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This document consists of four sections. In Section A we prove Lemma 2,

in Section B we prove Theorem 1, in Section C we prove Theorem 2 and in

Section D we provide details to the verifications of (A1), (B1) and (B2) in

Examples 3–5.

A Proof of Lemma 2

Let the infinite arms bandit problem be labeled as Problem A, and let

RA be the smallest possible regret for this problem. We prove Lemma 2 by

considering two related problems, Problems B and C.

Proof of Lemma 2. Let Problem B be like Problem A except that

when we observe the first positive loss from arm k, its mean µk is revealed.
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Let RB be the smallest regret for Problem B. Since in Problem B we have

access to additional arm-mean information, RA ≥ RB.

In Problem B the best solution involves an initial exploration phase in

which we play K arms, each until its first positive loss. This is followed

by an exploitation phase in which we play the best arm for the remaining

n−M trials, where M is the number of rewards in the exploration phase. It

is always advantageous to experiment first because no information on arm

mean is gained during exploitation. For continuous rewards M = K. Let

µb(= µbest) = min1≤k≤K µk.

In Problem C like in Problem B, µk is revealed upon the observation of

its first positive Xkt. The difference is that instead of playing the best arm

for n−M additional trials, we play it for n additional trials, for a total of

n + M trials. Let RC be the smallest regret of Problem C, the expected

value of
∑K

k=1 nkµk, with
∑K

k=1 nk = n + M . We can extend the optimal

solution of Problem B to a (possibly non-optimal) solution of Problem C

by simply playing the best arm with mean µb a further M times. Hence

[RA + E(Mµb) ≥]RB + E(Mµb) ≥ RC . (A.1)

Lemma 2 follows from Lemmas 3 and 4 below. ut

Lemma 3. RC = nζn for ζn satisfying v(ζn) = λ
n
.
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Lemma 4. E(Mµb) = o(n
β
β+1 ).

Bonald and Proutière (2013) also referred to Problem B in their lower

bounds for Bernoulli rewards. What is different in our proof of Lemma 2

is a further simplification by considering Problem C, in which the number

of rewards in the exploitation phase is fixed to be n. We show in Lemma 3

that under Problem C the optimal regret has a simple expression nζn, and

reduce the proof of Lemma 2 to showing Lemma 4.

Proof of Lemma 3. Let arm j be the best arm after k arms have

been played in the experimentation phase, that is µj = min1≤i≤k µi. Let

φ∗ be the strategy of trying out a new arm if and only if nv(µj) > λ,

or equivalently µj > ζn. Since we need on the average 1
p(ζn)

arms before

achieving µj ≤ ζn, and the exploration cost of each arm is λ, the regret of

φ∗ is

R∗ = λ
p(ζn)

+ nEg(µ|µ ≤ ζn) = rn(ζn) = nζn, (A.2)

see (5.1) and Lemma 1 in the main manuscript for the second and third

equalities in (A.2).

Hence RC ≤ nζn and to show Lemma 3, it remains to show that for

any strategy φ, its regret Rφ is not less than R∗. Let K∗ be the number

of arms played by φ∗ and K the number of arms played by φ. Let µ∗ =

min1≤k≤K∗ µk. Let G1 = {K < K∗}(= {min1≤k≤K µk > ζn}) and G2 =
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{K > K∗}(= {µ∗ ≤ ζn, K > K∗}). Since

Rφ = λE(K) + nE( min
1≤k≤K

µk),

R∗ = λE(K∗) + nE(µ∗),

we can express

Rφ −R∗ =
2∑
`=1

{
λE[(K −K∗)1G` ] + nE

[(
min

1≤k≤K
µk − µ∗

)
1G`

]}
. (A.3)

Under G1, min1≤k≤K µk > ζn and therefore by (A.2),

λE[(K −K∗)1G1 ] + nE
[(

min
1≤k≤K

µk − µ∗
)
1G1

]
(A.4)

= −λP (G1)
p(ζn)

+ n
{
E
[(

min
1≤k≤K

µk

)
1G1

]
− P (G1)Eg(µ|µ ≤ ζn)

}
≥ P (G1){− λ

p(ζn)
+ n[ζn − Eg(µ|µ ≤ ζn)]} = 0.

The identity E[(K∗ − K)1G1 ] = P (G1)
p(ζn)

is due to min1≤k≤K µk > ζn when

there are K arms, and so an additional 1
p(ζn)

arms on average is required

under strategy φ∗, to get an arm with µk not more than ζn. The identity

E(µ∗1G1) = P (G1)E(µ∗) = P (G1)Eg(µ|µ ≤ ζn)

is due to the independence between 1G1 and µ∗.

In view that (K −K∗)1G2 =
∑∞

j=0 1{K>K∗+j} and

(
min

1≤k≤K
µk − µ∗

)
1G2
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=
∞∑
j=0

(
min

1≤k≤K∗+j+1
µk − min

1≤k≤K∗+j
µk

)
1{K>K∗+j},

it follows that

λE[(K −K∗)1G2 ] + nE
[(

min
1≤k≤K

µk − µ∗
)
1G2

]
(A.5)

=
∞∑
j=0

E
{[
λ+ n

(
min

1≤k≤K∗+j+1
µk − min

1≤k≤K∗+j
µk

)]
1{K>K∗+j}

}
=

∞∑
j=0

E
{[
λ− nv

(
min

1≤k≤K∗+j
µk

)]
1{K>K∗+j}

}
≥ 0.

The second equality in (A.5) follows from

E
(

min
1≤k≤K∗+j

µk − min
1≤k≤K∗+j+1

µk

∣∣∣ min
1≤k≤K∗+j

µk = x,K > K∗ + j
)

= v(x).

The inequality in (A.5) follows from

v
(

min
1≤k≤K∗+j

µk

)
≤ v(µ∗) ≤ v(ζn) = λ

n
,

as v is monotone increasing. Lemma 3 follows from (A.2)–(A.5). ut

Proof of Lemma 4. Let K̂ = bnζn(log n)β+2c for ζn satisfying

nv(ζn) = λ. Express E(Mµb) =
∑5

i=1E(Mµb1Di), where

D1 = {µb ≤ ζn
logn
},

D2 = {µb > ζn
logn

, K > K̂},

D3 = { ζn
logn

< µb ≤ ζn(log n)β+3, K ≤ K̂},

D4 = {µb > ζn(log n)β+3, K ≤ K̂,M > n
2
},
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D5 = {µb > ζn(log n)β+3, K ≤ K̂,M ≤ n
2
}.

It suffices to show that for all i,

E(Mµb1Di) = o(n
β
β+1 ). (A.6)

Since ζn ∼ Cn−
1

β+1 [see (3.3) of the main manuscript], Mζn
logn
≤ nζn

logn
= o(n

β
β+1 )

and (A.6) holds for i = 1.

Let µ̂b = mink≤K̂ µk. Since M ≤ n, µb ≤ µ1 and E(µ1) ≤ λ,

E(Mµb1D2) ≤ nE(µ11D2) (A.7)

= nE(µ1|µ1 >
ζn

logn
)P (D2)

≤ [λ+ o(1)]nP (µ̂b >
ζn

logn
).

By condition (A1), p(ζ) ∼ α
β
ζβ as ζ → 0, hence substituting

P (µ̂b >
ζn

logn
) = [1− p( ζn

logn
)]K̂ = exp{−[1 + o(1)]K̂ α

β
( ζn
logn

)β] = O(n−1)

into (A.7) shows (A.6) for i = 2.

Let Mj be the number of plays of Πj to the first positive Xjt (hence

M =
∑K

j=1Mj). It follows from condition (A2) that EµM1 = 1
Pµ(X1>0)

≤

1
a1 min(µ,1)

, hence by µb ≤ ζn(log n)β+3 under D3,

E(Mµb1D3) ≤ E(M11{µ1> ζn
logn
})K̂ζn(log n)β+3 (A.8)

≤
(∫ ∞

ζn
logn

g(µ)
a1 min(µ,1)

dµ
)
nζ2n(log n)2β+5.
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Substituting

∫ ∞
ζn

logn

g(µ)
µ
dµ =


O(1) if β > 1,

O(log n) if β = 1,

O(( ζn
logn

)β−1) if β < 1,

into (A.8) shows (A.6) for i = 3.

If µj > ζn(log n)β+3, then by condition (A2), Mj is bounded above by

a geometric random variable with mean ν−1, where ν = a1ζn(log n)β+3.

Hence for 0 < θ < log( 1
1−ν ),

E(eθMj1{µj>ζn(logn)β+3}) ≤
∞∑
h=1

eθhν(1− ν)h−1 = νeθ

1−eθ(1−ν) ,

implying that

[e
θn
2 P (D4) ≤]E(eθM1D4) ≤ ( νeθ

1−eθ(1−ν))
K̂ . (A.9)

Consider θ such that eθ = 1 + ν
2

and check that eθ(1− ν) ≤ 1− ν
2

[⇒ θ <

log( 1
1−ν )]. It follows from (A.9) that

P (D4) ≤ e−
θn
2 ( νe

θ

ν/2
)K̂ = 2K̂eθ(K̂−

n
2
)

= exp[K̂ log 2 + [1 + o(1)]ν
2
(K̂ − n

2
)]

= exp{−[1 + o(1)]nν
4
} = O(n−1).

Since M ≤ n, µb ≤ µ1 and E(µ1) ≤ λ,

E(Mµb1D4) ≤ nE[µ1|µ1 > ζn(log n)β+3]P (D4) ≤ n[λ+ o(1)]P (D4),
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and (A.6) holds for i = 4.

Under D5 for n large, since v(ζ) ∼ α
β(β+1)

ζβ+1 as ζ → 0 and ζn ∼

Cn−
1

β+1 ,

(n−M)v(µb)[>
n
2
v(ζn(log n)β+3)] > λ.

If we explore one more arm, then the additional exploration cost is not

more than λ and reduction in exploitation cost is at least (n − K)v(µb).

Hence D5 is an event of zero probability, in view that we are looking at the

optimal solution of Problem B. Therefore (A.6) holds for i = 5. ut

B Proof of Theorem 1

We preface the proof of Theorem 1 with Lemmas 5–8. The lemmas

are proved in Section B.1 and B.2. Consider X1, X2, . . . i.i.d. Fµ. Let

St =
∑t

u=1Xu, X̄t = St
t

and σ̂2
t = t−1

∑t
u=1(Xu − X̄t)

2. Let

Tb = inf{t : St > bntζn}, (B.1)

Tc = inf{t : St > tζn + cnσ̂t
√
t}, (B.2)

with bn → ∞ and cn → ∞ such that bn + cn = o(nδ) for all δ > 0, and

ζn ∼ Cn−
1

β+1 for C = (λβ(β+1)
α

)
1

β+1 . Let

dn = n−ω for some 0 < ω < 1
β+1

. (B.3)
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Lemma 5. As n→∞,

sup
µ≥dn

[min(µ, 1)EµTb] = O(1), (B.4)

Eg(Tbµ1{µ≥dn}) ≤ λ+ o(1). (B.5)

Lemma 6. Let ε > 0. As n→∞,

sup
(1+ε)ζn≤µ≤dn

[µEµ(Tc ∧ n)] = O(c3n + log n), (B.6)

Eg[(Tc ∧ n)µ1{(1+ε)ζn≤µ≤dn}] → 0. (B.7)

Lemma 7. Let 0 < ε < 1. As n→∞,

sup
µ≤(1−ε)ζn

Pµ(Tb <∞)→ 0.

Lemma 8. Let 0 < ε < 1. As n→∞,

sup
µ≤(1−ε)ζn

Pµ(Tc <∞)→ 0.

The number of times an arm is played has distribution bounded above

by T := Tb∧Tc. Lemmas 7 and 8 say that an arm with µk less than (1−ε)ζn

is unlikely to be rejected, whereas (B.5) and (B.7) say that the regret due

to sampling from an arm with µk more than (1 + ε)ζn is asymptotically

bounded by λ. The remaining (B.4) and (B.6) are technical relations used

in the proof of Theorem 1.

Proof of Theorem 1. The number of times arm k is played is nk,

and it is distributed as Tb ∧ Tc ∧ (n −
∑k−1

`=1 n`). Let 0 < ε < 1. We can
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express

Rn − nζn = z1 + z2 + z3 = z1 + z2 − |z3|, (B.8)

where zi = E[
∑

k:µk∈Di nk(µk − ζn)] for

D1 = [(1 + ε)ζn,∞), D2 = ((1− ε)ζn, (1 + ε)ζn), D3 = (0, (1− ε)ζn].

It is easy to see that z2 ≤ εnζn. We shall show that

z1 ≤ λ+o(1)
(1−ε)βp(ζn) , (B.9)

|z3| ≥ [(1−ε
1+ε

)β + o(1)][nεζn + (1−ε)λ
p(ζn)

]. (B.10)

We conclude Theorem 1 from (B.8)–(B.10) with ε→ 0. ut

Proof of (B.9). Since T = Tb ∧ Tc, by Lemmas 7 and 8,

qn := sup
µ≤(1−ε)ζn

Pµ(T <∞) (B.11)

≤ sup
µ≤(1−ε)ζn

[Pµ(Tb <∞) + Pµ(Tc <∞)]→ 0.

That is an arm with µk less than (1− ε)ζn is rejected with negligible prob-

ability for n large. Since the total number of played arms K is bounded

above by a geometric random variable with mean 1
Pg(T=∞)

, by (B.11) and

p(ζ) ∼ α
β
ζβ as ζ → 0,

EK ≤ 1
Pg(T=∞)

≤ 1
(1−qn)p((1−ε)ζn) ∼

1
(1−ε)βp(ζn) . (B.12)

By (B.5) and (B.7),

Eg(n1µ11{µ1≥(1+ε)ζn})



SUPPLEMENT: CONFIDENCE BOUNDS FOR INFINITE-ARMS BANDIT 11

= Eg(n1µ11{(1+ε)ζn≤µ1≤dn}) + Eg(n1µ11{µ1≥dn})

≤ Eg[(Tc ∧ n)µ11{(1+ε)ζn≤µ1≤dn}] + Eg(Tbµ11{µ1≥dn})

≤ λ+ o(1),

and (B.9) follows from (B.12) and z1 ≤ Eg(n1µ11{µ1≥(1+ε)ζn})EK. ut

Proof of (B.10). Let ` be the first arm with mean not more than

(1− ε)ζn. We have

|z3| = E
[ ∑
k:µk∈D3

nk(ζn − µk)
]

(B.13)

≥ (En`){ζn − Eg[µ|µ ≤ (1− ε)ζn]}.

Since v(ζn) ∼ λ
n

and p(ζ) ∼ α
β
ζβ, v(ζ) ∼ α

β(β+1)
ζβ+1 as ζ → 0,

ζn − Eg[µ|µ ≤ (1− ε)ζn]

= ζn − {(1− ε)ζn − Eg[(1− ε)ζn − µ|µ ≤ (1− ε)ζn]}

= ζn − [(1− ε)ζn − v((1−ε)ζn)
p((1−ε)ζn) ]

∼ εζn + (1−ε)v(ζn)
p(ζn)

∼ εζn + (1−ε)λ
np(ζn)

,

and (B.10) thus follows from (B.13) and

En` ≥ [(1−ε
1+ε

)β + o(1)]n. (B.14)

Let j be the first arm with mean not more than (1 + ε)ζn and M =∑j−1
i=1 ni. We have

En` ≥ (1− qn)E(n−M)P (` = j).
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Since qn → 0 and P (` = j) → (1−ε
1+ε

)β, to show (B.14) it suffices to show

that EM = o(n).

Indeed by (B.4), (B.6) and Eµn1 ≤ Eµ(T ∧ n),

sup
µ≥(1+ε)ζn

[min(µ, 1)Eµn1]

≤ max
[

sup
(1+ε)ζn≤µ≤dn

µEµ(Tc ∧ n), sup
µ≥dn

min(µ, 1)EµTb

]
= O(c3n + log n).

Hence in view that 1
p((1+ε)ζn)

= O(n
β
β+1 ) and Pg(µ1 > (1 + ε)ζn) → 1 as

n→∞,

EM ≤ 1
p((1+ε)ζn)

Eg(n1|µ1 > (1 + ε)ζn)

= O(n
β
β+1 )Eg[

c3n+logn
min(µ1,1)

∣∣µ1 > (1 + ε)ζn]

= O(n
β
β+1 (c3n + log n))

∫ ∞
(1+ε)ζn

g(µ)
min(µ,1)

dµ

= O(n
β
β+1 (c3n + log n)) max(n

1−β
β+1 , log n) = o(n).

The first relation in the line above follows from

∫ ∞
(1+ε)ζn

g(µ)
min(µ,1)

dµ =


O(1) if β > 1,

O(log n) if β = 1,

O(n
1−β
β+1 ) if β < 1. ut

B.1 Proofs of Lemmas 5–8 for discrete rewards

In the case of discrete rewards, one difficulty is that for µk small, there

are potentially multiple plays on arm k before a positive Xkt is observed.
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Condition (A2) is helpful in ensuring that the mean of this positive Xkt is

not too large.

Recall that for integer-valued rewards we assume in condition (B1) that

for 0 < δ ≤ 1, there exists θδ > 0 such that for µ > 0 and 0 ≤ θ ≤ θδ,

Mµ(θ) ≤ e(1+δ)θµ, (B.15)

Mµ(−θ) ≤ e−(1−δ)θµ. (B.16)

In addition,

Pµ(X > 0) ≤ a2µ for some a2 > 0, (B.17)

EµX
4 = O(µ) as µ→ 0. (B.18)

Proof of Lemma 5. Recall that

Tb = inf{t : St > bntζn},

and that dn = n−ω for some 0 < ω < 1
β+1

. We shall show that

sup
µ≥dn

[min(µ, 1)EµTb] = O(1), (B.19)

Eg(Tbµ1{µ≥dn}) ≤ λ+ o(1). (B.20)

Let θ = 2ω log n. Since Xu is integer-valued, it follows from Markov’s

inequality that

Pµ(St ≤ bntζn) ≤ [eθbnζnMµ(−θ)]t ≤ {eθbnζn [Pµ(X = 0) + e−θ]}t. (B.21)
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By Pµ(X > 0) ≥ a1dn for µ ≥ dn [see (A2)], θbnζn = o(dn) [because

θ and bn are both sub-polynomial in n and ζn = O(n−
1

β+1 )] and (B.21),

uniformly over µ ≥ dn,

EµTb = 1 +
∞∑
t=1

Pµ(Tb > t) (B.22)

≤ 1 +
∞∑
t=1

Pµ(St ≤ bntζn)

≤ {1− eθbnζn [Pµ(X = 0) + e−θ]}−1

= {1− [1 + o(dn)][Pµ(X = 0) + d2n]}−1

= [Pµ(X > 0) + o(dn)]−1 ∼ [Pµ(X > 0)]−1.

The term inside {·} in (B.21) is not more than [1+o(dn)](1−a1dn+d2n) < 1

for n large and this gives us the second inequality in (B.22). We conclude

(B.19) from (B.22) and (A2). By (B.22),

Eg[Tbµ1{µ≥dn}] =

∫ ∞
dn

Eµ(Tb)µg(µ)dµ

≤ [1 + o(1)]

∫ ∞
dn

Eµ(X)

Pµ(X>0)
g(µ)dµ

= [1 + o(1)]

∫ ∞
dn

Eµ(X|X > 0)g(µ)dµ→ λ,

hence (B.20) holds. ut

Proof of Lemma 6. Recall that Tc = inf{t : St > tζn + cnσ̂t
√
t} and
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let ε > 0. We want to show that

sup
(1+ε)ζn≤µ≤dn

µEµ(Tc ∧ n) = O(c3n + log n), (B.23)

Eg[(Tc ∧ n)µ1{(1+ε)ζn≤µ≤dn}] → 0. (B.24)

We first show that there exists κ > 0 such that as n→∞,

sup
µ≤dn

[
µ

n∑
t=1

Pµ(σ̂2
t ≥ κµ)

]
= O(log n). (B.25)

Since X is non-negative integer-valued, X2 ≤ X4. Indeed by (B.18), there

exists κ > 0 such that ρµ := EµX
2 ≤ κµ

2
for µ ≤ dn and n large, therefore

by (B.18) again and Chebyshev’s inequality,

Pµ(σ̂2
t ≥ κµ) ≤ Pµ

( t∑
u=1

X2
u ≥ tκµ

)
≤ Pµ

( t∑
u=1

(X2
u − ρµ) ≥ tκµ

2

)
≤ tVarµ(X2)

(tκµ/2)2
= O((tµ)−1),

and (B.25) holds.

By (B.25), uniformly over (1 + ε)ζn ≤ µ ≤ dn,

Eµ(Tc ∧ n) = 1 +
n−1∑
t=1

Pµ(Tc > t) (B.26)

≤ 1 +
n−1∑
t=1

Pµ(St ≤ tζn + cnσ̂t
√
t)

≤ 1 +
n−1∑
t=1

Pµ(St ≤ tζn + cn
√
κµt) +O( logn

µ
).
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Let 0 < δ < 1
2

to be further specified. Uniformly over t ≥ c3nµ
−1,

µt/(cn
√
κµt) → ∞ and therefore by (B.16), µ ≥ (1 + ε)ζn and Markov’s

inequality, for n large,

Pµ(St ≤ tζn + cn
√
κµt) ≤ Pµ(St ≤ t(ζn + δµ)) (B.27)

≤ eθδt(ζn+δµ)M t
µ(−θδ)

≤ etθδ[ζn−(1−2δ)µ] ≤ e−ηtθδµ,

where η = 1 − 2δ − 1
1+ε

> 0 (for δ chosen small). Since 1 − e−ηθδµ ∼ ηθδµ

as µ→ 0,

n−1∑
t=1

e−ηtθδµ ≤ c3nµ
−1 +

∑
t≥c3nµ−1

e−ηtθδµ = O(c3nµ
−1), (B.28)

and substituting (B.27) into (B.26) gives us (B.23). By (B.23),

Eg[(Tc ∧ n)µ1{(1+ε)ζn≤µ≤dn}] = Pg((1 + ε)ζn ≤ µ ≤ dn)O(c3n + log n)

= O(dβn(c3n + log n)),

and (B.24) holds since cn is sub-polynomial in n. ut

Proof of Lemma 7. We want to show that

Pµ(St > tbnζn for some t ≥ 1)→ 0 (B.29)

uniformly over µ ≤ (1− ε)ζn.
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By (B.17) and Bonferroni’s inequality,

Pµ(St > tbnζn for some t ≤ 1√
bnζn

) (B.30)

≤ Pµ(Xt > 0 for some t ≤ 1√
bnζn

) ≤ a2µ√
bnζn
→ 0.

By (B.15) and Markov’s inequality, for n large,

Pµ(St > tbnζn for some t > 1√
bnζn

) (B.31)

≤ sup
t> 1√

bnζn

[e−θ1bnζnMµ(θ1)]
t ≤ e−θ1(bnζn−2µ)/(ζn

√
bn) → 0.

To see the first inequality of (B.31), let fµ be the density of X1 with re-

spect to some σ-finite measure, and let Eθ1
µ (P θ1

µ ) denote expectation (prob-

ability) with respect to density

f θ1µ (x) := [Mµ(θ1)]
−1eθ1xfµ(x).

Let T = inf{t > 1√
bnζn

: St > tbnζn}. It follows from Markov’s inequality

that

Pµ(T = t) = M t
µ(θ1)E

θ1
µ (e−θ1St1{T=t}) (B.32)

≤ [e−θ1bnζnMµ(θ1)]
tP θ1

µ (T = t),

and the first inequality of (B.31) follows from summing (B.32) over t >

1√
bnζn

. ut

Proof of Lemma 8. We want to show that

Pµ(St > tζn + cnσ̂t
√
t for some t ≥ 1)→ 0 (B.33)
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uniformly over µ ≤ (1− ε)ζn.

By (B.17) and Bonferroni’s inequality,

Pµ(St > tζn + cnσ̂t
√
t for some t ≤ 1

cnµ
) (B.34)

≤ Pµ(Xt > 0 for some t ≤ 1
cnµ

) ≤ a2
cn
→ 0.

Moreover

Pµ(St > tζn + cnσ̂t
√
t for some t > 1

cnµ
) ≤ (I) + (II), (B.35)

where (I) = Pµ(St > tζn + cn(µt/2)
1
2 for some t > 1

cnµ
),

(II) = Pµ(σ̂2
t ≤

µ
2

and St ≥ tζn for some t > 1
cnµ

).

By (B.34) and (B.35), to show (B.33), it suffices to show that (I)→ 0 and

(II)→ 0.

Let 0 < δ ≤ 1 be such that 1 + δ < (1 − ε)−1. Hence µ ≤ (1 − ε)ζn

implies ζn ≥ (1 + δ)µ. It follows from (B.15) and Markov’s inequality [see

(B.31) and (B.32)] that

(I) ≤ sup
t> 1

cnµ

[e−θδ[tζn+cn(µt/2)
1
2 ]M t

µ(θδ)]

≤ exp{−θδ[ζn − (1 + δ)µ]/(cnµ)− θδ(cn/2)
1
2}

≤ exp{−θδ(cn/2)
1
2} → 0.

Since X2
u ≥ Xu, the inequality St ≥ tζn(≥ tµ) implies

∑t
u=1X

2
u ≥ tµ, and

this, together with σ̂2
t ≤

µ
2

implies that X̄2
t ≥

µ
2
. Hence by (B.15) and
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Markov’s inequality argument, for n large,

(II) ≤ Pµ(X̄t ≥
√

µ
2

for some t > 1
cnµ

)

≤ sup
t> 1

cnµ

[e−θ1
√
µ/2Mµ(θ1)]

t

≤ exp{−θ1[
√

µ
2
− 2µ]/(cnµ)}

≤ exp
{
− θ1

[
1

cn
√

2(1−ε)ζn
− 2

cn

]}
→ 0. ut

B.2 Proofs of Lemmas 5–8 for continuous rewards

In the case of continuous rewards, the proofs are simpler due to positive

Xkt, in particular λ = Egµ. Recall that for continuous rewards, we assume

in condition (B2) that

sup
µ>0

Pµ(X ≤ γµ)→ 0 as γ → 0. (B.36)

Moreover (B.18) holds and for 0 < δ ≤ 1, there exists τδ > 0 such that for

0 < θµ ≤ τδ,

Mµ(θ) ≤ e(1+δ)θµ, (B.37)

Mµ(−θ) ≤ e−(1−δ)θµ. (B.38)

In addition for each t ≥ 1, there exists ξt > 0 such that

sup
µ≤ξt

Pµ(σ̂2
t ≤ γµ2)→ 0 as γ → 0, (B.39)
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where σ̂2
t = t−1

∑t
u=1(Xu − X̄t)

2 and X̄t = t−1
∑t

u=1Xu for i.i.d. Xu
d∼ Fµ.

Proof of Lemma 5. To show (B.4) and (B.5), it suffices to show that

sup
µ≥dn

EµTb ≤ 1 + o(1). (B.40)

Let θ > 0 to be further specified. By Markov’s inequality,

Pµ(St ≤ bntζn) ≤ [eθbnζnMµ(−θ)]t.

Moreover, for any γ > 0,

Mµ(−θ) ≤ Pµ(X ≤ γµ) + e−γθµ,

hence

EµTb ≤ 1 +
∞∑
t=1

Pµ(St ≤ bntζn) (B.41)

≤ {1− eθbnζn [Pµ(X ≤ γµ) + e−γθµ]}−1.

Let γ = 1
logn

and θ = nη for some ω < η < 1
β+1

. By (B.36), bn is sub-

polynomial in n, and dn = n−ω, for µ ≥ dn,

eθbnζn → 1, e−γθµ → 0, Pµ(X ≤ γµ)→ 0,

and (B.40) follows from (B.41). ut

Proof of Lemma 6. By (B.18), for µ small,

ρµ := EµX
2 = Eµ(X21{X<1}) + Eµ(X21{X≥1})

≤ EµX + EµX
4 = O(µ).
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Hence to show (B.6) and (B.7), we proceed as in the proof of Lemma 6 for

discrete rewards, applying (B.38) in place of (B.16), with any fixed θ > 0

in place of θδ in (B.27) and (B.28). ut

Proof of Lemma 7. It follows from (B.37) with θ = τ1
µ

and Markov’s

inequality [see (B.31) and (B.32)] that for n large,

Pµ(St > tbnζn for some t ≥ 1)

≤ sup
t≥1

[e−θbnζnMµ(θ)]t ≤ e−θ(bnζn−2µ) → 0. ut

Proof of Lemma 8. Let η > 0 and choose δ > 0 such that (1+δ)(1−

ε) < 1. It follows from (B.37) with θ = τδ
µ

and Markov’s inequality that for

u large,

Pµ(St ≥ tζn + cnσ̂t
√
t for some t > u) (B.42)

≤ Pµ(St ≥ tζn for some t > u)

≤ sup
t>u

[e−θζnMµ(θ)]t ≤ e−uθ[ζn−(1+δ)µ] ≤ e−uτδ[(1−ε)
−1−(1+δ)] ≤ η.

By (B.39), we can select γ > 0 such that for n large (so that µ ≤

(1− ε)ζn ≤ min1≤t≤u ξt),

u∑
t=1

Pµ(σ̂2
t ≤ γµ2) ≤ η. (B.43)
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Let θ = τ1
µ

. By (B.37), (B.43) and Bonferroni’s inequality,

Pµ(St > tζ + cnσ̂t
√
t for some t ≤ u) (B.44)

≤ Pµ(St ≥ cnσ̂t
√
t for some t ≤ u)

≤ η +
u∑
t=1

Pµ(St ≥ cnµ
√
γt)

≤ η +
u∑
t=1

e−θcnµ
√
γtM t

µ(θ)

≤ η +
u∑
t=1

e−τ1(cn
√
γt−2t) → η.

Lemma 8 follows from (B.42) and (B.44) since η can be chosen arbitrarily

small. ut

C Proof of Theorem 2

The idealized algorithm in the beginning of Section 5.1 of the main

manuscript captures the essence of how CBT behaves. We reveal µk when

the first positive loss of arm k appears. If µk > ζ [with optimality when

ζ = ζn, see (5.3) of the main manuscript] then we stop sampling from arm

k and sample the next arm k+ 1. If µk ≤ ζ then we exploit arm k a further

n times before stopping.

In the idealized version of empirical CBT, we reveal µk when the first

positive loss of arm k appears and stop exploring the arm. Since the first
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positive loss of an arm has mean λ, the sum of losses after k arms have been

played has mean kλ. When min1≤i≤k µi ≤ ζ̂k(:=
kλ
n

) we stop exploring, and

exploit the best arm a further n times. More specifically:

Idealized empirical CBT

1. For k = 1, 2, . . . : Draw nk rewards from arm k, where

nk = inf{t ≥ 1 : Xkt > 0}.

2. Stop when there are K arms, where

K = inf
{
k ≥ 1 : min

1≤i≤k
µi ≤ kλ

n

}
.

3. Draw n additional rewards from arm j satisfying µj = min1≤k≤K µk.

The regret of this algorithm is R′n = λEK + nE(min1≤k≤K µk).

Theorem 2. The idealized empirical CBT has regret R′n ∼ CIβn
β
β+1 , where

C = (λβ(β+1)
α

)
1

β+1 and Iβ = ( 1
β+1

)
1

β+1 (2− 1
(β+1)2

)Γ(2− β
β+1

).

Proof. We stop exploring after K arms, where

K = inf{k : min
1≤j≤k

µj ≤ ζ̂k}, ζ̂k = kλ
n
. (C.1)
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Let

D1
k = {ζ̂k − λ

n
< min

1≤j≤k−1
µj ≤ ζ̂k}, D2

k = { min
1≤j≤k−1

µj > ζ̂k, µk ≤ ζ̂k}.

We check thatD1
k, D

2
k are disjoint, and thatD1

k∪D2
k = {K = k}. Essentially

D1
k is the event that K = k and the best arm is not k, and D2

k the event

that K = k and the best arm is k.

For any fixed k ∈ Z+,

P (D1
k) = [1− p(ζ̂k − λ

n
)]k−1 − [1− p(ζ̂k)]k−1 (C.2)

= {1− p(ζ̂k) + [1 + o(1)]λ
n
g(ζ̂k)}k−1 − [1− p(ζ̂k)]k−1

∼ {[1− p(ζ̂k)]k−1}kλn g(ζ̂k)

∼ exp(−αλβ

β
kβ+1n−β)αλβkβn−β.

Moreover

E(R′n|D1
k) ∼ kλ+ n(kλ

n
) = 2kλ. (C.3)

Likewise,

P (D2
k) = {[1− p(ζ̂k)]k−1}p(ζ̂k) (C.4)

∼ exp(−αλβ

β
kβ+1n−β)αλ

β

β
kβn−β,

E(R′n|D2
k) = kλ+ nE(µ|µ ≤ ζ̂k) (C.5)

= 2kλ− nv(ζ̂k)

p(ζ̂k)
∼ (2− 1

β+1
)kλ.
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Combining (C.2)–(C.5) gives us

R′n =
∞∑
k=1

[E(R′C |D1
k)P (D1

k) + E(R′C |D2
k)P (D2

k)] (C.6)

∼
∞∑
k=1

exp(−αλβ

β
kβ+1n−β)(αλ

β+1

β
kβ+1n−β)(2β + 2− 1

β+1
),

It follows from (C.6) and a change of variables x = αλβ

β
kβ+1n−β that

R′n ∼ (2β + 2− 1
β+1

)

∫ ∞
0

exp(−αλβ

β
kβ+1n−β)(αλ

β+1

β
kβ+1n−β)dk

= (2β + 2− 1
β+1

)

∫ ∞
0

1
β+1

(λβ
α

)
1

β+1n
β
β+1 exp(−x)x

1
β+1dx

= (2− 1
(β+1)2

)(λβ
α

)
1

β+1Γ(2− β
β+1

)n
β
β+1 ,

and Theorem 2 holds. ut

D Verifications of (A2), (B1) and (B2)

The optimality of CBT in Theorem 1 holds under the assumption:

(A2) There exists a1 > 0 such that Pµ(X > 0) ≥ a1 min(µ, 1) for all µ.

In addition, optimality for discrete rewards requires assumption (B1) [i.e.

(B.15)–(B.18)] and optimality for continuous rewards requires assumption

(B2) [i.e. (B.36)–(B.39)]. In the following examples we check that these

assumptions hold in specific discrete and continuous distributions.

Example 3. Let Fµ be a distribution with support on 0, . . . , I for some
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positive integer I > 1 and having mean µ. Let pi = Pµ(X = i). We check

that Pµ(X > 0) ≥ µI−1 and therefore (A2) holds with a1 = I−1.

Let θδ > 0 be such that

eiθ − 1 ≤ iθ(1 + δ) and e−iθ − 1 ≤ −iθ(1− δ) for 0 ≤ iθ ≤ Iθδ. (D.1)

By (D.1) for 0 ≤ θ ≤ θδ,

Mµ(θ) =
I∑
i=0

pie
iθ ≤ 1 + (1 + δ)µθ,

Mµ(−θ) =
I∑
i=0

pie
−iθ ≤ 1− (1− δ)µθ,

and (B.15), (B.16) follow from 1 + x ≤ ex. Moreover (B.17) holds with

a2 = 1 and (B.18) holds because EµX
4 =

∑I
i=0 pii

4 ≤ I3µ.

Example 4. If X
d∼ Poisson(µ), then

Mµ(θ) = exp[µ(eθ − 1)],

and both (B.15) and (B.16) hold for θδ > 0 satisfying

eθδ − 1 ≤ θδ(1 + δ) and e−θδ − 1 ≤ −θδ(1− δ).

Since Pµ(X > 0) = 1− e−µ, (A2) holds with a1 = 1− e−1, and (B.17) holds

with a2 = 1. The relation in (B.18) holds because

EµX
4 =

∞∑
k=1

k4µke−µ

k!
= µe−µ + e−µO

( ∞∑
k=2

µk
)
.
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Example 5. Let Z be a continuous non-negative random variable with

mean 1, and with Eeτ0Z < ∞ for some τ0 > 0. Consider X distributed as

µZ. Condition (A2) holds with a1 = 1. We conclude (B.36) from

sup
µ>0

Pµ(X ≤ γµ) = P (Z ≤ γ)→ 0 as γ → 0.

Let 0 < δ ≤ 1. Since limτ→0 τ
−1 logEeτZ = EZ = 1, there exists τδ > 0

such that for 0 < τ ≤ τδ,

EeτZ ≤ e(1+δ)τ and Ee−τZ ≤ e−(1−δ)τ . (D.2)

Since Mµ(θ) = Eµe
θX = EeθµZ and Mµ(−θ) = Ee−θµZ , we conclude (B.37)

and (B.38) from (D.2) with τ = θµ. We conclude (B.18) from EµX
4 =

µ4EZ4, and (B.39), for arbitrary ξt > 0, from

Pµ(σ̂2
t ≤ γµ2) = P (σ̂2

tZ ≤ γ)→ 0 as γ → 0,

where σ̂2
tZ = t−1

∑t
u=1(Zu − Z̄t)2, for i.i.d. Z and Zu.


