Supplementary Material for

"Consistent Fixed-Effects Selection in Ultra-high dimensional Linear Mixed Models with Error-Covariate Endogeneity"

Abhik Ghosh ${ }^{1}$ and Magne Thoresen ${ }^{2}$
${ }^{1}$ Indian Statistical Institute, India
${ }^{2}$ Department of Biostatsitics, University of Oslo, Norway

1. Proof of Theorem 1

Define $P_{n, \lambda}^{\prime}(0+)=\lim _{t \rightarrow 0+} P_{n, \lambda}^{\prime}(t)$. Then, by an application of the Karush-Kuhn-Tucker (KKT) condition on the local minimizers $\widehat{\boldsymbol{\beta}}$ and $\widehat{\boldsymbol{\eta}}$, we get

$$
\frac{\partial L_{n}(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\eta}})}{\partial \beta_{l}}+v_{l}=0, \quad \text { for all } l \leq p
$$

where $v_{i}=P_{n, \lambda}\left(\left|\widehat{\beta}_{l}\right|\right) \operatorname{sgn}\left(\widehat{\beta}_{l}\right)$ if $\widehat{\beta}_{l} \neq 0$, and $v_{i} \in\left[-P_{n, \lambda}^{\prime}(0+), P_{n, \lambda}^{\prime}(0+)\right]$ if $\widehat{\beta}_{l}=0$. Therefore, by using the monotonicity and the limit of $P_{n, \lambda}^{\prime}(t)$ from Condition (C3), we get

$$
\begin{equation*}
\left|\frac{\partial L_{n}(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\eta}})}{\partial \beta_{l}}\right| \leq P_{n, \lambda}^{\prime}(0+)=o(1) \tag{1.1}
\end{equation*}
$$

Next, by the first order Taylor series expansion of $\frac{\partial L_{n}(\boldsymbol{\beta}, \boldsymbol{\eta})}{\partial \beta_{l}}$ at $(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\eta}})$ around $\left(\boldsymbol{\beta}_{0}, \boldsymbol{\eta}_{0}\right)$, we get a $(\widetilde{\boldsymbol{\beta}}, \widetilde{\boldsymbol{\eta}})$ on the line segment joining $(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\eta}})$ and $\left(\boldsymbol{\beta}_{0}, \boldsymbol{\eta}_{0}\right)$ such that

$$
\frac{\partial L_{n}(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\eta}})}{\partial \beta_{l}}-\frac{\partial L_{n}\left(\boldsymbol{\beta}_{0}, \boldsymbol{\eta}_{0}\right)}{\partial \beta_{l}}=\sum_{j=1}^{p} \frac{\partial^{2} L_{n}(\widetilde{\boldsymbol{\beta}}, \widetilde{\boldsymbol{\eta}})}{\partial \beta_{l} \beta_{j}}\left(\widehat{\beta}_{j}-\beta_{0 j}\right)+\sum_{k=1}^{m} \frac{\partial^{2} L_{n}(\widetilde{\boldsymbol{\beta}}, \widetilde{\boldsymbol{\eta}})}{\partial \beta_{l} \eta_{k}}\left(\widehat{\eta}_{k}-\eta_{0 k}\right) .
$$

Therefore, in the event $\widehat{\boldsymbol{\beta}}_{N}=0$ having probability tending to one [by Condition (C2)], we get

$$
\begin{aligned}
& \left|\frac{\partial L_{n}(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\eta}})}{\partial \beta_{l}}-\frac{\partial L_{n}\left(\boldsymbol{\beta}_{0}, \boldsymbol{\eta}_{0}\right)}{\partial \beta_{l}}\right| \\
& =\left|\sum_{j \in S} \frac{\partial^{2} L_{n}(\widetilde{\boldsymbol{\beta}}, \widetilde{\boldsymbol{\eta}})}{\partial \beta_{l} \beta_{j}}\left(\widehat{\beta}_{j}-\beta_{0 j}\right)+\sum_{k=1}^{m} \frac{\partial^{2} L_{n}(\widetilde{\boldsymbol{\beta}}, \widetilde{\boldsymbol{\eta}})}{\partial \beta_{l} \eta_{k}}\left(\widehat{\eta}_{k}-\eta_{0 k}\right)\right| \\
& \leq \max _{l, j \leq p}\left|\frac{\partial^{2} L_{n}(\widetilde{\boldsymbol{\beta}}, \widetilde{\boldsymbol{\eta}})}{\partial \beta_{l} \beta_{j}}\right|\left\|\widehat{\boldsymbol{\beta}}_{S}-\boldsymbol{\beta}_{0 S}\right\|_{1}+\max _{l, k \leq p}\left|\frac{\partial^{2} L_{n}(\widetilde{\boldsymbol{\beta}}, \widetilde{\boldsymbol{\eta}})}{\partial \beta_{l} \eta_{k}}\right|\left\|\widehat{\boldsymbol{\eta}}-\boldsymbol{\eta}_{0}\right\|_{1} \\
& \leq \max _{l, j \leq p}\left|\frac{\partial^{2} L_{n}(\widetilde{\boldsymbol{\beta}}, \widetilde{\boldsymbol{\eta}})}{\partial \beta_{l} \beta_{j}}\right| \sqrt{s}\left\|\widehat{\boldsymbol{\beta}}_{S}-\boldsymbol{\beta}_{0 S}\right\|_{2}+\max _{l, k \leq p}\left|\frac{\partial^{2} L_{n}(\widetilde{\boldsymbol{\beta}}, \widetilde{\boldsymbol{\eta}})}{\partial \beta_{l} \eta_{k}}\right| \sqrt{m}\left\|\widehat{\boldsymbol{\eta}}-\boldsymbol{\eta}_{0}\right\|_{2}
\end{aligned}
$$

where the last step follows by Cauchy-Swartz inequality; here m is the dimension of $\boldsymbol{\eta}$. Now, by Conditions (C1) and (C2), we get

$$
\left|\frac{\partial L_{n}(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\eta}})}{\partial \beta_{l}}-\frac{\partial L_{n}\left(\boldsymbol{\beta}_{0}, \boldsymbol{\eta}_{0}\right)}{\partial \beta_{l}}\right|=o_{P}(1)
$$

Then the theorem follows using (1.1)

2. Proof of Theorem 2

First let us note that, for the likelihood $\operatorname{loss} L_{n}\left(\boldsymbol{\beta}_{0}, \boldsymbol{\eta}_{0}\right)=-l_{n}(\boldsymbol{\beta}, \boldsymbol{\eta})$, we have

$$
\frac{\partial L_{n}\left(\boldsymbol{\beta}_{0}, \boldsymbol{\eta}_{0}\right)}{\partial \beta_{k}}=-\frac{1}{\sigma^{2}}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{T} \boldsymbol{V}\left(\boldsymbol{\theta}, \sigma^{2}\right)^{-1} \boldsymbol{X}^{(k)}
$$

for any $k \leq p$, where $\boldsymbol{X}^{(k)}$ denotes the k-th column of the matrix \boldsymbol{X}. Therefore, by an application of Strong law of Large Numbers, we have the following result in terms of the transformed regression model given in Equation (3.2) of the main paper:

$$
\begin{equation*}
\left|\frac{\partial L_{n}\left(\boldsymbol{\beta}_{0}, \boldsymbol{\eta}_{0}\right)}{\partial \beta_{k}}\right| \rightarrow E\left(\epsilon^{*} X_{k}^{*}\right), \quad \text { almost surely, } \quad \text { as } n \rightarrow \infty \tag{2.2}
\end{equation*}
$$

where ϵ^{*} and X_{k}^{*} represent the random variables corresponding to the transformed error $\boldsymbol{\epsilon}^{*}=$ $\boldsymbol{V}\left(\boldsymbol{\theta}, \sigma^{2}\right)^{-1 / 2} \boldsymbol{\epsilon}$ and the k-th transformed covariate (column) in $\boldsymbol{X}^{*}=\boldsymbol{V}\left(\boldsymbol{\theta}, \sigma^{2}\right)^{-1 / 2} \boldsymbol{X}$. Now, if X_{k} is endogenous, then clearly ϵ^{*} and X_{k}^{*} will be correlated and hence the limit in 2.2 will be non-zero. Then the proof follows directly from the results of Theorem 1.

3. Proof of Theorem 3

We will first show that our Assumptions (A), (I) and (M) together with (P) imply the following four results for the PFGMM loss function $L_{n}^{P}(\boldsymbol{\beta})$ given in Eq. (3.7) of the main paper.
(R1) $\left\|\nabla_{S} L_{n}^{P}\left(\boldsymbol{\beta}_{0 S}, \mathbf{0}\right)\right\|=O_{P}\left(\sqrt{\frac{s \log p}{n}}\right)$, where ∇_{S} denotes the gradient with respect to the (non-zero) elements of $\boldsymbol{\beta}$ in S. Note that $\sqrt{\frac{s \log p}{n}}=o\left(d_{n}\right)$ by our Assumptions.
(R2) For any $\epsilon>0$, there exists a positive constant C_{ϵ} such that, for all sufficiently large n,

$$
P\left(\lambda_{\min }\left[\nabla_{S}^{2} L_{n}^{P}\left(\boldsymbol{\beta}_{0 S}, \mathbf{0}\right)\right]>C_{\epsilon}\right)>1-\epsilon
$$

(R3) For any $\epsilon>0, \delta>0$ and any non-negative sequence $\alpha_{n}=o\left(d_{n}\right)$, there exists a positive integer N such that, for all $n \geq N$,

$$
P\left(\sup _{\left\|\boldsymbol{\beta}_{S}-\boldsymbol{\beta}_{0 S}\right\| \leq \alpha_{n}}\left\|\nabla_{S}^{2} L_{n}^{P}\left(\boldsymbol{\beta}_{S}, \mathbf{0}\right)-\nabla_{S}^{2} L_{n}^{P}\left(\boldsymbol{\beta}_{0 S}, \mathbf{0}\right)\right\|_{F} \leq \delta\right)>1-\epsilon
$$

where $\|\boldsymbol{A}\|_{F}$ denotes the Frobenius norm of a matrix \boldsymbol{A}.
(R4) For any $\epsilon>0$, there exists a positive constant C_{ϵ} such that, for all sufficiently large n,

$$
P\left(\lambda_{\min }\left[\nabla_{S}^{2} L_{n}^{P}\left(\boldsymbol{\beta}_{0 S}, \mathbf{0}\right)\right]>C_{\epsilon}\right)>1-\epsilon .
$$

Then, Parts (a) and (b) of our Theorem 3 follow from Theorems B. 1 and B. 2 of Fan and Liao (2014). Note that the assumptions required on the penalty functions there are exactly the same as our Assumption (P); see Fan and Liao (2014) for details.

In the following, we will use the notations $\boldsymbol{\Pi}_{S}=\boldsymbol{\Pi}\left(\boldsymbol{\beta}_{0 S}\right)$ and

$$
\begin{equation*}
\widetilde{L_{n}^{P}}\left(\boldsymbol{\beta}_{S}\right)=\left[\frac{1}{n} \boldsymbol{\Pi}_{S} \widetilde{\boldsymbol{V}}_{z}^{-1}\left(\boldsymbol{y}-\boldsymbol{X}_{S} \boldsymbol{\beta}_{S}\right)\right]^{T} \boldsymbol{J}\left(\boldsymbol{\beta}_{0}\right)\left[\frac{1}{n} \boldsymbol{\Pi}_{S} \widetilde{\boldsymbol{V}}_{z}^{-1}\left(\boldsymbol{y}-\boldsymbol{X}_{S} \boldsymbol{\beta}_{S}\right)\right], \quad \boldsymbol{\beta}_{S} \in \mathbb{R}^{s} . \tag{3.3}
\end{equation*}
$$

Note that $\widetilde{L_{n}^{P}}\left(\boldsymbol{\beta}_{S}\right)=L_{n}^{P}\left(\boldsymbol{\beta}_{S}, \mathbf{0}\right)$. We will now prove results (R1)-(R4).

Proof of (R1):

By standard derivative calculations, we get $\nabla \widetilde{L_{n}^{P}}\left(\boldsymbol{\beta}_{S}\right)=2 \boldsymbol{A}_{n}\left(\boldsymbol{\beta}_{S}\right) \boldsymbol{J}\left(\boldsymbol{\beta}_{0}\right)\left[\frac{1}{n} \boldsymbol{\Pi}_{S} \tilde{\boldsymbol{V}}_{z}^{-1}\left(\boldsymbol{y}-\boldsymbol{X}_{S} \boldsymbol{\beta}_{S}\right)\right]$, where $\boldsymbol{A}_{n}\left(\boldsymbol{\beta}_{S}\right)=-\frac{1}{n}\left(\boldsymbol{\Pi}_{S} \widetilde{\boldsymbol{V}}_{z}^{-1} \boldsymbol{X}_{S}\right)$. Now, by Assumption (I4), we know that $\left\|\boldsymbol{A}_{n}\left(\boldsymbol{\beta}_{0 S}\right)\right\|=$ $O_{P}(1)$. Also, by Assumption (I2), the elements in $\boldsymbol{J}\left(\boldsymbol{\beta}_{0}\right)$ are uniformly bounded in probability,
and hence

$$
\begin{equation*}
\left\|\nabla \widetilde{L_{n}^{P}}\left(\boldsymbol{\beta}_{0 S}\right)\right\| \leq O_{P}(1)\left\|\frac{1}{n} \boldsymbol{\Pi}_{S} \tilde{\boldsymbol{V}}_{z}^{-1}\left(\boldsymbol{y}-\boldsymbol{X}_{S} \boldsymbol{\beta}_{0 S}\right)\right\| . \tag{3.4}
\end{equation*}
$$

Next, we study the difference of the random variables $\boldsymbol{Z}_{1}=\left[\frac{1}{n} \boldsymbol{\Pi}_{S} \tilde{\boldsymbol{V}}_{z}^{-1}\left(\boldsymbol{y}-\boldsymbol{X}_{S} \boldsymbol{\beta}_{0 S}\right)\right]$ and $\boldsymbol{Z}_{2}=\left[\frac{1}{n} \boldsymbol{\Pi}_{S} \boldsymbol{V}(\boldsymbol{\theta})^{-1}\left(\boldsymbol{y}-\boldsymbol{X}_{S} \boldsymbol{\beta}_{0 S}\right)\right]$. By Assumption (M1), we get

$$
C_{1} \tilde{\boldsymbol{V}}_{z}-\boldsymbol{V}\left(\boldsymbol{\theta}, \sigma^{2}\right)=\left(C_{1}-1\right) \boldsymbol{I}+\boldsymbol{Z}^{T}\left(C_{1} \mathcal{M}-\sigma^{-2} \boldsymbol{\Psi}_{\boldsymbol{\theta}}\right) \boldsymbol{Z} \geq 0
$$

That is $C_{1} \tilde{\boldsymbol{V}}_{z} \geq \boldsymbol{V}\left(\boldsymbol{\theta}, \sigma^{2}\right)$. By the Woodbury formula, since $C_{1} \tilde{\boldsymbol{V}}_{z}$ and $\boldsymbol{V}\left(\boldsymbol{\theta}, \sigma^{2}\right)$ are both positive definite, we get $\tilde{\boldsymbol{V}}_{z}^{-1} \leq C_{1} \boldsymbol{V}\left(\boldsymbol{\theta}, \sigma^{2}\right)^{-1}$. Therefore,

$$
\begin{align*}
\boldsymbol{Z}_{1}-\boldsymbol{Z}_{2} & =\frac{1}{n} \boldsymbol{\Pi}_{S}\left[\tilde{\boldsymbol{V}}_{z}^{-1}-\boldsymbol{V}\left(\boldsymbol{\theta}, \sigma^{2}\right)^{-1}\right]\left(\boldsymbol{y}-\boldsymbol{X}_{S} \boldsymbol{\beta}_{0 S}\right) \\
& \leq \frac{\left(C_{1}-1\right)}{n} \boldsymbol{\Pi}_{S} \boldsymbol{V}\left(\boldsymbol{\theta}, \sigma^{2}\right)^{-1}\left(\boldsymbol{y}-\boldsymbol{X}_{S} \boldsymbol{\beta}_{0 S}\right) \tag{3.5}
\end{align*}
$$

Further, by Assumption (M2), we have

$$
C_{1}(\log n) \boldsymbol{V}\left(\boldsymbol{\theta}, \sigma^{2}\right)-\widetilde{\boldsymbol{V}}_{z}=\left(C_{1} \log n-1\right) \boldsymbol{I}+\boldsymbol{Z}^{T}\left(C_{1} \log n \sigma^{-2} \boldsymbol{\Psi}_{\boldsymbol{\theta}}-\mathcal{M}\right) \boldsymbol{Z} \geq 0
$$

Then, $C_{1}(\log n) \boldsymbol{V}\left(\boldsymbol{\theta}, \sigma^{2}\right) \geq \tilde{\boldsymbol{V}}_{z}$, and as before we get $C_{1}(\log n) \tilde{\boldsymbol{V}}_{z}^{-1} \geq \boldsymbol{V}\left(\boldsymbol{\theta}, \sigma^{2}\right)^{-1}$. Therefore,

$$
\begin{align*}
\boldsymbol{Z}_{2}-\boldsymbol{Z}_{1} & =\frac{1}{n} \boldsymbol{\Pi}_{S}\left[\boldsymbol{V}\left(\boldsymbol{\theta}, \sigma^{2}\right)^{-1}-\widetilde{\boldsymbol{V}}_{z}^{-1}\right]\left(\boldsymbol{y}-\boldsymbol{X}_{S} \boldsymbol{\beta}_{0 S}\right) \\
& \leq \frac{C_{1}\left(C_{1} \log n-1\right)}{n} \boldsymbol{\Pi}_{S} \boldsymbol{V}\left(\boldsymbol{\theta}, \sigma^{2}\right)^{-1}\left(\boldsymbol{y}-\boldsymbol{X}_{S} \boldsymbol{\beta}_{0 S}\right) . \tag{3.6}
\end{align*}
$$

Combining (3.5) and (3.6), along with our basic IV assumption (Eq. (3.3) of the main paper), we have $\left|\boldsymbol{Z}_{1}-\boldsymbol{Z}_{2}\right|=o_{P}(1)$. Therefore, from (3.4), we get

$$
\begin{align*}
\left\|\nabla \widetilde{L_{n}^{P}}\left(\boldsymbol{\beta}_{0 S}\right)\right\| & \leq O_{P}(1)\left\|\frac{1}{n} \boldsymbol{\Pi}_{S} \boldsymbol{V}\left(\boldsymbol{\theta}, \sigma^{2}\right)^{-1}\left(\boldsymbol{y}-\boldsymbol{X}_{S} \boldsymbol{\beta}_{0 S}\right)\right\| \\
& =O_{P}(1)\left\|\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}^{*}-\boldsymbol{X}_{i S}^{*} \boldsymbol{\beta}_{0 S}\right) \Pi_{i S}^{*}\right\| \tag{3.7}
\end{align*}
$$

But, $E\left[\left(Y^{*}-\boldsymbol{X}_{i}^{*} \boldsymbol{\beta}_{0 S}\right) \Pi_{i}^{*}\right]=0$ by the choice of IV π_{i}^{*}. So, using the Bonferroni inequality and the exponential-tail Bernstein inequality along with Assumption (I1) and the normality of $\left(Y^{*}-\boldsymbol{X}_{i}^{*} \boldsymbol{\beta}_{0 S}\right)$, we get a positive constant C such that, for any $t>0$,

$$
\begin{aligned}
P\left(\max _{l \leq p}\left|\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}^{*}-\boldsymbol{X}_{i S}^{*} \boldsymbol{\beta}_{0 S}\right) F_{l i}^{*}\right|>t\right) & <p \max _{l \leq p} P\left(\left|\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}^{*}-\boldsymbol{X}_{i S}^{*} \boldsymbol{\beta}_{0 S}\right) F_{l i}^{*}\right|>t\right) \\
& \leq \leq p \exp \left(-C t^{2} / n\right)
\end{aligned}
$$

Thus,

$$
P\left(\max _{l \leq p}\left|\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}^{*}-\boldsymbol{X}_{i S}^{*} \boldsymbol{\beta}_{0 S}\right) F_{l i}^{*}\right|>t\right)=O_{P}\left(\sqrt{\frac{\log p}{n}}\right) .
$$

Similarly, we can show

$$
P\left(\max _{l \leq p}\left|\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}^{*}-\boldsymbol{X}_{i S}^{*} \boldsymbol{\beta}_{0 S}\right) H_{l i}^{*}\right|>t\right)=O_{P}\left(\sqrt{\frac{\log p}{n}}\right) .
$$

Combining with 3.7 , we get $\left\|\nabla \widetilde{L_{n}^{P}}\left(\boldsymbol{\beta}_{0 S}\right)\right\|=O_{P}\left(\sqrt{\frac{s \log p}{n}}\right)$, proving (R1).

Proof of (R2):

Note that, by standard derivative calculations, we have $\nabla^{2} \widetilde{L_{n}^{P}}\left(\boldsymbol{\beta}_{0 S}\right)=2 \boldsymbol{A}_{n}\left(\boldsymbol{\beta}_{0 S}\right) \boldsymbol{J}\left(\boldsymbol{\beta}_{0}\right) \boldsymbol{A}_{n}\left(\boldsymbol{\beta}_{0 S}\right)^{T}$.
Fix any $\epsilon>0$. By Assumption (I2), there exists a constant $C>0$ such that $P\left(\lambda_{\min }\left[\boldsymbol{J}\left(\boldsymbol{\beta}_{0}\right)\right]>\right.$ $C)>1-\epsilon$ for all sufficiently large n. Also, by Assumption (I4), there exists a constant $C_{2}>0$ such that $\lambda_{\min }\left[\boldsymbol{A} \boldsymbol{A}^{T}\right]>C_{2}$, where \boldsymbol{A} is as defined in Assumption (I4). Now, let us consider the events

$$
G_{1}=\left\{\lambda_{\min }\left[\boldsymbol{J}\left(\boldsymbol{\beta}_{0}\right)\right]>C\right\}, \quad G_{2}=\left\{\left\|\boldsymbol{A}_{n}\left(\boldsymbol{\beta}_{0 S}\right) \boldsymbol{A}_{n}\left(\boldsymbol{\beta}_{0 S}\right)^{T}-\boldsymbol{A} \boldsymbol{A}^{T}\right\|<\frac{C_{2}}{2}\right\}
$$

On the event $G_{1} \cap G_{2}$, we have

$$
\begin{align*}
\lambda_{\min }\left[\nabla^{2} \widetilde{L_{n}^{P}}\left(\boldsymbol{\beta}_{0 S}\right)\right] & \geq 2 \lambda_{\min }\left[\boldsymbol{J}\left(\boldsymbol{\beta}_{0}\right)\right] \lambda_{\min }\left[\boldsymbol{A}_{n}\left(\boldsymbol{\beta}_{0 S}\right) \boldsymbol{A}_{n}\left(\boldsymbol{\beta}_{0 S}\right)^{T}\right] \\
& \geq \geq 2 C\left\{\lambda_{\min }\left[\boldsymbol{A} \boldsymbol{A}^{T}\right]-\frac{C_{2}}{2}\right\}>C C_{2} \tag{3.8}
\end{align*}
$$

But, we already have $P\left(G_{1}\right)>1-\epsilon$. And, by the definition of matrix \boldsymbol{A}, we have $P\left(G_{2}^{c}\right)<\epsilon$ for all sufficiently large n. Hence $P\left(G_{1} \cap G_{2}\right) \geq 1-P\left(G_{1}^{c}\right)-P\left(G_{2}^{c}\right)>1-2 \epsilon$, which completes the proof of (R2).

Proof of (R3):

Fix any $\epsilon>0, \delta>0$ and any non-negative sequence $\alpha_{n}=o\left(d_{n}\right)$. For all $\boldsymbol{\beta}_{S}$ satisfying $\left\|\boldsymbol{\beta}_{\boldsymbol{S}}-\boldsymbol{\beta}_{0 S}\right\|<d_{n} / 2$, we have $\beta_{S, k} \neq 0$ for all $k \leq s$. Thus, $\boldsymbol{J}\left(\boldsymbol{\beta}_{S}\right)=\boldsymbol{J}\left(\boldsymbol{\beta}_{0 S}\right)$. Also

$$
P\left(\sup _{\left\|\boldsymbol{\beta}_{S}-\boldsymbol{\beta}_{0 S}\right\| \leq \alpha_{n}}\left\|\boldsymbol{A}_{n}\left(\boldsymbol{\beta}_{S}\right)-\boldsymbol{A}_{n}\left(\boldsymbol{\beta}_{0 S}\right)\right\|_{F} \leq \delta\right)>1-\epsilon
$$

Combining we get

$$
P\left(\sup _{\left\|\boldsymbol{\beta}_{S}-\boldsymbol{\beta}_{0 S}\right\| \leq \alpha_{n}}\left\|\nabla_{S}^{2} \widetilde{L_{n}^{P}}\left(\boldsymbol{\beta}_{S}\right)-\nabla_{S}^{2} \widetilde{L_{n}^{P}}\left(\boldsymbol{\beta}_{0 S}\right)\right\|_{F} \leq \delta\right)>1-\epsilon,
$$

which completes the proof of (R3).

Proof of (R4):

The proof follows in the same line of argument as in Appendix C.1.2 of Fan and Liao (2014) and hence left out for brevity.

Proof of Parts (a)-(b) of Theorem 3:
Under the results (R1)-(R4) along with Assumption (P), we can apply Theorem B. 2 of Fan and Liao (2014) for our PFGMM loss to conclude Part (a) of Theorem 3, and we also get that $P(\widehat{S} \subset S) \rightarrow 1$. Further, from Theorem B. 1 of Fan and Liao (2014), we have $\left\|\widehat{\boldsymbol{\beta}}_{S}-\boldsymbol{\beta}_{0 S}\right\|=$ $o_{P}\left(d_{n}\right)$. Then,

$$
\begin{align*}
P(S \nsubseteq \widehat{S}) & =P\left(\text { There exists a } j \in S \text { such that } \widehat{\beta}_{j}=0\right) \\
& \leq P\left(\text { There exists a } j \in S \text { such that }\left|\widehat{\beta}_{j}-\beta_{0 j}\right| \geq\left|\beta_{0 j}\right|\right) \\
& \leq P\left(\max _{j \in S}\left|\widehat{\beta}_{j}-\beta_{0 j}\right| \geq d_{n}\right) \\
& \leq P\left(\| \widehat{\beta}_{j}-\beta_{0 j}| | \geq d_{n}\right)=o(1) \tag{3.9}
\end{align*}
$$

Therefore, $P(S \subset \widehat{S}) \rightarrow 1$, and hence $P(\widehat{S}=S) \rightarrow 1$.

Proof of Part (c) of Theorem 3:

We start with the KKT condition for $\widehat{\boldsymbol{\beta}}_{S}$ which gives

$$
-P_{n}^{\prime}\left(\left|\widehat{\boldsymbol{\beta}}_{S}\right|\right) \circ \operatorname{sgn}\left(\widehat{\boldsymbol{\beta}}_{S}\right)=\nabla \widetilde{L_{n}^{P}}\left(\widehat{\boldsymbol{\beta}}_{S}\right),
$$

where sgn denote the sign function, o denotes the element-wise product and

$$
P_{n}^{\prime}\left(\left|\widehat{\boldsymbol{\beta}}_{S}\right|\right)=\left(P_{n, \lambda}\left(\left|\widehat{\beta}_{S, 1}\right|\right), \ldots, P_{n, \lambda}\left(\left|\widehat{\beta}_{S, s}\right|\right)\right)^{T}
$$

By the Mean-Value Theorem, we can get $\boldsymbol{\beta}^{*}$ lying on the segment joining $\boldsymbol{\beta}_{0 S}$ and $\widehat{\boldsymbol{\beta}}_{S}$ such that

$$
\nabla \widetilde{L_{n}^{P}}\left(\widehat{\boldsymbol{\beta}}_{S}\right)=\nabla \widetilde{L_{n}^{P}}\left(\boldsymbol{\beta}_{0 S}\right)+\nabla^{2} \widetilde{L_{n}^{P}}\left(\boldsymbol{\beta}^{*}\right)\left(\widehat{\boldsymbol{\beta}}_{S}-\boldsymbol{\beta}_{0 S}\right)
$$

Therefore, denoting $\boldsymbol{D}=\left[\nabla^{2} \widetilde{L_{n}^{P}}\left(\boldsymbol{\beta}^{*}\right)-\nabla^{2} \widetilde{L_{n}^{P}}\left(\boldsymbol{\beta}_{0 S}\right)\right]\left(\widehat{\boldsymbol{\beta}}_{S}-\boldsymbol{\beta}_{0 S}\right)$, we get

$$
\nabla^{2} \widetilde{L_{n}^{P}}\left(\boldsymbol{\beta}_{0 S}\right)\left(\widehat{\boldsymbol{\beta}}_{S}-\boldsymbol{\beta}_{0 S}\right)+\boldsymbol{D}=-P_{n}^{\prime}\left(\left|\widehat{\boldsymbol{\beta}}_{S}\right|\right) \circ \operatorname{sgn}\left(\widehat{\boldsymbol{\beta}}_{S}\right)-\nabla \widetilde{L_{n}^{P}}\left(\boldsymbol{\beta}_{0 S}\right)
$$

Now, take any unit vector $\boldsymbol{\alpha} \in \mathbb{R}^{s}$. Then, since $\nabla^{2} \widetilde{L_{n}^{P}}\left(\boldsymbol{\beta}_{0 S}\right)=\boldsymbol{\Sigma}+o_{P}(1)$ by definition, using the consistency of $\widehat{\boldsymbol{\beta}}_{S}$ we have from the above equation that

$$
\begin{equation*}
\sqrt{n} \boldsymbol{\alpha}^{t} \boldsymbol{\Gamma}^{-1 / 2} \boldsymbol{\Sigma}\left(\widehat{\boldsymbol{\beta}}_{S}-\boldsymbol{\beta}_{0 S}\right)=-\sqrt{n} \boldsymbol{\alpha}^{t} \boldsymbol{\Gamma}^{-1 / 2} \nabla \widetilde{L_{n}^{P}}\left(\boldsymbol{\beta}_{0 S}\right)-\sqrt{n} \boldsymbol{\alpha}^{t} \boldsymbol{\Gamma}^{-1 / 2}\left[P_{n}^{\prime}\left(\left|\widehat{\boldsymbol{\beta}}_{S}\right|\right) \circ \operatorname{sgn}\left(\widehat{\boldsymbol{\beta}}_{S}\right)+\boldsymbol{D}\right] \tag{3.10}
\end{equation*}
$$

To tackle the first term in 3.10 , we recall that $\nabla \widetilde{L_{n}^{P}}\left(\boldsymbol{\beta}_{0 S}\right)=2 \boldsymbol{A}_{n}\left(\boldsymbol{\beta}_{0 S}\right) \boldsymbol{J}\left(\boldsymbol{\beta}_{0}\right) \boldsymbol{B}_{n}$, where the random component $\boldsymbol{B}_{n}=\left[\frac{1}{n} \boldsymbol{\Pi}_{S} \tilde{\boldsymbol{V}}_{z}^{-1}\left(\boldsymbol{y}-\boldsymbol{X}_{S} \boldsymbol{\beta}_{S}\right)\right]$ is normally distributed with

$$
\operatorname{Var}(\sqrt{n} \boldsymbol{B})=\frac{\sigma^{2}}{n} \boldsymbol{\Pi}_{S} \tilde{\boldsymbol{V}}_{z}^{-1} \boldsymbol{V}\left(\boldsymbol{\theta}, \sigma^{2}\right) \tilde{\boldsymbol{V}}_{z}^{-1} \boldsymbol{\Pi}_{S} \rightarrow \mathbf{\Upsilon}, \quad \text { as } n \rightarrow \infty
$$

So, by the central limit theorem, for any unit vector $\widetilde{\boldsymbol{\alpha}} \in \mathbb{R}^{2 s}$,

$$
\sqrt{n} \widetilde{\boldsymbol{\alpha}}^{t} \boldsymbol{\Upsilon}^{-1 / 2} \boldsymbol{B}_{n} \xrightarrow{\mathcal{D}} N(0,1) .
$$

Further, by definition $\left\|\boldsymbol{A}_{n}\left(\boldsymbol{\beta}_{0}\right)-\boldsymbol{A}\right\|=o_{P}(1)$. Hence, by Slutsky's theorem, we have

$$
\begin{equation*}
\sqrt{n} \boldsymbol{\alpha}^{t} \boldsymbol{\Gamma}^{-1 / 2} \nabla \widetilde{L_{n}^{P}}\left(\boldsymbol{\beta}_{0 S}\right) \xrightarrow{\mathcal{D}} N(0,1) . \tag{3.11}
\end{equation*}
$$

Next, for the second term in (3.10), we apply Lemma C. 2 of Fan and Liao (2014) to get, under Assumption (P),

$$
\left\|P_{n}^{\prime}\left(\left|\widehat{\boldsymbol{\beta}}_{S}\right|\right) \circ \operatorname{sgn}\left(\widehat{\boldsymbol{\beta}}_{S}\right)\right\|=O_{P}\left(\max _{\left\|\boldsymbol{\beta}_{S}-\boldsymbol{\beta}_{0 S}\right\| \leq d_{n} / 4} \zeta(\boldsymbol{\beta}) \sqrt{\frac{s \log p}{n}}+\sqrt{s} P_{n, \lambda}^{\prime}\left(d_{n}\right)\right) .
$$

Also, by Assumptions (I4)-(I5), we have $\lambda_{\min }\left(\boldsymbol{\Gamma}^{-1 / 2}\right)=O_{P}(1)$. Hence, applying Assumptions (A1)-(A2), we get

$$
\begin{aligned}
& \lambda_{\min }\left(\sqrt{n} \boldsymbol{\Gamma}^{-1 / 2}\right)\left\|P_{n}^{\prime}\left(\left|\widehat{\boldsymbol{\beta}}_{S}\right|\right) \circ \operatorname{sgn}\left(\widehat{\boldsymbol{\beta}}_{S}\right)\right\| \\
& \quad \leq O_{P}(\sqrt{n}) O_{P}\left(\max _{\left\|\boldsymbol{\beta}_{S}-\boldsymbol{\beta}_{0 S}\right\| \leq \frac{d_{n}}{4}} \zeta(\boldsymbol{\beta}) \sqrt{\frac{s \log p}{n}}+\sqrt{s} P_{n, \lambda}^{\prime}\left(d_{n}\right)\right)=o_{P}(1)
\end{aligned}
$$

Further, by continuity of $\nabla^{2} \widetilde{L_{n}^{P}}\left(\boldsymbol{\beta}_{S}\right)$, one can easily show that

$$
\left\|\nabla^{2} \widetilde{L_{n}^{P}}\left(\boldsymbol{\beta}^{*}\right)-\nabla^{2} \widetilde{L_{n}^{P}}\left(\boldsymbol{\beta}_{0 S}\right)\right\|=o_{P}\left(\frac{1}{\sqrt{s \log p}}\right)
$$

Also, we have $\left\|\widehat{\boldsymbol{\beta}}_{S}-\boldsymbol{\beta}_{0 S}\right\|=O_{P}\left(\sqrt{\frac{s \log p}{n}}+\sqrt{s} P_{n, \lambda}^{\prime}\left(d_{n}\right)\right)$. Then, combining the above equations with Assumption (A1), we have $\|\boldsymbol{D}\|=o_{P}\left(n^{-1 / 2}\right)$. Hence, we get

$$
\begin{equation*}
\sqrt{n} \boldsymbol{\alpha}^{t} \boldsymbol{\Gamma}^{-1 / 2}\left[P_{n}^{\prime}\left(\left|\widehat{\boldsymbol{\beta}}_{S}\right|\right) \circ \operatorname{sgn}\left(\widehat{\boldsymbol{\beta}}_{S}\right)+\boldsymbol{D}\right]=o_{P}(1) \tag{3.12}
\end{equation*}
$$

Therefore, using (3.11) and (3.12) in (3.10) with the help of Slutsky's theorem, we get the desired asymptotic normality result completing the proof of the theorem.

References

[1] Fan J. and Liao Y. (2014). Endogeneity in high dimensions. Annals of Statistics, 42(3), 872-917.

