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As mentioned in the main paper, we start with some background and definitions on stochastic

processes and empirical processes theory, and then move on to the proofs of Lemmas 2, 3 and

4. Next, we provide some details and results of the real data application, and finally we give

the R codes used for our method.

S1 Some concepts on Stochastic Processes and Em-

pirical Processes

For the rest of this sectiom, Lr(Q) denotes the norm ‖f‖Q,r =
(∫
|f |rdQ

)1/r
.

Definition 1 (Separability of a Stochastic Process). A stochastic process

{X(t), t ∈ T}, where (T, ρ) is a separable metric space, is separable if there

exists a countable subset S ∈ T and a null set N such that for each ω /∈ N

and t ∈ T , there exists a sequence {sm} ∈ S with ρ(sm, t)→ 0, and

|X(sm, ω)−X(t, ω)| → 0.

Definition 2 (Covering Numbers and Uniform Entropy). The covering
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number N(ε,F , ‖ · ‖) is the minimal number of balls {g : ‖g − f‖ < ε} of

radius ε needed to cover F .

A class of functions F with the envelope function F is said to satisfy

the uniform entropy condition if∫ ∞
0

sup
Q

√
logN(ε‖F‖Q,2,F , L2(Q)) dε <∞, (S1.1)

where the supremum has been taken over all finite discrete probability mea-

sures on with ‖F‖2Q,2 =
∫
F 2dQ > 0.

Definition 3 (Bracketing Numbers). For two functions l and u, the bracket

[l, u] is defined to be the set of all functions f with l ≤ f ≤ u. An ε-bracket

in Lr(P ) is a bracket [l, u] with ‖u− l‖r ≤ ε.

The bracketing number N[ ](ε,F , Lr(P )) is the minimum number of ε-

brackets needed to cover F .

Definition 4 (VC Class of Sets). Let C be a collection of subsets of a set

X. We say that an arbitrary subset S = {x1, x2, . . . , xn} of X is shattered

by C if for every subset S ′ ⊆ S, there exists C ∈ C such that S ′ = S ∩ C.

The VC-index of the class C is the smallest n for which no set of size n

is shattered by C i.e.

V (C) = inf{n : max
x1,...,xn

∆n(C, x1, . . . , xn) < 2n}, (S1.2)

where ∆n(C, x1, . . . , xn) = #{C ∩ {x1, . . . , xn} : C ∈ C}. A collection of
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measurable sets is called a VC class of sets if its VC-index is finite.

Definition 5 (Glivenko-Cantelli Class). A function class F for which

‖Pn − P‖F = sup
f∈F
|Pnf − Pf | → 0,

is called a P -Glivenko-Cantelli class, where the convergence can be in prob-

ability or almost surely.

Definition 6 (Donsker Class). For a function class F and a probability

measure P , suppose that

sup
f∈F
|f(x)− Pf | <∞. (S1.3)

Let L∞(T ) be the set of all functions f : T 7→ R such that

sup
t∈T
|f(t)| <∞.

By viewing the empirical process {Gnf : f ∈ F} as a map into L∞(F), if

Gn =
√
n(Pn − P ) G, in L∞(F), (S1.4)

for a tight Borel measurable element G in L∞(F), then F is called a P -

Donsker class.
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S2 Proofs

Proof of Lemma 2. Recall that, FR = F1RF2R, where

F1R =
{ |xj − θj|p−1
‖x− θ‖p−1p

: j = 1, 2, . . . , k, ‖θ − θ0‖2 ≤ R
}
, (S2.5)

F2R =
{

sign(θj − xj) : j = 1, 2, . . . , k, ‖θ − θ0‖2 ≤ R
}
. (S2.6)

Every f ∈ F1R is continuous at each x, hence F1R has a countable subset

G such that for every f ∈ F1R there exists a sequence gm ∈ G such that

gm(x) → f(x) for every x. Then by Example 2.3.4 of van der Vaart and

Wellner (1996), F1R is P -measurable for every P . Since every f ∈ F2R is

left-continuous at each x, same conclusion holds for F2R as well.

A class of functions F is called a VC-major class of functions if the

sets {x : f(x) > t} with f ranging over F and t over R form a VC-class of

sets. By Corollary 2.6.12 of van der Vaart and Wellner (1996), if F1R is a

bounded VC-major class of functions, then it satisfies the uniform entropy

condition. It is easy to see that F1R is bounded. We now show that F1R

is a VC-major class of sets, that is, the sets {x : f(x) > t} with f varying

over F1R and t over R form a VC class of sets. Define the collection of sets

S = {Sθ,t : ‖θ − θ0‖2 ≤ R, t ∈ R}, where Sθ,t is defined as

Sθ,t =
{
x :
|xj − θj|p−1

‖x− θ‖p−1p

> t, j = 1, 2, . . . , k
}
. (S2.7)

We need to show S is a VC-class of sets. Note that Sθ,t = ∩kj=1S
j
θ,t, where
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Sjθ,t is defined as

Sjθ,t =
{
x :
|xj − θj|p−1

‖x− θ‖p−1p

> t
}
. (S2.8)

In view of Lemma 2.6.17 of van der Vaart and Wellner (1996), it is enough

to show

Sj = {Sjθ,t : ‖θ − θ0‖2 ≤ R, t ∈ R} (S2.9)

is a VC-class for every j; because if every Sj is a VC-class of sets, S =

ukj=1Sj = {∩kj=1S
j : Sj ∈ Sj} is also a VC-class of sets. Hence we only

show that S1 = {S1
θ,t : ‖θ− θ0‖2 ≤ R, t ∈ R} is a VC-class of sets. We can

write S1
θ,t as

S1
θ,t =

{
x : |x1 − θ1|p >

tp/(p−1)

1− tp/(p−1)
k∑
j=2

|xj − θj|p)
}
.

Define R1
θ,c =

{
x : |x1 − θ1|p > c

∑k
j=2 |xj − θj|p

}
and R1 = {R1

θ,c : θ ∈

Rk, c ∈ R}. It is enough to show that R1 is a VC-class, since R1 contains

S1. For i, j = 2, . . . , k, i 6= j, we define

A0;θ,c ={x : (x1 − θ1)p > c
k∑
j=2

(xj − θj)p}
k⋂
j−1

{x : xj − θj ≥ 0},

A′0;θ,c ={x : (θ1 − x1)p > c
k∑
j=2

(xj − θj)p, θ1 − x1 ≤ 0}
k⋂
j=2

{x : xj − θj ≥ 0},
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Ai;θ,c ={x : (x1 − θ1)p > c(θi − xi)p + c
k∑
j=2
j 6=i

(xj − θj)p,

x1 − θ1 ≥ 0, θi − xi ≥ 0, xj − θj ≥ 0, j = 2, . . . , k, j 6= i},

A′i;θ,c ={x : (θ1 − x1)p > c(θi − xi)p + c
k∑
j=2
j 6=i

(xj − θj)p,

θ1 − x1 ≥ 0, θi − xi ≥ 0, xj − θj ≥ 0, j = 2, . . . , k, j 6= i},

Aij;θ,c ={x : (x1 − θ1)p > c(θi − xi)p + c(θj − xj)p + c
k∑
l=2
l 6=i,j

(xl − θl)p,

x1 − θ1 ≥ 0, θi − xi ≥ 0, θj − xj ≥ 0, xl − θl ≥ 0, l = 2, . . . , k,

l 6= i, j},

A′ij;θ,c ={x : (θ1 − x1)p > c(θi − xi)p + c(θj − xj)p + c
k∑
l=2
l 6=i,j

(xl − θl)p,

θ1 − x1 ≥ 0, θi − xi ≥ 0, θj − xj ≥ 0, xl − θl ≥ 0, l = 2, . . . , k,

l 6= i, j}.

Continuing this pattern, finally

An−1;θ,c ={x : (x1 − θ1)p > c
k∑
j=2

(θj − xj)p, x1 − θ1 ≥ 0, θj − xj ≥ 0,

j = 2, . . . , k},



S2. PROOFSvii

A′n−1;θ,c ={x : (θ1 − x1)p > c
k∑
j=2

(θj − xj)p, θ1 − x1 ≥ 0, θj − xj ≥ 0,

j = 2, . . . , k}.

Using the preceding notations, R1
θ,c can be written as

R1
θ,c =A0;θ,c ∪ A′0;θ,c ∪ {

n−2⋃
l=1

Bl;θ,c} ∪ {
n−2⋃
l=1

B′l;θ,c} ∪ An−1;θ,c ∪ A′n−1;θ,c,

(S2.10)

where

B1;θ,c =
k⋃
i=2

Ai;θ,c; B
′
1;θ,c =

k⋃
i=2

A′i;θ,c; B2;θ,c =
k⋃
i=2

k⋃
j=2

i<j

Aij;θ,c,

and so on. Since all the sets on the right hand side of (S2.10) are in the

same form, if C = {A0;θ,c : θ ∈ Rk, c ∈ R} forms a VC-class of sets, then R1

also forms a VC-class of sets. This follows from Lemma 2.6.17 of van der

Vaart and Wellner (1996), which says that if F and G are VC-classes, then

F t G = {F ∪ G : F ∈ F , G ∈ G} also forms a VC-class. We can write

A0;θ,c as

A0;θ,c = {x : (x1 − θ1)p > c
k∑
j=2

(xj − θj)p}
k⋂
j=1

{x : xj − θj ≥ 0}. (S2.11)
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Since p is a positive integer greater than 1, we can write

{x : (x1 − θ1)p > c
k∑
j=2

(xj − θj)p}

= {x :
∑p

r=0

(
p
r

)
xp−r1 (−1)rθr1 > c

∑k
j=2

∑p
r=0

(
p
r

)
xp−rj (−1)rθrj}

= {x : xp1 − px
p−1
1 θ1 + · · ·+ (−1)pθp1 − c

∑k
j=2(x

p
j − px

p−1
j θj

+ · · ·+ (−1)pθpj ) > 0}.

Consider the map x 7→ φ(x), where

φ(x) =
{
xp1, x

p−1
1 , xp−21 , . . . , x1,

k∑
j=2

xpj ,
k∑
j=2

xp−1j , . . . ,
k∑
j=2

xj, 1
}
. (S2.12)

Note that the class of functions {ga(x) = aTφ(x) : a ∈ R2p+1} is a finite

dimensional vector space. The collection of sets

{x : (x1 − θ1)p > c
k∑
j=2

(xj − θj)p, θ ∈ Rk, c ∈ R}

is the same as C1 = {x : ga(x) > 0, a ∈ R2p+1} and C1 is a VC-class of sets

by Lemma 2.6.15 of van der Vaart and Wellner (1996). Each of the classes

{x : xj − θj ≥ 0} for j = 1, 2, . . . , k, is a sub-collection of VC classes of sets

C2 = {x : aTx+ b ≥ 0, a ∈ Rk, b ∈ R}. Hence by Lemma 2.6.15 of van der

Vaart and Wellner (1996), C forms a VC-class of sets.

Thus we proved that F1R is a bounded VC major class of functions.

Hence F1R satisfies the uniform entropy condition.

For F2R, we see that the class of functions {x 7→ θj−xj : ‖θ−θ0‖2 ≤ R}

belongs to a finite dimensional vector space and hence is a VC class. From
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the stability properties of VC classes (Example 3.3.9, van der Vaart and

Wellner (1996)), the class of functions {x 7→ θj−xj : ‖θ− θ0‖2 ≤ R} is also

VC. Hence from Lemma 2.6.15 of van der Vaart and Wellner (1996), F2R

is a bounded VC major class of functions and satisfies the uniform entropy

condition. Therefore FR = F1RF2R is P0-Donsker.

Proof of Lemma 3. Define M(P0, θ) = P0mθ = P0(‖X − θ‖p − ‖X‖p). We

show that for 0 < ε < 1/4, there exists K > 0 such that ‖θ‖p ≥ 3K implies

M(P0, θ) > 0. If ‖X‖p ≤ K and ‖θ‖p ≥ 3K, then

‖X − θ‖p ≥ ‖θ‖p − ‖X‖p ≥
2‖θ‖p

3
+K − ‖X‖p ≥

2‖θ‖p
3

,

Hence as ‖X‖p ≤ K ≤ ‖θ‖p/3,

‖X − θ‖p − ‖X‖p ≥
2‖θ‖p

3
− ‖θ‖p

3
=
‖θ‖p

3
.

Now since always
∣∣‖X − θ‖p − ‖X‖p∣∣ ≤ ‖θ‖p, we can write

M(P0, θ) =

∫
‖X‖p≤K

(‖X − θ‖p − ‖X‖p)dP0 +

∫
‖X‖p>K

(‖X − θ‖p − ‖X‖p)dP0

≥ ‖θ‖p(
1

3
P0(‖X‖p ≤ K)− P0(‖X‖p > K)

)
= ‖θ‖p(

1

3
− 4

3
P0(‖X‖p > K))

≥ ‖θ‖p(
1

3
− 4

3
ε) > 0.

We assume that 0 < ε < 1/4 andK > 0 have been chosen so that P0 satisfies

P0(‖X‖p ≤ K) > 1 − ε. Hence ‖θ(P0)‖p ≤ 3K. Also, since Pn  P0, for
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some 0 < ε < 1/4 and K > 0, Pn satisfies Pn(‖X‖p ≤ K) > 1 − ε with

high probability. Hence ‖θ̂n‖p ≤ 3K with high probability. Similarly, we

know that Bn − Pn
P∞
0 ×Bn→ 0 in the weak topology. Hence with high joint

probability, Bn satisfies Bn(‖X‖p ≤ K) > 1− ε, leading to ‖θ(Bn)‖p ≤ 3K

with high joint probability.

Proof of Lemma 4. We need to show that S1 = {S1
θ,t : ‖θ−θ0‖2 ≤ R, t ∈ R}

is a VC class for any fixed p > 1, where S1
θ,t is as defined in (S2.8). For

k = 2, S1
θ,t can be written as

S1
θ,t =

{
x : |x1 − θ1| >

(
tp/(p−1)

1− tp/(p−1)

)1/p

|x2 − θ2|
}
. (S2.13)

Define R1
θ,c = {x : |x1 − θ1| > c|x2 − θ2|} and R1 = {R1

θ,c : θ ∈ R2, c ∈ R}.

It is enough to show that R1 is a VC class, since R1 contains S1. We

can write R1
θ,c as

R1
θ,c ={x : (x1 − θ1) > c(x2 − θ2), x1 ≥ θ1, x2 ≥ θ2}⋃

{x : (θ1 − x1) > c(x2 − θ2), θ1 ≥ x1, x2 ≥ θ2}⋃
{x : (x1 − θ1) > c(θ2 − x2), x1 ≥ θ1, θ2 ≥ x2}⋃
{x : (θ1 − x1) > c(θ2 − x2), θ1 ≥ x1, θ2 ≥ x2}.

Define Cθ,c = {x : (x1 − θ1) > c(x2 − θ2), x1 ≥ θ1, x2 ≥ θ2}. By the same

argument used in the previous proof, it is enough to show that C = {Cθ,c :
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θ ∈ R2, c ∈ R} forms a VC class of sets. This follows since Cθ,c can be

written as

Cθ,c = {x : x1 − θ1 > c(x2 − θ2)}
⋃
{x : x1 ≥ θ1}

⋃
{x : x2 ≥ θ2}.

Each of the sets in the right hand side of the above expression is a sub-

collection of C2 = {x : aTx + b ≥ 0 : a ∈ R2, b ∈ R} which is a VC class

by Lemma 2.6.15 of van der Vaart and Wellner (1996). Hence by Lemma

2.6.17 of van der Vaart and Wellner (1996), C is also a VC-class.

S3 Analysis of Fisher’s iris data

Fisher’s iris data consists of three plant species, namely, Setosa, Virginica

and Versicolor and four features, namely, sepal length, sepal width, petal

length and petal width measured for each sample. The object of interest is

the 4-dimensional spatial median of the above mentioned features. As men-

tioned in the main paper, we have considered a non-parametric Bayesian

framework with a DP(α) prior with α = 2×N4(04, 10I4). Then we compute

the 95% credible ellipsoid of the 4-dimensional multivariate `1-median with

p = 2 and report its four principal axes in Table 1. Also, for the purpose

of illustration, in Figures 1, 2 and 3, we plot 6 pairs of features for each

species and the credible ellipsoids for the corresponding two dimensional
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Table 1: Principal axes of 95% credible ellipsoid of spatial median

1st axis 2nd axis 3rd axis 4th axis

0.0580 −0.3129 −0.6747 −0.6629

−0.1461 0.2193 −0.6143 −0.7437

−0.2965 0.8626 0.4089 −0.0252

0.9420 0.3252 −0.0081 −0.0824

`1-medians with p = 2.
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Figure 1: 95% Credible ellipsoids of two-dimensional spatial medians for the species

Setosa
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Figure 2: 95% Credible ellipsoids of two-dimensional spatial medians for the species

Virginica
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Figure 3: 95% Credible ellipsoids for the species Versicolor
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S4 R Codes

# Construc t ing a 95% c r e d i b l e e l l i p s o i d f o r a 2−dimensiona l

# non−a f f i n e e qu i v a r i an t s p a t i a l median

set . seed (120)

i f ( ! require (MASS) ) in s ta l l . packages ( ’MASS’ )

i f ( ! require (ICSNP) ) in s ta l l . packages ( ’ICSNP’ )

i f ( ! require ( lcmix ) ) in s ta l l . packages ( ’lcmix’ )

l ibrary (MASS)

l ibrary (ICSNP)

l ibrary ( lcmix )

# Construc t ing the p o s t e r i o r c r e d i b l e e l l i p s o i d f o r the s p a t i a l median

cred med <− function (x , c , p , n1 , alpha ){

c <− 2

n <− nrow( x )

k <− ncol ( x )

prb <− c/ (c+n)

nB <− 0 .2∗n1 # Burn−in

nRem <− n1−nB # Remaining samples

index<− sample (c ( 1 , 2 ) , 1 , prob=c ( prb ,(1−prb ) ) )
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i f ( index==2)

{

# Bayesian boo t s t r ap we igh t genera t ion

weights <− matrix ( rexp (n ∗ n1 , 1) , ncol = n , byrow = TRUE)

weights <− weights / rowSums(weights )

bb <− matrix (NA,nrow=n1 , ncol=k )

for ( i in 1 : n1 ){

myfun <− function ( para ){

a <− 0

for ( j in 1 : k )

{

a <− a+(abs ( para [ j ]−t ( x ) [ j , ] ) ) ˆ p

}

sum( a ˆ(1/p)∗weights [ i , ] )

}

f i t <− optim( rep ( 0 . 5 , k ) , myfun )

bb [ i , ] <− f i t $par

}

}

i f ( index==1){

b <− rbeta (n , 1 , c )

s t i c k break <− numeric (n)

s t i c k break [ 1 ] <− b [ 1 ]

s t i c k break [ 2 : n ] <− sapply ( 2 : n , function ( i ) b [ i ] ∗ prod (1 − b [ 1 : ( i −1) ] ) )

y <− mvrnorm(n , Sigma=10∗diag ( k ) ,mu=rep (0 , k ) )
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theta <− sample ( 1 : n , prob = s t i c k break , replace = TRUE, s i z e=n1 )

bb <− y [ theta , ]

}

samples <− matrix (NA,nrow=nRem, ncol=k )

samples [ 1 : nRem , ] <− bb [ ( nB+1):n1 , ]

c en te r <− colMeans ( samples ) #Center o f the e l l i p s o i d

S <− cov ( samples ) # Sca le matrix o f the e l l i p s o i d

va l <− c ( )

for ( i in 1 :nRem){

va l [ i ] <− ( samples [ i , ]− cente r )%∗%solve (S)%∗%

matrix ( samples [ i , ]− cente r )

}

rad <− quantile ( val , alpha ) # ’Radius ’ o f the e l l i s o i d

return ( l i s t (c=center , S=S , rad=rad ) )

}

# Data genera t ion from a mixture d i s t r i b u t i o n

ind <− sample ( x=c ( 1 , 2 ) , s i z e =1,prob=c ( . 9 , . 1 ) )

i f ( ind==1){

x <− mvrnorm(n ,mu=c ( 1 , 1 ) , Sigma=diag ( 2 ) )

} else {

x <− rmvgamma(n , shape =1, ra t e =1,diag ( 2 ) )

}

sim <− cred med(x , 2 , 2 , 5 0 0 0 , . 9 5 )
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print ( sim$c )

print ( sim$S)

print ( sim$rad )

# For i r i s data

data ( i r i s )

myIr i s <− cred med( i r i s [ , 1 : 4 ] , 2 , 2 , 5 0 0 0 , . 9 5 )

# Vectors r ep r e s en t i n g p r i n c i p a l axes o f the c r e d i b l e e l l i p s o i d

print ( eigen ( solve ( myIr i s$S ) )$ve c t o r s )

# Construc t ing a 95% c r e d i b l e e l l i p s o i d f o r a 2−dimensiona l

# a f f i n e e qu i v a r i an t s p a t i a l median

set . seed (120)

i f ( ! require (MASS) ) in s ta l l . packages ( ’MASS’ )

i f ( ! require (ICSNP) ) in s ta l l . packages ( ’ICSNP’ )

i f ( ! require ( lcmix ) ) in s ta l l . packages ( ’lcmix’ )

l ibrary (MASS)

l ibrary (ICSNP)

l ibrary ( lcmix )

# Transforming the data
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t rans matrix <− function ( x ){

n <− nrow( x )

k <− ncol ( x )

xT <− t ( x )

xbar <− colMeans ( x )

D1 <− x−xbar

sigmahat <− t (D1)%∗%D1/n #Estimate o f sigma

s igmainv <− solve ( sigmahat )

A <− matrix ( unlist (combn ( 1 : n , ( k+1) , s i m p l i f y=F) ) , ncol=(k+1) ,byrow=T)

r a t i o <− c ( )

for ( i in 1 :nrow(A) ){

xmat <− cbind (xT [ ,A[ i , 2 ] ] −xT [ ,A[ i , 1 ] ] , xT [ ,A[ i , 3 ] ] −xT [ ,A[ i , 1 ] ] )

xmat1 <− t (xmat )%∗%s igmainv%∗%xmat

r a t i o [ i ] <− sum(diag ( xmat1 ) )/det ( xmat1 )

}

ind <− which .min( r a t i o )

xalpha <− cbind (xT [ ,A[ ind ,2 ] ] −xT [ ,A[ ind , 1 ] ] , xT [ ,A[ ind ,3 ] ] −xT [ ,A[ ind , 1 ] ] )

newx <− x[−A[ ind , ] , ]

z <− t ( solve ( xalpha )%∗%t (newx ) )

return ( l i s t ( xalpha=xalpha , newx=newx ) )

}

cred medAE <− function (newx , xalpha , c , p , n1 , alpha ){

z <− t ( solve ( xalpha )%∗%t (newx ) )

c <− 2
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n <− nrow( z )

k <− ncol ( z )

prb <− c/ (c+n)

nB <− 0 .2∗n1 # Burn−in

nRem <− n1−nB # Remaining samples

index<− sample (c ( 1 , 2 ) , 1 , prob=c ( prb ,(1−prb ) ) )

i f ( index==2)

{

weights <− matrix ( rexp (n ∗ n1 , 1) , ncol = n , byrow = TRUE)

weights <− weights / rowSums(weights )

bb <− matrix (NA,nrow=n1 , ncol=k )

for ( i in 1 : n1 ){

# This func t i on has to be modi f i ed i f dimension i s more than 2

myfun <− function ( para ){

a <− 0

for ( j in 1 : k )

{

a <− a+(abs ( para [ j ]−t ( z ) [ j , ] ) ) ˆ p

}

sum( a ˆ(1/2)∗weights [ i , ] )

}

f i t <− optim(c ( . 5 , . 5 ) , myfun )

bb [ i , 1 ] <− f i t $par [ 1 ]

bb [ i , 2 ] <− f i t $par [ 2 ]

}
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}

i f ( index==1){

b <− rbeta (n , 1 , c )

s t i c k break <− numeric (n)

s t i c k break [ 1 ] <− b [ 1 ]

s t i c k break [ 2 : n ] <− sapply ( 2 : n , function ( i ) b [ i ] ∗ prod (1 − b [ 1 : ( i −1) ] ) )

y <− mvrnorm(n , Sigma=10∗diag ( k ) ,mu=rep (0 , k ) )

theta <− sample ( 1 : n , prob = s t i c k break , replace = TRUE, s i z e=n1 )

bb <− y [ theta , ]

}

samples <− matrix (NA,nrow=nRem, ncol=2)

samples [ 1 : nRem , ] <− xalpha %∗% t (bb [ ( nB+1):n1 , ] )

c en te r <− colMeans ( samples ) #Center o f the e l l i p s o i d

S <− cov ( samples ) # Sca le matrix o f the e l l i p s o i d

va l <− c ( )

for ( i in 1 :nRem){

va l [ i ] <− ( samples [ i , ]− cente r )%∗%solve (S)%∗%

matrix ( samples [ i , ]− cente r )

}

rad <− quantile ( val , alpha ) # ’Radius ’ o f the e l l i s o i d

return ( l i s t (c=center , S=S , rad=rad ) )

}

n <− 100

ind <− sample ( x=c ( 1 , 2 ) , s i z e =1,prob=c ( . 9 , . 1 ) )
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i f ( ind==1){

x <− mvrnorm(n ,mu=c ( 1 , 1 ) , Sigma=diag ( 2 ) )

} else {

x <− rmvgamma(n , shape =1, ra t e =1,diag ( 2 ) )

}

xalpha <− t rans matrix ( x )$xalpha

newx <− t rans matrix ( x )$newx

sim <− cred medAE(newx , xalpha , 2 , 2 , 5 0 0 0 , . 9 5 )

print ( sim$c )

print ( sim$S)

print ( sim$rad )
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