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Supplementary Material

This supplement provides the stationary bootstrap resampling scheme, the regularity

conditions and asymptotic properties for unpenalized estimators, the mathematical

proofs, the procedures of doing the goodness-of-fit, and some additional figures.

S1 The stationary bootstrap resampling scheme

Suppose that {x1,i, · · · , xN,i}Ti=1 is a strictly stationary and weakly dependent time

series. Let

Bi,b = {(x1,i, · · · , xN,i), (x1,i+1, · · · , xN,i+1), · · · , (x1,i+b−1, · · · , xN,i+b−1)}
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be the block consisting of b observations starting from (x1,i, · · · , xN,i) to (x1,i+b−1, · · · , xN,i+b−1).

In the case j > T , (x1,j, · · · , xN,j) is defined to be (x1,i, · · · , xN,i), where i = j(modT )

and (x1,0, · · · , xN,0) = (x1,T , · · · , xN,T ). Let p be a constant such that p ∈ [0, 1]. Inde-

pendent of {x1,i, · · · , xN,i}Ti=1, let L1, L2, · · · be a sequence of i.i.d. random variables

having the geometric distribution, i.e.,

P{Lk = m} = (1− p)m−1p m = 1, 2, · · ·

where p = T−1/3. Independent of both {x1,i, · · · , xN,i}Ti=1 and Lk, let I1, I2, · · ·

be a sequence of i.i.d. variables which have the discrete uniform distribution on

{1, · · · , T}.

A pseudo time series {x∗1,i, · · · , x∗N,i}Ti=1 is generated in the following way. Sam-

ple a sequence of blocks of random length by the prescription BI1,L1 , BI2,L2 , · · · ,

where Ik is generated from a uniform distribution on {1, · · · , T} and Lk is gener-

ated from the distribution as defined earlier. The first L1 observations in the pseudo

time series {x∗1,i, · · · , x∗N,i}Ti=1 are determined by the first block BI1,L1 of observations

(x1,I1 , · · · , xN,I1), · · · , (x1,I1+L1−1, · · · , xN,I1+L1−1), the next L2 observations in the

pseudo time series are the observations in the second sampled block BI2,L2 , namely

(x1,I2 , · · · , xN,I2), · · · , (x1,I2+L2−1, · · · , xN,I2+L2−1). This process is not stopped until

T observations in the pseudo time series have been generated.

By randomly varying the block length, Politis and Romano (1994) show that the
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pseudo time series {x∗1,i, · · · , x∗N,i}Ti=1, conditional on the original data {x1,i, · · · , xN,i}Ti=1,

is actually stationary. Hence, this resampling method is applicable for stationary and

weekly dependent time series.

S2 Asymptotic properties for unpenalized estimators

The three-step procedure in Section 2.1 suggests that the marginal distribution es-

timators ψ̂1, ψ̂2, and F̂s have little effect on the nonparametric estimators δ̂ in large

samples since the convergence rate of the marginal distribution estimators F̂s,
√
T ,

is faster than
√
Th in the nonparametric component. In the following, we present

the asymptotic properties of the nonparametric estimators without considering the

errors from the marginal estimation in the first two steps. For this purpose, we

introduce regularity conditions as below.

A1. The estimators of unknown marginal distribution functions satisfy
√
Tsupys|F̂s(ys)−

Fs(ys)| = Op(1).

A2. The vector of functions δ(τ) is continuous, bounded and has second order con-

tinuous derivatives on the support [0, 1]. The function `(ui, δ(τ)) is three times

differentiable with respect to δ and twice differentiable with respect to ui.

A3. 0 ≤ λk(τ) ≤ 1 and
∑d

k=1 λk(τ) = 1 for all τ ∈ [0, 1].

A4. The kernel function K(z) is twice continuously differentiable on the support

[0, 1], and its second derivative satisfies a Lipschitz condition. Let v0 =
∫
K2(z)dz,
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v2 =
∫
z2K2(z)dz and µ2 =

∫
z2K(z)dz.

A5. Assume that {X1i, · · · , XNi}Ti=1 is a strictly stationary α-mixing sequence. Fur-

ther, assume that there exists some constant c > 0 such that E|Xsi|2(2+c) <

∞, s = 1, · · · , N and the mixing coefficient α(m) satisfying α(m) = Op(m
−ϑ)

with ϑ = (2 + c)(1 + c)/c.

A6. The bandwidth h satisfies that h→ 0 and Th1+4/c →∞, as T →∞.

Remark 1. The condition in A1 directly follows Lemma A.1 in Chen and Fan

(2006b). The conditions in A2 are for deriving the asymptotic properties of the

nonparametric estimators. Moreover, by the conditions in A2, the continuity of δ(τ)

implies that ‖δ̂(ti) − δ̂(ti−1)‖ = Op(1/T ) which is of much smaller order than the

nonparametric convergence rate T−2/5. It suggests that we only need to estimate

δ̂(ti) for i = 1, · · · , T rather than δ̂(τ) for all values τ ∈ (0, 1). The conditions in

A3 are mild conditions for identification, while the conditions for kernel function in

A4 are commonly employed in nonparametric estimation. The conditions in A5 are

α-mixing conditions for weakly dependent data. Most financial models satisfy these

conditions, such as ARMA and GARCH models, see Carrasco and Chen (2002).

When c > 1, the optimal bandwidth h = O(T−1/5) satisfies Condition A6.

Theorem A.1: Let {X1i, · · · , XNi}Ti=1 be a strictly stationary α-mixing sequence

following the proposed models (2.1)-(2.2) in the main text. For a fixed point τ ∈
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(0, 1), under Conditions A1-A6, we have

√
Th(δ̂(τ)− δ0(τ)− h2B(τ))→ N(0, v0Σ(τ)−1Ω(τ)Σ(τ)−1),

where Σ(τ) = −E{`′′(ui, δ0(τ))|ti = τ}, Ω(τ) =
∑∞

s=−∞ Γs(τ) with Γs(τ) =

E{`′(ui, δ0(τ))`′(ui+s, δ0(τ))ᵀ|ti = τ} and the bias term h2B(τ) = h2

2
δ′′0(τ)µ2. `′(ui, δ0(τ))

and `′′(ui, δ0(τ)) respectively denote the first and second derivatives of `(ui, δ0(τ)) with

respect to δ0(τ).

Remark 2. In classical local constant estimation, the bias term is usually written

as h2B(τ) = h2

f(τ)
δ′0(τ)f ′(τ)µ2 + h2

2
δ′′0(τ)µ2, where f(τ) is the density at the point

τ . However, the first term on the right hand size disappears since f(τ) = 1 and

f ′(τ) = 0 for all τ ∈ (0, 1).

Theorem A.1 suggests that the local constant estimator δ̂(τ) has the same asymp-

totic behavior as the local linear estimator at the interior points: both have the same

bias and variance terms as well as the same convergence rate
√
Th.

To see whether the large sample properties of the local constant estimators still

hold at the boundary, we introduce Theorem A.2 as below. For this purpose, we

define v0,b =
∫ 1

−bK
2(z)dz, µ0,b =

∫ 1

−bK(z)dz and µ1,b =
∫ 1

−b zK(z)dz, for 0 < b < 1.

Without loss of generality, we only consider the left boundary point, τ = bh. Similar

results hold for a right boundary point τ = 1− bh.
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Theorem A.2: Let {X1i, · · · , XNi}Ti=1 be a strictly stationary α-mixing se-

quence following the proposed models (2.1)-(2.2) in the main text. For a left boundary

point τ = bh, under Conditions A1-A6, we have

√
Th(δ̂(bh)− δ0(bh)− hB∗(0+))→ N(0,

v0,b

µ2
0,b

Σ(0+)−1Ω(0+)Σ(0+)−1),

where the bias term hB∗(0+) = h
µ0,b

δ′0(0+)µ1,b.

Remark 3. The bias term is of order h for a boundary point τ = bh, which suggests

that the local constant estimator suffers from boundary effects.

S3 Mathematical proofs

In this section, we first show the proof of Theorem A.1 and Theorem A.2 for un-

penalized estimators. These two theorems are critical for the proof of sparsity and

asymptotic normality in Theorem 2 for penalized estimators. The proof of Theorem

1 is to show that the penalized estimators employ the
√
Th convergence rate.

Let C be a constant and Rm be a generic remainder term of small order, and

they may take different values at different places.

Proof of Theorem A.1 and Theorem A.2:

First, we define

AT =
h√
Th

T∑
i=1

`′(ui, δ0(τ))Kh(ti − τ)
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and

BT =
1

T

T∑
i=1

`′′(ui, δ0(τ))Kh(ti − τ),

where `′(ui, δ0(τ)) and `′′(ui, δ0(τ)) respectively denote the first and second deriva-

tives of `(ui, δ0(τ)) with respect to δ0(τ).

To minimize the objective function
∑T

i=1 `(ui, δ̂(τ))Kh(ti − τ) at point τ , it is

equivalent to minimize h{
∑T

i=1 `(ui, δ̂(τ))Kh(ti − τ) −
∑T

i=1 `(ui, δ0(τ))Kh(ti − τ)},

which can be written as

h{
T∑
i=1

`(ui, δ̂(τ))Kh(ti − τ)−
T∑
i=1

`(ui, δ0(τ))Kh(ti − τ)}

= h
T∑
i=1

(δ̂(τ)− δ0(τ))ᵀ`′(ui, δ0(τ))Kh(ti − τ)

+
1

2
h

T∑
i=1

(δ̂(τ)− δ0(τ))ᵀ`′′(ui, δ0(τ))(δ̂(τ)− δ0(τ))Kh(ti − τ) + op(1)

=
√
Th(δ̂(τ)− δ0(τ))ᵀAT +

1

2

√
Th(δ̂(τ)− δ0(τ))ᵀBT

√
Th(δ̂(τ)− δ0(τ)) + op(1).

After taking the first derivative with respect to
√
Th(δ̂(τ)− δ0(τ)), we obtain

√
Th(δ̂(τ)− δ0(τ)) = −B−1

T AT + op(1).
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By the moment condition, we have

0 = E{`′(ui, δ0(ti))|ti = τ}

= E{`′(ui, δ0(τ) + ri)|ti = τ}

= E{`′(ui, δ0(τ))|ti = τ}+ riE{`′′(ui, δ0(τ))|ti = τ}+ op(ri),

where ri = δ′0(τ)(ti − τ) + 1
2
δ′′0(τ)(ti − τ)2 + op(ti − τ)2. By construction, we have

E{`′(ui, δ0(τ))|ti = τ} = riΣ(τ) + op(ri), where Σ(τ) = −E{`′′(ui, δ0(τ))|ti = τ}.

Thus,

E{AT |ti = τ} =
h√
Th

T∑
i=1

E{`′(ui, δ0(τ))|ti = τ}Kh(ti − τ)

=
h√
Th

Σ(τ)
T∑
i=1

riKh(ti − τ).

Note that

E(−BT |ti = τ) = E(`′′(ui, δ0(τ))Kh(ti − τ))

=


−Σ(τ) + op(1), if τ ∈ (0, 1);

−µ0,bΣ(0+) + op(1), if τ = bh.

It follows by Taylor’s expansion and the Riemann sum approximation of an integral
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that the bias term of δ̂(τ) can be expressed as

E(δ̂(τ)|ti = τ)− δ0(τ)

= − 1√
Th

[E(BT |ti = τ)]−1E(AT |ti = τ)

=
1

T

T∑
i=1

[
δ′0(τ)(ti − τ) +

1

2
δ′′0(τ)(ti − τ)2

]
Kh(ti − τ) +Rm

=

∫
δ′0(τ)(ti − τ)Kh(ti − τ)dti +

1

2

∫
δ′′0(τ)(ti − τ)2Kh(ti − τ)dti +Rm

=


h2

2
δ′′0(τ)µ2 + op(h

2), if τ ∈ (0, 1);

h
µ0,b

δ′0(0+)µ1,b + op(h), if τ = bh.

To find the expression for V ar{AT |ti = τ}, we let QT = 1
T

∑T
i=1 Zi, where

Zi = `′(ui, δ0(τ))Kh(ti− τ). Using the same argument as in Lemma 3 of Cai (2007),

we can show that

V ar(QT ) =


1
Th
v0

(
Γ0(τ) + 2

∑∞
s=1 Γs(τ)

)
+ op(

1
Th

), if τ ∈ (0, 1);

1
Th
v0,b

(
Γ0(0+) + 2

∑∞
s=1 Γs(0+)

)
+ op(

1
Th

), if τ = bh,
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where Γs(τ) = E{`′(ui, δ0(τ))`′(ui+s, δ0(τ))ᵀ|ti = τ}. Therefore,

V ar(AT ) =


v0

(
Γ0(τ) + 2

∑∞
s=1 Γs(τ)

)
+ op(1), if τ ∈ (0, 1);

v0,b

(
Γ0(0+) + 2

∑∞
s=1 Γs(0+)

)
+ op(1), if τ = bh,

It follows that the variance term is given by

V ar{δ̂(τ)|ti = τ}

=
1

Th
E{−BT |ti = τ}−1V ar{AT |ti = τ}E{−BT |ti = τ}−1

=


1
Th
v0Σ(τ)−1Ω(τ)Σ(τ)−1, if τ ∈ (0, 1);

1
Th

v0,b
µ20,b

Σ(0+)−1Ω(0+)Σ(0+)−1, if τ = bh.

To establish the asymptotic normality for δ̂(τ), we use the score function with Zi =

`′(ui, δ0(τ))Kh(ti − τ) and present the results by the Doobs small-block and large-

block technique, which is similar to the proofs in Cai (2007) and pages 251-255 of

Fan and Gijbels (1996). Details are omitted here. This completes the proof.

�

Proof of Theorem 1:

Let v = (vjk) ∈ RT×(2d) be an arbitrary T×(2d) matrix with rows vj· and columns

v·k, i.e. v = (v1·, v2·, · · · , vT ·)T = (v·1, v·2, · · · , v·(2d)). Define vλ·k = v·(d+k) and set



S3. MATHEMATICAL PROOFS11

‖v‖ =
√∑

j,k v
2
j,k to be the L2-norm for the matrix v = (vjk). For any small ε > 0,

if we can show that there is a large constant C such that P{infT−1‖v‖2=C Q
P (δ0 +

(Th)−1/2v) < QP (δ0)} > 1 − ε, then the result is established. To this end, define

D ≡ h
T

[
QP (δ0 + (Th)−1/2v)−QP (δ0)

]
. Following the proof of Theorem 1 in Cai and

Wang (2014), we use the the facts that
∑d

k=1(λ0k(tj)+(Th)−1/2vλjk)−
∑d

k=1 λ0k(tj) = 0

and ‖λ·0k‖ = 0 for k = d0 + 1, · · · , d, and have

D ≤ h

T

[
T∑
j=1

T∑
i=1

`(ui, δ0(tj) + (Th)−1/2vj·)Kh(ti − tj)−
T∑
j=1

T∑
i=1

`(ui, δ0(tj))Kh(ti − tj)

]

−h
d0∑
k=1

[
PγT (‖λ·0k + (Th)−1/2vλ·k‖)− PγT (‖λ·0k‖)

]
.
= D1 +D2,

where

D1 ≡ h

T

[
T∑
j=1

T∑
i=1

`(ui, δ0(tj) + (Th)−1/2vj·)Kh(ti − tj)−
T∑
j=1

T∑
i=1

`(ui, δ0(tj))Kh(ti − tj)

]

=
h

T

T∑
j=1

T∑
i=1

[
`(ui, δ0(tj) + (Th)−1/2vj·)− `(ui, δ0(tj))

]
Kh(ti − tj)

=
h

T

T∑
j=1

T∑
i=1

[
(Th)−1/2vᵀj·`

′(ui, δ0(tj)) + (2Th)−1vᵀj·`
′′(ui, δ0(tj))vj· + op(1/(Th))

]
Kh(ti − tj)

=
1

T

T∑
j=1

vᵀj·ej −
1

2T

T∑
j=1

vᵀj·{Σ(tj) + op(1)}vj· + op(1)
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with ej = h1/2T−1/2
∑T

i=1 `
′(ui, δ0(tj))Kh(ti− tj). By the Cauchy-Schwarz inequality,

D1 ≤ 1

T

T∑
j=1

‖vj·‖‖ej‖ −
1

2T

T∑
j=1

λmintj
‖vj·‖2 + op(1)

≤
√
‖v‖2/T

√
‖e‖2/T − λmin

2
‖v‖2/T + op(1)

=
√
C
√
‖e‖2/T − Cλmin

2
+ op(1),

where λmintj
is the smallest eigenvalue of Σ(tj) and λmin is the minimal value of

the sequence {λmintj
}Tj=1. By standard nonparametric arguments, we can show that

E(ej|ti = tj) is of order Op(1). It follows by the law of large numbers that E(e2
j |ti =

tj) = V ar(ej|ti = tj) + (E(ej|ti = tj))
2 = Ω(tj)v0 + (E(ej|ti = tj))

2 + Rm which is

of order Op(1) and ‖e‖2/T = E(e2
j) +Rm = E(E(e2

j |ti = tj)) +Rm which is of order

Op(1). By Taylor’s expansion and the triangle inequality, we have

‖D2‖ ≡
∥∥∥∥− h d0∑

k=1

(
PγT (‖λ·0k + (Th)−1/2vλ·k‖)− PγT (‖λ·0k‖)

)∥∥∥∥
=

∥∥∥∥h d0∑
k=1

P ′γT (‖λ·0k‖)
(
‖λ·0k + (Th)−1/2vλ·k‖ − ‖λ·0k‖

)
+Rm

∥∥∥∥
≤
∥∥∥∥h1/2T−1/2

d0∑
k=1

P ′γT (‖λ·0k‖)‖vλ·k‖+Rm

∥∥∥∥
.
= ‖D21‖.
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Define aT = max{P ′γT (‖λ·0k‖) : ‖λ·0k‖ 6= 0}, by Cauchy-Schwarz inequality, we have

D21 ≤ h1/2aT
√
d0

[
T−1

d0∑
k=1

‖vλ·k‖2

]1/2

+Rm

≤ h1/2aT
√
d0

[
T−1

d∑
k=1

‖vλ·k‖2

]1/2

+Rm

≤ h1/2aT
√
d0

√
C +Rm.

It follows by the Riemann sum approximation of an integral and condition (A2)

that ‖λ·0k‖2/T =
∫ 1

0
λ2
k(τ)dτ + op(1) is a bounded constant. By choosing the SCAD

penalty function, as T → ∞, the condition T−1/10γT → 0 in (B1) implies γT <<

‖λ·0k‖. Therefore, aT → 0 and D2 → 0. By choosing a sufficient large C, the second

term in D1 dominates other terms. This completes the proof.

�

Proof of Theorem 2:

(a) Firstly, we show the sparsity ‖λ̂·k‖ = 0 for all k = d0 + 1, · · · , d. We follow

the proof of Lemma B.1 and Theorem 2 (a) in Cai and Wang (2014), and assume

that ‖λ̂·k‖ 6= 0 and there exists a
√
Th-consistent penalized estimator δ̂γT such that

∂QP (δ̂γT )

∂λ·k
= J1 + J2 − ρ = 0

where J1 = (J11, · · · , J1T )T with J1j =
∑T

i=1

∂`(ui,δ̂γT (tj))

∂λk(tj)
Kh(ti−tj), J2 = −TP ′γT (‖λ̂·k‖) λ̂·k

‖λ̂·k‖
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and ρ = (ρt1 , · · · , ρtT )ᵀ .

By the law of large numbers, we have

‖J1‖ =
√
J2

11 + J2
12 + · · ·+ J2

1T =
√
T
√
EJ2

1j(1 + op(1)).

By the result ‖δ̂γT (τ) − δ0(τ)‖ = Op(1/
√
Th) in Theorem 1, similar to the proof

for E(e2
j |ti = tj) which is of order Op(1), we can show V ar(J1j|ti = tj) = Op(T/h).

Moreover, by Taylor’s expansion, we have

J1j =
T∑
i=1

∂`(ui, δ̂γT (tj))

∂λk(tj)
Kh(ti − tj)

=
T∑
i=1

∂`(ui, δ0(tj))

∂λk(tj)
Kh(ti − tj)

+
T∑
i=1

[
2d∑
m=1

∂2`(ui, δ0(tj))

∂λk(tj)∂δm(tj)
(δ̂γT ,m(tj)− δ0m(tj))

]
Kh(ti − tj) +Rm

.
= A1 + A2 +Rm.

By standard nonparametric arguments, we can show that both A1 and A2 are of

order Op(
√
T/h), which suggests that (E(J1j|ti = tj))

2 is of order Op(T/h). It

follows that E(J2
1j|ti = tj) = V ar(J1j|ti = tj) + (E(J1j|ti = tj))

2 is of order Op(T/h)

and ‖J1‖ =
√
T{EJ2

1j(1+op(1))}1/2 =
√
T{E(E(J2

1j|ti = tj))(1+op(1))}1/2 is of order

Op(Th
−1/2). By the conditions in (B1), we have

√
hγT → 0 and P ′γT (‖λ̂·k‖)/γT > 0
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for k = d0 + 1, · · · , d, thus

‖J2‖ = TP ′γT (‖λ̂·k‖) =
P ′γT (‖λ̂·k‖)

γT
(
√
hγT )(Th−1/2)

is dominated by ‖J1‖ as T →∞. That is, P(‖J2‖ < ‖J1‖)→ 1 as T →∞. Further,

‖ρ‖ is dominated by ‖J1‖. Therefore, the assumption ‖λ̂·k‖ 6= 0 does not hold and

we conclude ‖λ̂·k‖ = 0.

(b) Secondly, we show the asymptotic normality.

By the sparsity ‖λ̂·k‖ = 0 for all k = d0 + 1, · · · , d, we rewrite equation (2.4) in

the main text as

QP (δa) =
T∑
j=1

T∑
i=1

`(ui, δa(tj))Kh(ti−tj)−T
d0∑
k=1

Pγk(‖λ·k‖)+
T∑
j=1

ρtj

(
1−

d0∑
k=1

λk (tj)

)
,

where δa is a T×(2d0) matrix as δa = (δa(t1), · · · , δa(tT ))ᵀ = (θ·1, · · · , θ·d0 , λ·1, · · · , λ·d0).

We follow Fan and Li (2001) and Cai et al. (2015) and approximate the above

equation by

QP (δa) =
T∑
j=1

[
T∑
i=1

`(ui, δa(tj))Kh(ti − tj)− T
d0∑
k=1

P ′γk(‖λ·k‖)
2‖λ·k‖

λ2
k(tj) + ρtj

(
1−

d0∑
k=1

λk (tj)

)]

+ {terms unrelated to δa}.
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To find the minimizer δ̂a,γT (tj) at point tj, we minimize the objective function

QP (δ̂a,γT (tj)) =
T∑
i=1

`(ui, δ̂a,γT (tj))Kh(ti−tj)−
T

2

d0∑
k=1

P ′γk(‖λ̂·k‖)
‖λ̂·k‖

λ̂2
k(tj)+ρtj

(
1−

d0∑
k=1

λ̂k (tj)

)
,

and it is equivalent to minimize QP (δ̂a,γT (tj)) − QP (δ0a(tj)). Following the proof of

Lemma B.2 and Theorem 2 (b) in Cai and Wang (2014), we use the fact
∑d0

k=1(λ̂k(tj)−

λ0k(tj)) = 0 and have

QP (δ̂a,γT (tj))−QP (δ0a(tj)) =
T∑
i=1

`(ui, δ̂a,γT (tj))Kh(ti − tj)−
T∑
i=1

`(ui, δ0a(tj))Kh(ti − tj)

−T
2

d0∑
k=1

P ′γk(‖λ̂·k‖)
‖λ̂·k‖

λ̂2
k(tj) +

T

2

d0∑
k=1

P ′γk(‖λ·0k‖)
‖λ·0k‖

λ2
0k(tj).

By the result ‖δ̂γT (τ)− δ0(τ)‖ = Op(1/
√
Th) in Theorem 1, we have ‖λ̂·k‖2/T =

‖λ·0k‖2/T + op(1) =
∫ 1

0
λ2
k(τ)dτ + op(1). By choosing the SCAD penalty function,

as T → ∞, the condition T−1/10γT → 0 in (B1) implies P(%γT < ‖λ̂·k‖) → 1 and

P(%γT < ‖λ·0k‖) → 1. Therefore, as T → ∞, P ′γk(‖λ̂·k‖) = 0 and P ′γk(‖λ·0k‖) = 0.

The asymptotic normality results directly follow Theorem A.1. This completes the

proof.

�
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S4 Goodness-of-fit

In the literature, various goodness-of-fit tests for the specification of parametric cop-

ula functions have been proposed (Dobric and Schmid, 2007; Lin and Wu, 2015).

However, to the best of our knowledge, goodness-of-fit tests for semiparametric time-

varying copula models have not been studied. To evaluate the performance of the

estimated time-varying mixture copula model, we use a Rosenblatt probability inte-

gral transformation as in Dobric and Schmid (2007). We define the random variable

S(u1, u2) = [Φ−1(u1)]2 + [Φ−1(C(u2|u1))]2, (S4.1)

where C(u2|u1) = P (U2 ≤ u2|U1 = u1) and Φ(·) is the standard normal cumulative

distribution function. Note that C(u2|u1) = ∂C(u1, u2)/∂u1, which is available in

analytical form for most copulas. We consider the null hypothesisH0 : (u1, u2) follows

copula C(u1, u2). Under H0, u1 and C(u2|u1) are i.i.d. and mutually independent

U(0, 1) distributed random variables. Thus, H0 implies that S(u1, u2) follows a χ2(2)

distribution, and we can use a random sample {u1i, u2i}Ti=1, to test this hypothesis.

We consider three tests including the Kolmogorov-Smirnov (KS) test, the Cramer-

von Mises (CM) test, and the Anderson-Darling (AD) test:

tKS = sup
S
|FT (S)− F (S)|, tCM =

∫ ∞
−∞

[FT (S)− F (S)]2dF (S),
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and

tAD = sup
S

√
T |FT (S)− F (S)|√
F (S)(1− F (S))

,

where FT (S) is the empirical cumulative distribution function for the random variable

S, and F (S) is the cumulative distribution function for the Chi-squared distribution

with two degrees of freedom. Standard critical values cannot be used to make infer-

ence since the time series data are weakly dependent. Moreover, the parameters are

time-varying and the estimation error should not be ignored. To overcome these dif-

ficulties, we propose the following bootstrap algorithm to compute p-values of these

three test statistics:

i. Generate a sample sequence {x∗1,i, x∗2,i}Ti=1 from the original data {x1,i, x2,i}Ti=1

using a stationary bootstrap technique as described above (Section S1);

ii. Obtain û∗1i and û∗2i by Steps 1-2 in Section 2.1 of the main text;

iii. Calculate new local constant estimators δ̂∗(ti) by the proposed method with

paired estimators {û∗1i, û∗2i}Ti=1, and obtain S(û∗1i, û
∗
2i) by equation (S4.1);

iv. Use the values S(û∗1i, û
∗
2i) to construct the bootstrap statistics t∗KS, t∗CM , and

t∗AD;

v. Repeat Steps i∼ ivM times (say, M=1000) and obtainM values of the statistics

t∗KS, t∗CM , and t∗AD respectively; and

vi. Calculate the values of tKS, tCM and tAD from the original sample {û1i, û2i}Ti=1

and compute the p-values of the tests based on the relative frequency of the
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events {t∗KS ≥ tKS}, {t∗CM ≥ tCM}, and {t∗AD ≥ tAD} in the M repetitions.

S5 Additional figures

Figures S1-S3 respectively display simulation results of the weights and dependence

parameters for Models 1-3 under Case I simulations. Figures S4-S6 respectively dis-

play simulation results of the weights and dependence parameters for Models 1-3

under Case II simulations. Figure S7 shows simulation results of the weights and

dependence parameters when considering five candidate copulas (Gumbel, Frank,

Clayton, rotated Gumbel, and rotated Clayton). In each figure, the black solid

line denotes true parameters (the weight or dependence parameter), and two curves

respectively represent medians (blue) and means (red) of the 1000 simulation param-

eter function estimates at the grid points. The two green dashed lines represent the

5% and 95% percentiles of the parameter estimates at the grid points. The sample

size is 800.
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Figure S1: Simulation results of the weights and dependence parameters for Model 1 (1000 repeats) in Case I
simulations: true values (black solid lines), mean and median estimates (red and blue lines), and 5% and 95%
percentile curves (green dashed lines). The sample size is 800.
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Figure S2: Simulation results of the weights and dependence parameters for Model 2 (1000 repeats) in Case I
simulations: true values (black solid lines), mean and median estimates (red and blue lines), and 5% and 95%
percentile curves (green dashed lines). The sample size is 800.
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Figure S3: Simulation results of the weights and dependence parameters for Model 3 (1000 repeats) in Case I
simulations: true values (black solid lines), mean and median estimates (red and blue lines), and 5% and 95%
percentile curves (green dashed lines). The sample size is 800.
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Figure S4: Simulation results of the weights and dependence parameters for Model 1 (1000 repeats) in Case II
simulations: true values (black solid lines), mean and median estimates (red and blue lines), and 5% and 95%
percentile curves (green dashed lines). The sample size is 800.
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Figure S5: Simulation results of the weights and dependence parameters for Model 2 (1000 repeats) in Case II
simulations: true values (black solid lines), mean and median estimates (red and blue lines), and 5% and 95%
percentile curves (green dashed lines). The sample size is 800.



S5. ADDITIONAL FIGURES25

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

τ

θ

(a) Dependence parameter (Frank)

0.0 0.2 0.4 0.6 0.8 1.0

2
4

6
8

10
12

14

τ

θ

(b) Dependence parameter (Clayton)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

τ

λ

(c) Weight (Frank)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

τ

λ

(d) Weight (Clayton)

Figure S6: Simulation results of the weights and dependence parameters for Model 3 (1000 repeats) in Case II
simulations: true values (black solid lines), mean and median estimates (red and blue lines), and 5% and 95%
percentile curves (green dashed lines). The sample size is 800.



26 Bingduo Yang, Zongwu Cai, Christian M. Hafner, and Guannan Liu

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

τ

θ

(a) Dependence parameter (Frank)

0.0 0.2 0.4 0.6 0.8 1.0

2
4

6
8

10
12

14

τ
θ

(b) Dependence parameter (Clayton)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

τ

λ

(c) Weight (Frank)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

τ

λ

(d) Weight (Clayton)

Figure S7: Simulation results of the weights and dependence parameters when considering five candidate copulas
(Gumbel, Frank, Clayton, rotated Gumbel, and rotated Clayton): true values (black solid lines), mean and median
estimates (red and blue lines), and 5% and 95% percentile curves (green dashed lines). The true model is a mixture
copula of Clayton and Frank: λ1(τ) = 0, λ2(τ) = 0.7 − 0.4 sin2(π

2
τ), λ3(τ) = 1−λ2(τ), λ4(τ) = 0, λ5(τ) = 0,

θ2(τ) = 6τ2 + 4, θ3(τ) = ln(1 + τT ) + 3. The sample size is 800.
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