (1
109 (! — )|

| =
]~

1

AN
| =
Wk

= ~ (1 l
18914 = mills = O, ( %2)) |

(S4.7)

~

1
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- Ml))

2o
%z:: _Hl)

By (S4.7), we obtain that

=mwﬁ(/w)

<lptall2
2

(77i) Bound Ag. Similarly to (§3.9) and (S3.12]), we have

l l
<Q,waww (vw)ﬂmmmu

?rlr—\

~ (1
m&—wmﬂ%(%

Therefore, by |00, = O,(1), we have

N ~ (1 = ~ (1 l
|@mm9—uam$n@%mm$—umfd%( %0

and

1B9GD + pa)lle < [BOY51 42 + pglla = O Q%ﬁ+wmmm

Consequently, we conclude that

( Z@ )+/¢Ld>T (%Zj:@ —ud)>

k
1 NI 1
s(EEJ@mm9+ua@%mm<E§]| —u@m>
=1 =1

=0, () + liali0y (V1)

Remind that %()l) = kv, = ¢ = 0 in Theorem 2, which implies that

these remaining terms (i.e A@), i=1,4,5, A7, Ag) are lower order terms

of Ag; and Ags. This completes the proof of (S41). Similarly, we also
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have
| — o Zfﬁ(ﬂg) - Hl)T@(l)lAfl&l) + log(ma/m1)
VO B0 Tk T, 60 4AY)
L@ <§ (1— k) 10g(7r2/7rl)) |

2 4]

Since kv, — 0, flone converges to

. 6 log(my/m) §  log(my/m)
Acen—ﬁlq)(i — 5 )ttt

in probability as n — oo, and Acm also has the same limit. Therefore, ]:Z(me

converges to one in probability as n — oo. This completes the proof. [
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