On the efficiency of composite likelihood estimation for Gaussian spatial processes

Nelson J. Y. Chua* ${ }^{* 1,2}$, Francis K. C. Hui ${ }^{1}$ and A. H. Welsh ${ }^{1}$
${ }^{1}$ The Australian National University and ${ }^{2}$ Australian Bureau of Statistics

Abstract

This material covers proofs of Theorems 2,3 and 4 in the main paper, as well as derivations of the Fisher information and sandwich covariance for a constant mean parameter under the exponential covariance model. Note that equations from the main paper are referenced here.

S1 Proof of Theorem 2

Note the following result pertaining to the expectation of fourth-order moments (see p. 109 of Rencher and Schaalje, 2008, for instance):

Lemma 1. Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)^{T}$ follow a Gaussian distribution with zero mean and covariance matrix $\boldsymbol{\Sigma}$. Also, let \boldsymbol{U} and \boldsymbol{V} be $n \times n$ symmetric matrices. Then $E\left[\boldsymbol{x}^{T} \boldsymbol{U} \boldsymbol{x} \boldsymbol{x}^{T} \boldsymbol{V} \boldsymbol{x}\right]=\operatorname{tr}(\boldsymbol{U} \boldsymbol{\Sigma}) \operatorname{tr}(\boldsymbol{V} \boldsymbol{\Sigma})+2 \operatorname{tr}(\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V} \boldsymbol{\Sigma})$.

We also note that $\partial \boldsymbol{\Sigma}_{m}^{-1} / \partial \theta_{i}=\boldsymbol{\Sigma}_{m}^{-1}\left(\partial \boldsymbol{\Sigma}_{m} / \partial \theta_{i}\right) \boldsymbol{\Sigma}_{m}^{-1}$, which is a useful expression to avoid the direct evaluation of the derivative of a matrix inverse.

By using these two results, we can derive (3.2) as follows:

$$
\begin{aligned}
& \{\mathbf{J}(\boldsymbol{\theta})\}_{i j}=E\left[\frac{\partial}{\partial \theta_{i}} c \ell(\boldsymbol{\theta} ; \mathbf{y}) \frac{\partial}{\partial \theta_{j}} c \ell(\boldsymbol{\theta} ; \mathbf{y})\right] \\
& =\frac{1}{4} \sum_{m=1}^{M} \sum_{l=1}^{M} w_{m} w_{l}\left(\operatorname{tr}\left(\boldsymbol{\Sigma}_{m}^{-1} \frac{\partial \boldsymbol{\Sigma}_{m}}{\partial \phi_{i}}\right) \operatorname{tr}\left(\boldsymbol{\Sigma}_{l}^{-1} \frac{\partial \boldsymbol{\Sigma}_{l}}{\partial \phi_{j}}\right)+\operatorname{tr}\left(\boldsymbol{\Sigma}_{m}^{-1} \frac{\partial \boldsymbol{\Sigma} m}{\partial \theta_{i}}\right) E\left[\mathbf{y}_{l}^{T} \frac{\partial \boldsymbol{\Sigma}_{l}^{-1}}{\partial \theta_{j}} \mathbf{y}_{l}\right]\right. \\
& \left.+\operatorname{tr}\left(\boldsymbol{\Sigma}_{l}^{-1} \frac{\partial \boldsymbol{\Sigma}_{l}}{\partial \theta_{j}}\right) E\left[\mathbf{y}_{m}^{T} \frac{\partial \boldsymbol{\Sigma}_{m}^{-1}}{\partial \theta_{i}} \mathbf{y}_{m}\right]+E\left[\mathbf{y}_{m}^{T} \frac{\partial \boldsymbol{\Sigma}_{m}^{-1}}{\partial \theta_{i}} \mathbf{y}_{m} \mathbf{y}_{l}^{T} \frac{\partial \boldsymbol{\Sigma}_{l}^{-1}}{\partial \theta_{j}} \mathbf{y}_{l}\right]\right) \\
& =\frac{1}{4} \sum_{m=1}^{M} \sum_{l=1}^{M} w_{m} w_{l}\left(-\operatorname{tr}\left(\boldsymbol{\Sigma}_{m}^{-1} \frac{\partial \boldsymbol{\Sigma}_{m}}{\partial \theta_{i}}\right) \operatorname{tr}\left(\boldsymbol{\Sigma}_{l}^{-1} \frac{\partial \boldsymbol{\Sigma}_{l}}{\partial \theta_{j}}\right)\right. \\
& \left.+E\left[\left[\begin{array}{ll}
\mathbf{y}_{m}^{T} & \mathbf{y}_{l}^{T}
\end{array}\right]\left[\begin{array}{cc}
\frac{\partial \boldsymbol{\Sigma}_{m}^{-1}}{\partial \theta_{i}} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{y}_{m} \\
\mathbf{y}_{l}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{y}_{m}^{T} & \mathbf{y}_{l}^{T}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & \frac{\partial \boldsymbol{\Sigma}_{l}^{-1}}{\partial \theta_{j}}
\end{array}\right]\left[\begin{array}{l}
\mathbf{y}_{m} \\
\mathbf{y}_{l}
\end{array}\right]\right]\right) \\
& =\frac{1}{2} \sum_{m=1}^{M} \sum_{l=1}^{M} w_{m} w_{l} \operatorname{tr}\left(\left[\begin{array}{cc}
\frac{\partial \boldsymbol{\Sigma}_{m}^{-1}}{\partial \theta_{i}} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{m} & \boldsymbol{\Sigma}_{m, l} \\
\boldsymbol{\Sigma}_{m, l}^{T} & \boldsymbol{\Sigma}_{l}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & \frac{\partial \boldsymbol{\Sigma}_{l}^{-1}}{\partial \theta_{j}}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{m} & \boldsymbol{\Sigma}_{m, l} \\
\boldsymbol{\Sigma}_{m, l}^{T} & \boldsymbol{\Sigma}_{l}
\end{array}\right]\right) \\
& =\frac{1}{2} \sum_{m=1}^{M} \sum_{l=1}^{M} w_{m} w_{l} \operatorname{tr}\left(\boldsymbol{\Sigma}_{m}^{-1} \frac{\partial \boldsymbol{\Sigma}_{m}}{\partial \theta_{i}} \boldsymbol{\Sigma}_{m}^{-1} \boldsymbol{\Sigma}_{m, l} \boldsymbol{\Sigma}_{l}^{-1} \frac{\partial \boldsymbol{\Sigma}_{l}}{\partial \theta_{j}} \boldsymbol{\Sigma}_{l}^{-1} \boldsymbol{\Sigma}_{m, l}^{T}\right) \\
& =\frac{1}{2} \sum_{m=1}^{M} w_{m}^{2} \operatorname{tr}\left(\boldsymbol{\Sigma}_{m}^{-1} \frac{\partial \boldsymbol{\Sigma}_{m}}{\partial \theta_{i}} \boldsymbol{\Sigma}_{m}^{-1} \frac{\partial \boldsymbol{\Sigma}_{m}}{\partial \theta_{j}}\right) \\
& +\frac{1}{2} \sum_{m=1}^{M} \sum_{l \neq m}^{M} w_{m} w_{l} \operatorname{tr}\left(\boldsymbol{\Sigma}_{m}^{-1} \frac{\partial \boldsymbol{\Sigma}_{m}}{\partial \theta_{i}} \boldsymbol{\Sigma}_{m}^{-1} \boldsymbol{\Sigma}_{m, l} \boldsymbol{\Sigma}_{l}^{-1} \frac{\partial \boldsymbol{\Sigma}_{l}}{\partial \theta_{j}} \boldsymbol{\Sigma}_{l}^{-1} \boldsymbol{\Sigma}_{m, l}^{T}\right) .
\end{aligned}
$$

S2 Proof of Theorem 3

For notational convenience, let $\mathbf{M} \equiv \mathbf{M}(\alpha)$. Following on from (4.3), the first and second-order partial derivatives of the composite log-likelihood are

$$
\frac{\partial}{\partial \boldsymbol{\theta}} c \ell\left(\sigma^{2}, \alpha ; \mathbf{y}\right)=\left[\begin{array}{c}
-\frac{D F}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \mathbf{y}^{T} \mathbf{M} \mathbf{y} \tag{S2.1}\\
-\frac{\rho^{2}}{F}\left(\frac{D F}{1-\rho^{2}}+\frac{D F-2}{1+\rho^{2}}\right)-\frac{1}{2 \sigma^{2}} \mathbf{y}^{T} \mathbf{M}^{\prime} \mathbf{y}
\end{array}\right]
$$

and

$$
-\frac{\partial^{2}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{T}} c l\left(\sigma^{2}, \alpha ; \mathbf{y}\right)=\left[\begin{array}{cc}
-\frac{D F}{2 \sigma^{4}}+\frac{1}{\sigma^{6}} \mathbf{y}^{T} \mathbf{M} \mathbf{y} & -\frac{1}{2 \sigma^{4}} \mathbf{y}^{T} \mathbf{M}^{\prime} \mathbf{y} \tag{S2.2}\\
-\frac{1}{2 \sigma^{4}} \mathbf{y}^{T} \mathbf{M}^{\prime} \mathbf{y} & -\frac{2 \rho^{2}}{F^{2}}\left(\frac{D F}{\left(1-\rho^{2}\right)^{2}}+\frac{D F-2}{\left(1+\rho^{2}\right)^{2}}\right)+\frac{1}{2 \sigma^{2}} \mathbf{y}^{T} \mathbf{M}^{\prime \prime} \mathbf{y}
\end{array}\right],
$$

where the first and second derivatives of \mathbf{M} with respect to α are

$$
\begin{aligned}
\mathbf{M}^{\prime}=-\frac{2 \rho}{F\left(1-\rho^{2}\right)^{2}}\left[\left(\rho+\frac{\rho\left(1+\rho^{4}\right)}{\left(1+\rho^{2}\right)^{2}}\right) \mathbf{A}_{1}\right. & +2 \rho \mathbf{A}_{2}+\left(-\rho+\frac{\rho\left(1+\rho^{4}\right)}{\left(1+\rho^{2}\right)^{2}}\right) \mathbf{A}_{3} \\
& \left.-\left(1+\rho^{2}\right) \mathbf{A}_{4}+\frac{\rho\left(1+\rho^{4}\right)}{\left(1+\rho^{2}\right)^{2}} \mathbf{A}_{5}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbf{M}^{\prime \prime}=\frac{4 \rho}{F^{2}\left(1-\rho^{2}\right)^{3}}\left[\left(\rho\left(1+\rho^{2}\right)+\frac{\rho\left(1+6 \rho^{4}+\rho^{8}\right)}{\left(1+\rho^{2}\right)^{3}}\right) \mathbf{A}_{1}+2 \rho\left(1+\rho^{2}\right) \mathbf{A}_{2}\right. \\
& \left.+\left(-\rho\left(1+\rho^{2}\right)+\frac{\rho\left(1+6 \rho^{4}+\rho^{8}\right)}{\left(1+\rho^{2}\right)^{3}}\right) \mathbf{A}_{3}-\frac{1}{2}\left(1+6 \rho^{2}+\rho^{4}\right) \mathbf{A}_{4}+\frac{\rho\left(1+6 \rho^{4}+\rho^{8}\right)}{\left(1+\rho^{2}\right)^{3}} \mathbf{A}_{5}\right]
\end{aligned}
$$

First, to find $\mathbf{H}\left(\sigma^{2}, \alpha\right)$, we note the following trace formulae for the exponential covariance matrix $\boldsymbol{\Sigma}$:

$$
\begin{array}{lll}
\operatorname{tr}\left(\mathbf{A}_{1} \boldsymbol{\Sigma}\right)=\sigma^{2} D F, & \operatorname{tr}\left(\mathbf{A}_{2} \boldsymbol{\Sigma}\right)=\sigma^{2}(D F-2), & \operatorname{tr}\left(\mathbf{A}_{3} \boldsymbol{\Sigma}\right)=\sigma^{2}(D F-4), \\
\operatorname{tr}\left(\mathbf{A}_{4} \boldsymbol{\Sigma}\right)=2 \sigma^{2} \rho(D F-1), & \operatorname{tr}\left(\mathbf{A}_{5} \boldsymbol{\Sigma}\right)=2 \sigma^{2} \rho^{2}(D F-2) . & (\mathrm{S} 2.3)
\end{array}
$$

Due to the linearity of the trace function, we can use the additive decomposition of \mathbf{M} and its derivatives to show that $E\left[\mathbf{y}^{T} \mathbf{M y}\right]=\operatorname{tr}(\mathbf{M} \boldsymbol{\Sigma})=$ $\sigma^{2} D F, E\left[\mathbf{y}^{T} \mathbf{M}^{\prime} \mathbf{y}\right]=-4 \sigma^{2} \rho^{2}\left[D F-\left(1-\rho^{2}\right)\right] /\left[F\left(1-\rho^{4}\right)\right]$, and $E\left[\mathbf{y}^{T} \mathbf{M}^{\prime \prime} \mathbf{y}\right]=$ $4 \sigma^{2} \rho^{2}\left[\left(3+\rho^{2}+5 \rho^{4}-\rho^{6}\right) D F-\left(1-\rho^{2}\right)\left(3-2 \rho^{2}+3 \rho^{4}\right)\right] /\left[F^{2}\left(1-\rho^{4}\right)^{2}\right]$. Thus, by using (S2.2), we obtain
$\mathbf{H}\left(\sigma^{2}, \alpha\right)=\left[\begin{array}{cc}\frac{D F}{2 \sigma^{4}} & \frac{2 \rho^{2}}{F \sigma^{2}\left(1-\rho^{4}\right)}\left[D F-\left(1-\rho^{2}\right)\right] \\ \frac{2 \rho^{2}}{F \sigma^{2}\left(1-\rho^{4}\right)}\left[D F-\left(1-\rho^{2}\right)\right] & \frac{2 \rho^{2}}{F^{2}\left(1-\rho^{4}\right)^{2}}\left[\left(1+\rho^{2}+3 \rho^{4}-\rho^{6}\right) D F-\left(1-\rho^{2}\right)\left(1+3 \rho^{4}\right)\right]\end{array}\right]$.

The calculation of $\mathbf{J}\left(\sigma^{2}, \alpha\right)$ is considerably more complicated as it requires finding expressions for fourth-order moments. In order to apply Lemma 1 , we require traces of the form $\operatorname{tr}\left(\mathbf{A}_{j} \boldsymbol{\Sigma} \mathbf{A}_{k} \boldsymbol{\Sigma}\right)$ for each pair of the five simple matrices \mathbf{A}_{1} to \mathbf{A}_{5}. However, due to the cyclical invariance of traces, we only need 15 such expressions rather than 25 .

To simplify notation, define $u_{n} \equiv \sum_{k=1}^{n}(n-k) \rho^{2 k}$. Also, let "०" denote
the Hadamard (entrywise) product of two matrices. Then as an example,

$$
\begin{aligned}
\operatorname{tr}\left(\mathbf{A}_{1} \boldsymbol{\Sigma} \mathbf{A}_{1} \boldsymbol{\Sigma}\right) & =\operatorname{tr}(\boldsymbol{\Sigma} \boldsymbol{\Sigma})=\sum_{i=1}^{D F} \sum_{j=1}^{D F}\left\{\boldsymbol{\Sigma} \circ \boldsymbol{\Sigma}^{T}\right\}_{i j}=\sum_{i=1}^{D F} \sum_{j=1}^{D F}\left(\sigma^{2} \rho^{|i-j|}\right)^{2} \\
& =\sigma^{4}\left[\sum_{i=1}^{D F} 1+\sum_{i \neq j}^{D F} \rho^{2|i-j|}\right]=\sigma^{4}\left[D F+2 \sum_{j=1}^{D F-1} \sum_{i=j+1}^{D F} \rho^{2|i-j|}\right] \\
& =\sigma^{4}\left[D F+2 \sum_{j=1}^{D F-1} \sum_{k=1}^{D F-j} \rho^{2 k}\right]=\sigma^{4}\left[D F+2 \sum_{k=1}^{D F-1} \sum_{j=1}^{D F-k} \rho^{2 k}\right] \\
& =\sigma^{4}\left[D F+2 \sum_{k=1}^{D F}(D F-k) \rho^{2 k}\right]=\sigma^{4}\left[D F+2 u_{D F}\right] .
\end{aligned}
$$

Similarly, we can obtain all of the following:

$$
\begin{array}{ll}
\operatorname{tr}\left(\mathbf{A}_{1} \boldsymbol{\Sigma} \mathbf{A}_{1} \boldsymbol{\Sigma}\right)=\sigma^{4}\left[D F+2 u_{D F}\right], & \operatorname{tr}\left(\mathbf{A}_{1} \boldsymbol{\Sigma} \mathbf{A}_{2} \boldsymbol{\Sigma}\right)=\sigma^{4}\left[D F-2+2 u_{D F-1}\right], \\
\operatorname{tr}\left(\mathbf{A}_{1} \boldsymbol{\Sigma} \mathbf{A}_{3} \boldsymbol{\Sigma}\right)=\sigma^{4}\left[\left(1+2 \rho^{2}\right)(D F-4)+2 \rho^{2} u_{D F-3}\right], \operatorname{tr}\left(\mathbf{A}_{1} \boldsymbol{\Sigma} \mathbf{A}_{4} \boldsymbol{\Sigma}\right)=\sigma^{4}\left[4 \rho(D F-1)+4 \rho u_{D F-1}\right], \\
\operatorname{tr}\left(\mathbf{A}_{1} \boldsymbol{\Sigma} \mathbf{A}_{5} \boldsymbol{\Sigma}\right)=\sigma^{4}\left[2 \rho^{2}(D F-2)+4 u_{D F-1}\right], & \operatorname{tr}\left(\mathbf{A}_{2} \boldsymbol{\Sigma} \mathbf{A}_{2} \boldsymbol{\Sigma}\right)=\sigma^{4}\left[D F-2+2 u_{D F-2}\right], \\
\operatorname{tr}\left(\mathbf{A}_{2} \boldsymbol{\Sigma} \mathbf{A}_{3} \boldsymbol{\Sigma}\right)=\sigma^{4}\left[D F-4+2 u_{D F-3}\right], & \operatorname{tr}\left(\mathbf{A}_{2} \boldsymbol{\Sigma} \mathbf{A}_{4} \boldsymbol{\Sigma}\right)=\sigma^{4}\left[4 \rho(D F-2)+4 \rho u_{D F-2}\right], \\
\operatorname{tr}\left(\mathbf{A}_{2} \boldsymbol{\Sigma} \mathbf{A}_{5} \boldsymbol{\Sigma}\right)=\sigma^{4}\left[2 \rho^{2}(D F-2)+4 u_{D F-2}\right], & \operatorname{tr}\left(\mathbf{A}_{3} \boldsymbol{\Sigma} \mathbf{A}_{3} \boldsymbol{\Sigma}\right)=\sigma^{4}\left[D F-4+2 u_{D F-4}\right], \\
\operatorname{tr}\left(\mathbf{A}_{3} \boldsymbol{\Sigma} \mathbf{A}_{4} \boldsymbol{\Sigma}\right)=\sigma^{4}\left[4 \rho(D F-4)+4 \rho u_{D F-3}\right], & \operatorname{tr}\left(\mathbf{A}_{3} \boldsymbol{\Sigma} \mathbf{A}_{5} \boldsymbol{\Sigma}\right)=\sigma^{4}\left[2 \rho^{2}(D F-4)+4 u_{D F-3}\right], \\
\operatorname{tr}\left(\mathbf{A}_{4} \boldsymbol{\Sigma} \mathbf{A}_{4} \boldsymbol{\Sigma}\right)=\sigma^{4}\left[2\left(1+\rho^{2}\right)(D F-1)+8 u_{D F-1}\right], & \operatorname{tr}\left(\mathbf{A}_{4} \boldsymbol{\Sigma} \mathbf{A}_{5} \boldsymbol{\Sigma}\right)=\sigma^{4}\left[4 \rho\left(1+\rho^{2}\right)(D F-2)+8 \rho u_{D F-2}\right], \\
\operatorname{tr}\left(\mathbf{A}_{5} \boldsymbol{\Sigma} \mathbf{A}_{5} \boldsymbol{\Sigma}\right)=\sigma^{4}\left[2\left(1+\rho^{4}\right)(D F-2)+4 \rho^{2}\left(1+\rho^{2}\right)(D F-3)+8 \rho^{2} u_{D F-3}\right] . \tag{S2.4}
\end{array}
$$

Using the above results, we can then find $\operatorname{tr}(\mathbf{M} \boldsymbol{\Sigma} \mathbf{M} \boldsymbol{\Sigma}), \operatorname{tr}\left(\mathbf{M} \boldsymbol{\Sigma} \mathbf{M}^{\prime} \boldsymbol{\Sigma}\right)$
and $\operatorname{tr}\left(\mathbf{M}^{\prime} \boldsymbol{\Sigma} \mathbf{M}^{\prime} \boldsymbol{\Sigma}\right)$. For instance, by using (4.4), we have

$$
\begin{align*}
\operatorname{tr}(\mathbf{M} \boldsymbol{\Sigma} \mathbf{M} \boldsymbol{\Sigma}) & =\frac{1}{\left(1-\rho^{2}\right)^{2}}\left[\left(1+\frac{\rho^{2}}{1+\rho^{2}}\right)^{2} \operatorname{tr}\left(\mathbf{A}_{1} \boldsymbol{\Sigma} \mathbf{A}_{1} \boldsymbol{\Sigma}\right)+2\left(1+\frac{\rho^{2}}{1+\rho^{2}}\right) \times 2 \rho^{2} \operatorname{tr}\left(\mathbf{A}_{1} \boldsymbol{\Sigma} \mathbf{A}_{2} \boldsymbol{\Sigma}\right)+\ldots\right] \\
& =\frac{\sigma^{4}}{\left(1+\rho^{2}\right)^{2}}\left[\left(1+4 \rho^{2}+\rho^{4}\right) D F-2 \rho^{2}+4 \rho^{4}\right] \tag{S2.5}
\end{align*}
$$

The algebra required is lengthy but is made more manageable by use of the recursive relation $u_{n+1}=\rho^{2}\left(u_{n}+n\right)$. In fact, observe that $(\overline{\mathrm{S} 2.5})$ is a linear function of D, which indicates that all of the non-linear terms u_{n} that are present in (S2.4) cancel out after repeated application of this relation. The same is also true for the two remaining traces, which are given by

$$
\operatorname{tr}\left(\mathbf{M} \boldsymbol{\Sigma} \mathbf{M}^{\prime} \boldsymbol{\Sigma}\right)=-\frac{8 \sigma^{4} \rho^{2}}{F\left(1-\rho^{2}\right)\left(1+\rho^{2}\right)^{3}}\left[\left(1+\rho^{2}+\rho^{4}\right) D F-1+\rho^{2}+\rho^{6}\right]
$$

and
$\operatorname{tr}\left(\mathbf{M}^{\prime} \boldsymbol{\Sigma} \mathbf{M}^{\prime} \boldsymbol{\Sigma}\right)=\frac{8 \sigma^{4} \rho^{2}}{F^{2}\left(1-\rho^{2}\right)^{2}\left(1+\rho^{2}\right)^{4}}\left[\left(1+2 \rho^{2}+6 \rho^{4}+2 \rho^{6}+\rho^{8}\right) D F-1+\rho^{2}-4 \rho^{4}+8 \rho^{6}+\rho^{8}-\rho^{10}\right]$.

Finally, using these results alongside (S2.1) and Lemma 1, we find that

$$
\mathbf{J}\left(\sigma^{2}, \alpha\right)=\left[\begin{array}{cc}
\frac{1}{2 \sigma^{4}\left(1+\rho^{2}\right)^{2}} \mathbf{j}_{1}^{T}(\mathbf{D F})^{(1)} & \frac{4 \rho^{2}}{\sigma^{2} F\left(1-\rho^{2}\right)\left(1+\rho^{2}\right)^{2}} \mathbf{j}_{2}^{T}(\mathbf{D F})^{(1)} \\
\frac{4 \rho^{2}}{\sigma^{2} F\left(1-\rho^{2}\right)\left(1+\rho^{2}\right)^{3}} \mathbf{j}_{2}^{T}(\mathbf{D F})^{(1)} & \frac{4 \rho^{2}}{F^{2}\left(1-\rho^{2}\right)^{2}\left(1+\rho^{2}\right)^{4}} \mathbf{j}_{3}^{T}(\mathbf{D F})^{(1)}
\end{array}\right]
$$

where $(\mathbf{D F})^{(k)} \equiv\left((D F)^{k},(D F)^{k-1}, \ldots,(D F)^{0}\right)^{T}$, and

$$
\mathbf{j}_{1}=\left[\begin{array}{c}
1+4 \rho^{2}+\rho^{4} \\
-2 \rho^{2}+4 \rho^{4}
\end{array}\right], \quad \mathbf{j}_{2}=\left[\begin{array}{c}
1+\rho^{2}+\rho^{4} \\
-1+\rho^{2}+\rho^{6}
\end{array}\right], \quad \mathbf{j}_{3}=\left[\begin{array}{c}
1+2 \rho^{2}+6 \rho^{4}+2 \rho^{6}+\rho^{8} \\
-1+\rho^{2}-4 \rho^{4}+8 \rho^{6}+\rho^{8}-\rho^{10}
\end{array}\right]
$$

Out of completeness, we provide the expression for $\mathbf{G}\left(\sigma^{2}, \alpha\right)^{-1}$ here,
which follows from standard matrix algebra:

$$
\begin{aligned}
\mathbf{G}\left(\sigma^{2}, \alpha\right)^{-1} & =\mathbf{H}\left(\sigma^{2}, \alpha\right)^{-1} \mathbf{J}\left(\sigma^{2}, \alpha\right) \mathbf{H}\left(\sigma^{2}, \alpha\right)^{-1} \\
& =\frac{1}{\left(\mathbf{g}_{4}^{T}(\mathbf{D F})^{(2)}\right)^{2}}\left[\begin{array}{cc}
\frac{2 \sigma^{4}}{1-\rho^{2}} \mathbf{g}_{1}^{T}(\mathbf{D F})^{(3)} & -2 \sigma^{2} F \mathbf{g}_{2}^{T}(\mathbf{D F})^{(3)} \\
-2 \sigma^{2} F \mathbf{g}_{2}^{T}(\mathbf{D F})^{(3)} & \frac{F^{2}\left(1-\rho^{2}\right)}{\rho^{2}} \mathbf{g}_{3}^{T}(\mathbf{D F})^{(3)}
\end{array}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathbf{g}_{1}=\left[\begin{array}{c}
\left(1-\rho^{2}\right)^{3}\left(1+\rho^{4}\right) \\
2\left(-1+8 \rho^{2}-11 \rho^{4}+15 \rho^{6}-4 \rho^{8}+\rho^{10}\right) \\
\left(1-\rho^{2}\right)\left(1-18 \rho^{2}+26 \rho^{4}-42 \rho^{6}+\rho^{8}\right) \\
2 \rho^{2}\left(1-\rho^{2}\right)^{2}\left(3-5 \rho^{2}+10 \rho^{4}\right)
\end{array}\right], \quad \mathbf{g}_{2}=\left[\begin{array}{c}
\left(1-\rho^{2}\right)^{3} \\
-2+15 \rho^{2}-17 \rho^{4}+13 \rho^{6}-\rho^{8} \\
\left(1-\rho^{2}\right)\left(1-17 \rho^{2}+13 \rho^{4}-9 \rho^{6}\right) \\
2 \rho^{2}\left(1-\rho^{2}\right)^{2}\left(3-2 \rho^{2}\right)
\end{array}\right], \\
& \mathbf{g}_{3}=\left[\begin{array}{c}
\left(1-\rho^{2}\right)^{3} \\
-1+12 \rho^{2}-16 \rho^{4}+12 \rho^{6}+\rho^{8} \\
-2 \rho^{2}\left(1-\rho^{2}\right)\left(3-8 \rho^{2}+3 \rho^{4}\right) \\
4 \rho^{4}\left(1-\rho^{2}\right)\left(-1+2 \rho^{2}\right)
\end{array}\right],
\end{aligned}
$$

S3 Proof of Theorem 4

Following on from (4.5), the first and second-order partial derivatives of the composite log-likelihood are

$$
\frac{\partial}{\partial \boldsymbol{\theta}} c \ell\left(\sigma^{2}, \alpha ; \mathbf{y}\right)=\left[\begin{array}{c}
-\frac{D F}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \mathbf{y}^{T} \mathbf{M} \mathbf{y} \tag{S3.1}\\
-\frac{(D F-B) \rho^{2}}{F\left(1-\rho^{2}\right)}-\frac{1}{2 \sigma^{2}} \mathbf{y}^{T} \mathbf{M}^{\prime} \mathbf{y}
\end{array}\right]
$$

and

$$
-\frac{\partial^{2}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{T}} c \ell\left(\sigma^{2}, \alpha ; \mathbf{y}\right)=\left[\begin{array}{cc}
-\frac{D F}{2 \sigma^{4}}+\frac{1}{\sigma^{6}} \mathbf{y}^{T} \mathbf{M} \mathbf{y} & -\frac{1}{2 \sigma^{4}} \mathbf{y}^{T} \mathbf{M}^{\prime} \mathbf{y} \tag{S3.2}\\
-\frac{1}{2 \sigma^{4}} \mathbf{y}^{T} \mathbf{M}^{\prime} \mathbf{y} & -\frac{2(D F-B) \rho^{2}}{F^{2}\left(1-\rho^{2}\right)^{2}}+\frac{1}{2 \sigma^{2}} \mathbf{y}^{T} \mathbf{M}^{\prime \prime} \mathbf{y}
\end{array}\right]
$$

In order to find the various traces involving \mathbf{M} (and its derivatives) and $\boldsymbol{\Sigma}$, we can make use of the block-diagonality of \mathbf{M}. First, let $\mathbf{M}=\mathbf{M}_{(1)}+$ $\mathbf{M}_{(2)}+\ldots+\mathbf{M}_{(B)}$, where $\mathbf{M}_{(b)}$ is an $N \times N$ matrix containing only the b-th block of \mathbf{M} (with all other elements set to zero). Also, break down the structure of $\boldsymbol{\Sigma} \in \mathbb{R}^{D F \times D F}$ into blocks of size $W \times W$ as follows:

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cccccc}
\mathbf{S}_{(0)} & \mathbf{S}_{(1)} & \mathbf{S}_{(2)} & \ldots & \mathbf{S}_{(B-2)} & \mathbf{S}_{(B-1)} \\
\mathbf{S}_{(-1)} & \mathbf{S}_{(0)} & \mathbf{S}_{(1)} & \ldots & \mathbf{S}_{(B-3)} & \mathbf{S}_{(B-2)} \\
\mathbf{S}_{(-2)} & \mathbf{S}_{(-1)} & \mathbf{S}_{(0)} & \ldots & \mathbf{S}_{(B-4)} & \mathbf{S}_{(B-3)} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\mathbf{S}_{(-(B-2))} & \mathbf{S}_{(-(B-3))} & \mathbf{S}_{(-(B-4))} & \ldots & \mathbf{S}_{(0)} & \mathbf{S}_{(1)} \\
\mathbf{S}_{(-(B-1))} & \mathbf{S}_{(-(B-2))} & \mathbf{S}_{(-(B-3))} & \ldots & \mathbf{S}_{(-1)} & \mathbf{S}_{(0)}
\end{array}\right]
$$

where
$\mathbf{S}_{(k)}=\sigma^{2}\left[\begin{array}{cccccc}\rho^{|W k|} & \rho^{|W k+1|} & \rho^{|W k+2|} & \ldots & \rho^{|W(k+1)-2|} & \rho^{|W(k+1)-1|} \\ \rho^{|W k-1|} & \rho^{|W k|} & \rho^{|W k+1|} & \ldots & \rho^{|W(k+1)-3|} & \rho^{|W(k+1)-2|} \\ \rho^{|W k-2|} & \rho^{|W k-1|} & \rho^{|W k|} & \ldots & \rho^{|W(k+1)-4|} & \rho^{|W(k+1)-3|} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \rho^{|W(k-1)+2|} & \rho^{|W(k-1)+3|} & \rho^{|W(k-1)+4|} & \ldots & \rho^{|W k|} & \rho^{|W k+1|} \\ \rho^{|W(k-1)+1|} & \rho^{|W(k-1)+2|} & \rho^{|W(k-1)+3|} & \ldots & \rho^{|W k-1|} & \rho^{|W k|}\end{array}\right]$.

Then in order to compute $E\left[\mathbf{y}^{T} \mathbf{M y}\right]$ for instance, we have

$$
\operatorname{tr}(\mathbf{M} \boldsymbol{\Sigma})=\sum_{b=1}^{B} \operatorname{tr}\left(\mathbf{M}_{(b)} \boldsymbol{\Sigma}\right)=\sum_{b=1}^{B} \operatorname{tr}\left(\mathbf{Q} \mathbf{S}_{(0)}\right)=B \operatorname{tr}\left(\mathbf{Q S}_{(0)}\right) .
$$

This reduces the problem down to using the additive decomposition $\mathbf{Q}=$ $\left(\mathbf{A}_{1}+\rho^{2} \mathbf{A}_{2}-\rho \mathbf{A}_{4}\right) /\left(1-\rho^{2}\right)$ alongside similar expressions to $\left.S 2.3\right): \operatorname{tr}\left(\mathbf{A}_{1} \mathbf{S}_{(0)}\right)=$ $\sigma^{2} W, \operatorname{tr}\left(\mathbf{A}_{2} \mathbf{S}_{(0)}\right)=\sigma^{2}(W-2)$ and $\operatorname{tr}\left(\mathbf{A}_{4} \mathbf{S}_{(0)}\right)=2 \sigma^{2} \rho(W-1)$. We can therefore evaluate the expectation of S 3.2 to obtain

$$
\mathbf{H}\left(\sigma^{2}, \alpha\right)=\left[\begin{array}{cc}
\frac{D F}{2 \sigma^{4}} & \frac{\rho^{2}(D F-B)}{F \sigma^{2}\left(1-\rho^{2}\right)} \\
\frac{\rho^{2}(D F-B)}{F \sigma^{2}\left(1-\rho^{2}\right)} & \frac{\rho^{2}\left(1+\rho^{2}\right)(D F-B)}{F^{2}\left(1-\rho^{2}\right)^{2}}
\end{array}\right] .
$$

Next, for the traces of the four-matrix products $\mathbf{M} \boldsymbol{\Sigma} \mathbf{M} \boldsymbol{\Sigma}, \mathbf{M} \boldsymbol{\Sigma} \mathbf{M}^{\prime} \boldsymbol{\Sigma}$ and $\mathbf{M}^{\prime} \boldsymbol{\Sigma} \mathbf{M}^{\prime} \boldsymbol{\Sigma}$, it is useful to observe that $\mathbf{S}_{(k)}=\rho^{W(k-1)} \mathbf{S}_{(1)}$ and $\mathbf{S}_{(-k)}=$

$$
\begin{aligned}
& \rho^{W(k-1)} \mathbf{S}_{(-1)} \text { for } k \geq 1 \text {. Then, for instance, } \\
& \begin{array}{l}
\operatorname{tr}\left(\mathbf{M} \boldsymbol{\Sigma} \mathbf{M}^{\prime} \boldsymbol{\Sigma}\right)=\sum_{b=1}^{B} \sum_{c=1}^{B} \operatorname{tr}\left(\mathbf{M}_{(b)} \boldsymbol{\Sigma} \mathbf{M}_{(c)}^{\prime} \boldsymbol{\Sigma}\right)=\sum_{b=1}^{B} \sum_{c=1}^{B} \operatorname{tr}\left(\mathbf{Q} \mathbf{S}_{(c-b)} \mathbf{Q}^{\prime} \mathbf{S}_{(b-c)}\right) \\
\quad=B \operatorname{tr}\left(\mathbf{Q S}_{(0)} \mathbf{Q}^{\prime} \mathbf{S}_{(0)}\right)+\sum_{1 \leq b<c \leq B} \operatorname{tr}\left(\mathbf{Q} \mathbf{S}_{(c-b)} \mathbf{Q}^{\prime} \mathbf{S}_{(b-c)}\right)+\sum_{1 \leq c<b \leq B} \operatorname{tr}\left(\mathbf{Q} \mathbf{S}_{(c-b)} \mathbf{Q}^{\prime} \mathbf{S}_{(b-c)}\right) \\
\quad=B \operatorname{tr}\left(\mathbf{Q S}_{(0)} \mathbf{Q}^{\prime} \mathbf{S}_{(0)}\right)+\sum_{a=1}^{B-1}(B-a) \operatorname{tr}\left(\mathbf{Q S}_{(a)} \mathbf{Q}^{\prime} \mathbf{S}_{(-a)}\right)+\sum_{a=1}^{B-1}(B-a) \operatorname{tr}\left(\mathbf{Q S}_{(-a)} \mathbf{Q}^{\prime} \mathbf{S}_{(a)}\right) \\
\quad=B \operatorname{tr}\left(\mathbf{Q S}_{(0)} \mathbf{Q}^{\prime} \mathbf{S}_{(0)}\right)+\left(\operatorname{tr}\left(\mathbf{Q S}_{(1)} \mathbf{Q}^{\prime} \mathbf{S}_{(-1)}\right)+\operatorname{tr}\left(\mathbf{Q S}_{(-1)} \mathbf{Q}^{\prime} \mathbf{S}_{(1)}\right)\right) \sum_{a=1}^{B-1}(B-a) \rho^{2 W(a-1)} \\
\quad=B \operatorname{tr}\left(\mathbf{Q S}_{(0)} \mathbf{Q}^{\prime} \mathbf{S}_{(0)}\right)+\left(\operatorname{tr}\left(\mathbf{Q S}_{(1)} \mathbf{Q}^{\prime} \mathbf{S}_{(-1)}\right)+\operatorname{tr}\left(\mathbf{Q} \mathbf{S}_{(-1)} \mathbf{Q}^{\prime} \mathbf{S}_{(1)}\right)\right) \frac{1}{1-\rho^{2 W}}\left(B-\frac{1-\rho^{2 D F}}{1-\rho^{2 W}}\right) \\
\quad=B \operatorname{tr}\left(\mathbf{Q S}_{(0)} \mathbf{Q}^{\prime} \mathbf{S}_{(0)}\right)+\operatorname{tr}\left(\mathbf{Q} \mathbf{S}_{(1)} \mathbf{Q}^{\prime} \mathbf{S}_{(-1)}\right) \frac{2}{1-\rho^{2 W}}\left(B-\frac{1-\rho^{2 D F}}{1-\rho^{2 W}}\right) .
\end{array}
\end{aligned}
$$

The final line can be obtained by observing that \mathbf{Q} and \mathbf{Q}^{\prime} are rotationally symmetric by 180 degrees; that is, for the antidiagonal identity matrix \mathbf{R} (a square matrix with a diagonal of 1 s from the top-right to the bottom-left), we have $\mathbf{Q}=\mathbf{R Q R}$ and $\mathbf{Q}^{\prime}=\mathbf{R Q}^{\prime} \mathbf{R}$. Additionally, $\mathbf{S}_{(1)}$ and $\mathbf{S}_{(-1)}$ are 180-degree rotations of each other, such that $\mathbf{S}_{(1)}=\mathbf{R S}_{(-1)} \mathbf{R}$ and $\mathbf{S}_{(-1)}=$ $\mathbf{R S}_{(1)} \mathbf{R}$. The equality $\operatorname{tr}\left(\mathbf{Q S}_{(1)} \mathbf{Q}^{\prime} \mathbf{S}_{(-1)}\right)=\operatorname{tr}\left(\mathbf{Q} \mathbf{S}_{(-1)} \mathbf{Q}^{\prime} \mathbf{S}_{(1)}\right)$ then follows from cyclical invariance. Note that the traces of $\mathbf{M} \boldsymbol{\Sigma} \mathbf{M} \boldsymbol{\Sigma}$ and $\mathbf{M}^{\prime} \boldsymbol{\Sigma} \mathbf{M}^{\prime} \boldsymbol{\Sigma}$ may be derived similarly, but the rotational symmetry argument can be replaced with a direct use of cyclical invariance to prove the equality.

By once again using the additive decomposition of \mathbf{Q}, we now require traces of four-matrix products involving $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{4}$ and $\mathbf{S}_{(0)}$ or $\mathbf{S}_{(1)}$. These
are summarised below with use of the notation $u_{n} \equiv \sum_{k=1}^{n}(n-k) \rho^{2 k}$, $v_{n} \equiv \sum_{k=1}^{2 n-1}(n-|n-k|) \rho^{2 k}$ and $q_{n} \equiv \sum_{k=1}^{n} \rho^{2 k}:$

$$
\begin{array}{ll}
\operatorname{tr}\left(\mathbf{A}_{1} \mathbf{S}_{(0)} \mathbf{A}_{1} \mathbf{S}_{(0)}\right)=\sigma^{4}\left[W+2 u_{W}\right], & \operatorname{tr}\left(\mathbf{A}_{1} \mathbf{S}_{(0)} \mathbf{A}_{2} \mathbf{S}_{(0)}\right)=\sigma^{4}\left[W-2+2 u_{W-1}\right], \\
\operatorname{tr}\left(\mathbf{A}_{1} \mathbf{S}_{(0)} \mathbf{A}_{4} \mathbf{S}_{(0)}\right)=4 \sigma^{4}\left[\rho(W-1)+\rho u_{W-1}\right], & \operatorname{tr}\left(\mathbf{A}_{2} \mathbf{S}_{(0)} \mathbf{A}_{2} \mathbf{S}_{(0)}\right)=\sigma^{4}\left[W-2+2 u_{W-2}\right], \\
\operatorname{tr}\left(\mathbf{A}_{2} \mathbf{S}_{(0)} \mathbf{A}_{4} \mathbf{S}_{(0)}\right)=4 \sigma^{4}\left[\rho(W-2)+\rho u_{W-2}\right], & \operatorname{tr}\left(\mathbf{A}_{4} \mathbf{S}_{(0)} \mathbf{A}_{4} \mathbf{S}_{(0)}\right)=\sigma^{4}\left[2\left(1+\rho^{2}\right)(W-1)+8 u_{W-1}\right], \\
\operatorname{tr}\left(\mathbf{A}_{1} \mathbf{S}_{(1)} \mathbf{A}_{1} \mathbf{S}_{(-1)}\right)=\sigma^{4} v_{W}, & \operatorname{tr}\left(\mathbf{A}_{1} \mathbf{S}_{(1)} \mathbf{A}_{2} \mathbf{S}_{(-1)}\right)=\sigma^{4}\left[\rho^{2} v_{W-1}-\rho^{2 W}\right], \\
\operatorname{tr}\left(\mathbf{A}_{1} \mathbf{S}_{(1)} \mathbf{A}_{4} \mathbf{S}_{(-1)}\right)=2 \sigma^{4}\left[\rho v_{W}-\rho^{2 W-1} q_{W}\right], & \operatorname{tr}\left(\mathbf{A}_{2} \mathbf{S}_{(1)} \mathbf{A}_{2} \mathbf{S}_{(-1)}\right)=\sigma^{4} \rho^{4} v_{W-2}, \\
\operatorname{tr}\left(\mathbf{A}_{2} \mathbf{S}_{(1)} \mathbf{A}_{4} \mathbf{S}_{(-1)}\right)=2 \sigma^{4}\left[\rho^{3} v_{W-1}-\rho^{2 W-1} q_{W-1}\right], & \operatorname{tr}\left(\mathbf{A}_{4} \mathbf{S}_{(1)} \mathbf{A}_{4} \mathbf{S}_{(-1)}\right)=4 \sigma^{4} \rho^{2} v_{W-1} .
\end{array}
$$

Expressions for the traces of $\mathbf{Q S}_{(0)} \mathbf{Q S}_{(0)}, \mathbf{Q S}_{(0)} \mathbf{Q}^{\prime} \mathbf{S}_{(0)}$ and $\mathbf{Q}^{\prime} \mathbf{S}_{(0)} \mathbf{Q}^{\prime} \mathbf{S}_{(0)}$ can be obtained by repeatedly applying $u_{n+1}=\rho^{2}\left(u_{n}+n\right)$ to cancel out the u_{n} terms in a similar manner to S2.5). For the traces of $\mathbf{Q S}_{(1)} \mathbf{Q S}_{(1)}$, $\mathbf{Q S}_{(1)} \mathbf{Q}^{\prime} \mathbf{S}_{(1)}$ and $\mathbf{Q}^{\prime} \mathbf{S}_{(1)} \mathbf{Q}^{\prime} \mathbf{S}_{(1)}$, we can instead make use of the relation $v_{n+1}=v_{n}+2 \rho^{2 n} q_{n}+\rho^{2(2 n+1)}$ to cancel out the v_{n} terms. This results in the expressions $\operatorname{tr}\left(\mathbf{M} \boldsymbol{\Sigma} \mathbf{M}^{\prime} \boldsymbol{\Sigma}\right)=-2 \sigma^{4} \rho^{2}(D F-B) /\left[F\left(1-\rho^{2}\right)\right], \operatorname{tr}\left(\mathbf{M}^{\prime} \boldsymbol{\Sigma} \mathbf{M}^{\prime} \boldsymbol{\Sigma}\right)=$ $2 \sigma^{4} \rho^{2}\left(1+\rho^{2}\right)(D F-B) /\left[F^{2}\left(1-\rho^{2}\right)^{2}\right]$ and

$$
\operatorname{tr}(\mathbf{M} \boldsymbol{\Sigma} \mathbf{M} \boldsymbol{\Sigma})=\sigma^{4}\left[D F+\frac{2 \rho^{2}}{1-\rho^{2 W}}\left(B-\frac{1-\rho^{2 D F}}{1-\rho^{2 W}}\right)\right]
$$

Hence, using (S3.1) and applying Lemma 1 gives

$$
\begin{aligned}
\mathbf{J}\left(\sigma^{2}, \alpha\right) & =\left[\begin{array}{cc}
\frac{1}{2 \sigma^{4}}\left[D F+\frac{2 \rho^{2}}{1-\rho^{2 W}}\left(B-\frac{1-\rho^{2 D F}}{1-\rho^{2 W}}\right)\right] & \frac{\rho^{2}}{\sigma^{2} F\left(1-\rho^{2}\right)}(D F-B) \\
\frac{\rho^{2}}{\sigma^{2} F\left(1-\rho^{2}\right)}(D F-B) & \frac{\rho^{2}\left(1+\rho^{2}\right)}{F^{2}\left(1-\rho^{2}\right)^{2}}(D F-B)
\end{array}\right] \\
& =\mathbf{H}\left(\sigma^{2}, \alpha\right)+\left[\begin{array}{cc}
\frac{\rho^{2}}{\sigma^{4}\left(1-\rho^{2 W}\right)}\left(B-\frac{1-\rho^{2 D F}}{1-\rho^{2 W}}\right) & 0 \\
0 & 0
\end{array}\right] .
\end{aligned}
$$

We observe that there is a small perturbation term between $\mathbf{J}\left(\sigma^{2}, \alpha\right)$ and $\mathbf{H}\left(\sigma^{2}, \alpha\right)$, which is consistent with (3.1) and (3.2) in the general Gaussian case for unweighted composite likelihood functions. Also note that if $B=1$ (and $W=D F$), then $\mathbf{J}\left(\sigma^{2}, \alpha\right)=\mathbf{H}\left(\sigma^{2}, \alpha\right)$, which is as expected for the full likelihood.

Following standard matrix algebra, it can be shown that

$$
\begin{align*}
& \mathbf{G}\left(\sigma^{2}, \alpha\right)^{-1}=\frac{1}{\left(1-\rho^{2}\right) D F+2 \rho^{2} B}\left[\begin{array}{cc}
2\left(\sigma^{2}\right)^{2}\left(1+\rho^{2}\right) & -2 \sigma^{2} F\left(1-\rho^{2}\right) \\
-2 \sigma^{2} F\left(1-\rho^{2}\right) & F^{2} \frac{D F\left(1-\rho^{2}\right)^{2}}{(D F-B) \rho^{2}}
\end{array}\right] \\
& \quad+\frac{4 \rho^{2}}{\left(1-\rho^{2 W}\right)\left(\left(1-\rho^{2}\right) D F+2 \rho^{2} B\right)^{2}}\left(B-\frac{1-\rho^{2 D F}}{1-\rho^{2 W}}\right)\left[\begin{array}{cc}
\left(\sigma^{2}\right)^{2}\left(1+\rho^{2}\right)^{2} & -\sigma^{2} F\left(1-\rho^{4}\right) \\
-\sigma^{2} F\left(1-\rho^{4}\right) & F^{2}\left(1-\rho^{2}\right)^{2}
\end{array}\right] . \tag{S3.3}
\end{align*}
$$

S4 Asymptotics for a Constant Mean Parameter

In this section, we extend our results for the one-dimensional Gaussian exponential covariance process to allow for a constant mean μ. Due to the
orthogonality between the mean parameter and the covariance parameters under a Gaussian process, the asymptotic relative efficiency for μ can be derived separately from σ^{2} and α.

To begin, note that the full/composite log-likelihood can be written in the form $c \ell\left(\mu ; \sigma^{2}, \alpha, \mathbf{y}\right)=q\left(\sigma^{2}, \alpha\right)-\left(\mathbf{y}-\mu \mathbf{1}_{D F}\right)^{T} \mathbf{M}\left(\mathbf{y}-\mu \mathbf{1}_{D F}\right) /\left(2 \sigma^{2}\right)$, where \mathbf{M} is equal to $\sigma^{2} \boldsymbol{\Sigma}^{-1}$ (with $\boldsymbol{\Sigma}^{-1}$ as defined in (4.1)) for the full likelihood, (4.4) for the composite full conditional likelihood and (4.5) for the composite marginal block likelihood. This emits the following first and second-order derivatives:

$$
\frac{\partial}{\partial \mu} c \ell\left(\mu ; \sigma^{2}, \alpha, \mathbf{y}\right)=\frac{1}{\sigma^{2}} \mathbf{1}_{D F}^{T} \mathbf{M}\left(\mathbf{y}-\mu \mathbf{1}_{D F}\right)
$$

and

$$
-\frac{\partial^{2}}{\partial \mu^{2}} c \ell\left(\mu ; \sigma^{2}, \alpha, \mathbf{y}\right)=\frac{1}{\sigma^{2}} \mathbf{1}_{D F}^{T} \mathbf{M} \mathbf{1}_{D F}
$$

S4.1 Full Likelihood

The inverse of the Fisher information is given by
$I(\mu)^{-1}=\left\{\mathbb{E}\left[-\frac{\partial^{2}}{\partial \mu^{2}} \ell\left(\mu ; \sigma^{2}, \alpha, \mathbf{y}\right)\right]\right\}^{-1}=\left\{\mathbf{1}_{D F}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{1}_{D F}\right\}^{-1}=\frac{\sigma^{2}(1+\rho)}{(1-\rho) D F+2 \rho}$.
It should be noted that $\hat{\mu}_{\mathrm{ML}}$ is not consistent under infill when σ^{2} and α are known, because $I(\mu)^{-1}=\operatorname{var}\left(\hat{\mu}_{\text {ML }}\right)$ (i.e., it is the exact finite sample variance), and $\lim _{F \rightarrow \infty} I(\mu)^{-1}=2 \sigma^{2} /(\alpha D+2)>0$.

S4.2 Composite Full Conditional Likelihood

To derive the sandwich covariance $G(\mu)^{-1}=H(\mu)^{-1} J(\mu) H(\mu)^{-1}$, we begin by evaluating $H(\mu)$ as follows:

$$
\begin{aligned}
H(\mu)= & \mathbb{E}\left[-\frac{\partial^{2}}{\partial \mu^{2}} \ell \ell\left(\mu ; \sigma^{2}, \alpha, \mathbf{y}\right)\right]=\frac{1}{\sigma^{2}} \mathbf{1}_{D F}^{T} \mathbf{M} \mathbf{1}_{D F} \\
= & \frac{1}{\sigma^{2}\left(1-\rho^{2}\right)}\left[\frac{1+2 \rho^{2}}{1+\rho^{2}} D F+2 \rho^{2}(D F-2)-\frac{\rho^{4}}{1+\rho^{2}}(D F-4)\right. \\
& \left.\quad-2 \rho \times 2(D F-1)+\frac{\rho^{2}}{1+\rho^{2}} 2(D F-2)\right] \\
= & \frac{1-\rho}{\sigma^{2}(1+\rho)\left(1+\rho^{2}\right)}\left[\left(1-\rho^{2}\right) D F+4 \rho\right] .
\end{aligned}
$$

Next, note that

$$
J(\mu)=\mathbb{E}\left[\left(\frac{\partial}{\partial \mu} c l\left(\mu ; \sigma^{2}, \alpha, \mathbf{y}\right)\right)^{2}\right]=\frac{1}{\sigma^{4}} \mathbf{1}_{D F}^{T} \mathbf{M} \boldsymbol{\Sigma} \mathbf{M} \mathbf{1}_{D F}
$$

Our approach for evaluating $J(\mu)$ is to derive the vector quantity $\mathbf{M} 1_{D F}$ and then subsequently exploit the simple structure of this vector to compute the quadratic form $\left(\mathbf{M} \mathbf{1}_{D F}\right)^{T} \boldsymbol{\Sigma}\left(\mathbf{M} \mathbf{1}_{D F}\right)$. In particular, it can be shown that $\mathbf{M} \mathbf{1}_{D F}=(m_{1}, m_{2}, \underbrace{m_{3}, \ldots, m_{3}}_{D F-4 \text { times }}, m_{2}, m_{1})^{T} /\left[(1+\rho)\left(1+\rho^{2}\right)\right]$, where $m_{1}=$

$$
\begin{aligned}
1-\rho+ & 2 \rho^{2}, m_{2}=1-3 \rho+2 \rho^{2}-2 \rho^{3} \text { and } m_{3}=(1-\rho)^{3} . \text { As such, } \\
J(\mu)= & \frac{1}{\sigma^{4}} \sum_{i=1}^{D F} \sum_{j=1}^{D F} \Sigma_{i j}\left(\mathbf{M 1}_{D F}\right)_{i}\left(\mathbf{M 1}_{D F}\right)_{j} \\
= & \frac{1}{\sigma^{2}(1+\rho)^{2}\left(1+\rho^{2}\right)^{2}}\left[m_{1}^{2} \sum_{i \in\{1, D F\}} \sum_{j \in\{1, D F\}} \rho^{|i-j|}+2 m_{1} m_{2} \sum_{i \in\{1, D F\}} \sum_{j \in\{2, D F-1\}} \rho^{|i-j|}\right. \\
& +2 m_{1} m_{3} \sum_{i \in\{1, D F\}} \sum_{j=3}^{D F-2} \rho^{|i-j|}+m_{2}^{2} \sum_{i \in\{2, D F-1\}} \sum_{j \in\{2, D F-1\}} \rho^{|i-j|} \\
& \left.+2 m_{2} m_{3} \sum_{i \in\{2, D F-1\}} \sum_{j=3}^{D F-2} \rho^{|i-j|}+m_{3}^{2} \sum_{i=3}^{D F-2} \sum_{j=3}^{D F-2} \rho^{|i-j|}\right] \\
& \frac{1}{\sigma^{2}(1+\rho)^{2}\left(1+\rho^{2}\right)^{2}}\left[2 m_{1}^{2}\left(1+\rho^{D F-1}\right)+4 m_{1} m_{2}\left(\rho+\rho^{D F-2}\right)\right. \\
& +4 m_{1} m_{3} \rho^{2} \frac{1-\rho^{D F-4}}{1-\rho}+2 m_{2}^{2}\left(1+\rho^{D F-3}\right) \\
& \left.+4 m_{2} m_{3} \rho \frac{1-\rho^{D F-4}}{1-\rho}+m_{3}^{2}\left(D F-4+2 \sum_{k=1}^{D F-4}(D F-4-k) \rho^{k}\right)\right]
\end{aligned}
$$

After working through the algebra and using the fact that

$$
\begin{equation*}
\sum_{k=1}^{K} k \rho^{k}=\frac{\rho}{1-\rho}\left(\frac{1-\rho^{K}}{1-\rho}-K \rho^{K}\right) \tag{S4.4}
\end{equation*}
$$

the expression for $J(\mu)$ can be simplified to

$$
J(\mu)=\frac{1-\rho}{\sigma^{2}(1+\rho)\left(1+\rho^{2}\right)^{2}}\left[(1-\rho)^{4} D F+2 \rho\left(3-4 \rho+3 \rho^{2}+2 \rho^{3}\right)\right] .
$$

Thus,

$$
G(\mu)^{-1}=\frac{\sigma^{2}(1+\rho)\left[(1-\rho)^{4} D F+2 \rho\left(3-4 \rho+3 \rho^{2}+2 \rho^{3}\right)\right]}{(1-\rho)\left[(1-\rho)^{4}(D F)^{2}+8 \rho(1-\rho)^{2} D F+16 \rho^{2}\right]}
$$

The expanding domain asymptotic relative efficiency of the composite full conditional likelihood estimator for μ is 1 for $\rho<1$. However, under infill
asymptotics $(F \rightarrow \infty), G(\mu)^{-1}$ diverges to ∞. This once again highlights the structural instability of the composite full conditional likelihood under this model.

S4.3 Composite Marginal Block Likelihood

Noting that we can express $\mathbf{M}=\operatorname{diag}(\underbrace{\mathbf{Q}, \ldots, \mathbf{Q}}_{B \text { times }})$, where \mathbf{Q} is a matrix of size $W \times W$, we have

$$
\begin{aligned}
H(\mu) & =\mathbb{E}\left[-\frac{\partial^{2}}{\partial \mu^{2}} c \ell\left(\mu ; \sigma^{2}, \alpha, \mathbf{y}\right)\right]=\frac{1}{\sigma^{2}} \mathbf{1}_{D F}^{T} \mathbf{M} \mathbf{1}_{D F} \\
& =\frac{B}{\sigma^{2}} \mathbf{1}_{W}^{T} \mathbf{Q} \mathbf{1}_{W}=\frac{1}{\sigma^{2}(1+\rho)}[(1-\rho) D F+2 \rho B]
\end{aligned}
$$

The approach that we take to derive $J(\mu)$ is to rewrite \mathbf{M} in the form $\mathbf{M}=\sigma^{2} \boldsymbol{\Sigma}^{-1}-\mathbf{T}$, where

$$
\mathbf{T}_{i j}=\frac{1}{1-\rho^{2}} \times \begin{cases}\rho^{2}, & j=i \in\{W k, W k+1\} \\ -\rho, & j=i+1, i=W k \\ -\rho, & i=j+1, j=W k \\ 0, & \text { otherwise }\end{cases}
$$

and $k \in\{1,2, \ldots, B-1\}$. Using this expression, we obtain

$$
\begin{aligned}
J(\mu) & =\frac{1}{\sigma^{4}} \mathbf{1}_{D F}^{T}\left(\sigma^{2} \boldsymbol{\Sigma}^{-1}-\mathbf{T}\right) \boldsymbol{\Sigma}\left(\sigma^{2} \boldsymbol{\Sigma}^{-1}-\mathbf{T}\right) \mathbf{1}_{D F} \\
& =\frac{1}{\sigma^{4}}\left(\sigma^{4} \mathbf{1}_{D F}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{1}_{D F}-2{\sigma^{2}}^{2} \mathbf{1}_{D F}^{T} \mathbf{T} \mathbf{1}_{D F}+\mathbf{1}_{D F}^{T} \mathbf{T} \boldsymbol{\Sigma} \mathbf{T} \mathbf{1}_{D F}\right) \\
& =\frac{(1-\rho) D F+2 \rho}{\sigma^{2}(1+\rho)}+\frac{4(B-1) \rho}{\sigma^{2}(1+\rho)}+\frac{\rho^{2}}{\sigma^{4}(1+\rho)^{2}} \boldsymbol{\tau}^{T} \boldsymbol{\Sigma} \boldsymbol{\tau}
\end{aligned}
$$

where $\boldsymbol{\tau}$ is a $D F$-dimensional vector with $\tau_{i}=1$ for $i \in\{W k, W k+1\}$, $k \in\{1,2, \ldots, B-1\}$ and $\tau_{i}=0$ otherwise. In a descriptive sense, the quantity $\boldsymbol{\tau}^{T} \boldsymbol{\Sigma} \boldsymbol{\tau}$ can be calculated by partitioning the matrix $\boldsymbol{\Sigma}$ into B^{2} blocks of size $W \times W$ and only summing up the entries that are located in the corners where any four blocks intersect. As such,

$$
\begin{aligned}
\boldsymbol{\tau}^{T} \boldsymbol{\Sigma} \boldsymbol{\tau} & =\sigma^{2}\left[2(B-1)(1+\rho)+\sum_{k=1}^{B-2} 2(B-1-k)\left(\rho^{W k-1}+2 \rho^{W k}+\rho^{W k+1}\right)\right] \\
& =\sigma^{2}\left[2(B-1)(1+\rho)+2 \rho^{-1}(1+\rho)^{2} \sum_{k=1}^{B-2}(B-1-k) \rho^{W k}\right]
\end{aligned}
$$

Following further algebraic manipulation and using (S4.4), we obtain

$$
J(\mu)=\frac{1}{\sigma^{2}}\left[\frac{1}{1+\rho}[(1-\rho) D F+2 \rho B]+\frac{2 \rho}{1-\rho^{W}}\left(B-\frac{1-\rho^{D F}}{1-\rho^{W}}\right)\right]
$$

Thus,

$$
G(\mu)^{-1}=\frac{\sigma^{2}(1+\rho)}{(1-\rho) D F+2 \rho B}\left[1+\frac{2 \rho(1+\rho)\left[B-\left(1-\rho^{D F}\right) /\left(1-\rho^{W}\right)\right]}{\left(1-\rho^{W}\right)[(1-\rho) D F+2 \rho B]}\right]
$$

Interestingly, we observe that $\left.2 \sigma^{2} I(\mu)^{-1}\right|_{\rho=x}=\left.\left\{\mathbf{I}\left(\sigma^{2}, \alpha\right)^{-1}\right\}_{11}\right|_{\rho=\sqrt{x}}$, and $\left.2 \sigma^{2} G(\mu)^{-1}\right|_{\rho=x}=\left.\left\{\mathbf{G}\left(\sigma^{2}, \alpha\right)^{-1}\right\}_{11}\right|_{\rho=\sqrt{x}}$ as per S3.3). Hence, assuming a
fixed W, the expanding domain asymptotic relative efficiency of the composite marginal block likelihood estimator for μ is given by

$$
\begin{aligned}
\operatorname{EDARE}\left(\hat{\mu}_{\mathrm{CL}}, \hat{\mu}_{\mathrm{ML}}\right) & \equiv \lim _{D \rightarrow \infty} \frac{I(\mu)^{-1}}{G(\mu)^{-1}}=\left.\lim _{D \rightarrow \infty} \frac{\left\{\mathbf{I}\left(\sigma^{2}, \alpha\right)^{-1}\right\}_{11}}{\left\{\mathbf{G}\left(\sigma^{2}, \alpha\right)^{-1}\right\}_{11}}\right|_{\rho=\sqrt{\rho}} \\
& =\frac{(1-\rho+2 \rho / W) /(1-\rho)}{1+[2 \rho(1+\rho)] /\left[W\left(1-\rho^{W}\right)(1-\rho+2 \rho / W)\right]}
\end{aligned}
$$

References

Rencher, A. C. and Schaalje, G. B. (2008). Linear models in statistics. Hoboken, NJ: John Wiley and Sons.

