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Proof of all results

In what follows, E1 and cov1 denote unconditional expectation and covari-

ance with respect to the randomization at the WP stage, while E2 and cov2

denote expectation and covariance with respect to the randomization at the

SP stage, conditional on the WP stage assignment.

Proof of Proposition 1. Follows from straightforward conditioning arguments.
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Proof of Theorem 2. Recall that
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so that
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Since τ̂ =
∑

z1∈Z1

∑
z2∈Z2

g(z1z2)U
obs

(z1z2), we have that

var(τ̂) =
∑
z1∈Z1

∑
z2∈Z2

∑
z∗1∈Z1

∑
z∗2∈Z2

g(z1z2)g(z∗1z
∗
2)cov

{
U

obs
(z1z2), U

obs
(z∗1z

∗
2)
}
.

Substituting the expression of cov
{
U

obs
(z1z2), U

obs
(z∗1z

∗
2)
}

from (S1.1)

in the above, the first two terms in the expression of var(τ̂) in Theorem 1

follow immediately. The last term can be explained as
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Proof of Theorem 3.
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The result stated in Theorem 3 is evident from the above.

Proof of Proposition 2. Because w 6= w∗, by (2.5) and the definition of Gobs
w ,

conditionally on the assignment of the WPs to the level combinations of the
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WP factors, Gobs
w and Gobs

w∗ are independent and the conditional expectation

of their product equals{∑
z2∈Z2

g(z1wz2)Y w(z1wz2)

}{∑
z2∈Z2

g(z1w∗z2)Y w∗(z1w∗z2)

}
.

The result now follows from (3.2), noting that the pair (z1w, z1w∗) equals

any (z1, z
∗
1) with probability

r1(z1){r1(z∗1 )−δ(z1,z∗1 )}
W (W−1)

.

Proof of the necessity part of Theorem 5. Suppose a psd matrixB = (bww∗)

of order W and satisfying (c1)-(c3) exists. Then by (c1),

|bww∗| ≤MwMw∗ , w, w∗ = 1, . . . ,W, w 6= w∗. (S1.2)

Hence using (c2), (S1.2), and (c1) in succession,

0 = bW1+. . .+bWW ≥ bWW−MW (M1+. . .+MW−1) = MW (MW−M1−. . .−MW−1),

(S1.3)

which implies MW ≤ M1 + . . .+MW−1. If possible, let equality hold here.

Then equality holds throughout in (S1.3), and invoking (S1.2), this yields

bWw = −MWMw, w = 1, . . . ,W − 1. (S1.4)

For any w,w∗ such that w < w∗ < W , by (c1) and (S1.4), the principal mi-

nor of B, as given by its wth, w∗th and W th rows and columns turns out to

be −M2
W (bww∗−MwMw∗)2. Because this principal minor is nonnegative due
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to psd-ness of B, it follows that bww∗ = MwMw∗ . This, in conjunction with

(c1) and (S1.4), implies that B = bb′, where b = (M1, . . . ,MW−1,−MW )′.

But then rank(B) = 1 < W − 1, and (c3) is violated. This contradiction

proves the necessity of the condition MW < M1 + . . .+MW−1.

To prove the sufficiency part of Theorem 5, we first state a lemma that

is crucial in this proof and also leads to the algorithm for construction of

the symmetric psd matrix B of order W that satisfies conditions (c1)-(c3).

Lemma 1. Let W ≥ 3. Suppose M1, . . . ,MW are not all equal and M1 ≤

. . . ≤ MW , as per (5.1). Let e denote the (W − 1) × 1 vector of ones and

µ = (M1, . . . ,MW−1)′.

(a) Then there exists a (W − 1)× 1 vector x with elements ±1 such that

|µ′x| < MW .

(b) If, in addition, condition (5.3) holds, i.e., MW < M1 + . . . + MW−1,

then, with the vector x as in (a) above, there exist nonnegative con-

stants a1, a2 satisfying a1 + a2 < 1, such that equation (5.6) holds,

i.e.,

a1

{
(µ′x)

2 − µ′µ
}

+ a2

{
(µ′e)

2 − µ′µ
}

= M2
W − µ′µ.
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Proof of Lemma 1. Part (a). It will suffice to show that there exist x1, . . . , xW−1,

each +1 or −1, such that |
∑W−1

w=1 Mwxw| < MW . One can then simply take

x = (x1, . . . , xW−1)′. Recall that M1 ≤ M2 ≤ . . . ≤ MW , as per (5.1).

Because M1 . . . ,MW are not all equal, this yields

M1 < MW . (S1.5)

Let h be the largest nonnegative integer such that

MW−2h = MW . (S1.6)

By (S1.5), W − 2h ≥ 2. If h ≥ 1, define

xW−h = . . . = xW−1 = 1, xW−2h = . . . = xW−h−1 = −1, (S1.7)

and note that
W−1∑

w=W−2h

Mwxw = 0, (S1.8)

because by (5.1) and (S1.6), Mw = MW for w = W − 2h, . . . ,W − 1.

Now, if W − 2h = 2, then with x1 = 1 and x2, . . . , xW−1 as in (S1.7),

|
∑W−1

w=1 Mwxw| = M1 < MW , by (S1.5) and (S1.8).

Next, let W − 2h ≥ 3. Then, by (5.1),

W−2h−1∑
w=2

Mw ≥ (W − 2h− 2)M2 ≥M1.

Let w1 be the largest integer in {1, . . . ,W − 2h− 2} such that
∑w1

w=1Mw ≤∑W−2h−1
w=w1+1 Mw. If w1 = W − 2h − 2, then

∑W−2h−2
w=1 Mw ≤ MW−2h−1. So,
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with x1 = . . . = xW−2h−2 = −1, xW−2h−1 = 1 and xW−2h, . . . , xW−1 as in

(S1.7) when h ≥ 1,∣∣∣∣∣
W−1∑
w=1

Mwxw

∣∣∣∣∣ = MW−2h−1 −
W−2h−2∑
w=1

Mw < MW−2h−1 ≤MW ,

by (S1.8).

Now, suppose 1 ≤ w1 ≤ W − 2h− 3, in which case W − 2h ≥ 4. Then,

w1∑
w=1

Mw ≤
W−2h−1∑
w=w1+1

Mw, and

w1+1∑
w=1

Mw >
W−2h−1∑
w=w1+2

Mw.

As a result, either

(i)

∣∣∣∣∣
W−2h−1∑
w=w1+1

Mw −
w1∑
w=1

Mw

∣∣∣∣∣ < MW or (ii)

∣∣∣∣∣
w1+1∑
w=1

Mw −
W−2h−1∑
w=w1+2

Mw

∣∣∣∣∣ < MW .

Else,

W−2h−1∑
w=w1+1

Mw −
w1∑
w=1

Mw ≥MW , as well as

w1+1∑
w=1

Mw −
W−2h−1∑
w=w1+2

Mw ≥MW .

Adding these two inequalities, we have Mw1+1 ≥ MW , which is impossible

by the definition of h, because w1 + 1 ≤ W − 2h− 2.

If (i) holds, then the choice x1 = . . . = xw1 = −1, xw1+1 = . . . =

xW−2h−1 = 1, coupled with xW−2h, . . . , xW−1 as in (S1.7) when h ≥ 1,

entails
∣∣∣∑W−1

w=1 Mwxw

∣∣∣ < MW , by (S1.8). Similarly, if (ii) holds, then the

choice x1 = . . . = xw1+1 = −1, xw1+2 = . . . = xW−2h−1 = 1, coupled with

xW−2h, . . . , xW−1 as in (S1.7) when h ≥ 1, entails
∣∣∣∑W−1

w=1 Mwxw

∣∣∣ < MW .
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Part (b): Let MW < M1 + . . .+MW−1 = µ′e, and let the vector x be as in

part (a) above, so that |µ′x| < MW . Let φ1 = (µ′x)2 − µ′µ, φ = M2
W − µ′µ

and φ2 = (µ′e)2 − µ′µ. Then φ1 < φ < φ2, as |µ′x| < MW < µ′e. As

a result, there exist constants ã1 and ã2 such that 0 ≤ ã1, ã2 < 1 and

ã1φ1 < φ < ã2φ2. Let ξ = (ã2φ2 − φ) / (ã2φ2 − ã1φ1). Then 0 < ξ < 1.

Hence, if we take a1 = ã1ξ, a2 = ã2(1− ξ), then a1, a2 ≥ 0 and a1 + a2 < 1,

because a1 + a2 is a weighted average of ã1 and ã2, both of which are less

than one. Moreover, a1φ1 + a2φ2 = φ by the definition of ξ, i.e., a1 and a2

satisfy (5.6).

Proof of the sufficiency part of Theorem 5. In view of Lemma 1, this fol-

lows from steps 1-4 in Section 5, noting that (i) the matrix A there is

positive definite, and hence the matrix B there is psd of rank W − 1 with

each row sum zero, (ii) A has diagonal elements M2
1 , . . . ,M

2
W−1, and (iii)

by (29),

e′Ae = a1(µ′x)2 + a2(µ′e)2 + (1− a1 − a2)µ′µ = M2
W ,

because De = µ.
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Symbol Chart

Table 1: Symbols used in the manuscript and their explanation

Symbol Meaning Symbol Meaning

A matrix, in sufficiency part of Theorem 4 a constant, in sufficiency part of Theorem 4

B matrix in new variance estimator b element of matrix B

D diagonal matrix of whole-plot sizes e vector of ones

E expectation g function defining treatment contrast

F factor h integer, in proving Lemma A.1(a)

G term associated with the new variance estimator i dummy subscript for unit

H term used in defining the new variance estimator k dummy subscript

I identity matrix m number of factors

J matrix of ones r treatment replication

M number of sub-plots in a whole plot u dummy subscript

N total number of units v dummy subscript

S similar to mean square/product component w dummy, whole-plot index

T set of whole- or sub-plots x vector of ±1, in sufficiency of Theorem 4

U transformed outcome z treatment combination

V variance estimator

W number of whole-plots τ treatment contrast

Y potential outcome δ Kronecker delta

Z set of level combinations µ subvector of whole-plot sizes

φ in the proof of Lemma A.1(b)

Ω whole-plot ζ in the proof of Lemma A.1(b)

∆ bias in variance estimation λ eigenvalue


