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This is a supplement to the corresponding paper submitted to Statistica Sinica. It contains

seven sections. In Section S1, we provide a derivation of the form of g(t) that appears in

Section 1 of the main paper. In Section S2, we conduct a goodness-of-fit test for model (1.2)

in the main paper. In Section S3, we provide regularity conditions needed in Theorems 2–4.

Finally, in Sections S4–S7, we prove Theorems 1–4 respectively.

S1 Derivation of the Form of g(t)

To write the probability density function (pdf) of V in the form of g(t), we

refer to Chapter 2 of Qin (2017) using renewal process results. Here, we

understand V in the way of Linton et al. (2020).

Let A be the elapsed time between exposure to the disease and depar-

ture from Wuhan. Recall that we use Y for the incubation time, i.e., from

infection onset to symptom onset. We assume A and Y are independent.

By the data-collection criteria, only those individuals with Y > A are

included in our cohort. Moreover, we cannot observe A, but only V = Y−A.
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Basically, we have truncated data (A, V )|Y > A, so the pdf of the observed

V should be conditional on Y > A.

Consider the conditional cumulative distribution function (cdf) of V

given Y > A:

P (V ≤ t|Y > A) =
P (V ≤ t, Y > A)

P (Y > A)
.

For the time being, we assume that A follows a uniform distribution on

[0, c] for some positive constant c. We further assume that Y has cdf F (t)

and pdf f(t). Then, conditioning on A, we have

P (V ≤ t, Y > A) =

∫ c

0

1

c
P (V ≤ t, Y > a|A = a)da

=

∫ c

0

1

c
P (Y − A ≤ t, Y > a|A = a)da

=

∫ c

0

1

c
P (Y ≤ t+ a, Y > a|A = a)da

=

∫ c

0

1

c
P (a < Y ≤ t+ a)da

= c−1

∫ c

0

{F (t+ a)− F (a)}da,

where the second-last step follows from the assumption that A and Y are

independent. Similarly,

P (Y > A) =

∫ c

0

1

c
P (Y > a|A = a)da

=

∫ c

0

1

c
P (Y > a)da

= c−1

∫ c

0

{1− F (a)}da.

As a consequence,

P (V ≤ t|Y > A) =

∫ c
0
{F (t+ a)− F (a)}da∫ c

0
{1− F (a)}da

.
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Hence, the pdf of V conditional on Y > A is∫ c
0
f(t+ a)da∫ c

0
{1− F (a)}da

.

Letting c→∞,
∫ c

0
f(t + a)da = F (t + c)− F (t)→ 1− F (t) and the limit

of the pdf of V conditional on Y > A tends to

1− F (t)∫∞
0
{1− F (a)}da

, (S1.1)

which is precisely the forward time distribution in the renewal process when

reaching equilibrium status. In other words, the pdf of the observed V is

approximately equal to (S1.1).

As ∫ ∞
0

{1− F (a)}da =

∫ ∞
0

af(a)da,

the pdf of V conditional on Y > A is given approximately by

g(t) =

∫∞
t
f(a)da∫∞

0
af(a)da

for t > 0.

The above derivation holds true even if Y is bounded. The uniform distri-

bution assumption on A is reasonable because there seemed to be no general

trend in the number of people departing Wuhan per day in the early stage

of the outbreak.

Regarding the equilibrium assumption in our real data, 1211 cases were

collected as of February 15, 2020, and their travel dates of leaving Wuhan

were between January 19 and January 23. This enabled us to have an

average follow-up time for symptom onset of as long as 25 days. With an

adequate long run, the renewal process would reach the equilibrium status.

In summary, the forward time distribution g(t) in the renewal process is a

good approximation to the truncation distribution of V .
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S2 Goodness-of-fit Test of Model (1.2)

In this section, we review the goodness-of-fit test of Deng et al. (2021) for

model (1.2) in the main paper, then we apply it to check whether model

(1.2) is suitable for the data analyzed in Section 5 of the main paper.

Recall that model (1.2) posited that t1, . . . , tn are n iid observations

from

h(t;λ, α, p) = pf(t;λ, α) + (1− p)g(t;λ, α), t > 0,

with f(t;λ, α) being the pdf of a pre-specified distribution such as a Weibull

distribution, and

g(t;λ, α) =

∫∞
t
f(y;λ, α)dy∫∞

0
yf(y;λ, α)dy

.

The idea of the goodness-of-fit test of Deng et al. (2021) is to divide the

non-negative real line into k disjoint and adjacent intervals, whereupon the

goodness-of-fit statistic is defined as

Gn =
k∑
i=1

(Oi − Ei)2

Ei
,

where Oi is the observed number of cases in the ith interval, Ei is the

expected number of cases in the ith interval based on h(t; λ̂, α̂, p̂), and k is

chosen such that Ei ≥ 5 for each interval. The asymptotic null distribution

of Gn is known to be a chi-squared distribution with k − 3 − 1 degrees of

freedom because there are three parameters in total in model (1.2).

For the data in Section 5 of the main paper, Deng et al. (2021) first

partitioned the non-negative real line into k = 17 intervals: [0,0.5), [i −

0.5, i+ 0.5) for i = 1, . . . , 15, and [15.5,∞). When f(t;λ, α) is the pdf of a

Weibull distribution, the observed value of Gn is 14.09 with an asymptotic

p-value of 0.37, calibrated by the χ2
13 distribution. Hence, we do not have
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strong evidence for rejecting model (1.2) with f(t;λ, α) being the pdf of

a Weibull distribution for the duration-time data in Section 5 of the main

paper.

S3 Regularity Conditions

Our asymptotic results about Rn in Theorems 2–4 rely on the following

regularity conditions, in which the expectation is taken with respect to the

null model.

C1. (i) For sufficiently small ε > 0, E[log{1 + fε(T )}] < ∞ and

E[log{1 + gε(T )}] <∞, where

fε(t) = sup
(λ−λ0)2+(α−α0)2<ε2

f(t;λ, α)

and gε(t) is similarly defined; (ii) for sufficiently large r > 0, E[log{1 +

ϕf,r(T )}] <∞ and E[log{1 + ϕg,r(T )}] <∞, where

ϕf,r(t) = sup
λ2+α2≥r2

f(t;λ, α)

and ϕg,r(t) is similarly defined; (iii) f(t;λ, α) → 0 and g(t;λ, α) → 0

as λ2 + α2 →∞.

C2. The parameters λ and α are identifiable.

C3. f(t;λ, α) has common support and continuous third-order partial

derivatives with respect to λ and α.

C4. B is positive definite.

C5. For two non-negative integers h and l such that h + l ≤ 2, there

exists a function G(t) with E{G(T )} <∞ such that∣∣∣∂h+lf(t;λ0, α0)/∂λh∂αl

f(t;λ0, α0)

∣∣∣3 ≤ G(t) and
∣∣∣∂h+lg(t;λ0, α0)/∂λh∂αl

g(t;λ0, α0)

∣∣∣3 ≤ G(t).
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Moreover, there exists a positive ε0 such that for h+ l = 3,

sup
(λ−λ0)2+(α−α0)2≤ε20

∣∣∣∂h+lf(t;λ, α)/∂λh∂αl

f(t;λ0, α0)

∣∣∣3 ≤ G(t)

and

sup
(λ−λ0)2+(α−α0)2≤ε20

∣∣∣∂h+lg(t;λ, α)/∂λh∂αl

g(t;λ0, α0)

∣∣∣3 ≤ G(t).

S4 Proof of Theorem 1

Recall that F (t;λ, α) is the cumulative distribution function corresponding

to f(t;λ, α) and

h(t;λ, α, p) = pf(t;λ, α) + (1− p)g(t;λ, α), t > 0,

where

g(t;λ, α) =
1− F (t;λ, α)

µ(λ, α)
with µ(λ, α) =

∫ ∞
0

tf(t;λ, α)dt.

Then h(t;λ, α, p) can be rewritten as

h(t;λ, α, p) = pf(t;λ, α) + (1− p)1− F (t;λ, α)

µ(λ, α)
, t > 0.

For (a). We concentrate on the case in which

A(λ1, α1) = lim
t→∞

f(t;λ1, α1)

1− F (t;λ1, α1)
= 0. (S4.2)

The proof for the case in which A(λ1, α1) =∞ is similar.

We first argue that (λ1, α1) = (λ2, α2) when h(t;λ1, α1, p1) = h(t;λ2, α2, p2)

for all t > 0.

If (λ1, α1) 6= (λ2, α2), then using Condition A2 and L’Hospital’s rule,

we have

lim
t→∞

1− F (t;λ1α1)

1− F (t;λ2, α2)
= lim

t→∞

f(t;λ1, α1)

f(t;λ2, α2)
= 0 or ∞. (S4.3)
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We further consider two different scenarios: p1 = 1 and p1 6= 1.

Scenario I: p1 6= 1.

Dividing by 1−F (t;λ1, α1) on both sides of h(t;λ1, α1, p1) = h(t;λ2, α2, p2),

we have

p1f(t;λ1, α1)

1− F (t;λ1, α1)
+

(1− p1)

µ(λ1, α1)
=

p2f(t;λ2, α2)

1− F (t;λ1, α1)
+

(1− p2){1− F (t;λ2, α2)}
µ(λ2, α2){1− F (t;λ1, α1)}

.

(S4.4)

When t → ∞ in (S4.4), by (S4.2)–(S4.3) and Condition A3, the left-hand

side becomes a positive number (1− p1)/µ(λ1, α1), whereas the right-hand

side becomes either 0 or ∞, which is a contradiction.

Scenario II: p1 = 1.

When p1 = 1, h(t;λ1, α1, p1) = h(t;λ2, α2, p2) implies that

f(t;λ1, α1) = p2f(t;λ2, α2) +
(1− p2){1− F (t;λ2, α2)}

µ(λ2, α2)
.

Dividing by f(t;λ1, α1) on both sides of the above equation gives

1 =
p2f(t;λ2, α2)

f(t;λ1, α1)
+

(1− p2){1− F (t;λ2, α2)}
µ(λ2, α2)f(t;λ1, α1)

. (S4.5)

When t → ∞ in (S4.5), by Conditions A2 and A3, the right-hand side is

equal to either 0 or ∞, whereas the left-hand side is equal to 1, which is a

contradiction.

In summary, if h(t;λ1, α1, p1) = h(t;λ2, α2, p2) for all t > 0 andA(λ1, α1) =

0, then under Conditions A1–A3, we must have

(λ1, α1) = (λ2, α2).

This, together with h(t;λ1, α1, p1) = h(t;λ2, α2, p2), implies that

p1 − p2 = (p1 − p2)
µ(λ1, α1)f(t;λ1, α1)

1− F (t;λ1, α1)

for all t > 0. Letting t → ∞ in the above equation and noting that
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A(λ1, α1) = 0, we obtain p1 = p2. Hence (λ1, α1, p1) = (λ2, α2, p2), as

claimed in (a).

For (b). We first argue that (λ1, α1) = (λ2, α2) when 0 < A(λ1, α1) <

∞ and h(t;λ1, α1, p1) = h(t;λ2, α2, p2) for all t > 0.

If (λ1, α1) 6= (λ2, α2), when t → ∞ in (S4.4), by (S4.3) and Condi-

tion A3, the left-hand side of (S4.4) becomes p1A(λ1, α1) + (1−p1)
µ(λ1,α1)

, which

is finite and positive, while the right-hand side of (S4.4) is equal to either

0 or ∞, which is a contradiction. Hence we must have (λ1, α1) = (λ2, α2).

This completes the first part of (b).

Recall that (λ1, α1) = (λ2, α2) implies that

p1 − p2 = (p1 − p2)
µ(λ1, α1)f(t;λ1, α1)

1− F (t;λ1, α1)

for all t > 0. If f(t;λ1,α1)
1−F (t;λ1,α1)

is not a constant function of t, then we must

have p1 = p2. If f(t;λ1,α1)
1−F (t;λ1,α1)

is a constant function of t, then µ(λ1,α1)f(t;λ1,α1)
1−F (t;λ1,α1)

must equal 1 for all t > 0 because both f(t;λ1, α1) and 1−F (t;λ1,α1)
µ(λ1,α1)

are pdfs.

In this case, p1 and p2 need not be equal. This completes the second part

of (b).

S5 Proof of Theorem 2

S5.1 Two Technical Lemmas

We first establish two technical lemmas. Lemma 1 establishes the consis-

tency of the maximum likelihood estimator (MLE) under the null model;

this is the first step in the proof of Theorem 2. The lemma claims that any

estimator of (λ, α, p) with a large likelihood value is consistent for λ and α

under the null model. Recall that the true values of λ and α under the null

model are λ0 and α0, respectively.
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Lemma 1. Assume the conditions of Theorem 2. Let (λ̄, ᾱ, p̄) be any esti-

mator of (λ, α, p) such that

ln(λ̄, ᾱ, p̄)− ln(λ0, α0, 1) > c > −∞ (S5.6)

for some constant c for all n. Then under the null model, λ̄ − λ0 = op(1)

and ᾱ− α0 = op(1).

Proof. Under Condition C2, both λ and α are identifiable under the null

hypothesis, although p is not. The proof then follows by using techniques

similar to those in Lemma 1 of Li et al. (2009) and Wald (1949).

In the next lemma, we strengthen the conclusion of Lemma 1 by pro-

viding an order assessment of the estimators. Recall that

Xi =
∂f(ti;λ0, α0)/∂λ

f(ti;λ0, α0)
,

Yi1 =
∂f(ti;λ0, α0)/∂α

f(ti;λ0, α0)
,

Yi2 =
∂g(ti;λ0, α0)/∂α

g(ti;λ0, α0)
.

Note that under Condition C0,

h(ti;λ0, α0, 1) = f(ti;λ0, α0) = g(ti;λ0, α0) and
∂g(ti;λ0, α0)/∂λ

g(ti;λ0, α0)
= Xi.

Define bi = (Xi, Yi1, Yi2)>. Then E(bi) = 0 and we denote the variance-

covariance matrix

B = Var(bi) =


B11 B12 B13

B21 B22 B23

B31 B32 B33

 , (S5.7)

where the expectation and variance are taken with respect to the null model

f(t;λ0, α0).
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Lemma 2. Assume the conditions of Lemma 1. Then under the null model,

λ̄− λ0 = Op(n
−1/2) and ᾱ− α0 = Op(n

−1/2).

Proof. In the following, we first derive an upper bound for `n(λ̄, ᾱ, p̄) −

`n(α0, λ0, 1). Then together with the lower bound c, we obtain the order

assessment of λ̄ and ᾱ. Write

`n(λ̄, ᾱ, p̄)− `n(α0, λ0, 1) =
n∑
i=1

log{1 + δi(λ̄, ᾱ, p̄)}

with

δi(λ̄, ᾱ, p̄) =
p̄f(ti; λ̄, ᾱ) + (1− p̄)g(ti; λ̄, ᾱ)

h(ti;α0, λ0, 1)
− 1

= p̄
f(ti; λ̄, ᾱ)− f(ti;λ0, α0)

f(ti;λ0, α0)
+ (1− p̄)g(ti; λ̄, ᾱ)− g(ti;λ0, α0)

g(ti;λ0, α0)
.

By the inequality log(1 + x) ≤ x− x2/2 + x3/3, we have

`n(λ̄, ᾱ, p̄)−`n(α0, λ0, 1) ≤
n∑
i=1

δi(λ̄, ᾱ, p̄)−
n∑
i=1

δ2
i (λ̄, ᾱ, p̄)/2+

n∑
i=1

δ3
i (λ̄, ᾱ, p̄)/3.

(S5.8)

From Lemma 1, we have the consistency results λ̄ − λ0 = op(1) and

ᾱ − α0 = op(1). Applying a first-order Taylor expansion to f(ti; λ̄, ᾱ) and

g(ti; λ̄, ᾱ), we find that

δi(λ̄, ᾱ, p̄) = (λ̄− λ0)Xi + p̄(ᾱ− α0)Yi1 + (1− p̄)(ᾱ− α0)Yi2 + εin,

and the remainder term εn =
∑n

i=1 εin satisfies

εn = Op(n
1/2)

{
(λ̄− λ0)2 + (ᾱ− α0)2

}
.

Let s̄1 = λ̄−λ0, s̄2 = p̄(ᾱ−α0), s̄3 = (1−p̄)(ᾱ−α0), and s̄ = (s̄1, s̄2, s̄3)>.

Then

δi(λ̄, ᾱ, p̄) = s̄>bi + εin
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and

εn = Op(n
1/2)s̄>s̄ = op(n)s̄>s̄. (S5.9)

Therefore, for the linear term in (S5.8), we have
n∑
i=1

δi(λ̄, ᾱ, p̄) = s̄>
n∑
i=1

bi + εn, (S5.10)

where the order of εn is assessed in (S5.9).

After some work, we can further show that
n∑
i=1

δ2
i (λ̄, ᾱ, p̄) =

n∑
i=1

(s̄>bi)
2 +Op(εn),

n∑
i=1

δ3
i (λ̄, ᾱ, p̄) =

n∑
i=1

(s̄>bi)
3 +Op(εn).

By the strong law of large numbers and Condition C4 that B is positive

definite, we further have
n∑
i=1

δ2
i (λ̄, ᾱ, p̄) = ns̄>Bs̄ + op(n)s̄>s̄, (S5.11)

n∑
i=1

δ3
i (λ̄, ᾱ, p̄) = op(n)s̄>s̄. (S5.12)

Combining (S5.8)–(S5.12), we obtain the refined upper bound for `n(λ̄, ᾱ, p̄)−

`n(α0, λ0, 1) as follows:

`n(λ̄, ᾱ, p̄)− `n(α0, λ0, 1) ≤ s̄>
n∑
i=1

bi − 0.5ns̄>Bs̄{1 + op(1)}. (S5.13)

Because B is positive definite, the upper bound in (S5.13) is of order Op(1).

Together with the lower bound c, this implies that

s̄ = Op(n
−1/2).

Any values of s̄ outside this range will violate the inequality. Note that s̄

implies that λ̄ − λ0 = Op(n
−1/2) and ᾱ − α0 = Op(n

−1/2). This completes

the proof.
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S5.2 Proof of Theorem 2

Note that

Rn = 2
{
`n(λ̂, α̂, p̂)− `n(λ̂0, α0, 1)

}
= R1n −R2n, (S5.14)

where

R1n = 2
{
`n(λ̂, α̂, p̂)− `n(λ0, α0, 1)

}
, R2n = 2

{
`n(λ̂0, α0, 1)− `n(λ0, α0, 1)

}
.

Applying some of the classical results for regular models (Serfling, 1980),

we have

R2n =

(
n−1/2

∑n
i=1 Xi

)2

B11

+ op(1). (S5.15)

Next, we use a sandwich method to find the approximation of R1n. We

proceed in two steps. In step 1, we derive an upper bound for R1n, and in

step 2 we argue that the upper bound is achievable.

Let (λ̂p, α̂p) = arg maxλ,p `n(λ, α, p) be the constrained MLE of (λ, p)

for given p. Define R1n(p) = 2
{
`n(λ̂p, α̂p, p)− `n(λ0, α0, 1)

}
. Then R1n =

suppR1n(p). By the definition of (λ̂p, α̂p), we have `n(λ̂p, α̂p, p)−`n(λ0, α0, 1) ≥

0. Hence, Condition (S5.6) is satisfied. Then applying the results in Lem-

ma 2 and (S5.13), we obtain

R1n(p) ≤ 2ŝ>(p)
n∑
i=1

bi − nŝ>(p)Bŝ(p) + op(1),

where ŝ(p) is defined similarly to s̄ with (λ̂p, α̂p, p) in place of (λ̄, ᾱ, p̄).

Define

t̂(p) =
(
t̂1(p), t̂2(p)

)>

=
(
λ̂p − λ0, α̂p − α0

)>

, ci(p) =
(
Xi, Yi(p)

)>

with Yi(p) = pYi1 + (1 − p)Yi2, and C(p) = Var{ci(p)}. Then after some

algebra, we obtain a refined upper bound for R1n(p) as

R1n(p) ≤ 2t̂>(p)
n∑
i=1

ci(p)− nt̂>(p)C(p)t̂(p) + op(1). (S5.16)
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To further simplify the upper bound in (S5.16), let

a(p) = p
B12

B11

+ (1− p)B13

B11

, t̂∗1(p) = λ̂p − λ0 + a(p)(α̂p − α0),

and

Zi(p) = Yi(p)− a(p)Xi. (S5.17)

It can be verified that Cov {Xi, Zi(p)} = 0 and Var {Zi(p)} = σ(p, p), where

σ(·, ·) is defined in (3.3) of the main paper. Then the upper bound in (S5.16)

becomes

R1n(p) ≤ 2t̂∗1(p)
n∑
i=1

Xi − nB11{t̂∗1(p)}2

+2t̂2(p)
n∑
i=1

Zi(p)− nσ(p, p){t̂2(p)}2 + op(1)

≤
(
n−1/2

∑n
i=1Xi

)2

B11

+

{
n−1/2

∑n
i=1 Zi(p)√

σ(p, p)

}2

+ op(1). (S5.18)

Next, we show that the upper bound in (S5.18) for R1n(p) is achievable.

Let (λ̃p, α̃p) be determined by

λ̃p − λ0 + a(p)(α̃p − α0) = n−1/2

n∑
i=1

Xi/B11, α̃p − α0 =
n−1/2

∑n
i=1 Zi(p)√

σ(p, p)
.

Note that it is easy to verify that (λ̃p, α̃p) exists and

λ̃p − λ0 = Op(n
−1/2), α̃p − α0 = Op(n

−1/2)

uniformly over p. With this order assessment and applying a second-order

Taylor expansion, we have

R1n(p) ≥ 2
{
`n(λ̃p, α̃p, p)− `n(λ0, α0, 1)

}
=

(
n−1/2

∑n
i=1Xi

)2

B11

+

{
n−1/2

∑n
i=1 Zi(p)√

σ(p, p)

}2

+ op(1). (S5.19)
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Combining (S5.18) and (S5.19) leads to

R1n(p) =

(
n−1/2

∑n
i=1Xi

)2

B11

+

{
n−1/2

∑n
i=1 Zi(p)√

σ(p, p)

}2

+ op(1).

Hence

R1n = sup
p
R1n(p) =

(
n−1/2

∑n
i=1 Xi

)2

B11

+ sup
p

{
n−1/2

∑n
i=1 Zi(p)√

σ(p, p)

}2

+ op(1),

(S5.20)

which together with (S5.15) gives

Rn = sup
p

{
n−1/2

∑n
i=1 Zi(p)√

σ(p, p)

}2

+ op(1).

Recall the form of Zi(p) in (S5.17). We can rewrite it as

Zi(p) = Z1i + pZ2i

with Zi1 = Yi2 − (B13/B11)Xi and

Zi2 = {Yi1 − (B12/B11)Xi} − {Yi2 − (B13/B11)Xi}.

It can be verified that E(Zi1) = E(Zi2) = 0 and

Var(Z1i) = σ11, Var(Z2i) = σ22, Cov(Z1i, Z2i) = σ12.

Hence

Rn = sup
p

{
n−1/2

∑n
i=1 Zi(p)√

σ(p, p)

}2

+ op(1)
d→ R = sup

p
Z2(p),

where Z(p) = (Z1 + pZ2)/
√
σ(p, p) with

(Z1, Z2)> ∼ N

 0

0

 ,

 σ11 σ12

σ12 σ22

 . (S5.21)
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It can be verified that the process Z(p) is a Gaussian process with zero

mean, unit variance, and covariance function

Cov
{
Z(p1), Z(p2)

}
=

σ(p1, p2)√
σ(p1, p1)σ(p2, p2)

.

This completes the proof.

S6 Proof of Theorem 3

Recall that Z(p) = (Z1 + pZ2)/
√
σ(p, p) with the joint distribution of

(Z1, Z2)> provided in (S5.21). Let

W1 =

(
Z1 −

σ12

σ22

Z2

)
/a1, W2 = Z2/a2,

where

a1 =

√
σ11 −

σ2
12

σ22

, a2 =
√
σ22.

By construction, it can be verified that W1 and W2 are two independent

N(0, 1) random variables, and

Z(p) =
a1W1 +

(
p+ σ12

σ22

)
a2W2√

σ(p, p)
.

To find a simpler form for Z(p), we consider two polar transformations.

The first one is defined in the main paper:

(cos θ, sin θ) =
(
c1(p), c2(p)

)
,

where

c1(p) =
a1√
σ(p, p)

and c2(p) =
(p+ σ12/σ22)a2√

σ(p, p)
.

By Condition C6, we have{(
c1(p), c2(p)

)
: 0 ≤ p ≤ 1

}
= {(cos θ, sin θ) : ∆1 ≤ θ ≤ ∆2}.
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The second polar transformation is

(W1,W2) = (ρ cos η, ρ sin η),

where ρ2 with ρ > 0 and η are two independent random variables with ρ2

from a χ2
2 distribution and η from a uniform distribution on [−π, π]. Then

Z(p) = ρ cos η cos θ + ρ sin η sin θ = ρ cos(θ − η)

and

sup
p
Z2(p) = sup

θ∈[∆1,∆2]

ρ2 cos2(θ − η).

After some algebra, we can check that

sup
θ∈[∆1,∆2]

ρ2 cos2(θ−η) = ρ2{I(η ∈ A1)+I(η ∈ A2) cos2(η−∆2)+I(η ∈ A3) cos2(η−∆1)}.

This completes the proof.

S7 Proof of Theorem 4

We proceed in two steps. In the first step, we show that the models under

the local alternatives

Hn
a : λ = λ0, p = p0, α = α0 + δn−1/2 (S7.22)

are contiguous to the null model (Le Cam, 1953). In the second step, we

find the asymptotic distribution of Rn under Hn
a by using Le Cam’s first

and third lemmas (van der Vaart, 1998).

Let

Λn = `n(λ0, α, p0)− `n(λ0, α0, 1).

Using the second-order Taylor expansion, under the null model, we have

Λn =
n∑
i=1

Yi(p0)(δn−1/2)− 1

2
δ2Var{Yi(p0)}+ op(1).
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By the central limit theorem, we have

Λn → N(−0.5d2
0, d

2
0)

in distribution under the null model, where d0 = δ2Var{Yi(p0)}. Therefore,

the models under the local alternatives Hn
a in (S7.22) are contiguous to the

null model (Le Cam, 1953). This completes step 1.

Next, we move on to step 2. Recall that under the null model,

Rn = sup
p

{
n−1/2

∑n
i=1 Zi(p)√

σ(p, p)

}2

+ op(1).

By Le Cam’s contiguity theory, the limiting distribution of Rn under the

local alternatives Hn
a is determined by the joint limiting distribution of

{nσ(p, p)}−1/2
∑n

i=1 Zi(p) and Λn under the null model.

By the central limit theorem and Slutsky’s theorem, the joint limiting

distribution of {nσ(p, p)}−1/2
∑n

i=1 Zi(p) and Λn under the null model is

bivariate normal

N

 0

−0.5d2
0

 ,

 1 ω(p, p0)

ω(p, p0) d2
0

 ,

where

ω(p, p0) = Cov
(
{σ(p, p)}−1/2Zi(p), δYi(p0)

)
= Cov

(
{σ(p, p)}−1/2Zi(p), δZi(p0)

)
=

δσ(p, p0)√
σ(p, p)

.

Note that in the second equation, we have used the fact that Cov {Zi(p), Xi} =

0 and the definition of Zi(p) in (S5.17).

By Le Cam’s third lemma (van der Vaart, 1998), under the local alter-

natives Hn
a ,

n−1/2
∑n

i=1 Zi(p)√
σ(p, p)

→ N (ω(p, p0), 1)
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in distribution, which implies that{
n−1/2

∑n
i=1 Zi(p)√

σ(p, p)

}2

→ {Z(p) + ω(p, p0)}2

in distribution under Hn
a .

Because

Rn = sup
p

{
n−1/2

∑n
i=1 Zi(p)√

σ(p, p)

}2

+ op(1)

under the null model, by applying Le Cam’s first lemma (van der Vaart,

1998), we have that

Rn = sup
p

{
n−1/2

∑n
i=1 Zi(p)√

σ(p, p)

}2

+ op(1)

holds also under the local alternatives Hn
a . Therefore, the asymptotic dis-

tribution of Rn under the local alternatives Hn
a is

sup
p

[
{Z(p) + ω(p, p0)}2] .

This completes the proof.
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