Optimal Sequential Tests for Monitoring Changes in the Distribution of Finite Observation Sequences

Dong Han, Fugee Tsung, Jinguo Xian, Miaomiao Yu
Shanghai Jiao Tong University
Hong Kong University of Science and Technology
East China Normal University

Proofs of Theorems 1, 2 and 3.

Proof of Theorem 1. Let $T^{*}=T^{*}(c)=T_{M}^{*}(c, N)$ and

$$
\begin{equation*}
\xi_{n}=\sum_{k=1}^{n}\left(Y_{k-1}-c v_{k}\right), \tag{A.1}
\end{equation*}
$$

where $c>0$. We will divide three steps to complete the proof of Theorem 1.
Step I. Show that

$$
\begin{equation*}
\mathbf{E}_{0}\left(\xi_{T}\right) \geq \mathbf{E}_{0}\left(\xi_{T^{*}}\right) \tag{A.2}
\end{equation*}
$$

for all $T \in \mathfrak{T}_{N}$ and the strict inequality of (A.2) holds for all $T \in \mathfrak{T}_{N}$ with $T \neq T^{*}$.
To prove (A.2), by Lemma 3.2 in Chow, Robbins and Siegmund (1971), we only need to prove the following two inequalities:

$$
\begin{equation*}
\mathbf{E}_{\infty}\left(\xi_{T^{*}} \mid \mathfrak{F}_{n}\right) \leq \xi_{n} \quad \text { on } \quad\left\{T^{*}>n\right\} \tag{A.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{E}_{\infty}\left(\xi_{T} \mid \mathfrak{F}_{n}\right) \geq \xi_{n} \quad \text { on } \quad\left\{T^{*}=n, T>n\right\} \tag{A.4}
\end{equation*}
$$

for each $n \geq 1$.
Let $B_{m, n+1}(N)=\left\{Y_{k}<l_{k}(c), n+1 \leq k \leq m\right\}$ for $n+1 \leq m \leq N$. By the similar method of proving Theorem 1 in Han, Tsung and Xian (2017), we can verify that

$$
\begin{equation*}
l_{n}(c)=c v_{n+1}+\mathbf{E}_{0}\left(\sum_{m=n+1}^{N} B_{m, n+1}(N)\left[c v_{m+1}-Y_{m}\right] \mid \mathfrak{F}_{n}\right) \tag{A.5}
\end{equation*}
$$

and

$$
\begin{align*}
& \mathbf{E}_{0}\left(\sum_{m=n+1}^{N} I(T>m)\left[c v_{m+1}-Y_{m}\right] \mid \mathfrak{F}_{n}\right) \tag{A.6}\\
\leq & \left(l_{n}(c)-c v_{n+1}\right) I(T>n)
\end{align*}
$$

for $0 \leq n \leq N$ and $T \in \mathfrak{T}_{N}$, and therefore, by (A.1), (A.5) and (A.6),

$$
\begin{align*}
& \left.I\left(T^{*}>n\right) \mathbf{E}_{0}\left(\xi_{T^{*}}-\xi_{n}\right) \mid \mathfrak{F}_{n}\right) \tag{A.7}\\
= & \left.I\left(T^{*}>n\right) \sum_{m=n}^{N} \mathbf{E}_{0}\left(I\left(T^{*}>m\right)\left[\xi_{m+1}-\xi_{m}\right]\right) \mid \mathfrak{F}_{n}\right) \\
= & I\left(T^{*}>n\right)\left[Y_{n}-c v_{n+1}+\sum_{m=n+1}^{N} \mathbf{E}_{0}\left(I\left(B_{m, n+1}\right)\left(Y_{m}-c v_{m+1}\right)\right] \mid \mathfrak{F}_{n}\right) \\
= & I\left(T^{*}>n\right)\left(Y_{n}-l_{n}(c)\right)<0
\end{align*}
$$

and

$$
\begin{align*}
& \left.I\left(T^{*}=n\right) I(T>n) \mathbf{E}_{0}\left(\xi_{T}-\xi_{n}\right) \mid \mathfrak{F}_{n}\right) \tag{A.8}\\
= & \left.I\left(T^{*}=n\right) \sum_{m=n}^{N} \mathbf{E}_{0}\left(I(T>m)\left[\xi_{m+1}-\xi_{m}\right]\right) \mid \mathfrak{F}_{n}\right) \\
= & I\left(T^{*}=n\right)\left[I(T>n)\left(Y_{n}-c v_{n+1}\right)\right. \\
+ & \left.\sum_{m=n+1}^{N} \mathbf{E}_{0}\left(I(T>m)\left[Y_{m}-c v_{m+1}\right] \mid \mathfrak{F}_{n}\right)\right] \\
\geq & I\left(T^{*}=n\right)\left[I(T>n)\left(Y_{n}-c v_{n+1}\right)+\left(c v_{n+1}-l_{n}(c)\right) I(T>n)\right] \\
= & I\left(T^{*}=n\right) I(T>n)\left[Y_{n}-l_{n}(c)\right] \geq 0
\end{align*}
$$

for $1 \leq n \leq N$, where the last inequality in (A.7) comes from the definition of T^{*}. The two inequalities (A.7) and (A.8) mean respectively that (A.3) and (A.4) hold for $1 \leq n \leq N$. Hence, the inequality in (A.2) holds for all $T \in \mathfrak{T}_{N}$. Furthermore, from (A.7) and (A.8), it follows that the strict inequality in (A.2) holds for all $T \in \mathfrak{T}_{N}$ with $T \neq T^{*}$.

Step II. Show that there is positive number c_{γ} such that

$$
\mathcal{J}_{M, N}\left(T^{*}\left(c_{\gamma}\right)\right)=c_{\gamma}\left(1-\frac{\mathbf{E}_{0}\left(v_{1}\right)}{\gamma}\right)-\frac{\mathbf{E}_{0}\left[l_{1}\left(c_{\gamma}\right)-Y_{1}\right]^{+}}{\gamma}
$$

As $\mathbf{E}_{0}\left(v_{1}\right)<\gamma<\sum_{k=1}^{N+1} \mathbf{E}_{0}\left(v_{k}\right)$, it follows that there is at least a $k \geq 2$ such that $\mathbf{E}_{0}\left(v_{k}\right)>0$. Let $k^{*}=\max \left\{2 \leq k \leq N+1: \mathbf{E}_{0}\left(v_{k}\right)>0\right\}$, we have

$$
\mathbf{E}_{0}\left(\sum_{k=1}^{T^{*}} v_{k}\right)=\sum_{k=1}^{k^{*}} \mathbf{E}_{0}\left(v_{k} I\left(T^{*} \geq k\right)\right)=\mathbf{E}_{0}\left(v_{1}\right)+\sum_{k=2}^{k^{*}} \mathbf{E}_{0}\left(v_{k} I\left(T^{*} \geq k\right)\right)
$$

By the definition of $\left\{l_{k}(c), 1 \leq k \leq N+1\right\}$ and T^{*}, we know that

$$
\begin{aligned}
\lim _{c \rightarrow 0} \sum_{k=2}^{k^{*}} \mathbf{E}_{0}\left(v_{k} I\left(T^{*} \geq k\right)\right) & =0 \\
\lim _{c \rightarrow \infty} \sum_{k=2}^{k^{*}} \mathbf{E}_{0}\left(v_{k} I\left(T^{*} \geq k\right)\right) & =\sum_{k=2}^{k^{*}} \mathbf{E}_{0}\left(v_{k}\right)
\end{aligned}
$$

As $\sum_{k=2}^{k^{*}} \mathbf{E}_{0}\left(v_{k} I\left(T^{*} \geq k\right)\right)$ is continuous and increasing on c, it follows that there is a positive number c_{γ} such that

$$
\begin{equation*}
\mathbf{E}_{0}\left(\sum_{k=1}^{T^{*}\left(c_{\gamma}\right)} v_{k}\right)=\sum_{k=1}^{k^{*}} \mathbf{E}_{0}\left(v_{k} I\left(T^{*} \geq k\right)\right)=\gamma \tag{A.9}
\end{equation*}
$$

It follows from (A.5) that

$$
\begin{align*}
& \sum_{m=1}^{N} \mathbf{E}_{0}\left(\left[Y_{m}-c v_{m+1}\right] I\left(T^{*} \geq m+1\right)\right) \\
= & \mathbf{E}_{0}\left(\mathbf{E}_{0}\left(\sum_{m=1}^{N} B_{m, 1}(N)\left[Y_{m}-c v_{m+1}\right] \mid \mathfrak{F}_{0}\right)\right) \\
= & \mathbf{E}_{0}\left(c v_{1}-l_{0}(c)\right) . \tag{A.10}
\end{align*}
$$

Thus, by (A.1), (A.9), and (A.10) we have

$$
\begin{aligned}
& \mathcal{J}_{M, N}\left(T^{*}\left(c_{\gamma}\right)\right)=\frac{\mathbf{E}_{0}\left(\sum_{m=1}^{T^{*}\left(c_{\gamma}\right)} Y_{m-1}\right)}{\mathbf{E}_{0}\left(\sum_{m=1}^{T^{*}\left(c_{\gamma}\right)} v_{k}\right)} \\
= & \frac{\sum_{m=1}^{N} \mathbf{E}_{0}\left(\left[Y_{m}-c_{\gamma} v_{m+1}+c_{\gamma} v_{m+1}\right] I\left(T^{*}\left(c_{\gamma}\right) \geq m+1\right)\right)}{\gamma} \\
= & \frac{c_{\gamma} \sum_{m=1}^{N+1} \mathbf{E}_{0}\left(v_{m} I\left(T^{*}\left(c_{\gamma}\right) \geq m\right)\right)-\mathbf{E}_{0}\left(l_{0}\left(c_{\gamma}\right)\right)}{\gamma} \\
= & \frac{c_{\gamma} \mathbf{E}_{0}\left(\sum_{m=1}^{T^{*}\left(c_{\gamma}\right)} v_{k}\right)}{\gamma}-\frac{\mathbf{E}_{0}\left(l_{0}\left(c_{\gamma}\right)\right)}{\gamma}=c_{\gamma}-\frac{\mathbf{E}_{0}\left(l_{0}\left(c_{\gamma}\right)\right)}{\gamma} \\
= & c_{\gamma}\left(1-\frac{\mathbf{E}_{0}\left(v_{1}\right)}{\gamma}\right)-\frac{\mathbf{E}_{0}\left[l_{1}\left(c_{\gamma}\right)-Y_{1}\right]^{+}}{\gamma} .
\end{aligned}
$$

The last equality follows from the definition of $l_{0}(c)$ in (2.7). It proves (iii) of Theorem
1.

Step III. Show (i) and (ii) of Theorem 1. Let

$$
\tilde{c}_{\gamma}=\mathcal{J}_{M, N}\left(T^{*}\left(c_{\gamma}\right)\right)=c_{\gamma}-\frac{\mathbf{E}_{0}\left(l_{0}\left(c_{\gamma}\right)\right)}{\mathbf{E}_{0}\left(\sum_{m=1}^{T^{*}\left(c_{\gamma}\right)} v_{m}\right)}
$$

If $\mathcal{J}_{M, N}(T) \geq c_{\gamma}$, then $\mathcal{J}_{M, N}(T) \geq \tilde{c}_{\gamma}=\mathcal{J}_{M, N}\left(T^{*}\left(c_{\gamma}\right)\right)$. If $\mathcal{J}_{M, N}(T)<c_{\gamma}$, then, by (A.1), (A.2), and $\mathbf{E}_{0}\left(\sum_{m=1}^{T} v_{m}\right) \geq \gamma$, we have

$$
\begin{aligned}
{\left[\mathcal{J}_{M, N}(T)-c_{\gamma}\right] \gamma } & \geq\left[\frac{\mathbf{E}_{0}\left(\sum_{m=1}^{T} Y_{m-1}\right)}{\mathbf{E}_{0}\left(\sum_{m=1}^{T} v_{m}\right)}-c_{\gamma}\right] \mathbf{E}_{0}\left(\sum_{m=1}^{T} v_{m}\right) \\
& =\left[\mathbf{E}_{0}\left(\sum_{m=1}^{T} Y_{m-1}\right)-c_{\gamma} \mathbf{E}_{0}\left(\sum_{m=1}^{T} v_{m}\right)\right] \\
& \geq\left[\mathbf{E}_{0}\left(\sum_{m=1}^{T^{*}\left(c_{\gamma}\right)} Y_{m-1}\right)-c_{\gamma} \mathbf{E}_{0}\left(\sum_{m=1}^{T^{*}\left(c_{\gamma}\right)} v_{m}\right)\right] \\
& =\left[\frac{\mathbf{E}_{0}\left(\sum_{m=1}^{T^{*}\left(c_{\gamma}\right)} Y_{m-1}\right)}{\mathbf{E}_{0}\left(\sum_{m=1}^{T^{*}\left(c_{\gamma}\right)} v_{m}\right)}-c_{\gamma}\right] \mathbf{E}_{0}\left(\sum_{m=1}^{T^{*}\left(c_{\gamma}\right)} v_{m}\right) \\
& =\left[\mathcal{J}_{M, N}\left(T^{*}\left(c_{\gamma}\right)\right)-c_{\gamma}\right] \gamma
\end{aligned}
$$

This means that $\mathcal{J}_{M, N}(T) \geq \mathcal{J}_{M, N}\left(T^{*}\left(c_{\gamma}\right)\right)$ for all $T \in \mathfrak{T}_{N}$ with $\mathbf{E}_{0}\left(\sum_{m=1}^{T} v_{m}\right) \geq \gamma$. That is, (i) of Theorem 1 is true. The strict inequality in (ii) of Theorem 1 comes from the strict inequality in (A.2) when $T \neq T^{*}\left(c_{\gamma}\right)$ with $\mathbf{E}_{0}\left(\sum_{m=1}^{T} v_{m}\right)=\mathbf{E}_{0}\left(\sum_{m=1}^{T^{*}\left(c_{\gamma}\right)} v_{m}\right)=\gamma$. This completes the proof of Theorem 1.

Proof of Theorem 2. Since $Y_{k}=\left(Y_{k-1}+w_{k}\left(Y_{k-1}, A_{n, p_{1}}\right)\right) \Lambda_{k}$ and

$$
\Lambda_{k}=\frac{p_{\mathbf{1 k}}\left(X_{k} \mid X_{k-1}, \ldots, X_{k-j}\right)}{p_{\mathbf{0} k}\left(X_{k} \mid X_{k-1}, \ldots, X_{k-i}\right)}
$$

for $1 \leq k \leq N$, it follows that $\left(Y_{k}, X_{k}\right), 0 \leq k \leq N$, is a two-dimensional p-order Markov chain, where $p=\max \{i, j\}$. Let $1 \leq p \leq N$. By the definition of the optimal control limits, we have

$$
\begin{align*}
l_{k}(c)= & c v_{k+1}\left(Y_{k}, A_{n, p_{2}}\right) \tag{A.11}\\
& +\mathbf{E}_{0}\left(\left[l_{k+1}(c)-\left(Y_{k}+w_{k+1}\left(Y_{k}, A_{n, p_{1}}\right)\right) \Lambda_{k+1}\right]^{+} \mid Y_{k}, A_{n, 0}\right)
\end{align*}
$$

for $0 \leq k \leq p-1$ and

$$
\begin{align*}
l_{k}(c) & =c v_{k+1}\left(Y_{k}, A_{n, p_{2}}\right) \tag{A.12}\\
& +\mathbf{E}_{0}\left(\left[l_{k+1}(c)-\left(Y_{k}+w_{k+1}\left(Y_{k}, A_{n, p_{1}}\right)\right) \Lambda_{k+1}\right]^{+} \mid Y_{k}, A_{n, p}\right)
\end{align*}
$$

for $p \leq k \leq N$. Let $p=0$, we have similarly

$$
\begin{align*}
l_{k}(c) & =l_{k}\left(c, Y_{k}\right) \tag{A.13}\\
& =c v_{k+1}\left(Y_{k}\right)+\mathbf{E}_{0}\left(\left[l_{k+1}(c)-\left(Y_{k}+w_{k+1}\left(Y_{k}\right)\right) \Lambda_{k+1}\right]^{+} \mid Y_{k}\right)
\end{align*}
$$

for $0 \leq k \leq N$.
Proof of Theorem 3. Let $p=0$. As the observations $X_{k}, 0 \leq k \leq N$, are independent, it follows from the definition of $\left\{Y_{k}, 1 \leq k \leq N\right\}$ that $\left\{Y_{k}, 1 \leq k \leq N\right\}$ is a 1-order Markov chain. Thus, the optimal control limits, $l_{k}(c), 0 \leq k \leq N$, satisfy (A.13).

Let $y=c v_{N+1}(y)$. As $v_{N+1}(y)$ is non-increasing, it follows that there is a positive number $y_{N}(c)$ such that $y_{N}(c)=c v_{N+1}\left(y_{N}(c)\right)$. Hence, $Y_{N} \geq l_{N}(c)=c v_{N+1}\left(Y_{N}\right)$ if and only if $Y_{N} \geq y_{N}(c)$. Therefore, we let $\widetilde{l_{N}}(c)=y_{N}(c)$. Take $k=N-1$ in (A.13) and let

$$
\begin{aligned}
y=f_{0}(y) & =c v_{N}(y) \\
& +\mathbf{E}_{0}\left(\left[c v_{N+1}\left(\left(y+w_{N}(y)\right) \Lambda_{N}\right)-\left(y+w_{N}(y)\right) \Lambda_{N}\right]^{+} \mid Y_{N-1}=y\right) .
\end{aligned}
$$

Note that the two functions $\left(y+w_{N}(y)\right)$ and $v_{N}(y)$ are non-decreasing and nonincreasing on $y \geq 0$, respectively. Therefore, the function $f_{0}(y)$ is non-increasing on $y \geq 0$, and it follows that there is a positive number y_{N-1} such that $y_{N-1}=f_{0}\left(y_{N-1}\right)$; that is,

$$
\begin{aligned}
y_{N-1} & =c v_{N}\left(y_{N-1}\right) \\
& +\mathbf{E}_{0}\left(\left[c v_{N+1}-\left(y_{N-1}+w_{N}\left(y_{N-1}\right)\right) \Lambda_{N}\right]^{+} \mid Y_{N-1}=y_{N-1}\right) .
\end{aligned}
$$

This implies that $Y_{N-1} \geq l_{N-1}(c)$ if and only if $Y_{N-1} \geq y_{N-1}$. Therefore, we let $\widetilde{l_{N-1}}(c)=y_{N-1}$. Similarly, there are positive numbers $y_{k}, 1 \leq k \leq N-2$ such that $Y_{k} \geq l_{k}(c)$ if and only if $Y_{k} \geq y_{k}$ for $1 \leq k \leq N-2$, where

$$
y_{k}=c v_{k+1}\left(y_{k}\right)+\mathbf{E}_{0}\left(\left[l_{k+1}(c)-\left(y_{k}+w_{k+1}\left(y_{k}\right)\right) \Lambda_{k+1}\right]^{+} \mid Y_{k}=y_{k}\right)
$$

for $1 \leq k \leq N-2$. Taking $\widetilde{l}_{k}(c)=y_{k}$ for $1 \leq k \leq N$, we know that the control limit $\left\{\widetilde{l}_{k}(c)\right\}$ is an equivalent control limit of the optimal sequential test $T_{M}^{*}(c, N)$ and it consists of a series of nonnegative non-random numbers. This proves (ii) of Theorem 3.

Let $1 \leq p \leq N$. As $\left\{\left(Y_{k}, X_{k}\right), 0 \leq k \leq N\right\}$ is a two-dimensional p-order Markov chain, it follows that (A.12) and (A.11) hold for $p \leq k \leq N$ and $0 \leq k \leq p-1$, respectively. When $k=N$ in (A.12), we take $\tilde{l_{N}}(c)=y_{N}(c)$, where $y_{N}(c)=c v_{N+1}\left(y_{N}(c)\right)$. For any fixed observation values $a_{k, p}=\left\{x_{k}, \ldots, x_{k-p+1}\right\}$ for $p \leq k \leq N-1$ and $a_{k, 0}=\left\{x_{k}, \ldots, x_{0}\right\}$ for $0 \leq k \leq p-1$, let

$$
\begin{aligned}
y=f_{p}(y) & =c v_{k+1}\left(y, a_{k, p}\right) \\
& +\mathbf{E}_{0}\left(\left[l_{k+1}(c)-\left(y+w_{k+1}\left(y, a_{k, p}\right)\right) \Lambda_{k+1}\right]^{+} \mid Y_{k}=y, A_{k, p}=a_{k, p}\right)
\end{aligned}
$$

for $p \leq k \leq N-1$ and

$$
\begin{aligned}
y=g_{p}(y) & =c v_{k+1}\left(y, a_{k, 0}\right) \\
& +\mathbf{E}_{0}\left(\left[l_{k+1}(c)-\left(y+w_{k+1}\left(y, a_{k, 0}\right)\right) \Lambda_{k+1}\right]^{+} \mid Y_{k}=y, A_{k, 0}=a_{k, 0}\right)
\end{aligned}
$$

for $0 \leq k \leq p-1$. As the two functions $f_{p}(y)$ and $g_{p}(y)$ are non-increasing on $y \geq 0$, it follows that there are positive numbers $y_{k}=y_{k}\left(c, a_{k, p}\right)$ for $p \leq k \leq N-1$ and $y_{k}=y_{k}\left(c, a_{k, 0}\right)$ for $1 \leq k \leq p-1$ such that $y_{k}=f_{p}\left(y_{k}\right)$ for $p \leq k \leq N-1$ and $y_{k}=g_{p}\left(y_{k}\right)$ for $1 \leq k \leq p-1$. Therefore, $Y_{k} \geq l_{k}(c)$ if and only if $Y_{k} \geq y_{k}$. Taking $\widetilde{l}_{k}(c)=y_{k}\left(c, X_{k}, \ldots, X_{k-p+1}\right)$ for $p \leq k \leq N$ and $\widetilde{l_{k}}(c)=y_{k}\left(c, X_{k}, \ldots, X_{0}\right)$ for $1 \leq k \leq$ $p-1$, we have $\widetilde{T_{M}^{*}}(c, N)=T_{M}^{*}(c, N)$. That is, $\left\{\widetilde{l}_{k}(c), 1 \leq k \leq N+1\right\}$ is an equivalent control limit of the optimal sequential test $T_{M}^{*}(c, N)$ that does not directly depend on the statistic, $Y_{k}, 1 \leq k \leq N$. This completes the proof of (i) of Theorem 3.

