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S1 Proof of Theorem 2

Note the following result pertaining to the expectation of fourth-order mo-

ments (see p. 109 of Rencher and Schaalje, 2008, for instance):

Lemma 1. Let x = (x1, ..., xn)
T follow a Gaussian distribution with zero

mean and covariance matrix Σ. Also, let U and V be n × n symmetric

matrices. Then E[xTUxxTVx] = tr(UΣ)tr(VΣ) + 2tr(UΣVΣ).

We also note that ∂Σ−1
m /∂θi = Σ−1

m (∂Σm/∂θi)Σ
−1
m , which is a useful ex-

pression to avoid the direct evaluation of the derivative of a matrix inverse.
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By using these two results, we can derive (3.2) as follows:
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S2 Proof of Theorem 3

For notational convenience, let M ≡ M(α). Following on from (4.3), the

first and second-order partial derivatives of the composite log-likelihood are

∂

∂θ
cℓ(σ2, α;y) =

 −DF
2σ2 +

1
2σ4y

TMy

−ρ2

F

(
DF
1−ρ2

+ DF−2
1+ρ2

)
− 1

2σ2y
TM′y

 (S2.1)

and

− ∂2

∂θ∂θT
cℓ(σ2, α;y) =

−DF
2σ4 +

1
σ6y

TMy − 1
2σ4y

TM′y

− 1
2σ4y

TM′y −2ρ2

F 2

(
DF

(1−ρ2)2
+ DF−2

(1+ρ2)2

)
+ 1

2σ2y
TM′′y

 ,

(S2.2)

where the first and second derivatives of M with respect to α are

M′ = − 2ρ

F (1− ρ2)2

[(
ρ+

ρ(1 + ρ4)

(1 + ρ2)2

)
A1+2ρA2+

(
−ρ+

ρ(1 + ρ4)

(1 + ρ2)2

)
A3

− (1 + ρ2)A4 +
ρ(1 + ρ4)

(1 + ρ2)2
A5

]

and

M′′ =
4ρ

F 2(1− ρ2)3

[(
ρ(1 + ρ2) +

ρ(1 + 6ρ4 + ρ8)

(1 + ρ2)3

)
A1 + 2ρ(1 + ρ2)A2

+

(
−ρ(1 + ρ2) +

ρ(1 + 6ρ4 + ρ8)

(1 + ρ2)3

)
A3−

1

2
(1+6ρ2+ρ4)A4+

ρ(1 + 6ρ4 + ρ8)

(1 + ρ2)3
A5

]
.

First, to find H(σ2, α), we note the following trace formulae for the expo-

nential covariance matrix Σ:
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tr(A1Σ) = σ2DF , tr(A2Σ) = σ2(DF − 2), tr(A3Σ) = σ2(DF − 4),

tr(A4Σ) = 2σ2ρ(DF − 1), tr(A5Σ) = 2σ2ρ2(DF − 2). (S2.3)

Due to the linearity of the trace function, we can use the additive

decomposition ofM and its derivatives to show that E[yTMy] = tr(MΣ) =

σ2DF , E[yTM′y] = −4σ2ρ2[DF − (1− ρ2)]/[F (1− ρ4)], and E[yTM′′y] =

4σ2ρ2[(3+ ρ2 +5ρ4 − ρ6)DF − (1− ρ2)(3− 2ρ2 +3ρ4)]/[F 2(1− ρ4)2]. Thus,

by using (S2.2), we obtain

H(σ2, α) =

 DF
2σ4

2ρ2

Fσ2(1−ρ4)
[DF − (1− ρ2)]

2ρ2

Fσ2(1−ρ4)
[DF − (1− ρ2)] 2ρ2

F 2(1−ρ4)2
[(1 + ρ2 + 3ρ4 − ρ6)DF − (1− ρ2)(1 + 3ρ4)]

 .

The calculation of J(σ2, α) is considerably more complicated as it requires

finding expressions for fourth-order moments. In order to apply Lemma 1,

we require traces of the form tr(AjΣAkΣ) for each pair of the five simple

matrices A1 to A5. However, due to the cyclical invariance of traces, we

only need 15 such expressions rather than 25.

To simplify notation, define un ≡
∑n

k=1(n− k)ρ2k. Also, let “◦” denote
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the Hadamard (entrywise) product of two matrices. Then as an example,

tr(A1ΣA1Σ) = tr(ΣΣ) =
DF∑
i=1

DF∑
j=1

{Σ ◦ΣT}ij =
DF∑
i=1

DF∑
j=1

(σ2ρ|i−j|)2

= σ4

[
DF∑
i=1

1 +
DF∑
i ̸=j

ρ2|i−j|

]
= σ4

[
DF + 2

DF−1∑
j=1

DF∑
i=j+1

ρ2|i−j|

]

= σ4

[
DF + 2

DF−1∑
j=1

DF−j∑
k=1

ρ2k

]
= σ4

[
DF + 2

DF−1∑
k=1

DF−k∑
j=1

ρ2k

]

= σ4

[
DF + 2

DF∑
k=1

(DF − k)ρ2k

]
= σ4[DF + 2uDF ].

Similarly, we can obtain all of the following:

tr(A1ΣA1Σ) = σ4[DF + 2uDF ], tr(A1ΣA2Σ) = σ4[DF − 2 + 2uDF−1],

tr(A1ΣA3Σ) = σ4[(1 + 2ρ2)(DF − 4) + 2ρ2uDF−3],tr(A1ΣA4Σ) = σ4[4ρ(DF − 1) + 4ρuDF−1],

tr(A1ΣA5Σ) = σ4[2ρ2(DF − 2) + 4uDF−1], tr(A2ΣA2Σ) = σ4[DF − 2 + 2uDF−2],

tr(A2ΣA3Σ) = σ4[DF − 4 + 2uDF−3], tr(A2ΣA4Σ) = σ4[4ρ(DF − 2) + 4ρuDF−2],

tr(A2ΣA5Σ) = σ4[2ρ2(DF − 2) + 4uDF−2], tr(A3ΣA3Σ) = σ4[DF − 4 + 2uDF−4],

tr(A3ΣA4Σ) = σ4[4ρ(DF − 4) + 4ρuDF−3], tr(A3ΣA5Σ) = σ4[2ρ2(DF − 4) + 4uDF−3],

tr(A4ΣA4Σ) = σ4[2(1 + ρ2)(DF − 1) + 8uDF−1], tr(A4ΣA5Σ) = σ4[4ρ(1 + ρ2)(DF − 2) + 8ρuDF−2],

tr(A5ΣA5Σ) = σ4[2(1 + ρ4)(DF − 2) + 4ρ2(1 + ρ2)(DF − 3) + 8ρ2uDF−3]. (S2.4)

Using the above results, we can then find tr(MΣMΣ), tr(MΣM′Σ)

and tr(M′ΣM′Σ). For instance, by using (4.4), we have

tr(MΣMΣ) =
1

(1− ρ2)2

[(
1 +

ρ2

1 + ρ2

)2

tr(A1ΣA1Σ) + 2

(
1 +

ρ2

1 + ρ2

)
× 2ρ2tr(A1ΣA2Σ) + ...

]

=
σ4

(1 + ρ2)2
[(1 + 4ρ2 + ρ4)DF − 2ρ2 + 4ρ4]. (S2.5)
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The algebra required is lengthy but is made more manageable by use of the

recursive relation un+1 = ρ2(un +n). In fact, observe that (S2.5) is a linear

function of D, which indicates that all of the non-linear terms un that are

present in (S2.4) cancel out after repeated application of this relation. The

same is also true for the two remaining traces, which are given by

tr(MΣM′Σ) = − 8σ4ρ2

F (1− ρ2)(1 + ρ2)3
[(1 + ρ2 + ρ4)DF − 1 + ρ2 + ρ6]

and

tr(M′ΣM′Σ) =
8σ4ρ2

F 2(1− ρ2)2(1 + ρ2)4
[(1+2ρ2+6ρ4+2ρ6+ρ8)DF−1+ρ2−4ρ4+8ρ6+ρ8−ρ10].

Finally, using these results alongside (S2.1) and Lemma 1, we find that

J(σ2, α) =

 1
2σ4(1+ρ2)2

jT1 (DF)(1) 4ρ2

σ2F (1−ρ2)(1+ρ2)3
jT2 (DF)(1)

4ρ2

σ2F (1−ρ2)(1+ρ2)3
jT2 (DF)(1) 4ρ2

F 2(1−ρ2)2(1+ρ2)4
jT3 (DF)(1)

 ,

where (DF)(k) ≡ ((DF )k, (DF )k−1, ..., (DF )0)T , and

j1 =

1 + 4ρ2 + ρ4

−2ρ2 + 4ρ4

, j2 =

 1 + ρ2 + ρ4

−1 + ρ2 + ρ6

, j3 =

 1 + 2ρ2 + 6ρ4 + 2ρ6 + ρ8

−1 + ρ2 − 4ρ4 + 8ρ6 + ρ8 − ρ10

.
Out of completeness, we provide the expression for G(σ2, α)−1 here,



S3. PROOF OF THEOREM 4

which follows from standard matrix algebra:

G(σ2, α)−1 = H(σ2, α)−1J(σ2, α)H(σ2, α)−1

=
1

(gT
4 (DF)(2))2

 2σ4

1−ρ2
gT
1 (DF)(3) −2σ2FgT

2 (DF)(3)

−2σ2FgT
2 (DF)(3) F 2(1−ρ2)

ρ2
gT
3 (DF)(3)

 ,

where

g1 =



(1− ρ2)3(1 + ρ4)

2(−1 + 8ρ2 − 11ρ4 + 15ρ6 − 4ρ8 + ρ10)

(1− ρ2)(1− 18ρ2 + 26ρ4 − 42ρ6 + ρ8)

2ρ2(1− ρ2)2(3− 5ρ2 + 10ρ4)


, g2 =



(1− ρ2)3

−2 + 15ρ2 − 17ρ4 + 13ρ6 − ρ8

(1− ρ2)(1− 17ρ2 + 13ρ4 − 9ρ6)

2ρ2(1− ρ2)2(3− 2ρ2)


,

g3 =



(1− ρ2)3

−1 + 12ρ2 − 16ρ4 + 12ρ6 + ρ8

−2ρ2(1− ρ2)(3− 8ρ2 + 3ρ4)

4ρ4(1− ρ2)(−1 + 2ρ2)


, g4 =


(1− ρ2)2

−1 + 8ρ2 − 3ρ4

−4ρ2(1− ρ2)

 .

S3 Proof of Theorem 4

Following on from (4.5), the first and second-order partial derivatives of the

composite log-likelihood are

∂

∂θ
cℓ(σ2, α;y) =

 −DF
2σ2 +

1
2σ4y

TMy

− (DF−B)ρ2

F (1−ρ2)
− 1

2σ2y
TM′y

 (S3.1)
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and

− ∂2

∂θ∂θT
cℓ(σ2, α;y) =

−DF
2σ4 +

1
σ6y

TMy − 1
2σ4y

TM′y

− 1
2σ4y

TM′y −2(DF−B)ρ2

F 2(1−ρ2)2
+ 1

2σ2y
TM′′y

 .

(S3.2)

In order to find the various traces involving M (and its derivatives) and

Σ, we can make use of the block-diagonality of M. First, let M = M(1) +

M(2) + ...+M(B), where M(b) is an N ×N matrix containing only the b-th

block of M (with all other elements set to zero). Also, break down the

structure of Σ ∈ RDF×DF into blocks of size W ×W as follows:

Σ =



S(0) S(1) S(2) . . . S(B−2) S(B−1)

S(−1) S(0) S(1) . . . S(B−3) S(B−2)

S(−2) S(−1) S(0) . . . S(B−4) S(B−3)

...
...

...
. . .

...
...

S(−(B−2)) S(−(B−3)) S(−(B−4)) . . . S(0) S(1)

S(−(B−1)) S(−(B−2)) S(−(B−3)) . . . S(−1) S(0)



,
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where

S(k) = σ2



ρ|Wk| ρ|Wk+1| ρ|Wk+2| . . . ρ|W (k+1)−2| ρ|W (k+1)−1|

ρ|Wk−1| ρ|Wk| ρ|Wk+1| . . . ρ|W (k+1)−3| ρ|W (k+1)−2|

ρ|Wk−2| ρ|Wk−1| ρ|Wk| . . . ρ|W (k+1)−4| ρ|W (k+1)−3|

...
...

...
. . .

...
...

ρ|W (k−1)+2| ρ|W (k−1)+3| ρ|W (k−1)+4| . . . ρ|Wk| ρ|Wk+1|

ρ|W (k−1)+1| ρ|W (k−1)+2| ρ|W (k−1)+3| . . . ρ|Wk−1| ρ|Wk|



.

Then in order to compute E[yTMy] for instance, we have

tr(MΣ) =
B∑
b=1

tr(M(b)Σ) =
B∑
b=1

tr(QS(0)) = B tr(QS(0)).

This reduces the problem down to using the additive decomposition Q =

(A1+ρ2A2−ρA4)/(1−ρ2) alongside similar expressions to (S2.3): tr(A1S(0)) =

σ2W , tr(A2S(0)) = σ2(W−2) and tr(A4S(0)) = 2σ2ρ(W−1). We can there-

fore evaluate the expectation of (S3.2) to obtain

H(σ2, α) =

 DF
2σ4

ρ2(DF−B)
Fσ2(1−ρ2)

ρ2(DF−B)
Fσ2(1−ρ2)

ρ2(1+ρ2)(DF−B)
F 2(1−ρ2)2

 .

Next, for the traces of the four-matrix products MΣMΣ, MΣM′Σ

and M′ΣM′Σ, it is useful to observe that S(k) = ρW (k−1)S(1) and S(−k) =



CHUA, HUI AND WELSH

ρW (k−1)S(−1) for k ≥ 1. Then, for instance,

tr(MΣM′Σ) =
B∑
b=1

B∑
c=1

tr(M(b)ΣM′
(c)Σ) =

B∑
b=1

B∑
c=1

tr(QS(c−b)Q
′S(b−c))

= B tr(QS(0)Q
′S(0)) +

∑
1≤b<c≤B

tr(QS(c−b)Q
′S(b−c)) +

∑
1≤c<b≤B

tr(QS(c−b)Q
′S(b−c))

= B tr(QS(0)Q
′S(0)) +

B−1∑
a=1

(B − a)tr(QS(a)Q
′S(−a)) +

B−1∑
a=1

(B − a)tr(QS(−a)Q
′S(a))

= B tr(QS(0)Q
′S(0)) +

(
tr(QS(1)Q

′S(−1)) + tr(QS(−1)Q
′S(1))

) B−1∑
a=1

(B − a)ρ2W (a−1)

= B tr(QS(0)Q
′S(0)) +

(
tr(QS(1)Q

′S(−1)) + tr(QS(−1)Q
′S(1))

) 1

1− ρ2W

(
B − 1− ρ2DF

1− ρ2W

)
= B tr(QS(0)Q

′S(0)) + tr(QS(1)Q
′S(−1))

2

1− ρ2W

(
B − 1− ρ2DF

1− ρ2W

)
.

The final line can be obtained by observing that Q and Q′ are rotationally

symmetric by 180 degrees; that is, for the antidiagonal identity matrix R (a

square matrix with a diagonal of 1s from the top-right to the bottom-left),

we have Q = RQR and Q′ = RQ′R. Additionally, S(1) and S(−1) are

180-degree rotations of each other, such that S(1) = RS(−1)R and S(−1) =

RS(1)R. The equality tr(QS(1)Q
′S(−1)) = tr(QS(−1)Q

′S(1)) then follows

from cyclical invariance. Note that the traces of MΣMΣ and M′ΣM′Σ

may be derived similarly, but the rotational symmetry argument can be

replaced with a direct use of cyclical invariance to prove the equality.

By once again using the additive decomposition of Q, we now require

traces of four-matrix products involving A1, A2, A4 and S(0) or S(1). These
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are summarised below with use of the notation un ≡
∑n

k=1(n − k)ρ2k,

vn ≡
∑2n−1

k=1 (n− |n− k|)ρ2k and qn ≡
∑n

k=1 ρ
2k:

tr(A1S(0)A1S(0)) = σ4[W + 2uW ], tr(A1S(0)A2S(0)) = σ4[W − 2 + 2uW−1],

tr(A1S(0)A4S(0)) = 4σ4[ρ(W − 1) + ρuW−1], tr(A2S(0)A2S(0)) = σ4[W − 2 + 2uW−2],

tr(A2S(0)A4S(0)) = 4σ4[ρ(W − 2) + ρuW−2], tr(A4S(0)A4S(0)) = σ4[2(1 + ρ2)(W − 1) + 8uW−1],

tr(A1S(1)A1S(−1)) = σ4vW , tr(A1S(1)A2S(−1)) = σ4[ρ2vW−1 − ρ2W ],

tr(A1S(1)A4S(−1)) = 2σ4[ρvW − ρ2W−1qW ], tr(A2S(1)A2S(−1)) = σ4ρ4vW−2,

tr(A2S(1)A4S(−1)) = 2σ4[ρ3vW−1 − ρ2W−1qW−1], tr(A4S(1)A4S(−1)) = 4σ4ρ2vW−1.

Expressions for the traces of QS(0)QS(0), QS(0)Q
′S(0) and Q′S(0)Q

′S(0)

can be obtained by repeatedly applying un+1 = ρ2(un+n) to cancel out the

un terms in a similar manner to (S2.5). For the traces of QS(1)QS(1),

QS(1)Q
′S(1) and Q′S(1)Q

′S(1), we can instead make use of the relation

vn+1 = vn+2ρ2nqn+ ρ2(2n+1) to cancel out the vn terms. This results in the

expressions tr(MΣM′Σ) = −2σ4ρ2(DF −B)/[F (1− ρ2)], tr(M′ΣM′Σ) =

2σ4ρ2(1 + ρ2)(DF −B)/[F 2(1− ρ2)2] and

tr(MΣMΣ) = σ4

[
DF +

2ρ2

1− ρ2W

(
B − 1− ρ2DF

1− ρ2W

)]
.
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Hence, using (S3.1) and applying Lemma 1 gives

J(σ2, α) =

 1
2σ4

[
DF + 2ρ2

1−ρ2W

(
B − 1−ρ2DF

1−ρ2W

)]
ρ2

σ2F (1−ρ2)
(DF −B)

ρ2

σ2F (1−ρ2)
(DF −B) ρ2(1+ρ2)

F 2(1−ρ2)2
(DF −B)



= H(σ2, α) +

 ρ2

σ4(1−ρ2W )

(
B − 1−ρ2DF

1−ρ2W

)
0

0 0

 .

We observe that there is a small perturbation term between J(σ2, α) and

H(σ2, α), which is consistent with (3.1) and (3.2) in the general Gaussian

case for unweighted composite likelihood functions. Also note that if B = 1

(and W = DF ), then J(σ2, α) = H(σ2, α), which is as expected for the full

likelihood.

Following standard matrix algebra, it can be shown that

G(σ2, α)−1 =
1

(1− ρ2)DF + 2ρ2B

 2(σ2)2(1 + ρ2) −2σ2F (1− ρ2)

−2σ2F (1− ρ2) F 2DF (1−ρ2)2

(DF−B)ρ2



+
4ρ2

(1− ρ2W )((1− ρ2)DF + 2ρ2B)2

(
B − 1− ρ2DF

1− ρ2W

)(σ2)2(1 + ρ2)2 −σ2F (1− ρ4)

−σ2F (1− ρ4) F 2(1− ρ2)2

 .

(S3.3)

S4 Asymptotics for a Constant Mean Parameter

In this section, we extend our results for the one-dimensional Gaussian

exponential covariance process to allow for a constant mean µ. Due to the
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orthogonality between the mean parameter and the covariance parameters

under a Gaussian process, the asymptotic relative efficiency for µ can be

derived separately from σ2 and α.

To begin, note that the full/composite log-likelihood can be written in

the form cℓ(µ;σ2, α,y) = q(σ2, α)−(y−µ1DF )
TM(y−µ1DF )/(2σ

2), where

M is equal to σ2Σ−1 (with Σ−1 as defined in (4.1)) for the full likelihood,

(4.4) for the composite full conditional likelihood and (4.5) for the composite

marginal block likelihood. This emits the following first and second-order

derivatives:

∂

∂µ
cℓ(µ;σ2, α,y) =

1

σ2
1T
DFM(y− µ1DF )

and

− ∂2

∂µ2
cℓ(µ;σ2, α,y) =

1

σ2
1T
DFM1DF

S4.1 Full Likelihood

The inverse of the Fisher information is given by

I(µ)−1 =

{
E
[
− ∂2

∂µ2
ℓ(µ;σ2, α,y)

]}−1

=
{
1T
DFΣ

−11DF

}−1
=

σ2(1 + ρ)

(1− ρ)DF + 2ρ
.

It should be noted that µ̂ML is not consistent under infill when σ2 and α

are known, because I(µ)−1 = var(µ̂ML) (i.e., it is the exact finite sample

variance), and limF→∞I(µ)−1 = 2σ2/(αD + 2) > 0.
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S4.2 Composite Full Conditional Likelihood

To derive the sandwich covariance G(µ)−1 = H(µ)−1J(µ)H(µ)−1, we begin

by evaluating H(µ) as follows:

H(µ) = E
[
− ∂2

∂µ2
cℓ(µ;σ2, α,y)

]
=

1

σ2
1T
DFM1DF

=
1

σ2(1− ρ2)

[
1 + 2ρ2

1 + ρ2
DF + 2ρ2(DF − 2)− ρ4

1 + ρ2
(DF − 4)

− 2ρ× 2(DF − 1) +
ρ2

1 + ρ2
2(DF − 2)

]

=
1− ρ

σ2(1 + ρ)(1 + ρ2)
[(1− ρ2)DF + 4ρ].

Next, note that

J(µ) = E

[(
∂

∂µ
cℓ(µ;σ2, α,y)

)2
]
=

1

σ4
1T
DFMΣM1DF .

Our approach for evaluating J(µ) is to derive the vector quantity M1DF

and then subsequently exploit the simple structure of this vector to compute

the quadratic form (M1DF )
TΣ(M1DF ). In particular, it can be shown

that M1DF = (m1,m2,m3, ...,m3︸ ︷︷ ︸
DF−4 times

,m2,m1)
T/[(1 + ρ)(1 + ρ2)], where m1 =
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1− ρ+ 2ρ2, m2 = 1− 3ρ+ 2ρ2 − 2ρ3 and m3 = (1− ρ)3. As such,

J(µ) =
1

σ4

DF∑
i=1

DF∑
j=1

Σij(M1DF )i(M1DF )j

=
1

σ2(1 + ρ)2(1 + ρ2)2

[
m2

1

∑
i∈{1,DF}

∑
j∈{1,DF}

ρ|i−j| + 2m1m2

∑
i∈{1,DF}

∑
j∈{2,DF−1}

ρ|i−j|

+ 2m1m3

∑
i∈{1,DF}

DF−2∑
j=3

ρ|i−j| +m2
2

∑
i∈{2,DF−1}

∑
j∈{2,DF−1}

ρ|i−j|

+ 2m2m3

∑
i∈{2,DF−1}

DF−2∑
j=3

ρ|i−j| +m2
3

DF−2∑
i=3

DF−2∑
j=3

ρ|i−j|

]

=
1

σ2(1 + ρ)2(1 + ρ2)2

[
2m2

1(1 + ρDF−1) + 4m1m2(ρ+ ρDF−2)

+ 4m1m3ρ
21− ρDF−4

1− ρ
+ 2m2

2(1 + ρDF−3)

+ 4m2m3ρ
1− ρDF−4

1− ρ
+m2

3

(
DF − 4 + 2

DF−4∑
k=1

(DF − 4− k)ρk

)]
.

After working through the algebra and using the fact that

K∑
k=1

kρk =
ρ

1− ρ

(
1− ρK

1− ρ
−KρK

)
, (S4.4)

the expression for J(µ) can be simplified to

J(µ) =
1− ρ

σ2(1 + ρ)(1 + ρ2)2
[(1− ρ)4DF + 2ρ(3− 4ρ+ 3ρ2 + 2ρ3)].

Thus,

G(µ)−1 =
σ2(1 + ρ)[(1− ρ)4DF + 2ρ(3− 4ρ+ 3ρ2 + 2ρ3)]

(1− ρ)[(1− ρ)4(DF )2 + 8ρ(1− ρ)2DF + 16ρ2]
.

The expanding domain asymptotic relative efficiency of the composite full

conditional likelihood estimator for µ is 1 for ρ < 1. However, under infill
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asymptotics (F → ∞), G(µ)−1 diverges to ∞. This once again highlights

the structural instability of the composite full conditional likelihood under

this model.

S4.3 Composite Marginal Block Likelihood

Noting that we can express M = diag(Q, ...,Q︸ ︷︷ ︸
B times

), where Q is a matrix of size

W ×W , we have

H(µ) = E
[
− ∂2

∂µ2
cℓ(µ;σ2, α,y)

]
=

1

σ2
1T
DFM1DF

=
B

σ2
1T
WQ1W =

1

σ2(1 + ρ)
[(1− ρ)DF + 2ρB].

The approach that we take to derive J(µ) is to rewrite M in the form

M = σ2Σ−1 −T, where

Tij =
1

1− ρ2
×



ρ2, j = i ∈ {Wk,Wk + 1},

−ρ, j = i+ 1, i = Wk,

−ρ, i = j + 1, j = Wk,

0, otherwise.
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and k ∈ {1, 2, ..., B − 1}. Using this expression, we obtain

J(µ) =
1

σ4
1T
DF (σ

2Σ−1 −T)Σ(σ2Σ−1 −T)1DF

=
1

σ4
(σ41T

DFΣ
−11DF − 2σ21T

DFT1DF + 1T
DFTΣT1DF )

=
(1− ρ)DF + 2ρ

σ2(1 + ρ)
+

4(B − 1)ρ

σ2(1 + ρ)
+

ρ2

σ4(1 + ρ)2
τ TΣτ ,

where τ is a DF -dimensional vector with τi = 1 for i ∈ {Wk,Wk + 1},

k ∈ {1, 2, ..., B − 1} and τi = 0 otherwise. In a descriptive sense, the

quantity τ TΣτ can be calculated by partitioning the matrix Σ into B2

blocks of size W ×W and only summing up the entries that are located in

the corners where any four blocks intersect. As such,

τ TΣτ = σ2

[
2(B − 1)(1 + ρ) +

B−2∑
k=1

2(B − 1− k)(ρWk−1 + 2ρWk + ρWk+1)

]

= σ2

[
2(B − 1)(1 + ρ) + 2ρ−1(1 + ρ)2

B−2∑
k=1

(B − 1− k)ρWk

]
.

Following further algebraic manipulation and using (S4.4), we obtain

J(µ) =
1

σ2

[
1

1 + ρ
[(1− ρ)DF + 2ρB] +

2ρ

1− ρW

(
B − 1− ρDF

1− ρW

)]
.

Thus,

G(µ)−1 =
σ2(1 + ρ)

(1− ρ)DF + 2ρB

[
1 +

2ρ(1 + ρ)[B − (1− ρDF )/(1− ρW )]

(1− ρW )[(1− ρ)DF + 2ρB]

]
.

Interestingly, we observe that 2σ2I(µ)−1|ρ=x = {I(σ2, α)−1}11|ρ=√
x, and

2σ2G(µ)−1|ρ=x = {G(σ2, α)−1}11|ρ=√
x as per (S3.3). Hence, assuming a
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fixed W , the expanding domain asymptotic relative efficiency of the com-

posite marginal block likelihood estimator for µ is given by

EDARE(µ̂CL, µ̂ML) ≡ lim
D→∞

I(µ)−1

G(µ)−1
= lim

D→∞

{I(σ2, α)−1}11
{G(σ2, α)−1}11

∣∣∣∣∣
ρ=

√
ρ

=
(1− ρ+ 2ρ/W )/(1− ρ)

1 + [2ρ(1 + ρ)]/[W (1− ρW )(1− ρ+ 2ρ/W )]
.
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