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In this document, we present the preliminary lemmas and the detailed proofs of Theorems

1 and 2. Additional simulation studies and real data analyses of Boston house price data are

also included.

S1 Preliminary lemmas

Lemma 1. Suppose that Conditions (C1)–(C2) and (C7)–(C8) hold. For

the estimators ψ̂n(u) and γ̂n(u), we have the following asymptotic represen-

tations:

√
nhn

{
ψ̂n(u)− ψ(u)E(Y )− 1

2
ψ(2)(u)E(Y )κ21h

2
n

}
=

1√
nhnfu(u)

n∑
i=1

K

(
Ui − u

hn

){
Ỹi − ψ(Ui)E(Y )

}
+ op(1) (S1.1)
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and

√
nhn

{
γ̂n(u)− γ(u)E(X)− 1

2
γ(2)(u)E(X)κ21h

2
n

}
=

1√
nhnfu(u)

n∑
i=1

K

(
Ui − u

hn

)
{X̃i − γ(Ui)E(X)}+ op(1), (S1.2)

where κ21 =
∫
u2K(u)du.

Proof: We only prove (S1.1). The proof of (S1.2) is similar. Let λ(u) =

E(Ỹ |U = u). By the condition that U is independent of (Y,X⊤,Z⊤)⊤, we

have λ(u) = ψ(u)E(Y ) and λ(2)(u) = ψ(2)(u)E(Y ). Note that ψ̂n(u) is the

local linear estimation of λ(u). By Theorem 2.7 in Li and Racine (2007),

(S1.1) holds. �

Lemma 2. Suppose that Conditions (C1)–(C2) and (C7)–(C8) hold. Let

Λ(X,Z) be a continuous function satisfying E|Λ(X,Z)| < ∞. Then, we

have the following asymptotic representations:

1√
n

n∑
i=1

Λ(Xi,Zi)(Ŷi − Yi) =
1√
n

n∑
i=1

E{Y Λ(X,Z)}
E(Y )

{Ỹi − Yi}+ op(1), (S1.3)

and for r = 1, . . . , p,

1√
n

n∑
i=1

Λ(Xi,Zi)(X̂ri −Xri) =
1√
n

n∑
i=1

E{XrΛ(X,Z)}
E(Xr)

{X̃ri −Xri}+ op(1). (S1.4)

Proof: We only prove (S1.3). Note that Ỹm,n = n−1
∑n

i=1 Ỹi, thus

1√
n

n∑
i=1

Λ(Xi,Zi)(Ŷi − Yi) =
1√
n

n∑
i=1

Λ(Xi,Zi)

{
ỸiỸm,n

ψ̂n(Ui)
− Yi

}
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=
1√
n

n∑
i=1

Λ(Xi,Zi)

{
Ỹi{E(Y ) + Ỹm,n − E(Y )}

ψ̂n(Ui)
− Yi

}

=
1√
n

n∑
i=1

Λ(Xi,Zi)

{
ỸiE(Y )

ψ̂n(Ui)
− Yi

}

+
1√
n

n∑
i=1

Λ(Xi,Zi)
Ỹi

ψ̂n(Ui)

{
Ỹm,n − E(Y )

}
=

1√
n

n∑
i=1

Λ(Xi,Zi)

{
ỸiE(Y )

ψ̂n(Ui)
− Yi

}

+
1

n
√
n

n∑
i=1

n∑
j=1

Λ(Xi,Zi)
Ỹi

ψ̂n(Ui)

{
Ỹj − E(Y )

}
=: I1 + I2. (S1.5)

Firstly, we investigate the property of I1, it follows from Lemma 1 that

I1 =
1√
n

n∑
i=1

Λ(Xi,Zi)Yi

{
ψ(Ui)E(Y )− ψ̂n(Ui)

ψ(Ui)E(Y )

}
+ op(1).

By the law of large numbers and Conditions (C7)–(C8), we can validate

that S0(u, hn) = fu(u) + op(1), S1(u, hn) = h2n
∫
u2K(u)f ′

u(u)du + op(h
2
n),

S2(u, hn) = h2n
∫
u2K(u)du+ op(h

2
n). Thus, we have

I1 =
1√
n

n∑
i=1

Λ(Xi,Zi)Yi
ψ(Ui)E(Y )

1

nhnfu(Ui)

n∑
j=1

K

(
Uj − Ui

hn

)
{ψ(Ui)E(Y )− Ỹj}+ op(1)

=
1√
n

n∑
i=1

Λ(Xi,Zi)Yi
ψ(Ui)E(Y )

E(Y )

nhnfu(Ui)

n∑
j=1

K

(
Uj − Ui

hn

)
{ψ(Ui)− ψ(Uj)}

+
1√
n

n∑
i=1

Λ(Xi,Zi)Yi
ψ(Ui)E(Y )

1

nhnfu(Ui)

n∑
j=1

K

(
Uj − Ui

hn

)
{ψ(Uj)E(Y )− Ỹj}+ op(1)

=: Ω1 + Ω2. (S1.6)
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By the fact that

1

nhnfu(Ui)

n∑
j=1

K

(
Uj − Ui

hn

)
{ψ(Ui)− ψ(Uj)} =

1

2
ψ(2)(Ui)κ21h

2
n + op(h

2
n)

with κ21 shown in Lemma 1, we can validate that

Ω1 = Op(
√
nh2n) = op(1). (S1.7)

Notice further that E{Y Λ(X,Z)|U = Uj} = E{Y Λ(X,Z)} by the indepen-

dence condition. Then, we can get

Ω2 =
1√
n

n∑
j=1

{ψ(Uj)E(Y )− Ỹj}
1

nhn

n∑
i=1

Λ(Xi,Zi)Yi
fu(Ui)ψ(Ui)E(Y )

K

(
Uj − Ui

hn

)
=

1√
n

n∑
j=1

{ψ(Uj)E(Y )− ψ(Uj)Yj}
E{Y Λ(X,Z)|U = Uj}

ψ(Uj)E(Y )
+ op(1)

=
1√
n

n∑
j=1

{E(Y )− Yj}
E{Y Λ(X,Z)}

E(Y )
+ op(1). (S1.8)

It follows from (S1.6), (S1.7) and (S1.8) that

I1 =
1√
n

n∑
j=1

{E(Y )− Yj}
E{Y Λ(X,Z)}

E(Y )
+ op(1). (S1.9)

Now we investigate the property of I2. Note that

I2 =
1√
n

n∑
j=1

{
Ỹj − E(Y )

} 1

n

n∑
i=1

Λ(Xi,Zi)
Ỹi

ψ̂n(Ui)
.

Similar to the proof of (S1.9), we have

I2 =
1√
n

n∑
j=1

{Ỹj − E(Y )}E{Y Λ(X,Z)}
E(Y )

+ op(1). (S1.10)

Combining (S1.5), (S1.9) and (S1.10), we have proved (S1.3). �
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Remark 1. Lemma 2 is slightly different from Lemma B.2 in Zhang et al.

(2012) in that we relaxed the conditions that V ar{ψ(U)} = 1 and V ar{γr(u)} =

1 for r = 1, . . . , p, which are needed in Zhang et al. (2012).

Lemma 3. Under Conditions (C1)–(C8), when H1n : Y = g(X,Z, β) +

n−1/2S(X,Z) + ε hold, we have

√
n(β̂n − β) =

Σ−1

√
n

n∑
i=1

E{Y ġβ(X,Z, β)}
E(Y )

{Ỹi − Yi}+
Σ−1

√
n

n∑
i=1

ġβ(Xi,Zi, β)εi

+Σ−1E{ġβ(X,Z, β)S(X,Z)}+
Σ−1

√
n

n∑
i=1

Σx(X̃i −Xi) + op(1)

with Σx and Σ presented in Appendix A.

Proof: From the objective function (2.1), the estimator β̂n satisfies the

following estimating equation:

n∑
i=1

ġβ(X̂i,Zi, β̂n){Ŷi − g(X̂i,Zi, β̂n)} = 0.

Let Bn = n−1/2
∑n

i=1 ġβ(X̂i,Zi, β̂n){Ŷi − g(X̂i,Zi, β̂n)}. Then, it can be

decomposed into two parts:

Bn =
1√
n

n∑
i=1

ġβ(Xi,Zi, β){Ŷi − g(X̂i,Zi, β̂n)}

+
1√
n

n∑
i=1

{ġβ(X̂i,Zi, β̂n)− ġβ(Xi,Zi, β)}{Ŷi − g(X̂i,Zi, β̂n)}

=: Bn1 +Bn2. (S1.11)

The first term Bn1 can further be decomposed into four terms as follows:

Bn1 =
1√
n

n∑
i=1

ġβ(Xi,Zi, β)(Ŷi − Yi) +
1√
n

n∑
i=1

ġβ(Xi,Zi, β){Yi − g(Xi,Zi, β)}
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+
1√
n

n∑
i=1

ġβ(Xi,Zi, β){g(Xi,Zi, β)− g(Xi,Zi, β̂n)}

+
1√
n

n∑
i=1

ġβ(Xi,Zi, β){g(Xi,Zi, β̂n)− g(X̂i,Zi, β̂n)}

=: Bn1,1 +Bn1,2 +Bn1,3 +Bn1,4. (S1.12)

For Bn1,1, it follows from (S1.3) that

Bn1,1 =
1√
n

n∑
i=1

E{Y ġβ(X,Z, β)}
E(Y )

{Ỹi − Yi}+ op(1). (S1.13)

For Bn1,2, under the alternative hypothetical modelsH1n : Y = g(X,Z, β)+

n−1/2S(X,Z) + ε, by the law of large numbers, we have

Bn1,2 =
1√
n

n∑
i=1

ġβ(Xi,Zi, β)εi +
1

n

n∑
i=1

ġβ(Xi,Zi, β)S(Xi,Zi)

=
1√
n

n∑
i=1

ġβ(Xi,Zi, β)εi + E{ġβ(X,Z, β)S(X,Z)}+ op(1). (S1.14)

By the law of large numbers, we can validate that

Bn1,3 = −E{ġβ(X,Z, β)ġβ(X,Z, β)⊤}
√
n(β̂n − β) + op(1). (S1.15)

For the fourth term Bn1,4, it can be decomposed into

Bn1,4 =
1√
n

n∑
i=1

ġβ(Xi,Zi, β)ġx(Xi,Zi, β̂n)
⊤(Xi − X̂i) + op(1)

=
1√
n

n∑
i=1

ġβ(Xi,Zi, β)ġx(Xi,Zi, β)
⊤(Xi − X̂i)

+
1√
n

n∑
i=1

ġβ(Xi,Zi, β){ġx(Xi,Zi, β̂n)− ġx(Xi,Zi, β)}⊤(Xi − X̂i)

=: B
[1]
n1,4 +B

[2]
n1,4.
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By (S1.4) and the definition of Σx in Appendix A, we can obtain that

B
[1]
n1,4 =

1√
n

n∑
i=1

Σx(X̃i −Xi) + op(1).

For B
[2]
n1,4, we have

B
[2]
n1,4 =

1√
n

n∑
i=1

ġβ(Xi,Zi, β)(Xi − X̂i)
⊤g̈x,β(Xi,Zi, β)(β̂n − β) + op(1),

where g̈x,β(Xi,Zi, β) is the second partial derivative of g(Xi,Zi, β) related

to x and β. We can validate that

1√
n

n∑
i=1

ġβ(Xi,Zi, β)(Xi − X̂i)
⊤g̈x,β(Xi,Zi, β) = Op(1)

by (S1.4). Then, we can obtain that B
[2]
n1,4 = Op(n

−1/2) = op(1). Therefore,

it yields

Bn1,4 =
1√
n

n∑
i=1

Σx(X̃i −Xi) + op(1). (S1.16)

Thus, from (S1.12)–(S1.16), we obtain the following result for Bn1,

Bn1 =
1√
n

n∑
i=1

E{Y ġβ(X,Z, β)}
E(Y )

{Ỹi − Yi}+
1√
n

n∑
i=1

ġβ(Xi,Zi, β)εi

+E{ġβ(X,Z, β)S(X,Z)}+
1√
n

n∑
i=1

Σx(X̃i −Xi)

−E{ġβ(X,Z, β)ġβ(X,Z, β)⊤}
√
n(β̂n − β) + op(1). (S1.17)

In the following, we evaluate Bn2. It can be decomposed into two parts:

Bn2 =
1√
n

n∑
i=1

{ġβ(Xi,Zi, β̂n)− ġβ(Xi,Zi, β)}{Ŷi − g(X̂i,Zi, β̂n)}
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+
1√
n

n∑
i=1

{ġβ(X̂i,Zi, β̂n)− ġβ(Xi,Zi, β̂n)}{Ŷi − g(X̂i,Zi, β̂n)}

=: Bn2,1 +Bn2,2. (S1.18)

Note that

Bn2,1 =
1

n

n∑
i=1

g̈β,β(Xi,Zi, β){Ŷi − g(X̂i,Zi, β̂n)}
√
n(β̂n − β) + op(1).

By the similar method to obtain (S1.17), we can prove that

1√
n

n∑
i=1

g̈β,β(Xi,Zi, β){Ŷi − g(X̂i,Zi, β̂n)} = Op(1).

Therefore, we obtain that

Bn2,1 = Op

(
n−1/2

)
= op(1). (S1.19)

Now we investigate Bn2,2.

Bn2,2 =
1√
n

n∑
i=1

g̈β,x(Xi,Zi, β̂n)(X̂i −Xi){Ŷi − g(X̂i,Zi, β̂n)}+ op(1)

=
1√
n

n∑
i=1

g̈β,x(Xi,Zi, β)(X̂i −Xi){Ŷi − g(X̂i,Zi, β̂n)}

+
1√
n

n∑
i=1

{g̈β,x(Xi,Zi, β̂n)− g̈β,x(Xi,Zi, β)}(X̂i −Xi){Ŷi − g(X̂i,Zi, β̂n)}

+op(1)

=: B
[1]
n2,2 +B

[2]
n2,2 + op(1). (S1.20)

For the first term B
[1]
n2,2, we have

B
[1]
n2,2 =

1√
n

n∑
i=1

g̈β,x(Xi,Zi, β)(X̂i −Xi)(Ŷi − Yi)
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+
1√
n

n∑
i=1

g̈β,x(Xi,Zi, β)(X̂i −Xi){Yi − g(Xi,Zi, β)}

+
1√
n

n∑
i=1

g̈β,x(Xi,Zi, β)(X̂i −Xi){g(Xi,Zi, β)− g(Xi,Zi, β̂n)

+
1√
n

n∑
i=1

g̈β,x(Xi,Zi, β)(X̂i −Xi){g(Xi,Zi, β̂n)− g(X̂i,Zi, β̂n)}

=: B
[1,1]
n2,2 +B

[1,2]
n2,2 +B

[1,3]
n2,2 +B

[1,4]
n2,2. (S1.21)

For B
[1,1]
n2,2, by Slutsky theorem and the definition of ∆ni for i = 1, . . . , n, we

have

B
[1,1]
n2,2 =

1√
n

n∑
i=1

g̈β,x(Xi,Zi, β)∆ni

{
ỸiE(Y )

ψ̂n(Ui)
− Yi

}
+ op(1)

=
1√
n

n∑
i=1

g̈β,x(Xi,Zi, β)Yi∆ni
{ψ(Ui)E(Y )− ψ̂n(Ui)}

E(Ỹ |U = Ui)
+ op(1).

By Theorem 6 in Masry (1996), we have supu |γ̂nr(u) − γr(u)E(Xr)| =

OP ({lnn/(nhn)}1/2+h2n) and supu |ψ̂n(u)−ψ(u)E(Y )| = OP ({lnn/(nhn)}1/2+

h2n). By Condition (C8), we can further prove that

B
[1,1]
n2,2 = op(1). (S1.22)

For B
[1,2]
n2,2, by the result of (S1.2), we have

B
[1,2]
n2,2 =

1√
n

n∑
i=1

g̈β,x(Xi,Zi, β)εi∆ni +
1

n

n∑
i=1

g̈β,x(Xi,Zi, β)S(Xi,Zi)(X̂i −Xi)

+op(1)

=: B
[1,2,1]
n2,2 +B

[1,2,2]
n2,2 + op(1).

Recalling the definition of ∆ni and ∆̃ij for i, j = 1, . . . , n, we can obtain
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that

B
[1,2,1]
n2,2 =

1√
n

n∑
i=1

n∑
j=1

g̈β,x(Xi,Zi, β)εi
nhnfu(Ui)

∆̃ijK

(
Uj − Ui

hn

)
+ op(1). (S1.23)

The term B
[1,2,1]
n2,2 is a 1× P vector. We can prove that the second moment

of each component converges to zero. Thus, we can obtain that

B
[1,2,1]
n2,2 = op(1).

From Lemma 2, we can validate that B
[1,2,2]
n2,2 = op(n

−1/2) = op(1). Therefore,

we have

B
[1,2]
n2,2 = op(1). (S1.24)

According to Lemma 2, it can be validated that

1√
n

n∑
i=1

g̈β,x(Xi,Zi, β)(X̂i −Xi)ġβ(Xi,Zi, β)
⊤ = Op(1).

Thus, we can prove that

B
[1,3]
n2,2 = − 1√

n

n∑
i=1

g̈β,x(Xi,Zi, β)(X̂i −Xi)ġβ(Xi,Zi, β)
⊤(β̂n − β) + op(1)

= op(1). (S1.25)

For B
[1,4]
n2,2, it can be decomposed into two parts:

B
[1,4]
n2,2 =

1√
n

n∑
i=1

g̈β,x(Xi,Zi, β)(X̂i −Xi)(X̂i −Xi)
⊤ġx(Xi,Zi, β)

+
1√
n

n∑
i=1

g̈β,x(Xi,Zi, β)(X̂i −Xi)(X̂i −Xi)
⊤
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{ġx(Xi,Zi, β̂n)− ġx(Xi,Zi, β)}+ op(1).

Similarly to the proof of B
[1,1]
n2,2 = op(1), we can prove the first term

1√
n

n∑
i=1

g̈β,x(Xi,Zi, β)(X̂i −Xi)(X̂i −Xi)
⊤ġx(Xi,Zi, β) = op(1).

Furthermore, we can prove that

1√
n

n∑
i=1

g̈β,x(Xi,Zi, β)(X̂i −Xi)(X̂i −Xi)
⊤{ġx(Xi,Zi, β̂n)− ġx(Xi,Zi, β)}

= op
(
n−1/2

)
= op(1).

Therefore, we have the result that

B
[1,4]
n2,2 = op(1). (S1.26)

From (S1.21)–(S1.26), we can validate that

B
[1]
n2,2 = op(1). (S1.27)

For B
[2]
n2,2, we have

B
[2]
n2,2 = (β̂n − β)⊤

1√
n

n∑
i=1

g
(3)
β,x,β(Xi,Zi, β)(X̂i −Xi){Ŷi − g(X̂i,Zi, β̂n)},

where g
(3)
β,x,β(Xi,Zi, β) is three order partial derivative of the function g.

Similar to the proof of (S1.27), we can prove that

1√
n

n∑
i=1

g
(3)
β,x,β(Xi,Zi, β)(X̂i −Xi){Ŷi − g(X̂i,Zi, β̂n)} = op(1).

Then, we have

B
[2]
n2,2 = (β̂n − β)⊤op

(
n−1/2

)
= op(1). (S1.28)
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From (S1.20) and (S1.27)–(S1.28), it yields Bn2,2 = op(1). Furthermore, by

(S1.18)–(S1.19), it can be validated that Bn2 = op(1). The above result,

combining with (S1.11) and (S1.17), yields

Bn =
1√
n

n∑
i=1

E{Y ġβ(X,Z, β)}
E(Y )

{Ỹi − Yi}+
1√
n

n∑
i=1

ġβ(Xi,Zi, β)εi

+E{ġβ(X,Z, β)S(X,Z)}+
1√
n

n∑
i=1

Σx(X̃i −Xi)

−E{ġβ(X,Z, β)ġβ(X,Z, β)⊤}
√
n(β̂n − β) + op(1)

Letting Bn = 0 and solving the equation for (β̂n−β), we complete the proof

of the lemma. �

S2 The proofs of the theorems

Proof of Theorem 1: By setting the deviation function S(X,Z) to be

zero, we obtain the result of Theorem 1 from Theorem 2. We omit the

details of the proof. �

Proof of Theorem 2: (I) The proof of Part (1): We first prove the

result for Mn,pro(t). By the definition of Mn,pro(t), we have the following

decomposition:

Mn,pro(t) =
1√
n

n∑
i=1

(Ŷi − g(X̂i,Zi, β̂n))1(ν
⊤
i θ ≤ t)

+
1√
n

n∑
i=1

(Ŷi − g(X̂i,Zi, β̂n)){1(V⊤
i θ ≤ t)− 1(ν⊤i θ ≤ t)

12



=: Dn(t) + Gn(t).

We first consider the term Dn(t):

Dn(t) =
1√
n

n∑
i=1

(Ŷi − Yi)1(ν
⊤
i θ ≤ t) +

1√
n

n∑
i=1

{Yi − g(X̂i,Zi, β̂n)}1(ν⊤i θ ≤ t)

=: Dn1(t) +Dn2(t). (S2.1)

For the term Dn1(t), by Slutsky theorem, we have the following result:

Dn1(t) =
1√
n

n∑
i=1

{
ỸiỸm,n

ψ̂n(Ui)
− Yi

}
1(ν⊤i θ ≤ t) + op(1)

=
1√
n

n∑
i=1

{
ỸiE(Y )− Yiψ̂n(Ui)

ψ̂n(Ui)

}
1(ν⊤i θ ≤ t) + op(1)

=
1√
n

n∑
i=1

ψ(Ui)E(Y )− ψ̂n(Ui)

E(Ỹ |Ui)
Yi1(ν

⊤
i θ ≤ t) + op(1). (S2.2)

We can further validate that

Dn1(t) =
1√
n

n∑
i=1

Yi1(ν
⊤
i θ ≤ t)

E(Ỹ |Ui)

1

nhnfu(Ui)

n∑
j=1

K

(
Ui − Uj

hn

)
{ψ(Ui)E(Y )− Ỹj}+ op(1)

=
1√
n

n∑
i=1

Yi1(ν
⊤
i θ ≤ t)

1

nhnfu(Ui)

n∑
j=1

E(Y )K

(
Ui − Uj

hn

)
ψ(Ui)− ψ(Uj)

E(Ỹ |Ui)

+
1√
n

n∑
i=1

Yi1(ν
⊤
i θ ≤ t)

1

nhnfu(Ui)

n∑
j=1

K

(
Ui − Uj

hn

)
ψ(Uj)E(Y )− Ỹj

E(Ỹ |Ui)
+ op(1)

=: Dn1,1(t) +Dn1,2(t) + op(1).

By taking Taylor expansion of ψ(Ui) − ψ(Uj), we employ Condition (C8)

and then prove that Dn1,1(t) = Op(
√
nh2n) = op(1). Therefore, Dn1,1(t) can

be expressed as follows.

Dn1(t) =
1√
n

n∑
i=1

Yi1(ν
⊤
i θ ≤ t)

E(Ỹ |Ui)

1

nhnfu(Ui)

n∑
j=1

K

(
Ui − Uj

hn

)
{ψ(Uj)E(Y )− Ỹj}+ op(1)
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=
1√
n

n∑
j=1

ψ(Uj)E(Y )− ψ(Uj)Yj
nhnfu(Ui)

n∑
i=1

Yi1(ν
⊤
i θ ≤ t)K

(
Ui−Uj

hn

)
E(Ỹ |Ui)

+ op(1)

=
1√
n

n∑
j=1

ψ(Uj){E(Y )− Yj}
E(Ỹ |Uj)

E{Y 1(ν⊤θ ≤ t)|Uj}+ op(1)

=
1√
n

n∑
j=1

E(Y )− Yj
E(Y )

E{Y 1(ν⊤θ ≤ t)|Uj}+ op(1). (S2.3)

In the following, we investigate Dn2(t). Under the alternative hypothetical

models H1n : Y = g(X,Z, β) + n−1/2S(X,Z) + ε, it can be split into

Dn2(t) =
1√
n

n∑
i=1

εi1(ν
⊤
i θ ≤ t) +

1

n

n∑
i=1

S(Xi,Zi)1(ν
⊤
i θ ≤ t)

+
1√
n

n∑
i=1

{g(Xi,Zi, β)− g(Xi,Zi, β̂n)}1(ν⊤i θ ≤ t)

+
1√
n

n∑
i=1

{g(Xi,Zi, β̂n)− g(X̂i,Zi, β̂n)}1(ν⊤i θ ≤ t)

=: Dn2,1(t) +Dn2,2(t) +Dn2,3(t) +Dn2,4(t). (S2.4)

By the law of large numbers, it is easy to observe that

Dn2,2(t) = E{S(X,Z)1(ν⊤θ ≤ t)}+ op(1). (S2.5)

It follows that

Dn2,3(t) = − 1√
n

n∑
i=1

ġβ(Xi,Zi, β)
⊤(β̂n − β)1(ν⊤i θ ≤ t) + op(1)

= −E{ġβ(X,Z, β)⊤1(ν⊤θ ≤ t)}
√
n(β̂n − β) + op(1). (S2.6)

For Dn2,4(t), we have

Dn2,4(t) = − 1√
n

n∑
i=1

ġx(Xi,Zi, β)
⊤(X̂i −Xi)1(ν

⊤
i θ ≤ t)
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− 1√
n

n∑
i=1

{ġx(Xi,Zi, β̂n)− ġx(Xi,Zi, β)}⊤(X̂i −Xi)1(ν
⊤
i θ ≤ t) + op(1)

= D[1]
n2,4(t) +D[2]

n2,4(t) + op(1).

For the first term M[1]
n2,4(t), it follows from Lemma 2 that

D[1]
n2,4(t) =

1√
n

n∑
j=1

E{(X⊗ ġx(X,Z, β)⊘ E(X))⊤1(ν⊤θ ≤ t)|Uj}(X̃j −Xj) + op(1).

Note that

D[2]
n2,4(t) = −(β̂n − β)⊤

1√
n

n∑
i=1

{g̈x,β(Xi,Zi, β̂n)(X̂i −Xi)1(ν
⊤
i θ ≤ t) + op(1).

Similarly to the proof of (S2.7), we prove that

1√
n

n∑
i=1

{g̈x,β(Xi,Zi, β̂n)(X̂i −Xi)1(ν
⊤
i θ ≤ t) = Op(1).

Further by the results of Lemma 3, we can prove that D[2]
n2,4(t) = op(1).

Therefore, we conclude that

Dn2,4(t) =
1√
n

n∑
j=1

E
{
(X⊗ ġx(X,Z, β)⊘ E(X))⊤1(V ⊤θ ≤ t)|Uj

}
(X̃j −Xj)

+op(1). (S2.7)

It follows from (S2.4)–(S2.7) that

Dn2(t) =
1√
n

n∑
i=1

1(ν⊤i θ ≤ t)εi − Γ1(t)
√
n(β̂n − β) + E{S(X,Z)1(ν⊤θ ≤ t)}

+
1√
n

n∑
j=1

E{(X⊗ ġx(X,Z, β)⊘ E(X))⊤1(V ⊤θ ≤ t)|Uj}(X̃j −Xj)

+op(1) (S2.8)
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with Γ1(t) presented in Appendix A. By (S2.1), (S2.3) and (S2.8), we vali-

date that

Dn(t) =
1√
n

n∑
i=1

1(ν⊤i θ ≤ t)εi +
1√
n

n∑
i=1

Ỹi − Yi
E(Y )

E{Y 1(ν⊤θ ≤ t)|Ui}

− Γ1(t)
√
n(β̂n − β) + E{S(X,Z)1(ν⊤θ ≤ t)}+ op(1)

+
1√
n

n∑
j=1

E
{
(X⊗ ġx(X,Z, β)⊘ E(X))⊤1(ν⊤θ ≤ t)|Uj

}
(X̃j −Xj)

=
1√
n

n∑
i=1

IF (v,θ)(Yi,Xi,Zi, νi, Ui) +DRt + op(1)

with IF (v,θ)(Y,X,Z, ν, U) and DRt defined in Appendix A.

By 1(V⊤
i θ ≤ t) = 1(ν⊤i θ ≤ (νi −Vi)

⊤θ + t), for Gn,pro(t), we have

Gn,pro(t) =
1√
n

n∑
i=1

(Ŷi − g(X̂i,Zi, β)){1(ν⊤i θ ≤ (νi −Vi)
⊤θ + t)− 1(ν⊤i θ ≤ t)}

+
1√
n

n∑
i=1

(g(X̂i,Zi, β)− g(X̂i,Zi, β̂n)){1(ν⊤i θ ≤ (νi −Vi)
⊤θ + t)− 1(ν⊤i θ ≤ t)}

=: Gn1(t) + Gn2(t).

Denote the distribution of ν⊤θ by Fν⊤θ(·). We first split Gn1(t) into two

parts:

Gn1(t) =
1√
n

n∑
i=1

(Ŷi − g(X̂i,Zi, β))[1(t ≤ ν⊤i θ ≤ (νi −Vi)
⊤θ + t)− {Fν⊤θ((νi −Vi)

⊤θ + t))

−Fν⊤θ(t)}] +
1√
n

n∑
i=1

(Ŷi − g(X̂i,Zi, β)){Fν⊤θ((νi −Vi)
⊤θ + t))− Fν⊤θ(t)}

=: Gn11(t) + Gn12(t).

For Gn11(t), we have

Gn11(t) =
1√
n

n∑
i=1

(Ŷi − Yi)[1(t ≤ ν⊤i θ ≤ (νi −Vi)
⊤θ + t)− Fν⊤θ((νi −Vi)

⊤θ + t)]
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+
1√
n

n∑
i=1

(Yi − g(Xi,Zi, β))[1(t ≤ ν⊤i θ ≤ (νi −Vi)
⊤θ + t)− Fν⊤θ((νi −Vi)

⊤θ + t)]

+
1√
n

n∑
i=1

(g(Xi,Zi, β)− g(X̂i,Zi, β))[1(t ≤ ν⊤i θ ≤ (νi −Vi)
⊤θ + t)

−Fν⊤θ((νi −Vi)
⊤θ + t)] =: Gn11,1(t) + Gn11,2(t) + Gn11,3(t).

Similarly to the decomposition of (S2.2), we have

Gn11,1(t) =
1√
n

n∑
i=1

ψ(Ui)E(Y )− ψ̂n(Ui)

E(Ỹ |Ui)
Yi[1(t ≤ ν⊤i θ ≤ (νi −Vi)

⊤θ + t)

−Fν⊤θ((νi −Vi)
⊤θ + t)] + op(1).

Recalling Lemma 2, we can validated that Gn11,1(t) = Op(
√
nh2n) = op(1).

Note that E[Gn11,2(t)] = 0. Furthermore, we can prove that E[Gn11,2(t)]
2

converges to zero as n → ∞. So we have Gn11,2(t) = op(1). Next we

consider Gn11,3(t):

Gn11,3(t) =
1√
n

n∑
i=1

(g(Xi,Zi, β)− g(X̂i,Zi, β))[1(t ≤ ν⊤i θ ≤ (νi −Vi)
⊤θ + t)

−Fν⊤θ((νi −Vi)
⊤θ + t)]

=
1√
n

n∑
i=1

ġx(Xi,Zi, β)(Xi − X̂i)[1(t ≤ ν⊤i θ ≤ (νi −Vi)
⊤θ + t)

−Fν⊤θ((νi −Vi)
⊤θ + t)].

Similar to the proof of Lemma 2, we can prove that Gn11,3(t) = op(1). So We

have Gn11(t) = op(1). Note that Gn12(t) = n−1/2
∑n

i=1(Ŷi−g(X̂i,Zi, β))fν⊤θ(t)

(νi−Vi)
⊤θ+op(1) where fν⊤θ(t) is the density of ν

⊤θ. By the similar method

to prove B
[2]
n2,2 = op(1), we can prove Gn12(t) = op(1). Therefore, we have

17



validated that Gn1(t) = op(1). For Gn2(t), we have

Gn2(t) =
1√
n

n∑
i=1

ġβ(X̂i,Zi, β)
⊤{1(ν⊤i θ ≤ (νi −Vi)

⊤θ + t)− 1(ν⊤i θ ≤ t)}(β − β̂n)

+op(1).

We can validate that n−1/2
∑n

i=1 ġβ(X̂i,Zi, β)
⊤{1(ν⊤i θ ≤ (νi −Vi)

⊤θ+ t)−

1(ν⊤i θ ≤ t)} = Op(1) and β − β̂n = Op(n
−1/2) = Op(1). Thus we obtain

that Gn2(t) = op(1) and then Gn(t) = op(1). Therefore the following result

is true: Mn,pro(t) = n−1/2
∑n

i=1 IF (v,θ)(Yi,Xi,Zi, νi, Ui) +DRt + op(1).

By using the similar method in Sun et al. (2018), we can validate that

the functional class ∆t = {IF (t,θ)(Y,X,Z, ν, U) + DRt : t ∈ R} is a V-

C class of functions. Thus we can further prove the weak convergence of

Mn,pro(t) as shown in Theorem 2. By the principle of continuous mapping,

we can prove convergence properties of Tn,CvM and Tn,KS.

(II) The proof of Part (2): By rewriting (4.1) as Y = g(X,Z, β) +

n−1/2S∗(X,Z)+ε with S∗(X,Z) = Cnn
1/2S(X,Z), and applying the results

of Theorem 2, then can be validated that Tn,CvM→∞ and Tn,KS→∞, since

the new drift function DR∗
t (X,Z, ν) = Cnn

1/2DRt→∞ as n→∞.

�
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S3 Additional simulation studies

In this section, we report additional simulation results to evaluate the fi-

nite sample performance of the proposed method. The following setting is

considered:

Setting 1. A five-dimensional nonlinear candidate model with part of co-

variates are observed distortedly is taken into account:

Y = exp(β⊤
1 X+ β⊤

2 Z) + Cβ⊤
1 X+ ε, (S3.1)

where X ∼ U3[1, 2], Z ∼ U2[1, 2], β1 = (1, 1,−1)⊤, and β2 = (−1,−1)⊤.

The distorting functions are specified as γ1(U) = 1+0.3 cos(2πU), γ2(U) =

1+ 0.2(U2 − 1/3), and γ3(U) = U2 +2/3. The constant C is selected to be

0.0, 0.1, 0.2, 0.3, 0.4. All other configurations are the same as those in the

main text of the article.

We calculate the empirical sizes and powers for model (S3.1) and present

the results in Table 1.

S4 Analyses of Boston house price data

In the following, we further employ the proposed and existing methods to

analyze the Boston house price data set (Harrison Jr and Rubinfeld, 1978;

Şentürk and Müller, 2005; Xie and Zhu, 2019)(http://lib.stat.cmu.edu/datasets/).
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Table 1: Results for Setting 1. Empirical sizes and powers of Tn,CvM , T U
n,CvM , T N

n,CvM ,

T U
n,KS , T N

n,KS , T ZLF
n , and T ZX

n at the 5% significance level for the five-dimensional

model (S3.1).

Model n C Tn,CvM T U
n,CvM T N

n,CvM T U
n,KS T N

n,KS T ZLF
n T ZX

n

(S3.1) 100 0.0 0.058 0.050 0.056 0.058 0.054 0.036 0

0.1 0.194 0.192 0.190 0.102 0.092 0.076 0

0.2 0.364 0.360 0.354 0.234 0.228 0.172 0

0.3 0.602 0.578 0.604 0.518 0.526 0.262 0

0.4 0.704 0.670 0.682 0.666 0.670 0.304 0

200 0.0 0.058 0.058 0.054 0.056 0.056 0.036 0

0.1 0.318 0.304 0.286 0.124 0.124 0.082 0

0.2 0.658 0.624 0.644 0.376 0.378 0.262 0

0.3 0.848 0.846 0.854 0.710 0.710 0.398 0

0.4 0.930 0.922 0.920 0.874 0.874 0.550 0

300 0.0 0.056 0.054 0.058 0.048 0.052 0.040 0

0.1 0.398 0.384 0.402 0.114 0.108 0.122 0

0.2 0.830 0.810 0.798 0.404 0.404 0.360 0

0.3 0.964 0.956 0.956 0.808 0.814 0.580 0

0.4 0.980 0.976 0.982 0.944 0.940 0.698 0.002

The data set contains 506 observations and 14 variables. We aim for check-

ing the adequacy of the candidate linear model of the response variable

Y : the median value of owner-occupied homes in $1000’s (MEDV) and the

other 12 variables: the per capita crime rate (CRIM)(X), proportion of

residential land zoned for lots over 25,000 square feet(Z1), the proportion

of non-retail business acres per town(Z2), Charles River dummy variable

(= 1 if tract bounds river, 0 otherwise)(Z3), nitric oxides concentration
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(parts per 10 million)(Z4), average number of rooms per dwelling(Z5), the

proportion of owner-occupied units built prior to 1940(Z6), weighted dis-

tances to five Boston employment centers(Z7), index of accessibility to ra-

dial highways(Z8), full-value property-tax rate per $10,000(Z9), the pupil-

teacher ratio by town(Z10), and 1000(Bk−0.63)2 where Bk is the proportion

of blacks by town(Z11). Our interest is in testing the following hypothesis:

H03 : E(Y |X,Z) = β0 + β1X + β⊤
2 Z (S4.1)

with Z = (Z1, . . . , Z11)
⊤.

We make the same assumptions as those of Xie and Zhu (2019) that

both MEDV and CRIM are distorted by the confounding variable: the pro-

portion of the population of lower status (LSTAT). By the same settings

of the kernel function, bandwidth, the number of bootstrap repetitions and

the value of m in the random approximation procedures as those in simu-

lation studies. We obtain the p-values of the seven test methods, which are

displayed in Table 2. The results in Table 2 demonstrate that the proposed

tests suggest rejecting the null hypothetical linear model in (S4.1), while

the tests of Zhang et al. (2015) and Zhao and Xie (2018) cannot reject the

null hypothesis (S4.1).

We draw the scatter plots of the calibrated MEDV and the estimated

residuals versus the estimated regression function in Figure 1. The evidence
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that the estimated residual curve deviates significantly from a horizontal

line in Figure 1 (b) indicates that the linear model (S4.1) is inadequate for

this data set. Compared with the tests T ZLF
n and T ZX

n , the proposed tests

are more powerful and may provide more accurate results.

Table 2: The p-values of the tests for the analyses of Boston house price data set. The test

T ZLF
n yields three p-values corresponding to three weighting functions: sin(X), exp(X)

and cos(X).

Study/Model Tn,CvM T U
n,CvM T N

n,CvM T U
n,KS T N

n,KS T ZLF
n T ZX

n

Boston/(S4.1) 0 0 0 0.003 0.004 (0.225 0.501 0.812) 0.158
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(a): Scatter plot
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(b): Residual plot based on (5.8)

Figure 1: Scatter plots of calibrated variable of MEDV (a) and the estimated residuals

(b) versus the estimated regression function along with linear fittings (thick lines) and

nonparametric estimated curves (solid lines) with 95% confidence bands (dotted lines).
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