
Bayesian Estimation of Gaussian Conditional Random Fields

Lingrui Gan, Naveen N. Narisetty, and Feng Liang

Department of Statistics, University of Illinois at Urbana-Champaign

Supplementary Material

Section S1 provides a proof of Proposition 1 stated in the main paper.

Section S2 presents useful calculations related to the log-likelihood function.

Section S3 provides proofs for all the technical results from the main paper.

Section S4 provides details of our proposed EM algorithm and its derivation.

Section S5 provides additional simulation results omitted in the main paper.

S1 The spike-and-slab Lasso penalty penSS(·)

In this section, we present the proof of Proposition 1 stated in the main

paper.

Proof. Throughout the proof, assume θ > 0. Recall penSS(θ) = log π(θ).

1

We have

pen′SS(θ) = −π
′(θ)

π(θ)
=

1
v1

η
2v1

exp
{
− |θ|

v1

}
+ 1

v0

(1−η)
2v0

exp
{
− |θ|

v0

}
π(θ)

=
1

v1

η(θ) +
1

v0

(
1− η(θ)

)
= Λ(θ)

where Λ(θ) is a discrete random variable:

Λ(θ) =

1
v1
, w/p η(θ);

1
v0
, w/p 1− η(θ);

and 0 ≤ η(θ) ≤ 1 is the conditional probability of θ belonging to the “slab”

given that θ is from a mixture of “slab” and “spike”, namely,

η(θ) =

η
2v1

exp
{
− |θ|

v1

}
η

2v1
exp

{
− |θ|

v1

}
+ 1

v0

(1−η)
2v0

exp
{
− |θ|

v0

}
=

1

1 +
(

1−η
η

)(
v1

v0

)
exp

{
− |θ|(1

v0
− 1

v0
)
} .

Next we compute the second derivative:

pen′′SS(θ) = −π
′′(θ)π(θ)− [π′(θ)]2

π2(θ)

=
[π′(θ)
π(θ)

]2

− π′′(θ)

π(θ)

=
[
Λ(θ)

]2 − [Λ(θ)2
]

= −Var(Λ(θ)).

Since pen′′SS(θ) = −Var(Λ(θ)) ≤ 0. penSS(θ) is concave.

2

S2 The log-likelihood function

Below we list useful calculations related to the log-likelihood function

`(Φ) =
n

2

(
log det(Λ)− tr(SyyΛ + 2SxyΘ

T + Λ−1ΘTSxxΘ)
)
. (S2.1)

The gradient and Hessian matrix of the log-likelihood function `(Φ)

take the following forms:

∇`(Φ) =

∇Λ`(Φ)

∇Θ`(Φ)

 , ∇2`(Φ) =

∇2
Λ,Λ`(Φ) ∇2

Λ,Θ`(Φ)

∇2
Λ,Θ`(Φ) ∇2

Θ,Θ`(Φ)

 ,
where

∇Λ`(Φ) =
n

2

(
− Syy + Λ−1 + Λ−1ΘTSxxΘΛ−1

)
∇Θ`(Φ) =

n

2

(
− 2Sxy − 2SxxΘΛ−1

)
,

(S2.2)

and

∇2`(Φ) =
n

2

−Λ−1 ⊗ (Λ−1 + 2Λ−1ΘTSxxΘΛ−1) 2Λ−1 ⊗ Λ−1ΘTSxx

2Λ−1 ⊗ Λ−1ΘTSxx −2Λ−1 ⊗ Sxx

 .
(S2.3)

Throughout we use ∇`(Φ̃) to denote the derivative evaluated at Φ̃. For

example, ∇`(Φ0) denotes the derivative evaluated at the true parameter

value Φ0 and H := ∇2`(Φ0) denotes the Hessian matrix (S2.3) evaluated at

Φ0.

3

S3 Proofs of main theorems

S3.1 Proof of Theorem 1

Proof. By Lemma 1, we have

γn := ‖∇`(Φ0)‖max ≤ K∗
√
n log(10(p+ q)2/η) ∼

√
n log(p+ q).

By Lemma 2, we have have β(Φ0; r, α) ≥ nβ0 for r ≤ r0.

Let ∆ = Φ−Φ0. We first prove the result by assuming that ‖∆‖2
F ≤ r0

and then show that ‖∆‖2
F ≤ r0 must hold under our specified conditions.

If ‖∆‖2
F ≤ r0, due to the local strong convexity, we have

0 ≥ `(Φ0 + ∆)− `(Φ0) + Pen(Φ0 + ∆)− Pen(Φ0)

≥ 〈∇`(Φ0),∆〉+ nβ0‖∆‖2
F + (1/v1)‖∆Sc

0
‖1 − (1/v0)‖∆S0‖1

≥ nβ0‖∆‖2
F + (1/v1 − γn)‖∆Sc

0
‖1 − (1/v0 + γn)‖∆S0‖1

≥ nβ0‖∆‖2
F − (1/v0 + γn)‖∆S0‖1,

(S3.4)

where the last inequality holds since 1/v1 > γn. Re-arranging the right hand

side above and using ‖∆S0‖1 ≤
√
|S0|‖∆S0‖F ≤

√
|S0|‖∆̃‖F , we have

‖∆‖F ≤
γn + 1/v0

nβ0

√
|S0| ≤

(
1

nv1

+
1

nv0

) √
|S0|
β0

= εn (S3.5)

where we use the fact γn + 1/v0 ≤ 1/v1 + 1/v0 = α/v1.

If ‖∆‖2
F > r0, as shown in the proof for Proposition 3 in ?, inequalities

4

in (S3.4) still hold except that β0 is replaced by

bn = 2β0
λmax(Λ0)

λmax(Λ)
≥ 2β0

λmax(Λ0)

R

where the last inequality is due to the side constraint on Λ: λmax(Λ) ≤ R.

Then similar to (S3.5), we have

‖∆‖F ≤
γn + 1/v0

nbn

√
|S0| ≤

R

2λmax(Λ0)
εn <

√
r0

by our choice of R, which contradicts with the assumption that ‖∆‖2
F >

r0.

S3.2 Proof of Theorem 2

Proof. First note that with the choice of prior parameters v1, v0, η, we have

η(δ0)

1− η(δ0)
=

η

1− η
v0

v1

exp
(
δ0(

1

v0

− 1

v1

)
)
→∞,

there η(δ0)→ 1 and there exists some constant µ > 0 such that pen′′SS(θ) ≥

−µ/2 for any |θ| > δ0 where δ0 > 0 is any small positive constant.

Then we prove Theorem 2 with the following three steps:

• Step 1: Consider a restricted optimization problem:

min
Λ�0ΦSc

0
=0
L(Φ), (S3.6)

5

• Step 2: Show the solution set for program (S3.6)

A = {Φ : ∇L(Φ)S0 = 0,Λ � 0}.

contains an element Φ̃ ∈ A that satisfies ‖Φ̃− Φ0‖∞ ≤ rn.

• Step 3: Prove that Φ̃ is a local minimizer of the objective function

L(Φ) by showing that L(Φ) ≥ L(Φ̃) for any Φ in a small neighborhood

of Φ̃.

At Step 2, we apply the following lemma. Its proof is deferred to to

Section S3.4.2.

Lemma S3.2.1. Let r = 4cH
n

(
‖∇`(Φ0)‖∞ + pen′SS(δ0)

)
. If θ0

min ≥ r + δ0

for some δ0 > 0, and r ≤ min
{

1
3cΣ0d

, 1
3708d2c2

Γ0c
4
Σ0ρ2

,
cΘ0

2d

}
, then there exists

Φ̃ ∈ A such that ‖Φ̃− Φ0‖∞ ≤ r.

Let Φ̃ denote the local minimizer constructed at Step 2. By Lemma

S3.2.1, we have ‖∆̃‖∞ ≤ r ≤ rn where ∆̃ = Φ̃− Φ0. Note that Φ0 satisfies

the constraints in program (S3.6)). Therefore Φ̃ is in the HPD region since

L(Φ̃) ≤ L(Φ0).

At Step 3, we will show that Φ̃ is indeed a local minimizer of our ob-

jective function L(Φ) in the unconstrained HPD region. Define

D(∆) = L(Φ̃ + ∆)− L(Φ̃)

= `(Φ̃ + ∆)− `(Φ̃) + Pen(Φ̃ + ∆)− Pen(Φ̃).

6

It suffices to show that D(∆) ≥ 0 for any ∆ satisfying ‖∆‖∞ ≤ ε where ε

is a small positive number we choose, and Φ̃ + ∆ is in the HPD region.

Since both Φ̃ and Φ̃ + ∆ are in the HPD region where `(Φ) is strongly

convex at Φ0. When r ≥ ‖∆̃‖∞ and ε ≥ ‖∆‖∞ are chosen to be small

enough, we have

`(Φ̃ + ∆)− `(Φ̃) ≥ 〈∇`(Φ̃),∆〉+ nβ0‖∆‖2
F

≥
∑
i,j∈S0

∇`(Φ̃)ij∆ij +
∑
i,j∈Sc

0

∇`(Φ̃)ij∆ij + nβ0‖∆̃‖2
F .

(S3.7)

Next we bound Pen(Φ̃ + ∆)− Pen(Φ̃). Since pen′′SS(θ) ≥ −µ/2 for any

|θ| ≥ δ0. Therefore for any θ1, θ2 > δ0, we have

penSS(θ1)− penSS(θ2) ≥ pen′SS(θ)(θ1 − θ2)− µ

2
(θ1 − θ2)2. (S3.8)

since min(i,j)∈S0 |Φ̃ij| > δ and |∆ij| can be made very small, applying (S3.8),

we have∑
(i,j)∈S0

penSS(Φ̃ij + ∆ij)− penSS(Φ̃ij) ≥
∑
i,j∈S0

pen′SS(Φ̃ij)∆ij −
µ

2
‖∆S0‖2

F

≥
∑
i,j∈S0

pen′SS(Φ̃ij)∆ij −
µ

2
‖∆‖2

F .

(S3.9)

7

Since Φ̃Sc
0

= 0 and max(i,j)∈Sc
0
|∆̃ij| ≤ ε,∑

(i,j)∈Sc
0

penSS(Φ̃ij + ∆ij)− penSS(Φ̃ij) =
∑

(i,j)∈Sc
0

penSS(∆ij)

≥
∑

(i,j)∈Sc
0

pen′SS(ε)|∆ij|
(S3.10)

due to the monotonicity of pen′(·).

Combine (S3.7), (S3.9), and (S3.10) to express D(∆) as follows:

D(∆) ≥
∑
i,j∈S0

(
∇`(Φ̃)ij + pen′SS(Φ̃ij)

)
·∆ij +

2nβ0 − µ
2

‖∆‖2
F (I)

+
∑
i,j∈Sc

0

(
pen′SS(ε)− |∇`(Φ̃)ij|

)
· |∆ij| (II)

For (I), the first term is equal to zero due to the zero subgradient

condition at Φ̃, which is a (local) minimal of the optimization problem

considered at Step 1. The second term is positive provided nβ0 > µ/2.

Next we aim to show that (II) is positive. Since ε can be chosen to be

arbitrarily close to 0, it suffices to show ‖∇`(Φ̃)Sc
0
‖∞ < pen′SS(0+). Apply

the first order Taylor expansion of ∇`(Φ̃) = ∇`(Φ0 + ∆̃) at Φ0, namely,

∇`(Φ̃) = ∇`(Φ0) +H∆̃ +R(∆̃), (S3.11)

where R(∆̃) denotes the residual, on elements from Sc0. Then we have

∇`(Φ̃)Sc
0

= ∇`(Φ0)Sc
0

+HSc
0S0∆̃S0 +R(∆̃)Sc

0
. Therefore

‖∇`(Φ̃)Sc
0
‖∞ ≤ ‖∇`(Φ0)‖∞ + cH

n

2
‖∆̃S0‖∞ + ‖R(∆̃)‖∞

≤ nr

2

(1

cH
+ cH

)
< pen′SS(0+),

8

since |||HSc
0S0|||∞ ≤ |||H|||∞ = n

2
cH , and by the proof of Lemma S3.2.1,

‖∇`(Φ0)‖∞ + ‖R(∆̃)‖∞ ≤ n
2
r/cH and ‖∆̃S0‖∞ = ‖∆̃‖∞ ≤ r.

S3.3 Proof of Theorem 3

Proof. Note that with the fractional likelihood, the penalty term in the

objective function Lκ(Φ) is the original penalty function Pen(Φ) scaled by

κ. It is easy to check that κpen′SS(θ) and κpen′′SS(θ) satisfy the conditions

in Theorem 1 and Theorem 2. Further we have

κpen′′SS(θ) ≤ κ

4

(
1

v0

− 1

v1

)2

∼ O(n).

As implied in our proof for Theorem 1, the negative log-likelihood function

−`(Φ) is strongly convex in HPD with its second derivative lower bounded

by nβ0. Therefore with a proper choice of the constants, we have ∂2Lκ(Φ) >

0, therefore Lκ(Φ) is convex in HPD with a unique stationary point.

9

S3.4 Proofs of technical lemmas

S3.4.1 Proof of Lemma 3

Proof. Since L(Φ0) ≥ L(Φ), we have

Pen(Φ0)− Pen(Φ) ≥ `(Φ)− `(Φ0) ≥ 〈∇`(Φ0),Φ− Φ0〉 (S3.12)

≥ −γn(‖∆Sc
0
‖1 + ‖∆S0‖1)

due to the convexity of `(Φ), where γn := ‖`(Φ0)‖∞.

Pen(Φ0)− Pen(Φ) = −
∑
j∈Sc

0

penSS(Φj) +
∑
j∈S0

(
penSS(Φ0

j)− penSS(Φ0
j)
)

= −
∑
j∈Sc

0

penSS(∆j) +
∑
j∈S0

(
penSS(Φ0

j)− penSS(Φ0
j + ∆j)

)
≤ − 1

v1

‖∆Sc
0
‖1 +

1

v0

‖∆S0‖1

where the last inequality is due to the following properties of the spike-

and-slab Lasso penalty: |penSS(t)| ≥ |t|/v1 and |penSS(t1) − pen(t2)| ≤

|t1 − t2|/v0.

Re-organizing (S3.12), we have ‖∆Sc
0
‖1 ≤ α‖∆S0‖1 with α = (v0 +

2v1)/v0 ≥ (1/v0 + γn)/(1/v1 − γn), provided that 1/v1 ≥ 2γn.

10

S3.4.2 Proof of Lemma S3.2.1

Proof. Let ∆̃ = Φ̃−Φ0. It suffices to show that ‖∆̃S0‖∞ ≤ r. Our approach

is similar to that of ? and ?.

Note that any Φ̃ ∈ A must satisfy the zero-subgradient condition:

∇`(Φ̃)S0 + Z(Φ̃)S0 = 0, (S3.13)

where Z(Φ̃) denotes the sub-gradient vector of the penalty term evaluated

at Φ̃ with Z(Φ̃)ij = pen′SS(|Φ̃ij|)·sign(Φ̃ij), where sign(x), the (sub)-gradient

of |x|, equals 1 if x > 0, −1 if x < 0, and any number from [−1, 1] if x = 0.

Equation (S3.13) can be expressed as

∇`(Φ0)S0 +HS0S0 · vec(∆̃S0) +R(∆̃)S0 + Z(Φ̃)S0 = 0 (S3.14)

due to (S3.11). The negative log-likelihood function is strongly convex on

the constrained set, so HS0S0 is invertible and

vec(∆̃S0) = −H−1
S0S0

(
∇`(Φ0)S0 +R(∆̃)S0 + Z(Φ̃)S0

)
.

Next define a mapping F from R|S0| → R|S0|:

F (vec(∆̃S0)) := −H−1
S0S0

(
∇`(Φ0)S0 +R(∆̃)S0 + Z(Φ̃)S0

)
. (S3.15)

By construction, F (vec(∆̃S0)) = vec(∆̃S0) iff (S3.14) holds. Since F is

continuous, if we could show that ‖F (vec(∆̃S0))‖∞ ≤ r for any ‖∆̃S0‖∞ ≤ r,

11

then by Brouwer’s fixed point theorem, there exists a solution to program

(S3.6), Φ̃ ∈ A, and ‖Φ̃− Φ0‖∞ = ‖∆̃S0‖∞ ≤ r.

Bound (S3.15) as follows

‖F (vec(∆̃S0))‖∞ ≤ cH

(2

n
‖∇`(Φ0)S0‖∞ +

2

n
‖R(∆̃)S0‖∞ +

2

n
‖Z(Φ̃)S0‖∞

)
,

(S3.16)

where the 2/n factor comes from cH = n
2
|||H−1

S0S0
|||∞. We have

cH
2

n
‖R(∆)‖∞ ≤ 1854d2c2

Γ0c4
Σ0ρ2‖∆‖2

∞ ≤ r/2

by our condition and Lemma 1. Since θ0
min ≥ r + δ0, when ‖∆̃‖∞ ≤ r, we

have min(i,j)∈S0 |∆̃ij| ≥ δ0. Therefore we can upper bound ‖Z(Φ̃)S0‖∞ by

pen′SS(δ0). It is easy to check that the right hand side of (S3.16) is bounded

by r/2 + 2cH
n

(
‖∇`(Φ0)‖∞ + pen′SS(δ0)

)
= r.

Further, Because dr < 1
3cΣ0

< λmin(Λ0), λmin(Λ̃) > λmin(Λ0)−λmax(Λ̃−

Λ0) > dr − dr > 0, λmin(Λ̃) > 0. So Φ̃ = (Λ̃, Θ̃) is inside A by assumption,

i.e., A is not empty.

S4 The EM algorithm

In this section, we work through the details in deriving the EM algorithm

for implementing our method. Let Φ = (Λ,Θ), and RΛ and RΘ be binary

indicator matrices with their (i, j)th entries being rΛ
ij and rΘ

ij , respectively.

12

The likelihood function of the Gaussian conditional random field model

takes the following form:

p(Y | Φ,X) =
n∏
i=1

p(Yi | Xi,Φ)

=

 1√
(2π)p|Λ−1| 12

n

exp(−n
2

tr(SyyΛ + 2SxyΘ + Λ−1ΘTSxxΘ)).

(S4.17)

According to our Bayesian model specification, the full posterior distribu-

tion π(Φ, RΦ|Y,X) is proportional to

p(Y | Φ,X) ·
[∏
i,j

π(Φij|rΦ
ij)π(rΦ

ij|η)
]
· 1(Λ � 0, ‖Λ‖2 ≤ R).

We propose an efficient EM algorithm by treating RΦ as latent. From

the proposed EM algorithm, we will find an optimizer of the loss function

arg min
Θ,Λ�0,‖Λ‖2≤R

L(Φ)

along with estimates of the posterior inclusion probabilities of rΦ
ij, which will

be denoted as pΦ
ij. The posterior probabilities pΦ

ij can be used to determine

the sparse pattern of Φij. Due to our theoretical results on estimation

accuracy, thresholding the posterior probabilities pΦ
ij will lead to consistent

structure recovery when the minimal signal strength is strong enough. The

proposed EM algorithm for the GCRF model is motivated by the EMVS

13

algorithm for linear regression (?) and its variants for factor model and

Gaussian graphical model settings (??).

The E-step

Compute the posterior of RΦ given the estimate of Φ from the previous

iteration. It can be shown that rΦ
ij|Φ

(t)
ij follows (pΦ

ij) where

log
pΦ
ij

1− pΦ
ij

=
(

log
v0

v1

+ log
η

1− η
−
|Φ(t)

ij |
v1

+
|Φ(t)

ij |
v0

)
. (S4.18)

Next, compute the expectation of the log posterior with respect to RΦ,

which gives rise to the Q function to be maximized:

Q(Φ|Φ(t)) = `(Φ)−
∑
i,j

λ(Φ
(t)
ij) · |Φij|, λ(Φ

(t)
ij) =

pΦ
ij

v1

+
1− pΦ

ij

v0

, (S4.19)

where `(Φ) is the log-likelihood function defined in (S2.1).

The M-step

Optimizing (S4.19) with respect to Φ = (Θ,Λ) is equivalent to optimizing

GCRF with a weighted Lasso penalty. We implemented a second order

algorithm, motivated by the algorithm from ? for the usual unweighted

Lasso penalty.

At the beginning of each iteration in the M-step, we first form a second

14

order approximation of `(Θ + ∆Θ,Λ + ∆Λ) at (Θ,Λ),

g(∆Θ,∆Λ) = `(Θ,Λ) + vec(∇`(Θ,Λ))Tvec(∆Φ)

+
1

2
vec(∆Φ)vec(∇2`(Θ,Λ))Tvec(∆Φ),

(S4.20)

where ∆Φ =

∆Λ

∆Θ

, and the gradient∇Θ`(Θ,Λ) and Hessian matrix∇2`(Θ,Λ)

of the log-likelihood function `(Θ,Λ) are defined in Appendix S2. At each

iteration, we estimate the direction ∆Φ based on the second order approxi-

mation (S4.20):

arg max
∆Φ

{
g(∆Θ,∆Λ)−

∑
i∈(1,2,..,p)
j∈(1,2,..,p)

i<j

[
(1− pΛ

ij)
|Λij + ∆Λij|

v0

+ pΛ
ij

|Λij + ∆Λij|
v1

]

−
∑

i∈(1,2,..,q)
j∈(1,2,..,p)

[
(1− pΘ

ij)
|Θij + ∆Θij|

v0

+ pΘ
ij

|Θij + ∆Θij|
v1

]}
.

(S4.21)

We use cyclic coordinate descent approach to estimate ∆Φ. Once we

solve the optimization problem for coordinate Φij, which results in the

Newton direction Dij, we update ∆Φ by ∆Φ ← ∆Φ + Dij. We iterate over

all the coordinates of Φ to get the full updating direction ∆Φ of an M-step.

The cyclic coordinate descent approach for elements of ∆Φ can be di-

vided into three sub-problems:

1. Update for the entries in Θ;

15

2. Update for the off-diagonal entries in Λ;

3. Update for the diagonal entries in Λ.

Each of the subproblems can be written as a simple Lasso problem in the

following form:

arg min
d

(
1

2
ad2 + bd+ λ|c+ d|

)
, (S4.22)

with appropriate definitions for a, b, c, and λ in each case. The above

objective function has a closed form solution given by

d = −c+ Sλ/a

(
c− b

a

)
, (S4.23)

where Sλ(x) = sign(x) max(|x| − λ, 0). We shall now provide explicit ex-

pressions for (a, b, c, λ) in each of the three cases above.

Update entries in Θ: We can decouple the optimization problem (S4.21)

of Θij as follows:

arg max
u

n

2

[
− tr

(
(2Sxy + 2SxxΘΛ−1 + 2Sxx∆ΘΛ−1)ueie

T
j

+ 2(∆Θ + ueie
T
j)Λ−1∆ΛΛ−1ΘTSxx − Λ−1(∆Θ + ueie

T
j)Sxx(∆Θ + ueie

T
j)
)]

−
[1− pΘ

ij

v0

+
pΘ
ij

v1

]
|Θij + (∆Θ)ij + u|

= arg max
u

n

2

[
− (2Sxy + 2SxxΘΛ−1 + 2Sxx∆ΘΛ−1 − 2Λ−1∆ΛΛ−1ΘTSxx)iju− u2(Λ−1)jj(Sxx)ii

]
−
[1− pΘ

ij

v0

+
pΘ
ij

v1

]
|Θij + (∆Θ)ij + u|.

16

Define a, b, c, λ as follows:

a = n(Λ−1)jj(Sxx)ii

b = n(Sxy + SxxΘΛ−1 + Sxx∆ΘΛ−1 − 2Λ−1∆ΛΛ−1ΘTSxx)ij

c = Θij + (∆Θ)ij

λ =
1−pΘ

ij

v0
+

pΘ
ij

v1
,

(S4.24)

we solve the updating direction w.r.t Θij through (S4.23).

Update the off-diagonal entries in Λ: We decompose the loss function

in the optimization problem and extract the function only about Λij. De-

note A = Λ−1ΘTSxxΘΛ−1 and B = Λ−1 + 2A. The optimization problem

17

about off-diagonal entry Λij is:

arg max
u

n

2

[
tr
(

(−Syy + Λ−1 + A)u(eie
T
j + eje

T
i)

+ 2(∆Λ + u(eie
T
j + eje

T
i))Λ−1∆ΘΛ−1ΘTSxx

− Λ−1(∆Λ + u(eie
T
j + eje

T
i)B(∆Λ + u(eie

T
j + eje

T
i)
)]

−
[1− pΛ

ij

v0

+
pΛ
ij

v1

]
|Λij + (∆Λ)ij + u|

= arg max
u

n

2

(
−
[
(Λ−1

ij)2 + Λ−1
ii Λ−1

jj + Λ−1
ii Ajj + 2Λ−1

ij Aij + Λ−1
jj Aii

]
u2

+ 2
[
(−Syy + Λ−1 + A)ij + (Λ−1∆ΘΛ−1ΘTSxx)ij + (Λ−1∆ΘΛ−1ΘTSxx)ji

− (Λ−1∆ΛΛ−1)ij − (Λ−1∆ΛA)ij − (Λ−1∆ΛA)ji

]
u
)

−
[1− pΛ

ij

v0

+
pΛ
ij

v1

]
|Λij + (∆Λ)ij + u|.

(S4.25)

To update the off-diagonal entries Λij, we define a, b, c, λ in equation (S4.22)

as

a = n
[
(Λ−1

ij)2 + Λ−1
ii Λ−1

jj + Λ−1
ii Ajj + Λ−1

ij Aij + Λ−1
jj Aii

]
b = −n

[
(−Syy + Λ−1 + A)ij + (Λ−1∆ΘΛ−1ΘTSxx)ij + (Λ−1∆ΘΛ−1ΘTSxx)ji

−(Λ−1∆ΛΛ−1)ij − (Λ−1∆ΛA)ij − (Λ−1∆ΛA)ji

]
c = Λij + (∆Λ)ij

λ =
1−pΛ

ij

v0
+

pΛ
ij

v1
,

(S4.26)

18

and solve the updating direction w.r.t the coordinate of Λij with (S4.23).

Update the diagonal entries in Θ: For the diagonal entries Λii, the

decoupled optimization problem has the following form:

arg max
u

n

2

(
− 1

2
Biiu

2 +
[
− Syy + Λ−1 + A+ 2(Λ−1∆ΘΛ−1ΘTSxx)ii−

(Λ−1∆ΛΛ−1)ii − 2(Λ−1∆ΛA)ii

]
u
)
,

(S4.27)

So here we define a, b, c, λ as:

a = n
2
Bii,

b = −n
2

[
− Syy + Λ−1 + A+ 2(Λ−1∆ΘΛ−1ΘTSxx)ii

−(Λ−1∆ΛΛ−1)ii − 2(Λ−1∆ΛA)ii

]
,

c = Λii + (∆Λ)ii,

λ = 0.

(S4.28)

After solving ∆Φ from problem (S4.21), we update the estimate Φ by

Φ← Φ+α∆Φ, where α is the step size determined by checking (1) Armijo’s

rule, (2) positive definiteness and (3) boundedness of the resultant matrix.

The pseudo-code for this algorithm is in Algorithm 1.

A naive implementation of matrix multiplications for ∆ΘΛ−1 and ∆ΛΛ−1

has a cost of O(max(p3, qp2)). Since we need to solve O(max(p2, pq)) sub-

problems when solving (S4.21) and each sub-problem requires to evaluate

19

Algorithm 1 EM algorithm

Input X, Y.

Initialize Θ = 0,Λ = I.

While (not reached convergence) do:

(E-Step:)

Calculate PΘ, PΛ using (S4.18).

(M-Step:)

While (not reached convergence) do:

Compute the newton direction ∆Φ.

Determine the step size α by backtracking line search.

Update Φ← Φ + α∆Φ.

Output Φ.

∆ΘΛ−1 and ∆ΛΛ−1, the total cost of our algorithm, if using the naive imple-

mentation, could be as high as O(max(p5, q2p3)). Inspired by the algorithm

from ?, we developed a more efficient implementation of our method by uti-

lizing the facts that i) only one entry in either ∆Θ or ∆Λ is updated when

solving each sub-problem, and ii) only one row of matrix product ∆ΘΛ−1 or

∆ΛΛ−1 is updated after each sub-problem. Thus, it is efficient to calculate

20

∆ΘΛ−1 and ∆ΛΛ−1 at the beginning of an M-step and then only update the

row of matrix product that is changed after solving each sub-problem. The

computation cost for this updating scheme is O(max(p, q)), thus our algo-

rithm has a computational cost of O (max(p3, p2q)), which matches with

the second order algorithm from ?.

S5 Simulation Results

In this subsection, we provide all the simulation results for the settings

described in the main paper.

21

Table 1: Random Graph Model: Performance comparison of different methods. Larger

values of MCC indicate better performance while smaller values of Fnorm and Test Error

indicate better performance. Best performing method is highlighted in boldface.

n = 100, q = 50, p = 50 n = 100, q = 100, p = 50

MCC Fnorm Test Error MCC Fnorm Test Error

GLasso 0.263(0.039) 10.606(0.735) 2.001(0.296) 0.375(0.013) 17.767(0.061) 4.922(0.181)

CAPME -0.025(0.001) 46.965(5.653) 2.442(0.125) -0.020(0.010) 51.674(5.724) 3.934(0.199)

L1-GCRF 0.360(0.0181) 6.901(0.344) 1.446(0.036) 0.481(0.011) 11.709(0.360) 1.652(0.039)

BayesCRF 0.608(0.010) 6.012(0.149) 1.390(0.031) 0.711(0.006) 11.088(0.154) 1.560(0.041)

n = 100, q = 200, p = 50 n = 100, q = 500, p = 50

MCC Fnorm Test Error MCC Fnorm Test Error

GLasso 0.337(0.007) 25.472(0.004) 8.180(0.154) 0.180(0.004) 38.747(0.004) 10.366(0.310)

CAPME -0.015(0.008) 21.532(0.544) 5.433(0.205) 0.000(0.008) 37.889(0.155) 10.086(0.329)

L1-GCRF 0.411(0.008) 22.213(0.338) 3.142(0.071) 0.270(0.012) 38.963(0.018) 21.706(3.835)

BayesCRF 0.517(0.036) 21.075(0.242) 3.484(0.601) 0.186(0.008) 37.127(0.110) 7.142(1.341)

22

Table 2: Banded Model 1: Performance comparison of different methods. Larger

values of MCC indicate better performance while smaller values of Fnorm and Test

Error indicate better performance. Best performing method is highlighted in boldface.

n = 100, q = 50, p = 50 n = 100, q = 100, p = 50

MCC Fnorm Test Error MCC Fnorm Test Error

GLasso 0.330(0.022) 4.223(0.040) 1.279(0.032) 0.314(0.015) 5.316(0.035) 1.390(0.035)

CAPME -0.037(0.001) 30.346(2.709) 1.455(0.046) -0.036(0.012) 43.642(3.320) 1.696(0.046)

L1-GCRF 0.130(0.020) 3.050(0.110) 1.250(0.028) 0.216(0.021) 3.595(0.194) 1.309(0.031)

BayesCRF 0.409(0.026) 2.498(0.094) 1.278(0.032) 0.452(0.024) 2.453(0.077) 1.335(0.031)

n = 100, q = 200, p = 50 n = 100, q = 500, p = 50

MCC Fnorm Test Error MCC Fnorm Test Error

GLasso 0.394(0.012) 9.118(0.015) 2.051(0.053) 0.304(0.046) 12.684(0.162) 2.777(0.187)

CAPME -0.033(0.010) 63.073(6.914) 2.294(0.069) 0.071(0.004) 13.735(1.546) 2.232(0.060)

L1-GCRF 0.361(0.015) 5.369(0.228) 1.489(0.031) 0.412(0.011) 8.628(0.333) 1.665(0.041)

BayesCRF 0.606(0.015) 3.163(0.110) 1.431(0.032) 0.674(0.011) 6.297(0.143) 1.555(0.035)

23

Table 3: Banded Model 2: Performance comparison of different methods. Larger

values of MCC indicate better performance while smaller values of Fnorm and Test

Error indicate better performance. Best performing method is highlighted in boldface.

n = 100, q = 50, p = 50 n = 100, q = 100, p = 50

MCC Fnorm Test Error MCC Fnorm Test Error

GLasso 0.262(0.017) 3.763(0.047) 1.191(0.031) 0.278(0.015) 5.294(0.031) 1.342(0.030)

CAPME -0.037(0.000) 27.884(2.113) 1.362(0.044) -0.035(0.011) 43.030(3.666) 1.658(0.062)

L1-GCRF 0.131(0.023) 3.827(0.136) 1.215(0.026) 0.164(0.023) 4.435(0.122) 1.260(0.027)

BayesCRF 0.322(0.026) 2.725(0.092) 1.238(0.031) 0.392(0.021) 2.873(0.106) 1.316(0.030)

n = 100, q = 200, p = 50 n = 100, q = 500, p = 50

MCC Fnorm Test Error MCC Fnorm Test Error

GLasso 0.326(0.022) 8.489(0.182) 1.775(0.067) 0.255(0.005) 12.543(0.011) 2.577(0.072)

CAPME -0.034(0.010) 67.937(6.744) 2.066(0.086) 0.109(0.005) 12.534(0.905) 2.166(0.075)

L1-GCRF 0.263(0.017) 6.468(0.119) 1.379(0.036) 0.383(0.012) 10.182(0.173) 1.666(0.042)

BayesCRF 0.476(0.016) 3.566(0.097) 1.386(0.030) 0.634(0.012) 6.372(0.142) 1.550(0.038)

24

(a) Estimates for Random Graph.

(b) Estimates for Banded Model 1.

(c) Estimates for Banded Model 2.

Figure 1: Visualization of the averages of the estimated graphs when p =

q = 50. White represents the noise and black represents the selected signal.

25

References

Gan, L., Narisetty, N. N., and Liang, F. (2019). Bayesian regularization

for graphical models with unequal shrinkage. J. Amer. Statist. Assoc.,

114(527):1218–1231.

Ravikumar, P., Wainwright, M. J., Raskutti, G., and Yu, B. (2011).

High-dimensional covariance estimation by minimizing `1-penalized log-

determinant divergence. Electronic Journal of Statistics, 5:935–980.

Ročková, V. and George, E. I. (2014). EMVS: The EM approach to Bayesian

variable selection. J. Amer. Statist. Assoc., 109(506):828–846.

Ročková, V. and George, E. I. (2016). Fast Bayesian factor analysis via

automatic rotations to sparsity. J. Amer. Statist. Assoc., 111(516):1608–

1622.

Wytock, M. and Kolter, Z. (2013). Sparse Gaussian conditional random

fields: Algorithms, theory, and application to energy forecasting. In

ICML-13, pages 1265–1273.

Yuan, X.-T. and Zhang, T. (2014). Partial Gaussian graphical model esti-

mation. IEEE Transactions on Information Theory, 60(3):1673–1687.

26

	The spike-and-slab Lasso penalty penSS()
	The log-likelihood function
	Proofs of main theorems
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proofs of technical lemmas
	Proof of Lemma 3
	Proof of Lemma ??

	The EM algorithm
	Simulation Results

