Community Detection in Sparse Networks Using the Symmetrized Laplacian Inverse Matrix (SLIM)

Bing-Yi Jing ${ }^{1}$, Ting Li^{2}, Ningchen Ying ${ }^{1}$ and Xianshi $Y u^{1}$
${ }^{1}$ Hong Kong University of Science and Technology and ${ }^{2}$ Hong Kong Polytechnic University

Supplementary Material

S1 Simulation with varying n.

We previously brought up an approximation approach SLIMappro to address the case where n is large and the calculation of \hat{W} is time consuming. In section 4.2.3, we examined this method by networks with $n=1200$. Here. we provide more simulation results for the SLIMappro, demonstrating its performance when n is large.

Figure 1: Performance of the SLIMappro with networks of varying n : Networks are simulated from the SBM with $K=3, \rho=0, \pi=(1 / 3,1 / 3,1 / 3), \lambda=4$ and $\beta=0.08$ with 20 repetitions; (a) reports the average missclassification rate of SLIMappro; (b) reports the average time consumption of SLIMappro in seconds.

S2 Proof of Theorem 3.1

For the SLIM with regularization, misclassification comes from two sources: the difference between M_{τ} and \hat{M}_{τ} and the randomness of the clustering method, i.e., k -means. For convenience, we omit the subscript τ in M_{τ} and \hat{M}_{τ}, and we use M_{0} to specify the original one if needed.

S2.1 Misclassification Rate of K-means Algorithm

The following lemma describes the eigen-structure of M and is similar to Lemma 2.1 in Lei and Rinaldo (2015).

Lemma S2.1. Let the pair (Θ, B) parametrize the SBM with K communities, where B is of full rank. Let $\alpha<1$, which makes $I-D^{-1} P \alpha$ invertible. Let $U H U^{T}$ be the eigen-decomposition of $M-I$. Then $U=\Theta X$ where $X \in \mathbb{R}^{K \times K}$ and $\left\|X_{k *}-X_{l *}\right\|=$ $\sqrt{n_{k}^{-1}+n_{l}^{-1}}$ for all $1 \leq k<l \leq K$.

Proof. Clearly $M-I$ is a block matrix of $\operatorname{rank} K$. Let O be a $K \times K$ full rank matrix and

$$
M-I=\Theta O \Theta^{T}=\Theta \Delta^{-1} \Delta O \Delta\left(\Theta \Delta^{-1}\right)^{T} \text { here } \Delta=\operatorname{diag}\left(\sqrt{n_{1}}, \cdots, \sqrt{n_{K}}\right)
$$

Let $Z H Z^{T}=\Delta O \Delta$ be the eigen-decomposition of $\Delta O \Delta$. Because $M-I=U H U^{T}$, we have $U=\Theta \Delta^{-1} Z$ and $X=\Delta^{-1} Z$. The rows of X are perpendicular to each other and the k th row has length $\left\|(\Delta Z)_{k *}\right\|=\sqrt{1 / n_{k}}$. In addition, the eigenvector of M is the same with $M-I$'s.

Now, we bound the error of k-means by citing Lemma 5.3 in Lei and Rinaldo (2015).

Lemma S2.2. For $\varepsilon>0$ and any two matrices $\hat{U}, U \in \mathbb{R}^{n \times K}$ such that $U=\Theta X$ with $\Theta \in \mathbb{F}_{n, K}, X \in \mathbb{R}^{K \times K}$, let $(\hat{\Theta}, \hat{X})$ be the $(1+\varepsilon)$-approximate solution to the k-means problem (see Kumar et al. (2004)), and $\bar{U}=\hat{\Theta} \hat{X}$. For any $\delta_{k} \leq \min _{l \neq k}\left\|X_{k *}-X_{l *}\right\|$, define $S_{k}=\left\{i \in G_{k}(\Theta):\left\|U_{i *}-U_{i *}\right\| \geq \delta_{k} / 2\right\}$, then

$$
\begin{equation*}
\sum_{k=1}^{K}\left|S_{k}\right| \delta_{k}^{2} \leq 4(4+2 \varepsilon)\|\hat{U}-U\|_{F}^{2} \tag{S2.1}
\end{equation*}
$$

S2. PROOF OF THEOREM 3.1

Moreover, if

$$
\begin{equation*}
4(4+2 \varepsilon)\|\hat{U}-U\|_{F}^{2} / \delta_{k}^{2}<n_{k} \quad \text { for all } k, \tag{S2.2}
\end{equation*}
$$

then there exists a $K \times K$ permutation matrix J such that $\hat{\Theta}_{G *}=\Theta_{G *} J$, where $G=\bigcup_{k=1}^{K}\left(G_{k} \backslash S_{k}\right)$.

In the next lemma, similar to Lemma 5.1 in Lei and Rinaldo (2015), we bound $\|\hat{U}-U\|_{F}$ by $\|\hat{M}-M\|$. Here $\|F\|$ is the operator norm of matrix F.

Lemma S2.3. Assume that $M \in \mathbb{R}^{n \times n}$ is a symmetric matrix with singular value $\gamma_{1} \geq \cdots \geq \gamma_{n}$. Let \hat{M} be any symmetric matrix and $\hat{U}, U \in \mathbb{R}^{n \times K}$ be the K leading eigenvectors of \hat{M} and M, respectively. Then there exists a $K \times K$ orthogonal matrix Q such that

$$
\|\hat{U}-U Q\|_{F} \leq \frac{2 \sqrt{2 K}}{\left|\gamma_{K}-\gamma_{K+1}\right|}\|\hat{M}-M\|
$$

Proof. The proof follows the lines of Lemma 5.1 in Lei and Rinaldo (2015) using the Davis-Kahan $\sin \Theta$ theorem, and hence omitted.

Remark S2.1. Under Condition 3.1, we can calculate the eigenvelues of M. It can be shown that the eigenvalues of $D^{-1} P$ are $\lambda_{1}=1, \lambda_{2}=\cdots=\lambda_{K}=(a-$ $b)(a+(K-1) b+K \tau)^{-1}, \lambda_{K+1}=\cdots=\lambda_{n}=0$. And the eigenvalues of M are $\gamma_{1}=\alpha(1-\alpha)^{-1}+1, \gamma_{2}=\cdots=\gamma_{K}=\alpha \lambda_{2}\left(1-\alpha \lambda_{2}\right)^{-1}+1, \gamma_{K+1}=\cdots=\gamma_{n}=1$. So we have

$$
\|\hat{U}-U Q\|_{F} \leq \frac{2 \sqrt{2 K}}{\alpha}\left|1-\alpha+\frac{K b}{a-b}+\frac{K \tau}{a-b}\right|\|\hat{M}-M\|
$$

S2.2 Concentration of \hat{M}

We now bound $\|\hat{M}-M\|$. Following Le et al. (2017), we handle the sparsity issue by separating nodes into core points, whose degree is close to the mean, and extreme points, which have a vary large or a very small degree. The main differences from Le et al. (2017) are: the random walk Laplacian matrix is asymmetric instead of symmetric; and we control the low degree nodes by adding a constant τ and the high degree nodes by replacing their degree by $\tau \tau$, here c is a sufficiently large constant.

We first bound $\|\hat{M}-M\|$ by the corresponding difference of their random walk Laplacian matrices.

Lemma S2.4. If $\alpha<1 / \sqrt{c+1}$ then

$$
\|\hat{M}-M\| \leq \frac{\alpha}{(1-\sqrt{c+1} \alpha)^{2}}\left\|\hat{D}^{-1} A-D^{-1} P\right\|
$$

Proof. Using lemma S2.5 and the condition of α we have $\left\|\hat{D}^{-1} A \alpha\right\| \leq \sqrt{\hat{d}_{\text {max }} / \hat{d}_{\text {min }}} \alpha \leq$ $\sqrt{(c+1) \tau / \tau} \alpha<1$. Therefore $\|\hat{W}\|=\left\|\left(I-\hat{D}^{-1} A \alpha\right)^{-1}\right\| \leq\left(1-\left\|\hat{D}^{-1} A \alpha\right\|\right)^{-1} \leq$ $(1-\sqrt{c+1} \alpha)^{-1}$. So

$$
\begin{aligned}
\|\hat{M}-M\| & \leq\|\hat{W}-W\| \\
& =\left\|\hat{W}\left(W^{-1}-\hat{W}^{-1}\right) W\right\| \\
& \leq \alpha\|\hat{W}\|\|W\|\left\|\hat{D}^{-1} A-D^{-1} P\right\| \\
& \leq \frac{\alpha}{(1-\sqrt{c+1} \alpha)^{2}}\left\|\hat{D}^{-1} A-D^{-1} P\right\| .
\end{aligned}
$$

Lemma S2.5. Let $L(A)=\hat{D}^{-1} A$ be the transition matrix of A, and $d_{\max }=$ $\max \left[D_{i i}\right], d_{\text {min }}=\min \left[D_{i i}\right]$. Then

$$
\|L(A)\| \leq \sqrt{d_{\max } / d_{\min }}
$$

Proof. From the definition of $L(A)$ we have

$$
\begin{aligned}
\|L(A)\| & =\left\|D^{-\frac{1}{2}} D^{-\frac{1}{2}} A D^{-\frac{1}{2}} D^{\frac{1}{2}}\right\| \\
& \leq\left\|D^{-\frac{1}{2}}\right\|\left\|D^{-\frac{1}{2}} A D^{-\frac{1}{2}}\right\|\left\|D^{\frac{1}{2}}\right\| \\
& \leq \sqrt{\frac{d_{\max }}{d_{\min }}}\left\|D^{-\frac{1}{2}} A D^{-\frac{1}{2}}\right\|
\end{aligned}
$$

It can be easily checked that $\left\|D^{-1 / 2} A D^{-1 / 2}\right\|=1$. This completes the proof.
Similar to Theorem 1.2 in Le et al. (2017), we can bound $\left\|\hat{D}^{-1} A-D^{-1} P\right\|$ as follows.

Lemma S2.6. Let A_{0} be a random matrix generated from the SBM . For any $C^{\prime}>0$, there exists some $C>0$ such that

$$
\left\|\hat{D}^{-1} A-D^{-1} P\right\| \leq C \sqrt{\frac{\log d}{d}}
$$

with probability at least $1-n^{-C^{\prime}}$ uniformly over $\tau \in\left[C_{1} d, C_{2} d\right]$ for some sufficiently large constants C_{1}, C_{2}, where $d=n p_{\max }+1$ and $p_{\max }=\max _{u \geq v} P_{u v}$.

S2. PROOF OF THEOREM 3.1

Proof. First, there is a set of nodes with degrees close to their expected degree. From Lemma S2.7 we can find a set J containing all but at most n / d nodes from $[n]$ which satisfies:

$$
\left\|\left(\hat{D}^{-1} A-D^{-1} P\right)_{J J}\right\| \leq C_{3}\left(\frac{\sqrt{d \log d}(d+2 \tau+\sqrt{d \log d})}{\tau^{2}}\right)
$$

Now, let us deal with the residual. We consider nodes with a high degree in the original network first. By applying the SLIM with regularization, we have already changed the degree of these nodes to τ. From Lemma S2.9 we can find a set J_{1} containing at most $n /(4 \tau)$ nodes from $[n]$ which satisfies:

$$
\left\|\left(\hat{D}^{-1} A-\hat{D}^{-1} P\right)_{J_{1} \times[n] \cup\left([n]-J_{1}\right) \times J_{1}}\right\| \leq \frac{C_{4}}{\sqrt{\tau}} .
$$

In addition, it is easy to show that $J \cap J_{1}=\emptyset$. Let $J_{2}=[n]-J_{1}-J$. We have $\max \left\{\hat{d}_{u}: u \in J_{2}\right\}<4 \tau$. Then we decompose the left nodes into two blocks $J_{2} \times[n]$ and $\left([n]-J_{2}\right) \times J_{2}$. The first block has at most n / d rows, so Lemma S2.10 indicates that

$$
\left\|L\left(A_{\tau}\right)_{J_{2} \times[n]}\right\| \leq \sqrt{\frac{\max \left\{\hat{d}_{u}: u \in J_{2}\right\}+\tau}{\min \left\{\hat{d}_{u}: u \in J_{2}\right\}+\tau}}\left\|\mathcal{L}\left(A_{\tau}\right)_{J_{2} \times[n]}\right\| \leq 3\left(\frac{2}{\sqrt{d}}+\frac{\sqrt{40 r \log d}}{\sqrt{\tau}}\right) .
$$

Similarly, from Lemma S2.11, we have

$$
\left\|L\left(P_{\tau}\right)_{J_{2} \times[n]}\right\| \leq \sqrt{\frac{\max \left\{d_{u}: u \in J_{2}\right\}+\tau}{\min \left\{d_{u}: u \in J_{2}\right\}+\tau}}\left\|\mathcal{L}\left(P_{\tau}\right)_{J_{2} \times[n]}\right\| \leq 3\left(\frac{2}{\sqrt{d}}+\frac{2}{\sqrt{\tau}}\right)
$$

As for $\left([n]-J_{2}\right) \times J_{2}$, we can bound it in the same way. Finally we complete the proof using the triangle inequality and taking $\tau=C_{5} d$ with a sufficiently large constant $C_{5}>0$.

Lemma S2.7. For any $C^{\prime}>0$, there exists some $C>0$ such that with probability at least $1-n^{-C^{\prime}}$, there exists a subset $J \subset[n]$ satisfying $n-|J| \leq n / d, \max _{v \in J}\left|d_{v}-\hat{d}_{v}\right| \leq$ $C \sqrt{d \log d}$ and

$$
\left\|\left(\hat{D}^{-1} A-D^{-1} P\right)_{J J}\right\| \leq C\left(\frac{\sqrt{d \log d}(d+2 \tau+\sqrt{d \log d})}{\tau^{2}}\right)
$$

where $d=n p_{\max }+1$.

B. JING, T. Li, N. YING AND X. YU

Proof. The existance of such a subset J satisfying $n-|J| \leq n / d$ and $\max _{v \in J}\left|d_{v}-\hat{d}_{v}\right| \leq$ $C \sqrt{d \log d}$ can be proved by Lemma 14 in Gao et al. (2017) from the beginning to inequation (85). Now let

$$
A=\left(A_{\tau}\right)_{J J}, \quad \hat{D}=\left(\hat{D}_{\tau}\right)_{J J}, \quad P=\left(P_{\tau}\right)_{J J}, \quad D=\left(D_{\tau}\right)_{J J}
$$

We have $\left\|D^{-1}\right\| \leq \frac{1}{\tau},\|P\| \leq d+\tau$. We also have

$$
\left\|D^{-1}-\hat{D}^{-1}\right\| \leq \max _{v \in J}\left|\frac{1}{d_{v}+\tau}-\frac{1}{\hat{d}_{v}+\tau}\right| \leq \frac{C \sqrt{d \log d}}{\tau^{2}}
$$

Finally, we obtain

$$
\begin{aligned}
\left\|\hat{D}^{-1} A-D^{-1} P\right\| & =\left\|\hat{D}^{-1} A-D^{-1} A+D^{-1} A-D^{-1} P\right\| \\
& \leq\left\|\hat{D}^{-1}-D^{-1}\right\|\|A\|+\left\|D^{-1}\right\|\|A-P\| \\
& \leq\left\|\hat{D}^{-1}-D^{-1}\right\|(\|P\|+\|A-P\|)+\left\|D^{-1}\right\|\|A-P\| \\
& \leq C\left(\frac{\sqrt{d \log d}(d+2 \tau+\sqrt{d \log d})}{\tau^{2}}\right)
\end{aligned}
$$

for some constant $C>0$. This completes the proof.

The following result is Lemma 11 in Gao et al. (2017).
Lemma S2.8. For any $\tau>C\left(1+n p_{\max }\right)$ with some sufficiently large $C>0$, we have

$$
\left|\left\{u \in[n]: d_{u} \geq \tau\right\}\right| \leq \frac{n}{\tau}
$$

with probability at least $1-e^{-C^{\prime} n}$ for some constant $C^{\prime} \geq 0$.
Lemma S2.9. For any $\tau>C d$ with some sufficiently large $C>0, J_{1}=\{u \in[n]$: $\left.\hat{d_{u}}>\tau\right\}$, there exists a positive constant C_{1}. We have

$$
\left\|\left(\hat{D}^{-1} A-\hat{D}^{-1} P\right)_{J_{1} \times[n] \cup\left([n]-J_{1}\right) \times J_{1}}\right\| \leq \frac{C_{1}}{\sqrt{\tau}}
$$

with probability at least $1-e^{-C^{\prime} n}$ for some constant $C^{\prime} \geq 0$.
Proof. From Lemma S2.8, $\left|J_{1}\right| \leq n / \tau$ with probability at least $1-e^{-C^{\prime} n}$ for some
constant $C^{\prime} \geq 0$.

$$
\begin{aligned}
\left\|\left(\hat{D}^{-1} A-\hat{D}^{-1} P\right)_{J_{1} \times[n] \cup\left([n]-J_{1}\right) \times J_{1}}\right\| & \leq\left\|\left(\hat{D}^{-1} A-\hat{D}^{-1} P\right)_{J_{1} \times[n] \cup\left([n]-J_{1}\right) \times J_{1}}\right\|_{F} \\
& \leq \sqrt{2 n\left|J_{1}\right| \max \left(\frac{1}{n}-\frac{1}{d_{i, j}+\tau}\left(P_{i, j}+\frac{\tau}{n}\right)\right)} \\
& <\frac{\sqrt{2} n}{\sqrt{\tau}}\left(\frac{1}{n}+\frac{1}{\tau}\left(p_{\max }+\frac{\tau}{n}\right)\right) \\
& \leq \frac{C_{1}}{\sqrt{\tau}}
\end{aligned}
$$

for some positive constant C_{1}.
The following lemma is derived from Theorem 4.1 in Le et al. (2017).
Lemma S2.10. Let A_{0} be a random matrix from the SBM. Then for any $r \geq 1$ the following holds with probability $1-2 n^{-2 r}$. Any sub-matrix $\mathcal{L}\left(A_{\tau}\right)_{\mathcal{I} \times \mathcal{J}}$ of the regularized Laplacian $\mathcal{L}\left(A_{\tau}\right)$ with at most n / d rows or columns satisfies

$$
\left\|\mathcal{L}\left(A_{\tau}\right)_{\mathcal{I} \times \mathcal{J}}\right\| \leq \frac{2}{\sqrt{d}}+\frac{\sqrt{40 r \log d}}{\sqrt{\tau}} \text { for any } \tau>0
$$

Here $\mathcal{L}(A)=D^{-1 / 2} A D^{-1 / 2}$ is the symmetric normalized Laplacian of A.
Similarly, we can bound the Laplacian of the regularized P_{τ}.
Lemma S2.11. Let matrix P as assumption. Then any sub-matrix $\mathcal{L}\left(P_{\tau}\right)_{\mathcal{I} \times \mathcal{J}}$ of the regularized Laplacian $\mathcal{L}\left(P_{\tau}\right)$ with at most n / d rows or columns satisfies

$$
\left\|\mathcal{L}\left(P_{\tau}\right)_{\mathcal{I} \times \mathcal{J}}\right\| \leq \frac{2}{\sqrt{d}}+\frac{2}{\sqrt{\tau}} \text { for any } \tau>0
$$

Finally, we are ready to prove Theorem 3.1 now.
Proof. From Lemma S2.1 we have $U Q=\Theta X Q=\Theta X^{\prime}$ where $\left\|X_{k *}^{\prime}-X_{l *}^{\prime}\right\|=$ $\sqrt{1 / n_{k}+1 / n_{l}}$. Here Q is a $K \times K$ orthogonal matrix. Then, we choose $\delta_{k}=$ $\sqrt{n_{k}^{-1}+\max \left\{n_{l}: l \neq k\right\}^{-1}}$ in Lemma S2.2 so that $n_{k} \delta_{k}^{2} \geq 1$ for all k. We have $L\left(\hat{\Theta}_{\tau}, \Theta\right) \leq \sum_{k=1}^{K}\left|S_{k}\right|\left(n_{k}^{-1}+\max \left\{n_{l}: l \neq k\right\}^{-1}\right) \leq 4(4+2 \varepsilon)\left\|\hat{U}_{\tau}-U Q\right\|_{F}^{2}$. Then, using Lemma S2.3, we have $L\left(\hat{\Theta}_{\tau}, \Theta\right) \leq C_{1}\|\hat{M}-M\|^{2}\left(\gamma_{\tau, K}-\gamma_{\tau, K+1}\right)^{-2}$ for some positive
constant C_{1}. Following Lemma S2.4, we have $L\left(\hat{\Theta}_{\tau}, \Theta\right) \leq C\left\|\hat{D}^{-1} A-D^{-1} P\right\|\left(\gamma_{\tau, K}-\right.$ $\left.\gamma_{\tau, K+1}\right)^{-2}$. We obtain the final result by applying Lemma S2.6.

Bibliography

Gao, C., Z. Ma, A. Y. Zhang, and H. H. Zhou (2017). Achieving optimal misclassification proportion in stochastic block models. The Journal of Machine Learning Research 18(1), 1980-2024.

Kumar, A., Y. Sabharwal, and S. Sen (2004). A simple linear time (1+/spl epsiv/)approximation algorithm for k-means clustering in any dimensions. In Foundations of Computer Science, 2004. Proceedings. 45th Annual IEEE Symposium on, pp. 454-462. IEEE.

Le, C. M., E. Levina, and R. Vershynin (2017). Concentration and regularization of random graphs. Random Structures and Algorithms.

Lei, J. and A. Rinaldo (2015). Consistency of spectral clustering in stochastic block models. The Annals of Statistics 43(1), 215-237.

List of Notation

A	Adjacency matrix A, which is an $n \times n 0-$		
	1 symmetric matrix.		
A_{τ}	$A_{\tau}=A+\frac{\tau}{n} \mathbf{1 1}^{\mathbf{T}}$ and then set $A_{\tau J_{1} *}=$ $\frac{\tau}{n}$ and $A_{\tau * J_{1}}=\frac{\tau}{n}$.		
B	$K \times K$ matrix with $b_{i j}$ indicating the connecting probability between a pair of nodes from community i and j.		
D	The expected degree diagonal matrix which is equal to $\operatorname{diag}(P 11)$.		
D_{τ}	The expected regularized degree diagonal matrix which is equal to $\operatorname{diag}\left(P_{\tau} \mathbf{1 1}\right)$		
$F_{\mathcal{I} *}$	For a matrix F and index sets $\mathcal{I} \subseteq[n]$ $F_{\mathcal{I} *}$ is the sub-matrix of F consisting of the corresponding rows.		
I_{K}	The $K \times K$ identity matrix.		
J_{1}	$J_{1}=\left\{u \in[n]: \hat{d}_{u} \geq \tau\right\}$.		
K	Number of communities.		
$L(F)$	For any matrix $F, L(F)=D_{F}^{-1} F$ which is the transition matrix of F.		
$L(\hat{\Theta}, \Theta)$	The overall proportion of mis classification nodes, $L(\hat{\Theta}, \Theta)=$ $n^{-1} \min _{J \in E_{K}}\\|\hat{\Theta} J-\Theta\\|_{0}$.		
M	$M=\frac{1}{2}\left(\left(I-D^{-1} P \alpha\right)+\left(I-D^{-1} P \alpha\right)^{T}\right)$.		
M_{τ}	$M_{\tau}=\frac{1}{2}\left(\left(I-D_{\tau}^{-1} P_{\tau} \alpha\right)+\left(I-D_{\tau}^{-1} P_{\tau} \alpha\right)^{T}\right)$.		

P	Edge probability matrix P, with $\Theta B \Theta^{T}$.
P_{τ}	$P_{\tau}=P+\frac{\tau}{n} \mathbf{1 1}{ }^{\mathbf{T}}$.
Θ	Membership matrix, $\Theta \in \mathbb{F}_{n, K}$, and $\Theta_{i, g_{i}}=1$.
α	$\alpha=e$
\hat{D}	The degree diagonal matrix which is equal to $\operatorname{diag}(A 11)$.
\hat{D}_{τ}	The regularized degree diagonal matrix which equal to $\operatorname{diag}\left(A_{\tau} \mathbf{1 1}\right)$.
M_{τ}	$\hat{M}_{\tau}=\frac{1}{2}\left(\left(I-\hat{D}_{\tau}^{-1} A_{\tau} \alpha\right)+\left(I-\hat{D}_{\tau}^{-1} A_{\tau} \alpha\right)^{T}\right)$.
\hat{M}	$\hat{M}=\frac{1}{2}\left(\left(I-\hat{D}^{-1} A \alpha\right)+\left(I-\hat{D}^{-1} A \alpha\right)^{T}\right)$.
$\hat{\Theta}$	Estimated membership matrix, $\hat{\Theta} \in$ $\mathbb{F}_{n, K}$.
\hat{d}_{i}	The degree of node i, which is
$\hat{d}_{\tau, i}$	The regularized degree of node i, which is $\hat{D}_{\tau, i, i}$.
$\mathbb{F}_{n, K}$	The collection of all $n \times K$ matrices where each row has only one 1 and $(K-1) 0^{\prime} s$.
τ	The regularization number which is in [$\left.C_{1} d, C_{2} d\right]$ for relatively large positive C_{1} and C_{2}.
d	$d=n p_{\text {max }}+1$.
$\operatorname{diag}(F)$	For any matrix $F, \operatorname{diag}(F)$ denotes the matrix obtained by setting all offdiagonal entries of F to 0 .
n	Number of nodes.
n_{i}	Number of nodes belonging to community i.
$p_{\text {max }}$	$p_{\max }=\max _{u \geq v} P_{u v} .$
	The $K \times 1$ vecto

