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Proof of Lemma 1. Firstly, we check the requirement (i). As fn is dif-

ferentiable, ∃ξq ∈ (λ̂q+1/σ
2, λ̂q/σ

2), s.t.

δ̂∗q = fn(λ̂q/σ
2)− fn(λ̂q+1/σ

2) = f ′n(ξq)δ̂q. (1.1)

We then only need to check that

P{f ′n(ξq) ≥ 1} −→ 1, as n→∞. (1.2)

By conditions (a) and (b), it suffices to show that

P{ξq > b− κn} −→ 1, as n→∞. (1.3)

On the other hand, from the definition of κn in condition (b), we have

λ̂q+1/σ
2 − b = oP (κn), (1.4)

which is equivalent to

λ̂q+1/σ
2 − b

κn
= oP (1). (1.5)
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Then we have

P{ξq > b− κn} ≥ P

{
λ̂q+1

σ2
> b− κn

}
= P

{
λ̂q+1/σ

2 − b
κn

> −1

}
→ 1.(1.6)

(i) is then verified.

Now we check (ii). Similarly, we have

δ̂∗i = f ′(ξi)δ̂i/σ
2, for q + 1 ≤ i ≤ p− 2, (1.7)

where ξi ∈ (λ̂i+1/σ
2, λ̂i/σ

2). Then it suffices to show that

P{ξi < b+ κn} −→ 1, for q + 1 ≤ i ≤ p− 2. (1.8)

Since ξq+1 > · · · > ξp−2, it is equivalent to

P{ξq+1 < b+ κn} −→ 1, (1.9)

whose proof is completely parallel to that of (i).

For (iii), we have

δ̂∗q+1

δ̂∗q
=
f ′n(ξq+1)δ̂q+1

f ′n(ξq)δ̂q
(1.10)

Condition (b) yields

f ′n(ξq+1) ≤ f ′n(ξq), (1.11)

since ξq+1 < λ̂q+1/σ
2 < ξq. Therefore,

δ̂∗q+1

δ̂∗q
≤ δ̂q+1

δ̂q
. (1.12)
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The requirement (iii) is then proved and the proof of the lemma is finished.

Proof of Theorem 2. We only need to check that

lim
n→∞

P

{
δ̂∗i+1 + cn

δ̂∗i + cn
> τ

}
= 1, for q < i ≤ L− 2 (1.13)

and

lim
n→∞

P

{
δ̂∗q+1 + cn

δ̂∗q + cn
≤ τ

}
= 1. (1.14)

On one hand, since Lemma 1 ensures the requirement (ii), for q < i ≤ L−2,

δ̂∗i = op(cn), (1.15)

which leads to δ̂∗i c
−1
n = op(1). Then

δ̂∗i+1 + cn

δ̂∗i + cn
=
δ̂∗i+1c

−1
n + 1

δ̂∗i c
−1
n + 1

=
op(1) + 1

op(1) + 1

P−→ 1 > τ. (1.16)

That is,

lim
n→+∞

P

{
δ̂∗i+1 + cn

δ̂∗i + cn
> τ

}
= 1, for q < i ≤ L− 2. (1.17)

On the other hand, because of (i), (ii) and

lim
n→+∞

P

{
δ̂q+1/σ

2 + cn

δ̂q/σ2 + cn
≤ τ

}
−→ 1, (1.18)

we have

lim
n→+∞

P

{
δ̂∗q+1 + cn

δ̂∗q + cn
≤ τ

}
−→ 1. (1.19)
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Thus, q̂TV ACLEn is equal to q with a probability going to 1. The proof is

concluded.

Proof of Proposition 3 and Theorem 3. When σ2 = 1, Wang and Yao

(2017) provided the limiting spectral distribution (LSD) of the matrix

Fn = S1S
−1
2 and established the phase transition phenomenon for those

extreme eigenvalues of Fn. When 0 < c ≤ 1, the empirical spectral distri-

bution (ESD) of Fn weakly converges to a distribution Fc,y with the density

function

fc,y(x) =
(1− y)

√
(b1 − x)(x− a1)

2πx(c+ xy)
, a2 ≤ x ≤ b2, (1.20)

where a2 = (1−
√
c+y−cy
1−y )2 and b2 = (1+

√
c+y−cy
1−y )2. Similarly as that of spiked

population models, when c > 1, there is an additional probability mea-

sure of mass 1 − 1
c

for Fc,y. Further, they also proved a phase transition

phenomenon that almost surely

λ̂i → ϕ(λi), λi > γ(1 +
√
c+ y − cy),

λ̂i → b2, 1 < λi ≤ γ(1 +
√
c+ y − cy),

where γ = 1
1−y ∈ (1,+∞) and ϕ(x) = γx(x−1+c)

x−γ , x 6= γ.

Under the general Fisher matrix with the spiked structure

spec(Σ1Σ
−1
2 ) = {λ1, λ2, · · · , λq1 , σ2, · · · , σ2}. (1.21)
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Using the simple transformation λ̂i � (σ2)−1λ̂i, we can similarly achieve

the results in the case of σ2 = 1. The empirical spectral distribution of Fn

weakly converges to a distribution Fc,y,σ2 with the density function

fc,y,σ2(x) =
1

σ2
fc,y

( x
σ2

)
, σ2a1 < x < σ2b1, (1.22)

and the additional point mass 1− 1
c

at origin x = 0 also exists when c > 1.

The phase transition phenomenon is modified as

λ̂i → σ2ϕ(λi/σ
2), λi > σ2γ(1 +

√
c+ y − cy),

λ̂i → σ2b2, σ2 < λi ≤ σ2γ(1 +
√
c+ y − cy),

where the parameters b2, γ and the function ϕ have the same definitions as

those in the case with σ2 = 1.

Recall that q := #{λi : λi > σ2γ(1+
√
c+ y − cy)}. According to these

results, for any fixed L with q + 3 < L < p

λ̂i → σ2ϕ(λi/σ
2), 1 ≤ i ≤ q,

λ̂i → σ2b2, q + 1 ≤ i ≤ L. (1.23)

That is, when i is larger than q, the estimated eigenvalue λ̂i converges to the

right edge σ2b2 of the support of Fc,y,σ2 . This means that any eigenvalues

such that σ2 < λi ≤ σ2γ(1 +
√
c+ y − cy) cannot be identified through the

estimated eigenvalues and then show the optimality of this lower bound.

Thus, the Proposition 3 has been proved.
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Modifying the result of Wang and Yao (2017), we can show that those

extreme eigenvalues λ̂i corresponding to λi > σ2γ(1 +
√
c+ y − cy) satisfy

Central Limiting Theorem and thus have the convergence rate of order

1/
√
n. For the fluctuation of those eigenvalues which stick to the bulk, Han

et al. (2016) showed that n2/3(λ̂q+1− σ2b2) is asymptotically Tracy-Widom

distributed. Han et al. (2018) established an asymptotic joint distribution

for (n2/3(λ̂q+1−σ2b2), n
2/3(λ̂q+2−σ2b2), · · · , n2/3(λ̂q+k−σ2b2)) for any fixed

k. Thus, for any fixed L > q, n2/3(λ̂i−σ2b2) = Op(n
−2/3) for q+ 1 ≤ i ≤ L.

We omit the remainder of the proof, since it is exactly the same with

that of spiked population models.

Proof of Proposition 1. Let Σy = Cov(yt, yt−1) be the lag-1 auto-covariance

matrices of yt and Σx = Cov(xt, xt−1) the lag-1 auto-covariance matrix of

xt. As shown in Li et al. (2017), the sample auto-covariance matrix of yt is

Σ̂y =
1

T

T+1∑
t=2

yty
′
t−1 =

1

T

T+1∑
t=2

(Axt + εt)(Axt−1 + εt−1)
′

=
1

T

T+1∑
t=2

Axtx
′
t−1A

′ +
1

T

T+1∑
t=2

(Axtε
′
t−1 + εtx

′
t−1A

′) +
1

T

T+1∑
t=2

εtε
′
t−1

:= PA + Σ̂ε, (1.24)

where the matrix Σ̂ε = 1
T

∑T+1
t=2 εtε

′
t−1 is the sample auto-covariance matrix

of noise sequence {εt}. Notice that the matrix PA is of finite rank, then the

matrix Σ̂y can be viewed as a finite-rank perturbation of Σ̂ε. Since both Σ̂ε
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and Σ̂y are asymmetric matrices, Li et al. (2017) considered their singular

values. This is equivalent to considering the square root of the eigenvalues

of the matrices M̂ε := Σ̂εΣ̂
′
ε and M̂y := Σ̂yΣ̂

′
y, respectively.

Define Σ̂y/σ
2 = PA/σ

2 + Σ̂ε/σ
2, we can reduce the problem to the

case with σ2 = 1. When p/T → y > 0, Li et al. (2015) proved that the

empirical spectral distribution of M̂ε almost surely converges to a non-

random limiting distribution, whose Stieltjes transformation S(z) defined

in (4.10) satisfies the equation

z2S3(z)− 2z(y − 1)S2(z) + (y − 1)2S(z)− zS(z)− 1 = 0.

This limiting spectral distribution is continuous with a compact support

[a11{y≥1}, b1], where

a1 = (−1 + 20y + 8y2 − (1 + 8y)3/2)/8,

b1 = (−1 + 20y + 8y2 + (1 + 8y)3/2)/8

From Wang and Yao (2016), the largest eigenvalue λ̂ε,1 of M̂ε almost surely

converges to the right edge b1. Like the previous models, for any fixed

L > q0 + 1, and any 1 ≤ i ≤ L the largest eigenvalues λ̂ε,i of M̂ε converge

to the same value b1. Further, for general σ2, the result of Li et al. (2017)

implies that the limiting spectral distribution of the perturbed matrix M̂y

is identical to that of M̂ε. They also built a phase transition phenomenon
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for those extreme eigenvalues λ̂1 ≥ · · · ≥ λ̂q. The following proposition

confirms the optimality of the bound restriction T1(i) < T (b1+) such that

the corresponding q factors in PA can be identified.

Lemma A. (Li et al. (2017)) Denote T (·) as the T -transformation of the

Limiting Spectral Distribution (LSD) for matrix M̂y/σ
4. Suppose that the

model (3.17) satisfies Assumptions 3.1-3.3, {εt} are normally distributed

and the loading matrix A is standardized as A′A = Ik. Let λ̂i, 1 ≤ i ≤ q0

denote the q0 largest eigenvalues of M̂y. Then for each 1 ≤ i ≤ q0, λ̂i/σ
4

converges almost surely to a limit βi. Moreover,

βi > b1 when T1(i) < T (b1+),

and

βi = b1 when T1(i) ≥ T (b1+)

where

T1(i) =
2yσ2γ0(i) + γ1(i)

2 −
√

(2yσ2γ0(i) + γ1(i)2)2 − 4y2σ4(γ0(i)2 − γ1(i))2
2γ0(i)2 − 2γ1(i)2

.

From this lemma, we can see that the bound for the number of common

factors determined by the constraint T1(i) < T (b1+) is optimal. That is,

only q common factors in PA can be well separated from the noise εt’s
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theoretically. This is because λ̂q+1 will converge to b1 and thus cannot be

well separated from those large estimated eigenvalues of Σ̂ε that tend to

the right edge b1 as well.

A justification of Proposition 2. By the results of Wang and Yao

(2016), the phase transitions hold. Further, under the assumption that

the estimated eigenvalues λ̂i for i > q have the convergence rate of or-

der Op(n
−2/3), the results hold by following the arguments used in spiked

population models. �
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