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S1. Proofs

Proof of Theorem 1. (i) By Corollary 6 (i) of Xu (2003), we have W1 �

mr(m � r)/n2, with equality if and only if each component appears as

equally often as possible in every column. When n = qm+r, Fn,m contains

q m⇥m Latin squares, so each level appears in each column q times in the

first qm runs of Fn,m. Each column of the last r runs of Fn,m contains each

level at most once, meaning that the maximum di↵erence in the number

of occurrences of each level per column is 1. Thus, Fn,m has minimum

W1 = mr(m� r)/n2 among all possible designs.

(ii) This is a direct result of (i).

(iii) We show that Fn,m is an orthogonal array of weak strength t for

all t � 1. A design is an orthogonal array of weak strength t if all possible

level combinations for any t columns appear as equally often as possible (Xu,

2003). From (i) we know that Fn,m has minimum W1. Since Fm(m�1),m is

a COA with the property that every pair of level combinations shows up

exactly once, we know that the sub-design Fn,m, n  m(m � 1), contains

each pair of level combinations either 0 or 1 times. Since n  m(m � 1),

Fn,m is an orthogonal array of weak strength t for all t � 1. Hence, by
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Theorems 2 and 3 of Xu (2003), design Fn,m has generalized minimum

aberration among all possible designs.

(iv) If n = m(m�1), then the claim is true by the mutual orthogonality

of the Latin squares derived in Step 1 of Algorithm 1. The two COA

properties of a design given in Definition 1 are invariant with respect to

column permutation. Therefore, each Ci, i = 1, . . . , (m � 2)!, is also a

COA(m(m � 1),m) and for any n > 0 such that n/(m(m � 1)) = � is

an integer, concatenating the � COA(m(m � 1),m) designs produces a

COA(n,m).

Proof of Theorem 2. We prove the claim for any COA(n,m) as the full

design Fm is a special case with n = m!. For a point b = (b1, . . . , bm) 2 ⌦,

the vector of regression functions under the quadratic model (3.4) is

f(b) = (1, p1(b1), . . . , p1(bm�1), p2(b1), . . . , p2(bm�1))
T,

with the first m terms being the regression functions under the first-order

model (3.3). For any COA(n,m) the information matrix under the quadratic

model and its inverse take the form

M (⇠) =

2

6664

1 01⇥(m�1) 01⇥(m�1)

0(m�1)⇥1 �J(m�1) + (1� �)I(m�1) 0(m�1)⇥(m�1)

0(m�1)⇥1 0(m�1)⇥(m�1) �J(m�1) + (1� �)I(m�1)

3

7775
,

M (⇠)�1 =

2

6664

1 01⇥(m�1) 01⇥(m�1)

0(m�1)⇥1 �(m�)�1(J(m�1) + I(m�1)) 0(m�1)⇥(m�1)

0(m�1)⇥1 0(m�1)⇥(m�1) �(m�)�1(J(m�1) + I(m�1))

3

7775
,

where � = �1/(m� 1), Jk is a k ⇥ k matrix of 1’s, and Ik is the k ⇥ k
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identity matrix. The top left 2⇥2 submatrix in both cases is the equivalent

information matrix and inverse under the first-order model. Now we can

apply the checking condition (4.2) provided by the equivalence theorem and

exploit the properties of the orthogonal polynomial contrasts (3.2).

f(b)TM (⇠)�1
f(b) = 1� 2

m�

m�1X

k=1

p21(bk)�
2

m�

m�2X

k=1

m�1X

l>k

p1(bk)p1(bl)

� 2

m�

m�1X

k=1

p22(bk)�
2

m�

m�2X

k=1

m�1X

l>k

p2(bk)p2(bl).

Because b = (b1, . . . , bm) is a permutation of {1, . . . ,m}, using (3.2) and

some algebra, for j = 1, 2, we have

2
m�1X

k=1

p2
j
(bk) + 2

m�2X

k=1

m�1X

l>k

pj(bk)pj(bl) = m.

Therefore,

f(b)TM (⇠)�1
f(b) = 1� 1

�
� 1

�
= 1 + (m� 1) + (m� 1) = 2m� 1.

As the quadratic model has p = 2m � 1 parameters, the equality in (4.2)

holds for any b 2 ⌦. By the equivalence theorem, every COA(n,m) is

D-optimal for the quadratic model. The proof of D-optimality for the first-

order model is simpler. This completes the proof.

Proof of Theorem 3. For the full design Fm and the second-order position

model (3.5), let X be the n ⇥ p model matrix and M = X
T
X/n be the

p ⇥ p information matrix with n = m! and p = (m � 1)(m + 2)/2. Let

H = X(XT
X)�1

X
T be the hat matrix. To prove the D-optimality, we
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need to show that the equality in (4.2) holds for any b 2 ⌦. For any b 2 ⌦,

by the standard linear model theory, the variance of the fitted value when

x = b is V ar(ŷ(x)) = �2
f(b)T(XT

X)�1
f(b) = n�1�2

f(b)TM�1
f(b).

Because every b is a row of the full design Fm, it is su�cient to show that

each of the diagonal elements of the hat matrix H is p/n.

To do this, we consider the extended second-order model

y = �0 +
mX

k=1

p1(bk)�k +
mX

k=1

p2(bk)�kk +
X

1k<lm

p1(bk)p1(bl)�kl + ", (S1.1)

which includes all m first-order, m pure quadratic and m(m� 1)/2 bilinear

(or interaction) terms. The extended second-order model has q = (m +

1)(m + 2)/2 parameters. Let Z be the n ⇥ q model matrix for the full

design Fm. Due to the constraints on the orthogonal polynomials and the

fact that each row is a permutation, ZT
Z has rank p and its inverse does not

exist, so we consider its Moore-Penrose generalized inverse (ZT
Z)�. By the

standard linear model theory (Seber and Lee, 2003), the projection matrix

P = Z(ZT
Z)�ZT of the extended second-order model (S1.1) is identical

to the hat matrix H = X(XT
X)�1

X
T of the second-order position model

(3.5) because columns of Z and X span the same linear space. Under

the extended model (S1.1), all variables are exchangeable; therefore, the

variances of the fitted values are the same for all rows of the full design.

This is equivalent to saying that the diagonal elements of projection matrix

P are the same. Since P is idempotent and has rank p, its trace is equal

to its rank. Therefore, all of the diagonal elements of P , and hence H , are

equal to p/n. This completes the proof.
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S2. A-optimality

Using a popular metheuristic algorithm, Di↵erential Evolution (Storn and

Price 1997; Chakraborty 2008), we have found nearly A-optimal designs

for the position models for several values of m. Table 6 shows the relative

e�ciency of Fm to these designs and indicates that the full design is indeed

sub-optimal in most cases, with its e�ciency growing worse as m increases.

Furthermore, we have found that A-optimal designs under our models de-

pend on specifically which component e↵ects are removed from the model

to make it estimable. Since our decision to remove the e↵ect of component

m was in large part arbitrary, we hope to explore this phenomenon further

and produce A-optimal designs which are robust to this choice.

Table 6: Relative A-e�ciency of Fm to near-optimal designs.
m first-order quadratic second-order
3 0.951 1 0.951
4 0.909 0.987 0.885
5 0.879 0.934 0.812

S3. Additional Permutation Robustness Results

For each sample size n in Figure 2 up to five unique designs are necessary to

obtain the largestD-e�ciency under each model. Instead, we could consider

a single design F
⇤
n,m

for each combination of n and m that is derived from

maximizing the geometric mean e�ciency of the estimable models, akin to

those presented in Table 5. The results of this analysis are presented in

Figure 3. Generally, we see that many of the e�ciencies are on par with

what we observed when maximizing the value for each model individually.

A notable exception is the e�ciency of the maximal geometric mean design
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under the PWO model, which for some combinations of n and m is slightly

lower than the e�ciency of the design that solely optimizes performance for

the PWO model; see Figure 2.

While Figures 2 and 3 substantiate our claim that our algorithm pro-

duces e�cient designs, they do not inherently show how much there is to

gain or lose by selection of permutations in Algorithm 1. They also do not

consider the e↵ect of level or Ci permutations. To remedy this, Table 7

gives the maximal DPWO and DSO values obtained through a brute force

search over all choices of the three permutations and the improvement rel-

ative to the values of the Fn,m designs in Table 5. We do not include the

other e�ciencies since many of the designs are optimal under the CP, first-

order and quadratic models and show minimal improvement with column

permutations. The notation F
+
n,m

is used to represent the resulting designs.

�PWO and �SO give the di↵erence in D-e�ciency under the specified model

between the best permuted design and the design Fn,m given in Table 5.

Cases for which the same set of permutations generate the best design for

both models are indicated by †.

Table 7: Maximal D-e�ciencies of designs for the PWO and second-order
models under permutation.

D-e�ciency Change
n m Design DPWO DSO �PWO �SO

†12 4 F
+
12,4 0.909 1 0 0

†16 4 F
+
16,4 0.917 0.953 0 0

†20 4 F
+
20,4 0.954 0.961 0 0

20 5 F
+
20,5 0.898 0.959 0.898 0

24 5 F
+
24,5 0.926 0.961 0.381 0.012

40 5 F
+
40,5 0.969 0.999 0.08 0

†60 5 F
+
60,5 0.977 0.999 0 0.013
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(a) m = 4

(b) m = 5

(c) m = 7

Figure 3: The D-e�ciency of F
⇤
n,m

which maximizes the geometric mean
e�ciency for variable run sizes for (a) m = 4, (b) m = 5, and (c) m = 7.
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There are several interesting observations we can make from Table 7.

First, as expected, we see that the DPWO values of our designs in situations

that were previously troubling greatly improve with this manipulation, clos-

ing the gap between our designs and Voelkel’s. We also see minor improve-

ments in the DSO values for some cases with m = 5. Most importantly,

considering all three types of permutations did not lead to designs that

substantially outperform the F
⇤
n,m

designs that only considered column

permutations.

We are also interested in knowing the worst e�ciency attainable under

our algorithm. Table 8 summarizes this e↵ect in the same manner as before,

this time using F
�
n,m

to denote the worst design. In this case we see that

compared to the small gains in DSO of Table 7, the loss of e�ciency due

to poor selection of permutations is relatively large when m = 5. On the

other hand, the minimal value of DPWO is often not a substantial decrease

from the values found without permutations. For larger m, the brute force

approach is limited by the same combinatorial explosion that motivates

order-of-addition designs.

Table 8: Minimal D-e�ciencies of designs for the PWO and second-order
models under permutation.

D-e�ciency Change
n m Design DPWO DSO �PWO �SO

†12 4 F
�
12,4 0.909 1 0 0

†16 4 F
�
16,4 0.917 0.953 0 0

†20 4 F
�
20,4 0.954 0.961 0 0

20 5 F
�
20,5 0 0.428 0 �0.531

24 5 F
�
24,5 0.545 0.581 0 �0.368

†40 5 F
�
40,5 0.784 0.735 �0.105 �0.264

†60 5 F
�
60,5 0.861 0.875 �0.116 �0.111
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S4. Additional Model Misspecification Results

We fix (n,m) = (12, 4) and consider the PWO and CP models. We define

our confidence that the PWO model is indeed the true model as ↵ 2 [0, 1]

and similarly our confidence in the CP model as 1 � ↵. We then use the

discrete form of Di↵erential Evolution (Cuevas et al. 2011) to find 12-run

designs for various values of ↵ that maximize the desirability function given

by

Ḡ(↵)(⇠) = D↵

PWO
(⇠)D1�↵

CP
(⇠). (S4.1)

Di↵erential Evolution is inspired by principles of natural selection, mu-

tation and genetic crossover and has been shown to work well for finding

optimal designs while only depending on the choice of a few parameters

(Paredes-Garćıa and Castaño-Tostado, 2017). We implement it using the

R package DEoptim (Ardia et al. 2011) and after choosing appropriate set-

tings for the parameters, it is able to quickly locate the global maximum

for all ↵ = 0, 0.1, . . . , 1.

Figure 4 shows the unweighted e�ciencies of the designs found by the

search. In this plot, ↵ gives our confidence in the PWO model. When

↵ = 0, we assume that the data follow the CP model with high confidence

(1 � ↵ = 1). In this case the algorithm finds a design that is isomorphic

to F12,4 from Algorithm 1, with the e�ciencies matching our results from

Table 5. Designs with this property are represented in the plot by the “F”

symbol. As we then increase ↵ and split our confidence between this model

and the PWO model, F12,4 continues to have maximal Ḡ(↵). In fact, it is

not until we increase ↵ from 0.7 to 0.8 that this changes. For ↵ � 0.8

the algorithm finds a design equivalent to Voelkel.12a. These designs are
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denoted with the “V” symbol.

Figure 4: D-e�ciencies of designs that maximize (S4.1).

This result demonstrates that our designs are indeed robust to model

misspecification in this case. In addition to the model’s form, there is also

the underlying assumption made by each of these models as to whether the

relative positions or absolute positions are important in determining the

response. By demonstrating that our designs are robust to model misspec-

ification under this pair of models, we have also shown that they are robust

to this assumption.
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