DATA INTEGRATION IN HIGH DIMENSION
WITH MULTIPLE QUANTILES

Guorong Daia, Ursula U. Müllerb and Raymond J. Carrollb

aDepartment of Statistics and Data Science, School of Management, Fudan University
Shanghai 200433, China
bDepartment of Statistics, Texas A&M University
College Station, TX 77843, USA

Supplementary Material

S1 Lemmas

Lemma 1. Use the notation from Section 2 and write

\[\tilde{\beta}_{nkm} = n^{1/2}(X_{k-a}^T B_{nkm} X_{k-a})^{-1} X_{k-a}^T \psi_{nkm}(\varepsilon) \]

for \(k = 1, \ldots, K \) and \(m = 1, \ldots, M \). Then, provided Assumptions 1, 2, 3 and 4 are satisfied, we have \(\|\tilde{\beta}_{nkm}\| = O_p\{q_n \log n\}^{1/2} \).
Proof of Lemma 1: We calculate
\[
\|\tilde{\beta}_{nkm}\|^2 = n\psi_{nkm}(\varepsilon)^T X_{k:a}(X_{k:a}^T B_{nkm}X_{k:a})^{-2} X_{k:a}^T \psi_{nkm}(\varepsilon)
\leq \lambda_{\min}(n^{-1}X_{k:a}^T B_{nkm}X_{k:a})^{-2} n^{-1}\psi_{nkm}(\varepsilon)^T X_{k:a} X_{k:a}^T \psi_{nkm}(\varepsilon)
\leq Cn^{-1}\psi_{nkm}(\varepsilon)^T X_{k:a} X_{k:a}^T \psi_{nkm}(\varepsilon)
\leq Cn^{-1}q_n(\max_{1 \leq j \leq q_n}|\psi_{nkm}(\varepsilon)^T X_{k:j}|)^2
= Cn^{-1}q_n(\max_{1 \leq j \leq q_n}|\sum_{i=1}^n \psi_{kmi}(\varepsilon)X_{kij}|)^2,
\] (S1.1)
where the third step uses Assumptions 2 and 3. Since \(\psi_{kmi}(\varepsilon)X_{kij}\) has mean zero and is bounded by Assumption 1, Hoeffding’s inequality gives
\[
\Pr\{|\sum_{i=1}^n \psi_{kmi}(\varepsilon)X_{kij}| \geq L_n(n \log n)^{1/2}\} \leq 2 \exp\{-CL_n^2 \log n\}
\]
for any positive sequence \(L_n \to \infty\). It follows that
\[
\Pr\{\max_{1 \leq j \leq q_n}|\sum_{i=1}^n \psi_{kmi}(\varepsilon)X_{kij}| \geq L_n(n \log n)^{1/2}\}
\leq \sum_{j=1}^{q_n} \Pr\{|\sum_{i=1}^n \psi_{kmi}(\varepsilon)X_{kij}| \geq L_n(n \log n)^{1/2}\}
\leq 2q_n \exp\{-CL_n^2 \log n\} = 2q_n n^{-CL_n^2} \to 0,
\] (S1.2)
where the last step holds true because \(q_n = o(n^{1/2})\); see Assumption 4. Therefore
\[
\max_{1 \leq j \leq q_n}|\sum_{i=1}^n \psi_{kmi}(\varepsilon)X_{kij}| = O_p\{(n \log n)^{1/2}\}.
\]
This combined with (S1.1) gives \(\|\tilde{\beta}_{nkm}\|^2 = O_p(q_n \log n)\), which completes the proof.
Lemma 2. Set $\mathcal{M}_1^* = \{D : D \in \mathcal{M}, D^* \subset D\}$ and use the notation from Section 3. Let Assumptions 1, 3, 6 and 7 be satisfied. Let c_4 be the constant from Assumption 7. Then we have, for $k = 1, \ldots, K$, $m = 1, \ldots, M$, and any positive sequence L_n that tends to infinity and satisfies $L_n \to \infty$ and $1 \leq L_n (\log n)^{1/2} \leq n^{1/10 - c_4/5}$,

$$
\lim_{L_n \to \infty} \lim_{n \to \infty} \Pr\{\left|\sum_{i=1}^{n} \{\rho_m(Y_{ki} - X_{ki}^T \hat{\theta}_{kmD}) - \rho_m(\varepsilon_{kmi})\}\right| \leq L_n |D| \log n, \text{ for any } D \in \mathcal{M}_1^*\} = 1.
$$

Proof of Lemma 2: Under Assumptions 1, 3, 6 and 7, Lemma A.2 in the supplement to Lee et al. (2014) gives

$$
\lim_{L \to \infty} \lim_{n \to \infty} \Pr\{\|\hat{\theta}_{kmD} - \theta_{kmD}^*\| \leq L_n^{-1/2}(|D| \log p_n)^{1/2}, \text{ for any } D \in \mathcal{M}_1^*\} = 1. \tag{S1.3}
$$

Then, as $L_n \to \infty$,

$$
\Pr\{\|\hat{\theta}_{kmD} - \theta_{kmD}^*\| \leq L_n n^{-1/2}(|D| \log p_n)^{1/2}, \text{ for any } D \in \mathcal{M}_1^*\} \to 1. \tag{S1.4}
$$

Under Assumptions 1, 3, 6 and 7, and since $1 \leq L_n (\log n)^{1/2} \leq n^{1/10 - c_4/5}$, we can apply Lemma A.1 in the supplement to Lee et al. (2014), which
gives

\[
\max_{D \in \mathcal{M}_1^*} |D|^{-1/2} \left| \hat{V}_{kmD} - E(\hat{V}_{kmD} \mid X_k^D) \right|
\]

\[
+ 2 \sum_{i=1}^n X_{kiD}^T (\hat{\theta}_{kmD} - \theta_{kmD}^*) \psi_{kmi}(\varepsilon) \right| = o_p(1) \quad (S1.5)
\]

with \(\hat{V}_{kmD} = \sum_{i=1}^n \{ \rho_m(Y_{ki} - X_{kiD}^T \hat{\theta}_{kmD}) - \rho_m(\varepsilon_{kmi}) \} \). Then we have, on an event that has probability tending to one,

\[
\left| \sum_{i=1}^n X_{kiD}^T (\hat{\theta}_{kmD} - \theta_{kmD}^*) \psi_{kmi}(\varepsilon) \right|
\]

\[
\leq \| \hat{\theta}_{kmD} - \theta_{kmD}^* \| \| \sum_{i=1}^n X_{kiD} \psi_{kmi}(\varepsilon) \|
\]

\[
\leq \| \hat{\theta}_{kmD} - \theta_{kmD}^* \| |D|^{1/2} \max_{1 \leq j \leq p_n} \left| \sum_{i=1}^n X_{kij} \psi_{kmi}(\varepsilon) \right|
\]

\[
\leq L_n n^{-1/2} (|D| \log p_n)^{1/2} |D|^{1/2} L_n (n \log n)^{1/2}
\]

\[
= L_n^2 |D| \log n \quad (S1.6)
\]

for any \(D \in \mathcal{M}_1^* \). The last but one step uses (S1.2) and (S1.4). From Assumption 7 we have \(p_n = O(n^{c_3}) \). Hence (S1.2) holds true when \(q_n \) is substituted by \(p_n \). We also have, for any \(\theta_D \in \mathbb{R}^{|D|} \) satisfying \(\| \theta_D - \theta_{kmD}^* \| \leq \]
\[L_n n^{-1/2} (|\mathcal{D}| \log p_n)^{1/2}, \]

\[
|\sum_{i=1}^{n} E\{\rho_m(Y_{ki} - X_{ki}^T \theta^*_{\mathcal{D}}) - \rho_m(\varepsilon_{kmi}) \mid X_{ki}\}| \\
= \sum_{i=1}^{n} E \left\{ \int_{0}^{X_{ki}^T (\theta^*_{\mathcal{D}} - \theta^*_{kmD})} F_{km}(s \mid X_{ki}) - F_{km}(0 \mid X_{ki}) \, ds \right\} \\
= \sum_{i=1}^{n} \int_{0}^{X_{ki}^T (\theta^*_{\mathcal{D}} - \theta^*_{kmD})} s f_{km}(\bar{s} \mid X_{ki}) \, ds \\
\leq C (\theta^*_{\mathcal{D}} - \theta^*_{kmD})^T \sum_{i=1}^{n} (X_{ki} X_{ki}^T) (\theta^*_{\mathcal{D}} - \theta^*_{kmD}) \\
\leq C n \lambda_{\max}(n^{-1} X_{kD} X_{kD}^T) \|\theta^*_{\mathcal{D}} - \theta^*_{kmD}\|^2 \\
\leq C n \|\theta^*_{\mathcal{D}} - \theta^*_{kmD}\|^2 \leq C L_n^2 |\mathcal{D}| \log p_n. \quad \text{(S1.7)}
\]

The first step in the above results is from Knight’s identity (Knight, 1998).

In the second step, \(F_{km}(\cdot \mid X_k) \) is the conditional distribution function of \(\varepsilon_{km} \) given \(X_k \). The third step uses a Taylor expansion with some \(\bar{s} \) between 0 and \(X_{ki}^T (\theta^*_{\mathcal{D}} - \theta^*_{kmD}) \). The fourth step holds true because of Assumption 3 and the fact that

\[
\sup_{1 \leq i \leq n} |X_{ki}^T (\theta^*_{\mathcal{D}} - \theta^*_{kmD})| \leq \sup_{1 \leq i \leq n} \|X_{ki}\| \|\theta^*_{\mathcal{D}} - \theta^*_{kmD}\| \\
\leq C L_n d_n n^{-1/2} (\log n)^{1/2} \\
\leq C n^{4c_4/5 - 2/5} (\log n)^{1/2} \to 0
\]

from Assumptions 1 and 7. Combining (S1.4), (S1.5), (S1.6) and (S1.7)
yields that, for any $D \in M_1^*$,

$$
\hat{V}_{kmD} \leq |E(\hat{V}_{kmD} \mid X_{kD})| + 2|\sum_{i=1}^{n} X_{kiD}^T(\hat{\theta}_{kmD} - \theta^*_{kmD})\psi_{kmi}(\varepsilon)| + |D|o_p(1)
$$

$$
\leq CL^2_n|D|\log p_n + L^2_n|D|\log n + |D|o_p(1) \leq CL^2_n|D|\log n
$$

with probability approaching one, where the $o_p(1)$ term comes from (S1.5).

This finishes the proof.

S2 Proofs of the Theorems

$$
\|n^{1/2}(\hat{\theta}_{km} - \theta^*_{km}) - \tilde{\beta}_{nkm}\| = o_p(1) \quad (S2.1)
$$

for every k and m, with $\tilde{\beta}_{nkm}$ defined in Lemma 1. Therefore

$$
\|\hat{\theta}_{km} - \theta^*_{km}\| = O_p\{n^{-1/2}(q_n\log n)^{1/2}\}. \quad (S2.2)
$$

It follows that for every k and m,

$$
\max_{1 \leq j \leq q_n}|\hat{\theta}_{kmj} - \theta^*_{kmj}| \leq \|\hat{\theta}_k - \theta^*_k\| = O_p\{n^{-1/2}(q_n\log n)^{1/2}\}
$$

$$
= O_p\{n^{(c_1-1)/2}(\log n)^{1/2}\}.
$$
Hence
\[
\max_{1 \leq j \leq q_n} \| \hat{\theta}^{(j)} - \theta^*(j) \|_1 \leq KM \max_{1 \leq k \leq K} \max_{1 \leq m \leq M} \max_{1 \leq j \leq q_n} | \hat{\theta}_{kmj} - \theta^*_{kmj} |
= O_p \{ n^{(c_1 - 1)/2} (\log n)^{1/2} \},
\]
which, combined with Assumption 5, yields
\[
\min_{1 \leq j \leq q_n} \| \hat{\theta}^{(j)} \|_1 \geq \min_{1 \leq j \leq q_n} \| \theta^*(j) \|_1 - \max_{1 \leq j \leq q_n} \| \hat{\theta}^{(j)} - \theta^*(j) \|_1 \geq C n^{(c_2 - 1)/2} - \{ n^{(c_1 - 1)/2} (\log n)^{1/2} \} = O_p \{ n^{(c_2 - 1)/2} \}.
\]
We assume \(\lambda_n = o \{ n^{(c_2 - 1)/2} \} \), which implies
\[
\text{pr} \{ \min_{1 \leq j \leq q_n} \| \hat{\theta}^{(j)} \|_1 \geq a \lambda_n \} \to 1. \quad \text{(S2.3)}
\]
The subderivative of the objective function (2.2) with respect to \(\theta^{(j)} \) is
\[
\frac{\partial \Gamma \lambda_n(\theta)}{\partial \theta^{(j)}} = \begin{cases}
\frac{\partial \ell_n(\theta)}{\partial \theta^{(j)}} + \lambda_n S(\theta^{(j)}), & \| \theta^{(j)} \|_1 \leq \lambda_n, \\
\frac{\partial \ell_n(\theta)}{\partial \theta^{(j)}} + S(\theta^{(j)}) \left(\frac{a \lambda_n - \| \theta^{(j)} \|_1}{a-1} \right), & \lambda_n < \| \theta^{(j)} \|_1 < a \lambda_n, \\
\frac{\partial \ell_n(\theta)}{\partial \theta^{(j)}}, & a \lambda_n \leq \| \theta^{(j)} \|_1,
\end{cases} \quad \text{(S2.4)}
\]
with
\[
S(\theta^{(j)}) = (\text{Sign}(\theta_{11j}), \ldots, \text{Sign}(\theta_{1Mj}), \ldots, \text{Sign}(\theta_{K1j}), \ldots, \text{Sign}(\theta_{KMj}))^T,
\]
where \(\text{Sign}(x) = x/|x| \) for \(x \neq 0 \) and \(\text{Sign}(0) = [-1, 1] \). Thus (S2.3) implies that, with probability tending to one, \(\hat{\theta}^{(j)} \) \((1 \leq j \leq q_n) \) belongs to the third case in (S2.4). Combined with the fact that \(\hat{\theta} \) is a local minimizer of \(\ell_n(\theta) \),
it gives that
\[0 \in \partial \ell(\theta) / \partial \theta^{(j)}|_{\theta = \hat{\theta}} = \partial \Gamma_{\lambda_n}(\theta) / \partial \theta^{(j)}|_{\theta = \hat{\theta}}. \]
(S2.5)

Under Assumptions 1-5, the equation (3.5) in Lemma 1 of Sherwood and Wang (2016) yields that for every \(k \) and \(m \),
\[\Pr\{\max_{q_n < j \leq p_n} |\partial \ell(\theta) / \partial \theta^{kmj}|_{\theta = \hat{\theta}} > \lambda_n\} \to 0. \]
(S2.6)

Since \(\|\hat{\theta}^{(j)}\|_1 = 0 \) for \(q_n < j \leq p_n \), which belongs to the first case in (S2.4), we have
\[\partial \Gamma_{\lambda_n}(\theta) / \partial \theta^{(j)}|_{\theta = \hat{\theta}} = \partial \ell(\theta) / \partial \theta^{(j)}|_{\theta = \hat{\theta}} + \lambda_n \mathbb{S}(0) \]
(S2.7)

Since \(\mathbb{S}(0) = \{ (u_1, \ldots, u_K) : |u_k| \leq 1, k = 1 \ldots, K \} \), (S2.6) and (S2.7) imply that for \(q_n < j \leq p_n \),
\[\Pr\{0 \in \partial \Gamma_{\lambda_n}(\theta) / \partial \theta^{(j)}|_{\theta = \hat{\theta}}\} \to 1. \]
(S2.8)

Combining (S2.5) and (S2.8) completes the proof.

Proof of Theorem 2: Set \(\hat{\beta}_n = n^{1/2}(\hat{\theta}_a - \theta^*_a) \), \(\tilde{\beta}_n = n^{-1/2}R_n^{-1}X_a^T\psi_n(\varepsilon) \) and write \(A_n \Sigma_n^{-1/2}\tilde{\beta}_n = \sum_{i=1}^n D_{ni} \), where \(D_{ni} = n^{-1/2}A_n \Sigma_n^{-1/2}R_n^{-1}d_{ni} \), \(d_{ni} = \{ \psi_{1,i}(\varepsilon)^T \otimes X_{1ia}^T, \ldots, \psi_{K,i}(\varepsilon)^T \otimes X_{Kia}^T \}^T \) and, for every \(k \) and \(i \), \(\psi_{k,i}(\varepsilon) = \ldots \)
\(\{\psi_{k1i}(\varepsilon), \ldots, \psi_{kMi}(\varepsilon)\}\). We have \(E(D_{ni}) = 0\) since \(E(\delta_{ni}) = 0\) and
\[\sum_{i=1}^{n} E(D_{ni}D_{ni}^T) = n^{-1} E[A_n \Sigma_n^{-1/2} R_n^{-1} \{\sum_{i=1}^{n} E(\delta_{ni} \delta_{ni}^T | \mathcal{X})\} R_n^{-1} \Sigma_n^{-1/2} A_n^T]\]
\[= E\{A_n \Sigma_n^{-1/2} R_n^{-1} (n^{-1} X_a H_n X_a) R_n^{-1} \Sigma_n^{-1/2} A_n^T\}\]
\[= E(A_n \Sigma_n^{-1/2} R_n^{-1} S_n R_n^{-1} \Sigma_n^{-1/2} A_n^T) = A_n A_n^T \to G.\]

For any \(\eta > 0\) we obtain
\[
\sum_{i=1}^{n} E\{\|D_{ni}\|^2 I(\|D_{ni}\| > \eta)\}
\leq \eta^{-2} \sum_{i=1}^{n} E(\|D_{ni}\|^4)
\leq (n \eta)^{-2} \sum_{i=1}^{n} E\{(\delta_{ni} R_n^{-1} \Sigma_n^{-1/2} A_n^T A_n \Sigma_n^{-1/2} R_n^{-1} \delta_{ni})^2\}
\leq (n \eta)^{-2} \lambda_{\text{max}}^2 (A_n^T A_n) \sum_{i=1}^{n} E\{(\delta_{ni} R_n^{-1} \Sigma_n^{-1} R_n^{-1} \delta_{ni})^2\}
\leq C n^{-2} \sum_{i=1}^{n} E\{(\delta_{ni} S_n^{-1} \delta_{ni})^2\}
\leq C n^{-2} \sum_{i=1}^{n} E\{\lambda_{\text{min}}(S_n)^{-2} \|\delta_{ni}\|^2\}
\leq C n^{-2} \sum_{i=1}^{n} E(\|\delta_{ni}\|^4)
= C n^{-2} \sum_{i=1}^{n} E\{(\sum_{k=1}^{K} \sum_{m=1}^{M} \psi_{kmi}(\varepsilon)^2 \|X_{kia}\|^2)^2\}
\leq C n^{-2} \sum_{i=1}^{n} E\{(\max_{1 \leq k \leq K} \|X_{kia}\|)^4\}
\leq C n^{-1} E\{(\max_{1 \leq i \leq n} \max_{1 \leq k \leq K} \|X_{kia}\|)^4\}
\leq C n^{-1} q_n^2 = o(1),
\]

with \(\lambda_{\text{max}}(\cdot)\) being the largest eigenvalue of a square matrix. The fourth step in the above display results from the fact that \(\lambda_{\text{max}}(A_n^T A_n) \to C\). The
sixth step uses the condition that \(\lambda_{\min}(S_n) \) is uniformly bounded away from zero. The last but one step holds true because of Assumption 1, and the last step uses Assumption 4. This shows that the Lindeberg-Feller condition for the central limit theorem is satisfied, i.e. we have

\[
A_n \Sigma_n^{-1/2} \tilde{\beta}_n = \sum_{i=1}^n D_{ni} \rightarrow N(0, G) \text{ in distribution } (n \rightarrow \infty). \tag{S2.9}
\]

It is obvious that \(\tilde{\beta}_n = (\tilde{\beta}_{n1}, \ldots, \tilde{\beta}_{nM}, \ldots, \tilde{\beta}_{nK1}, \ldots, \tilde{\beta}_{nKM})^T \) with \(\tilde{\beta}_{nkm} \) defined in Lemma 1. Hence, using (S2.1), we have

\[
\| \tilde{\beta}_n - \hat{\beta}_n \| \leq \sum_{k=1}^K \sum_{m=1}^M \| \tilde{\beta}_{nkm} - \hat{\beta}_{nkm} \| = o_p(1).
\]

It follows that

\[
\| A_n \Sigma_n^{-1/2} (\tilde{\beta}_n - \hat{\beta}_n) \|^2 = (\tilde{\beta}_n - \hat{\beta}_n)^T \Sigma_n^{-1/2} A_n A_n^T \Sigma_n^{-1/2} (\tilde{\beta}_n - \hat{\beta}_n)
\leq \lambda_{\max}(A_n A_n^T) \lambda_{\min}(\Sigma_n)^{-1} \| \tilde{\beta}_n - \hat{\beta}_n \|^2 = o_p(1).
\]

In the last step we used \(\lambda_{\max}(A_n A_n^T) \rightarrow C \), Assumption 2 and the condition that \(\lambda_{\min}(S_n) \) is uniformly bounded away from zero. This combined with (S2.9) yields

\[
n^{1/2} A_n \Sigma_n^{-1/2} (\tilde{\theta}_a - \theta_a^*) = A_n \Sigma_n^{-1/2} \tilde{\beta}_n \rightarrow N(0, G) \text{ in distribution } (n \rightarrow \infty).
\]
Proof of Theorem 3: Consider the set of overfitted models $\mathcal{M}_1 = \{D \in \mathcal{M} : D^* \subset D, D \neq D^*\}$ and the set of underfitted models $\mathcal{M}_2 = \{D \in \mathcal{M} : D^* \not\subset D\}$. Since $\mathcal{M}_1 \cup \mathcal{M}_2 = \mathcal{M}\setminus\{D^*\}$ it suffices to show

$$\lim_{n \to \infty} \Pr\{\min_{D \in \mathcal{M}_1} \text{MQBIC}(D) > \text{MQBIC}(D^*)\} = 1, \quad (S2.10)$$

$$\lim_{n \to \infty} \Pr\{\min_{D \in \mathcal{M}_2} \text{MQBIC}(D) > \text{MQBIC}(D^*)\} = 1. \quad (S2.11)$$

We first prove (S2.10). Write $\hat{W}_D = n^{-1}\sum_{k=1}^K \sum_{m=1}^M \sum_{i=1}^n \rho_m(Y_{ki} - X_{ki}^T \hat{\theta}_{kmD})$ and $W^* = n^{-1}\sum_{k=1}^K \sum_{m=1}^M \sum_{i=1}^n \rho_m(\varepsilon_{kmi})$. From Lemma 2 we know that we can choose some sequence L_n that does not depend on D and satisfies $L_n \to \infty$, $L_n = o(T_n)$ and $n^{-1}L_n d_n \log n \to 0$ such that for $k = 1, \ldots, K$ and $m = 1, \ldots, M$,

$$\Pr\{||\sum_{i=1}^n \{\rho_m(Y_i - X_{ki}^T \hat{\theta}_{kmD}) - \rho_m(\varepsilon_{kmi})|| \}
\leq (MK)^{-1}L_n|D|\log n, \text{ for any } D \in \mathcal{M}_1^* \to 1. \quad (S2.12)$$

Since

$$|\hat{W}_D - W^*|
\leq n^{-1}\sum_{k=1}^K \sum_{m=1}^M |\sum_{i=1}^n \{\rho_m(Y_i - X_{ki}^T \hat{\theta}_{kmD}) - \rho_m(Y_i - X_{ki}^T \theta_{kmD}^*)\}|,$$

we have

$$\Pr\{|\hat{W}_D - W^*| \leq n^{-1}L_n|D|\log n, \text{ for any } D \in \mathcal{M}_1^* \} \to 1.$$
It follows that

$$\Pr\{|\hat{W}_D - \hat{W}_{D^*}| \leq n^{-1}L_n(|D| + |D^*|)\log n,$$

for any $D \in \mathcal{M}_1^*$ \to 1 \quad (S2.13)$$

and that

$$\Pr\{\hat{W}_{D^*} \geq C, \text{ for any } D \in \mathcal{M}_1^*\} \to 1. \quad (S2.14)$$

Here we used Assumption 9 and the fact that $n^{-1}L_n|D^*|\log n \to 0$ (Assumption 7). Therefore, with probability tending to one,

$$\min_{D \in \mathcal{M}_1} \text{MQBIC}(D) - \text{MQBIC}(D^*)$$

$$= \min_{D \in \mathcal{M}_1} \{\log\{1 + \hat{W}_D^{-1}(\hat{W}_D - \hat{W}_{D^*})\} + (2n)^{-1}T_n(|D| - |D^*|)\log n\}$$

$$\geq \min_{D \in \mathcal{M}_1} \{-2\hat{W}_D^{-1}|\hat{W}_D - \hat{W}_{D^*}| + (2n)^{-1}T_n(|D| - |D^*|)\log n\}$$

$$\geq \min_{D \in \mathcal{M}_1} \{-Cn^{-1}L_n(|D| + |D^*|)\log n +$$

$$\quad (2n)^{-1}T_n(|D| - |D^*|)\log n\}. \quad (S2.15)$$

The first inequality in the above derivation comes from the fact that $\log(1+x) \geq -2|x|$ for any $|x| \in (-1/2, 1/2)$, from equation (S2.13) combined with $n^{-1}L_n d_n \log n \to 0$, and from (S2.14). The last step holds true because of (S2.13) and (S2.14). Then (S2.15) implies (S2.10) because $L_n = o(T_n)$ and $|D| > |D^*|$.

To prove equation (S2.11) we introduce $D' = D \cup D^*$ for any $D \in$
\mathcal{M}_2. Since q is fixed by Assumption 7, there is a parameter with minimum absolute value $\nu > 0$, i.e. $\nu = \min_{1 \leq k \leq K} \min_{1 \leq m \leq M} \min_{j \in D^*} |\theta^*_{kmj}| > 0$.

Since (S1.3) still holds for any set in $\mathcal{M}_2^* = \{D \subset \{1, \ldots, p\} : |D| \leq 2d_n, D^* \subset D\}$, we have

$$\text{pr}\left\{\max_{D \in \mathcal{M}_2} \left\|\hat{\theta}_{kmD'} - \theta^*_{kmD'}\right\| \leq \nu\right\} \to 1. \quad (S2.16)$$

For $k = 1, \ldots, K$, $m = 1, \ldots, M$ and any $D \in \mathcal{M}_2$, let $\tilde{\theta}_{kmD'}$ be a $|D'| \times 1$ vector, i.e. the dimension of $\tilde{\theta}_{kmD'}$ is given by the number of indices in the set $D' = D \cup D^*$. We define it as an extended version of $\hat{\theta}_{kmD}$: the components of $\tilde{\theta}_{kmD'}$ that correspond to the index set D coincide with the components of $\hat{\theta}_{kmD}$; the remaining components are filled with zeros. For example, if $D = \{1, 3\}$, $D^* = \{1, 2\}$ and $\hat{\theta}_{kmD} = \{1.4, 0.7\}$, then $D' = \{1, 2, 3\}$, $|D'| = 3$ and $\tilde{\theta}_{kmD'} = (1.4, 0.7)^T$. Since $D^* \not\subset D$, there exist some k_0 and m_0 such that $\|\tilde{\theta}_{km_0D'} - \theta^*_{km_0D'}\| \geq \nu$. Combined with (S2.16) and since the check function is convex, this implies that there exists a $|D'| \times 1$ vector $\tilde{\theta}_{D'}$ such that $\|\tilde{\theta}_{D'} - \theta^*_{km_0D'}\| = \nu$ and

$$\sum_{i=1}^n \rho_{m_0} (Y_{k_0i} - X_{k_0iD'}^T \tilde{\theta}_{D'}) \leq \sum_{i=1}^n \rho_{m_0} (Y_{k_0i} - X_{k_0iD}^T \hat{\theta}_{km_0D'}) = \sum_{i=1}^n \rho_{m_0} (Y_{k_0i} - X_{k_0iD}^T \tilde{\theta}_{km_0D}).$$

Now set $G_{D'}(\omega) = n^{-1} \sum_{i=1}^n \{\rho_{m_0}(\varepsilon_{k_0m_0i} - X_{k_0iD'}^T \omega) - \rho_{m_0}(\varepsilon_{k_0m_0i})\}$ and
$B_{\nu}(\mathcal{D}') = \{\omega \in \mathbb{R}^{\lvert \mathcal{D}' \rvert} : \|\omega\| = \nu\}$. Then we have, for any $\mathcal{D} \in \mathcal{M}_2$,

$$n^{-1}\sum_{i=1}^{n}\{\rho_{m_0}(Y_{ki} - X_{ki\mathcal{D}}^T\hat{\theta}_{k_0\mathcal{D}0}) - \rho_{m_0}(Y_{ki} - X_{ki\mathcal{D}}^T\hat{\theta}_{k_0\mathcal{D}'0})\}$$

$$\geq n^{-1}\sum_{i=1}^{n}\{\rho_{m_0}(Y_{ki} - X_{ki\mathcal{D}}^T\hat{\theta}_{\mathcal{D}0}) - \rho_{m_0}(Y_{ki} - X_{ki\mathcal{D}}^T\hat{\theta}_{k_0\mathcal{D}'0})\}$$

$$= G_{\mathcal{D}'}(\hat{\theta}_{\mathcal{D}0} - \theta^{*}_{k_0\mathcal{D}0}) - G_{\mathcal{D}'}(\hat{\theta}_{k_0\mathcal{D}'0} - \theta^{*}_{k_0\mathcal{D}'0}) +$$

$$E\{G_{\mathcal{D}'}(\hat{\theta}_{\mathcal{D}0} - \theta^{*}_{k_0\mathcal{D}0}) \mid X_{k_0\mathcal{D}'0}\} - E\{G_{\mathcal{D}'}(\hat{\theta}_{k_0\mathcal{D}'0} - \theta^{*}_{k_0\mathcal{D}'0}) \mid X_{k_0\mathcal{D}'0}\}$$

$$\geq \inf_{\omega \in B_{\nu}(\mathcal{D}')} E\{G_{\mathcal{D}'}(\omega) \mid X_{k_0\mathcal{D}'0}\} - \sup_{\omega \in B_{\nu}(\mathcal{D}')} |G_{\mathcal{D}'}(\omega) - E\{G_{\mathcal{D}'}(\omega) \mid X_{k_0\mathcal{D}'0}\}| - G_{\mathcal{D}'}(\hat{\theta}_{k_0\mathcal{D}'0} - \theta^{*}_{k_0\mathcal{D}'0}).$$

(S2.17)

Similar to (S1.7), we have, for any $\mathcal{D} \in \mathcal{M}_2^*$ and $\omega \in B_{\nu}(\mathcal{D}'),$

$$E\{G_{\mathcal{D}'}(\omega) \mid X_{k_0\mathcal{D}'0}\}$$

$$= n^{-1}\sum_{i=1}^{n}\int_{0}^{X_{ki\mathcal{D}'}^T\omega} F_{k_0\mathcal{D}0}(s \mid X_{ki\mathcal{D}'0}) - F_{k_0\mathcal{D}0}(0 \mid X_{ki\mathcal{D}'0}) ds$$

$$= n^{-1}\sum_{i=1}^{n}\int_{0}^{X_{ki\mathcal{D}'}^T\omega} sf_{k_0\mathcal{D}0}(s \mid X_{ki\mathcal{D}'0}) ds$$

$$\geq C\omega^T\{n^{-1}\sum_{i=1}^{n}(X_{ki\mathcal{D}'0}X_{ki\mathcal{D}'}^T)\}\omega$$

$$\geq C\lambda_{\min}(n^{-1}X_{k_0\mathcal{D}'0}X_{k_0\mathcal{D}'0})\|\omega\|^2 = C\|\omega\|^2,$$

(S2.18)

where the third step uses Assumption (3) and the last step Assumption (6).

Then, under Assumptions 1, 3, 6 and 7, Lemma A.3 in the supplement to Lee et al. (2014) gives

$$\max_{\mathcal{D} \in \mathcal{M}_2^*} \sup_{\omega \in B_{\nu}(\mathcal{D}')} |G_{\mathcal{D}'}(\omega) - E\{G_{\mathcal{D}'}(\omega) \mid X_{k_0\mathcal{D}'0}\}| = o_p(1).$$

(S2.19)
It is obvious that (S2.12) is still valid when M^*_1 is substituted by M^*_2.

Hence

$$\text{pr}\left\{ \max_{D' \in M^*_2} |G_{D'}(\hat{\theta}_{k,0,m} - \theta^*_{k,0,m})| \leq C n^{-1} d_n \log n \right\} \to 1,$$

which gives $\max_{D' \in M^*_2} |G_{D'}(\hat{\theta}_{k,0,m} - \theta^*_{k,0,m})| = o_P(1)$. This, combined with (S2.17), (S2.18) and (S2.19) implies that, with probability approaching one,

$$n^{-1} \min_{D \in M_2} \sum_{i=1}^n \left\{ \rho_m(Y_{k,i} - X_{k,i,D}^T \hat{\theta}_{k,0,m}) - \rho_m(Y_{k,i} - X_{k,i,D'}^T \hat{\theta}_{k,0,m}'D') \right\} \geq 2C. \quad (S2.20)$$

Since $D \in D'$ we have $\sum_{i=1}^n \left\{ \rho_m(Y_{k,i} - X_{k,i,D}^T \hat{\theta}_{k,m,D}) - \rho_m(Y_{k,i} - X_{k,i,D'}^T \hat{\theta}_{k,m,D'}) \right\} \geq 0$

for any k, m and $D \in M_2$. It follows

$$\hat{W}_D - \hat{W}_{D'}$$

$$= n^{-1} \sum_{k=1}^K \sum_{m=1}^M \sum_{i=1}^n \left\{ \rho_m(Y_{k,i} - X_{k,i,D}^T \hat{\theta}_{k,m,D}) - \rho_m(Y_{k,i} - X_{k,i,D'}^T \hat{\theta}_{k,m,D'}) \right\}$$

$$\geq n^{-1} \sum_{i=1}^n \left\{ \rho_m(Y_{k,i} - X_{k,i,D}^T \hat{\theta}_{k,0,m}) - \rho_m(Y_{k,i} - X_{k,i,D'}^T \hat{\theta}_{k,0,m}'D') \right\}.$$

This, combined with (S2.20), gives

$$\text{pr}\left\{ \min_{D \in M_2} (\hat{W}_D - \hat{W}_{D'}) \geq 2C \right\} \to 1. \quad (S2.21)$$
Then, with probability tending to one,

\[
\min_{D \in \mathcal{M}_2} MQBIC(D) - MQBIC(D') = \min_{D \in \mathcal{M}_2} \{MQBIC(D) - MQBIC(D') + MQBIC(D') - MQBIC(D)\} \\
\geq \min_{D \in \mathcal{M}_2} \{MQBIC(D) - MQBIC(D')\} > 0
\] (S2.22)

The first inequality comes from the fact that \(\log(1 + x) \geq \min\{x/2, \log 2\}\) for any \(x \geq 0\). The second inequality uses (S2.21). The last step uses Assumption 8 and the fact that (S2.14) is still valid when \(\mathcal{M}^*_1\) is substituted by \(\mathcal{M}^*_2\). Since (S2.10) can be easily extended to any \(D \in (\mathcal{M}^*_2 \setminus \{D^*\})\), we know that, with probability tending to one, \(MQBIC(D') \geq MQBIC(D^*)\) for any \(D' \in \mathcal{M}^*_2\). This and (S2.22) yield

\[
\min_{D \in \mathcal{M}_2} MQBIC(D) - MQBIC(D^*) = \min_{D \in \mathcal{M}_2} \{MQBIC(D) - MQBIC(D') + MQBIC(D') - MQBIC(D^*)\} \\
\geq \min_{D \in \mathcal{M}_2} \{MQBIC(D) - MQBIC(D')\} > 0,
\]

with probability tending to one. This proves (S2.11).

S3 Additional Results of Simulations

In this section we check the asymptotic normality stated in Theorem 2 of Section 2 using simulations. Under the setting of Table 2 in Section 4 with
(n, p) = (200, 1000), T = (\log p)/3 and the regression model

\[Y_{ki} = X_{ki}^T\alpha^*_k + 0.7\xi_{ki}X_{ki3} \quad (k = 1, 2; i = 1, \ldots, n), \]

(S3.1)

we consider two components, \(\hat{\theta}_{113} \) and \(\hat{\theta}_{15(20)} \), of the estimator generated by our data integration (DI) approach. The corresponding covariates \(X_{1i3} \) and \(X_{1i(20)} \) affect the response \(Y_{1i} \) via the terms \(0.7\xi_{1i}X_{1i3} \) and \(X_{1i}^T\alpha^*_1 \) in (S3.1), respectively. In Figures 1 and 2 we present the histograms of the two components based on 1,000 simulated data sets. We can see the curves in the plots are unimodal, approximately symmetric and bell-shaped, which confirms the asymptotic normality stated in Theorem 2.

Bibliography

Figure 1: Histogram of $\hat{\theta}_{113}$ generated by our data integration (DI) method. The setting is the same as Table 2 in Section 4 with $(n, p) = (200, 1000)$ and $T = (\log p)/3$.

Figure 2: We consider the same scenario as Figure 1 but now investigate $\hat{\theta}_{15(20)}$.

Figure