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S1 Simulation with varying n.

We previously brought up an approximation approach SLIMappro to address the case

where n is large and the calculation of Ŵ is time consuming. In section 4.2.3, we

examined this method by networks with n = 1200. Here. we provide more simulation

results for the SLIMappro, demonstrating its performance when n is large.

(a) ERROR RATE with varying n. (b) Time consumption in seconds on the SLIMappro.

Figure 1: Performance of the SLIMappro with networks of varying n: Networks are simulated from

the SBM with K = 3, ρ = 0, π = (1/3, 1/3, 1/3), λ = 4 and β = 0.08 with 20 repetitions; (a)

reports the average missclassification rate of SLIMappro; (b) reports the average time consumption

of SLIMappro in seconds.
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S2 Proof of Theorem 3.1

For the SLIM with regularization, misclassification comes from two sources: the

difference between Mτ and M̂τ and the randomness of the clustering method, i.e.,

k-means. For convenience, we omit the subscript τ in Mτ and M̂τ , and we use M0

to specify the original one if needed.

S2.1 Misclassification Rate of K-means Algorithm

The following lemma describes the eigen-structure of M and is similar to Lemma 2.1

in Lei and Rinaldo (2015).

Lemma S2.1. Let the pair (Θ, B) parametrize the SBM with K communities, where

B is of full rank. Let α < 1, which makes I −D−1Pα invertible. Let UHUT be the

eigen-decomposition of M − I. Then U = ΘX where X ∈ RK×K and ‖Xk∗−Xl∗‖ =√
nk−1 + nl−1 for all 1 ≤ k < l ≤ K.

Proof. Clearly M−I is a block matrix of rank K. Let O be a K×K full rank matrix

and

M − I = ΘOΘT = Θ∆−1∆O∆(Θ∆−1)T here ∆ = diag(
√
n1, · · · ,

√
nK).

Let ZHZT = ∆O∆ be the eigen-decomposition of ∆O∆. Because M − I = UHUT ,

we have U = Θ∆−1Z and X = ∆−1Z. The rows of X are perpendicular to each other

and the kth row has length ‖(∆Z)k∗‖ =
√

1/nk. In addition, the eigenvector of M

is the same with M − I’s.

Now, we bound the error of k-means by citing Lemma 5.3 in Lei and Rinaldo

(2015).

Lemma S2.2. For ε > 0 and any two matrices Û , U ∈ Rn×K such that U = ΘX with

Θ ∈ Fn,K , X ∈ RK×K , let (Θ̂, X̂) be the (1 + ε)-approximate solution to the k-means

problem (see Kumar et al. (2004)), and Ū = Θ̂X̂. For any δk ≤ min
l 6=k
‖Xk∗ − Xl∗‖,

define Sk = {i ∈ Gk(Θ) : ‖Ūi∗ − Ui∗‖ ≥ δk/2}, then

K∑
k=1

|Sk|δ2k ≤ 4(4 + 2ε)‖Û − U‖2F . (S2.1)
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Moreover, if

4(4 + 2ε)‖Û − U‖2F/δ2k < nk for all k, (S2.2)

then there exists a K × K permutation matrix J such that Θ̂G∗ = ΘG∗J, where

G =
⋃K
k=1(Gk \ Sk).

In the next lemma, similar to Lemma 5.1 in Lei and Rinaldo (2015), we bound

‖Û − U‖F by ‖M̂ −M‖. Here ‖F‖ is the operator norm of matrix F .

Lemma S2.3. Assume that M ∈ Rn×n is a symmetric matrix with singular value

γ1 ≥ · · · ≥ γn. Let M̂ be any symmetric matrix and Û , U ∈ Rn×K be the K leading

eigenvectors of M̂ and M , respectively. Then there exists a K×K orthogonal matrix

Q such that

‖Û − UQ‖F ≤
2
√

2K

|γK − γK+1|
‖M̂ −M‖.

Proof. The proof follows the lines of Lemma 5.1 in Lei and Rinaldo (2015) using the

Davis-Kahan sin Θ theorem, and hence omitted.

Remark S2.1. Under Condition 3.1, we can calculate the eigenvelues of M . It

can be shown that the eigenvalues of D−1P are λ1 = 1, λ2 = · · · = λK = (a −
b)(a + (K − 1)b + Kτ)−1, λK+1 = · · · = λn = 0. And the eigenvalues of M are

γ1 = α(1 − α)−1 + 1, γ2 = · · · = γK = αλ2(1 − αλ2)−1 + 1, γK+1 = · · · = γn = 1. So

we have

‖Û − UQ‖F ≤
2
√

2K

α
|1− α +

Kb

a− b
+

Kτ

a− b
|‖M̂ −M‖

S2.2 Concentration of M̂

We now bound ‖M̂ −M‖. Following Le et al. (2017), we handle the sparsity issue

by separating nodes into core points, whose degree is close to the mean, and extreme

points, which have a vary large or a very small degree. The main differences from

Le et al. (2017) are: the random walk Laplacian matrix is asymmetric instead of

symmetric; and we control the low degree nodes by adding a constant τ and the high

degree nodes by replacing their degree by cτ , here c is a sufficiently large constant.

We first bound ‖M̂ −M‖ by the corresponding difference of their random walk

Laplacian matrices.
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Lemma S2.4. If α < 1/
√
c+ 1 then

‖M̂ −M‖ ≤ α

(1−
√
c+ 1α)2

‖D̂−1A−D−1P‖.

Proof. Using lemma S2.5 and the condition of α we have ‖D̂−1Aα‖ ≤
√
d̂max/d̂minα ≤√

(c+ 1)τ/τα < 1. Therefore ‖Ŵ‖ = ‖(I − D̂−1Aα)−1‖ ≤ (1 − ‖D̂−1Aα‖)−1 ≤
(1−

√
c+ 1α)−1. So

‖M̂ −M‖ ≤ ‖Ŵ −W‖
= ‖Ŵ (W−1 − Ŵ−1)W‖
≤ α‖Ŵ‖‖W‖‖D̂−1A−D−1P‖
≤ α

(1−
√
c+ 1α)2

‖D̂−1A−D−1P‖.

Lemma S2.5. Let L(A) = D̂−1A be the transition matrix of A, and dmax =

max[Dii], dmin = min[Dii]. Then

‖L(A)‖ ≤
√
dmax/dmin.

Proof. From the definition of L(A) we have

‖L(A)‖ = ‖D−
1
2D−

1
2AD−

1
2D

1
2‖

≤ ‖D−
1
2‖‖D−

1
2AD−

1
2‖‖D

1
2‖

≤
√
dmax
dmin

‖D−
1
2AD−

1
2‖.

It can be easily checked that ‖D−1/2AD−1/2‖ = 1. This completes the proof.

Similar to Theorem 1.2 in Le et al. (2017), we can bound ‖D̂−1A − D−1P‖ as

follows.

Lemma S2.6. Let A0 be a random matrix generated from the SBM. For any C ′ > 0,

there exists some C > 0 such that

‖D̂−1A−D−1P‖ ≤ C

√
log d

d

with probability at least 1− n−C′
uniformly over τ ∈ [C1d, C2d] for some sufficiently

large constants C1, C2, where d = npmax + 1 and pmax = max
u≥v

Puv.
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Proof. First, there is a set of nodes with degrees close to their expected degree. From

Lemma S2.7 we can find a set J containing all but at most n/d nodes from [n] which

satisfies:

‖(D̂−1A−D−1P )JJ‖ ≤ C3(

√
d log d(d+ 2τ +

√
d log d)

τ 2
).

Now, let us deal with the residual. We consider nodes with a high degree in the

original network first. By applying the SLIM with regularization, we have already

changed the degree of these nodes to τ . From Lemma S2.9 we can find a set J1
containing at most n/(4τ) nodes from [n] which satisfies:

‖(D̂−1A− D̂−1P )J1×[n]∪([n]−J1)×J1‖ ≤
C4√
τ
.

In addition, it is easy to show that J ∩ J1 = ∅. Let J2 = [n] − J1 − J . We have

max{d̂u : u ∈ J2} < 4τ. Then we decompose the left nodes into two blocks J2 × [n]

and ([n]− J2)× J2. The first block has at most n/d rows, so Lemma S2.10 indicates

that

‖L(Aτ )J2×[n]‖ ≤

√
max{d̂u : u ∈ J2}+ τ

min{d̂u : u ∈ J2}+ τ
‖L(Aτ )J2×[n]‖ ≤ 3(

2√
d

+

√
40r log d√

τ
).

Similarly, from Lemma S2.11, we have

‖L(Pτ )J2×[n]‖ ≤

√
max{du : u ∈ J2}+ τ

min{du : u ∈ J2}+ τ
‖L(Pτ )J2×[n]‖ ≤ 3(

2√
d

+
2√
τ

).

As for ([n]−J2)×J2, we can bound it in the same way. Finally we complete the proof

using the triangle inequality and taking τ = C5d with a sufficiently large constant

C5 > 0.

Lemma S2.7. For any C ′ > 0, there exists some C > 0 such that with probability at

least 1−n−C′
, there exists a subset J ⊂ [n] satisfying n−|J | ≤ n/d, max

v∈J
|dv− d̂v| ≤

C
√
d log d and

‖(D̂−1A−D−1P )JJ‖ ≤ C(

√
d log d(d+ 2τ +

√
d log d)

τ 2
),

where d = npmax + 1.
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Proof. The existance of such a subset J satisfying n−|J | ≤ n/d and max
v∈J
|dv− d̂v| ≤

C
√
d log d can be proved by Lemma 14 in Gao et al. (2017) from the beginning to

inequation (85). Now let

A = (Aτ )JJ , D̂ = (D̂τ )JJ , P = (Pτ )JJ , D = (Dτ )JJ .

We have ‖D−1‖ ≤ 1
τ
, ‖P‖ ≤ d+ τ. We also have

‖D−1 − D̂−1‖ ≤ max
v∈J
| 1

dv + τ
− 1

d̂v + τ
| ≤ C

√
d log d

τ 2
.

Finally, we obtain

‖D̂−1A−D−1P‖ = ‖D̂−1A−D−1A+D−1A−D−1P‖
≤ ‖D̂−1 −D−1‖‖A‖+ ‖D−1‖‖A− P‖
≤ ‖D̂−1 −D−1‖(‖P‖+ ‖A− P‖) + ‖D−1‖‖A− P‖

≤ C(

√
d log d(d+ 2τ +

√
d log d)

τ 2
)

for some constant C > 0. This completes the proof.

The following result is Lemma 11 in Gao et al. (2017).

Lemma S2.8. For any τ > C(1 + npmax) with some sufficiently large C > 0, we

have

|{u ∈ [n] : du ≥ τ}| ≤ n

τ

with probability at least 1− e−C′n for some constant C ′ ≥ 0.

Lemma S2.9. For any τ > Cd with some sufficiently large C > 0, J1 = {u ∈ [n] :

d̂u > τ}, there exists a positive constant C1. We have

‖(D̂−1A− D̂−1P )J1×[n]∪([n]−J1)×J1‖ ≤
C1√
τ
,

with probability at least 1− e−C′n for some constant C ′ ≥ 0.

Proof. From Lemma S2.8, |J1| ≤ n/τ with probability at least 1 − e−C′n for some
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constant C ′ ≥ 0.

‖(D̂−1A− D̂−1P )J1×[n]∪([n]−J1)×J1‖ ≤ ‖(D̂−1A− D̂−1P )J1×[n]∪([n]−J1)×J1‖F

≤

√
2n|J1|max(

1

n
− 1

di,j + τ
(Pi,j +

τ

n
))

<

√
2n√
τ

(
1

n
+

1

τ
(pmax +

τ

n
))

≤ C1√
τ

for some positive constant C1.

The following lemma is derived from Theorem 4.1 in Le et al. (2017).

Lemma S2.10. Let A0 be a random matrix from the SBM. Then for any r ≥ 1

the following holds with probability 1 − 2n−2r. Any sub-matrix L(Aτ )I×J of the

regularized Laplacian L(Aτ ) with at most n/d rows or columns satisfies

‖L(Aτ )I×J ‖ ≤
2√
d

+

√
40r log d√

τ
for any τ > 0.

Here L(A) = D−1/2AD−1/2 is the symmetric normalized Laplacian of A.

Similarly, we can bound the Laplacian of the regularized Pτ .

Lemma S2.11. Let matrix P as assumption. Then any sub-matrix L(Pτ )I×J of

the regularized Laplacian L(Pτ ) with at most n/d rows or columns satisfies

‖L(Pτ )I×J ‖ ≤
2√
d

+
2√
τ
for any τ > 0.

Finally, we are ready to prove Theorem 3.1 now.

Proof. From Lemma S2.1 we have UQ = ΘXQ = ΘX ′ where ‖X ′k∗ − X ′l∗‖ =√
1/nk + 1/nl. Here Q is a K × K orthogonal matrix. Then, we choose δk =√
n−1k + max{nl : l 6= k}−1 in Lemma S2.2 so that nkδ

2
k ≥ 1 for all k. We have

L(Θ̂τ ,Θ) ≤
∑K

k=1 |Sk|(n
−1
k +max{nl : l 6= k}−1) ≤ 4(4+2ε)‖Ûτ−UQ‖2F . Then, using

Lemma S2.3, we have L(Θ̂τ ,Θ) ≤ C1‖M̂ −M‖2(γτ,K − γτ,K+1)
−2 for some positive
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constant C1. Following Lemma S2.4, we have L(Θ̂τ ,Θ) ≤ C‖D̂−1A−D−1P‖(γτ,K −
γτ,K+1)

−2. We obtain the final result by applying Lemma S2.6.
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List of Notation

A Adjacency matrixA, which is an n×n 0−
1 symmetric matrix.

Aτ Aτ = A + τ
n
11T and then set Aτ J1∗ =

τ
n
and Aτ ∗J1 = τ

n
.

B K × K matrix with bij indicating the

connecting probability between a pair of

nodes from community i and j.

D The expected degree diagonal matrix

which is equal to diag(P11).

Dτ The expected regularized degree diago-

nal matrix which is equal to diag(Pτ11).

FI∗ For a matrix F and index sets I ⊆ [n],

FI∗ is the sub-matrix of F consisting of

the corresponding rows.

IK The K ×K identity matrix.

J1 J1 = {u ∈ [n] : d̂u ≥ τ}.
K Number of communities.

L(F ) For any matrix F , L(F ) = D−1F F which

is the transition matrix of F .

L(Θ̂,Θ) The overall proportion of mis-

classification nodes, L(Θ̂,Θ) =

n−1 minJ∈EK
‖Θ̂J −Θ‖0.

M M = 1
2
((I −D−1Pα) + (I −D−1Pα)T ).

Mτ Mτ = 1
2
((I−D−1τ Pτα)+(I−D−1τ Pτα)T ).

9



List of Notation

P Edge probability matrix P , with P =

ΘBΘT .

Pτ Pτ = P + τ
n
11T.

Θ Membership matrix, Θ ∈ Fn,K , and

Θi,gi = 1.

α α = e−γ.

D̂ The degree diagonal matrix which is

equal to diag(A11).

D̂τ The regularized degree diagonal matrix

which equal to diag(Aτ11).

M̂τ M̂τ = 1
2
((I−D̂−1τ Aτα)+(I−D̂−1τ Aτα)T ).

M̂ M̂ = 1
2
((I − D̂−1Aα) + (I − D̂−1Aα)T ).

Θ̂ Estimated membership matrix, Θ̂ ∈
Fn,K .

d̂i The degree of node i, which is D̂i,i.

d̂τ,i The regularized degree of node i, which

is D̂τ,i,i.

Fn,K The collection of all n×K matrices where

each row has only one 1 and (K− 1) 0′s.

τ The regularization number which is in

[C1d, C2d] for relatively large positive C1

and C2.

d d = npmax + 1.

diag(F ) For any matrix F , diag(F ) denotes

the matrix obtained by setting all off-

diagonal entries of F to 0.

n Number of nodes.

ni Number of nodes belonging to commu-

nity i.

pmax pmax = max
u≥v

Puv.

1K The K × 1 vector of 1’s.
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