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Supplementary Material

This supplementary material contains: (i) the regularity conditions used to prove consistency

and asymptotic normality, (ii) proofs of Theorem 1 and Propositions 1 and 2 and (iii) deriva-

tion of some results in the simple linear functional model. Equations that are specific to this

supplement are labeled as (S*). All other referenced equations correspond to those of the main

paper.

S1 Regularity conditions

We state regularity conditions similar in spirit to the corresponding condi-

tions required in the case of maximum likelihood estimation in the presence

of incidental parameters given by Mak (1982) (see also, Giménez and Bol-

farine (1997)), although in our case, expectations are taken under the true

distributions Gj, j = 1, 2, . . . .
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C0. 1
n

∑n
j=1EGj [hj(Zj; .)] converges uniformly to a function h̄(.) in a neigh-

borhood of θ†, where θ† ∈ Θ◦ is a local maximum of h̄.

C1. Jacobian matrix of h̄ evaluated in θ† is nonsingular.

C2. For each θ ∈ Θ◦, there exists δ > 0, and functions dj and djkl, such

that

|hj(Zj;θ
′
)| < dj(Zj) and |I†jkl(Zj;θ

′
)| < djkl(Zj) a.e.

for all θ
′ ∈ B(θ, δ) = {θ′ : ‖θ′ − θ‖ < δ} ⊂ Θ◦. Moreover

lim sup 1
n

∑n
j=1EGj [dj(Zj)

2] <∞ and lim sup 1
n

∑n
j=1EGj [djkl(Zj)

2] <

∞, k, l = 1, . . . , p.

C3. 0 < lim inf
1

n

n∑
j=1

EGj

[
U †jk(Zj;θ

†)U †jl(Zj;θ
†)
]

≤ lim sup
1

n

n∑
j=1

EGj

[
U †jk(Zj;θ

†)U †jl(Zj;θ
†)
]
<∞, k, l = 1, . . . , p.

C4. 0 < lim inf det
(
Λn(θ†

)
and 0 < lim inf

∥∥Λn(θ†)−1
∥∥ ≤ lim sup

∥∥Λn(θ†)−1
∥∥

<∞, where det(A) is the determinant of A and ‖.‖ represents the eu-

clidean matrix norm.

C5. Given ε > 0, there exists δ > 0, such that

lim sup

∣∣∣∣∣ 1n
n∑
j=1

EGj

[
sup

θ∈B(θ†,δ)

I†jkl(Zj;θ)− I†jkl(Zj;θ
†)

]∣∣∣∣∣ < ε,

k, l = 1, . . . , p, and the same is true when lim sup is replaced by lim inf .
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C6. There exists γ > 0 such that

lim
n→∞

1

n1+ γ
2

n∑
j=1

EGj

[
|U †jk(Zj;θ

†)|2+γ
]

= 0, k = 1, . . . , p.

Remark 1. Conditions C0 to C2 imply that (2.5) has a maximum θ̂
∗
n

which converges in probability to θ†. Conditions C3 to C5 are related to

the asymptotic behavior of the matrices Λn and Γn. It is not required that

these matrices converge to any limit. If conditions C0 to C4 are verified,

for the uniqueness of the sequence of roots of (2.6), which converges to

θ†, it follows that with probability tending to one, this sequence is equal

to the sequence of maximizers of Hn in (2.5). Condition C6 is stated for

application of Liapunov’s central limit theorem.

S2 Proofs

S2.1 Proof of Theorem 1

(i) First, we can see that condition C0 to C2 implies that (2.5) has a

maximum θ̂
∗
n, which converges in probability to θ†. The proof of this result

follows along the line of the proof of Theorem 2.1A in Mak (1982) and

the details are thus omitted. On the other hand, C4 implies that exist

K > 0 and n0 ∈ N, such that
∥∥Λ−1n (θ†)

∥∥ < K, ∀n ≥ n0. As θ† ∈ Θ◦,

from C2 and Chebyshev’s inequality, it follows that exists δ0 > 0 such that
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∀θ ∈ B(θ†, δ0)

I
†
n(θ)−Λn(θ)

P−→ 0. (S2.1)

Applying Lemma 2.2 in Mak (1982), we have with probability going to 1

as n→∞, that I
†
n(θ†) is invertible and

∥∥I†n−1(θ†)∥∥ < 2K. (S2.2)

Setting λ =
1

4K
and λn = 1/4

∥∥I†n−1(θ†)∥∥, by (S2.2) we have, with proba-

bility going to 1 as n → ∞, that λ < 2λn. On the other hand, C5 implies

that exists δ1 > 0, such that

∥∥Λn(θ)−Λn(θ†)
∥∥ < λ

2
, (S2.3)

∀θ ∈ B(θ†, δ1).

Then, from (S2.1) and (S2.3) we have, with probability going to 1 as

n→∞, that

∥∥I†n(θ)− I†n(θ†)
∥∥ ≤ ∥∥I†n(θ)−Λn(θ)

∥∥+
∥∥Λn(θ)−Λn(θ†)

∥∥
+
∥∥Λn(θ†)− I†n(θ†)

∥∥ < λ < 2λn,

∀θ ∈ B(θ†; δ), with δ = min{δ0, δ1}.

Applying the inverse function theorem (Rudin (1964)) to U
†
n, we have,

with probability going to 1 as n→∞, that

(1) Exists δ2 > 0 such that U
†
n : B(θ†, δ2) −→ U

†
n

(
B(θ†, δ2)

)
is invertible.
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(2) B
(
U
†
n(θ†), λδ2

2

)
⊂ B

(
U
†
n(θ†), λnδ2

)
⊂ U †n

(
B(θ†, δ2)

)
.

Since EGj
[
U †j(Zj;θ

†)
]

= 0 ∀ j ∈ N, from Chebyshev’s inequality and

C3, it follows thatU
†
n(θ†)

P−→ 0. Then
∥∥U †n(θ†)−0

∥∥ < λδ2
2
, with probability

going to 1, i.e. 0 ∈ B
(
U
†
n(θ†), λδ2

2

)
. From (2) it follows, with probability

going to 1 as n→∞, that 0 ∈ U †n
(
B(θ†, δ2)

)
.

From (1), we can consider U
†
n

−1
: U

†
n

(
B(θ†, δ2)

)
−→ B(θ†, δ2). Since

0 ∈ U †n
(
B(θ†, δ2)

)
with probability going to 1 as n→∞, we conclude that

limn→∞ P
(∥∥U †n−1(0) − θ†

∥∥ < δ2
)

= 1. Since δ2 can be taken arbitrarily

small, it follows that U
†
n

−1
(0)

P−→ θ† and we can take θ̂
∗
n = U

†
n

−1
(0),

∀n ∈ N as the consistent sequence.

Furthermore, since U
†
n is one to one in a neighborhood of θ†, if we have

(θ̃n)n such that limn→∞ P
(
U
†
n(θ̃n) = 0

)
= 1, then limn→∞ P

(
θ̂
∗
n = θ̃n

)
=

limn→∞ P
(
U
†
n

−1
(0) = θ̃n

)
= limn→∞ P

(
U
†
n(θ̃n) = 0

)
= 1.

(ii) For proving asymptotic normality, let h ∈ Rp and consider for

each n ∈ N, the function given by θ →
√
n hTΓ

− 1
2

n (θ†)U
†
n(θ). From the

mean value theorem and because U
†
n(θ̂

∗
n) = 0, it exists θ̃n ∈ Θ, such that

√
n hTΓ

− 1
2

n (θ†)U
†
n(θ†) = −

√
n hTΓ

− 1
2

n (θ†)I
†
n(θ̃n)(θ̂

∗
n − θ†), (S2.4)

where
∥∥θ̃n − θ†∥∥ < ∥∥θ̂∗n − θ†∥∥. Notice that

√
n hTΓ

− 1
2

n (θ†)U
†
n(θ†) =

n∑
j=1

1√
n
hTΓ

− 1
2

n (θ†)U †j(Zj;θ
†) =

n∑
j=1

Wj,
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where Wj = 1√
n
hTΓ

− 1
2

n (θ†)U †j(Zj;θ
†), for j = 1, . . . , n are independent

random variables with zero mean and variance given by v2n =
∑n

j=1 Var(Wj) =

hTh, because EGj
[
U †j(Zj;θ

†)
]

= 0, for j = 1, . . . , n. Moreover, for γ > 0,

1

v2+γn

n∑
j=1

EGj
[
|Wj|2+γ

]
=

1

(hTh)1+
γ
2

n∑
j=1

EGj

[ ∣∣∣∣ 1√
n
hTΓ

− 1
2

n (θ†)U †j(Zj;θ
†)

∣∣∣∣2+γ ]

=
1

(hTh)1+
γ
2n1+ γ

2

n∑
i=1

EGj
[∣∣hTΓ

− 1
2

n (θ†)U †j(Zj;θ
†)
∣∣2+γ]

≤
∥∥hTΓ

− 1
2

n (θ†)
∥∥2+γ

(hTh)1+
γ
2n1+ γ

2

n∑
j=1

EGj
[∥∥U †j(Zj;θ

†)
∥∥2+γ]

≤ cte

n1+ γ
2

n∑
j=1

p∑
k=1

EGj
[∣∣U †jk(Zj;θ

†)
∣∣2+γ] −→ 0,

as n→∞. The last inequality follows from C3 and Rao (1973, 8a, p.149).

Thus, by Liapunov’s central limit theorem,∑n
i=1Wi

vn

D−→ N(0, 1),

or equivalently,

√
n hTΓ

− 1
2

n (θ†)U
†
n(θ†)

D−→ N(0,hTh).

From (S2.4), it follows that

Γ
− 1

2
n (θ†)I

†
n(θ̃n)

√
n(θ̂

∗
n − θ†)

D−→ Np(0, Ip). (S2.5)

Now, given ε > 0 and δ as in C5, with ε replaced by ε/2, it follows from
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Chebyshev’s inequality, that ∀ k, l = 1, . . . , p

P
(∣∣∣ 1
n

sup
θ∈B(θ†,δ)

n∑
j=1

I†jkl(θ)− 1

n

n∑
j=1

EGj

[
sup

θ∈B(θ†,δ)

I†jkl(θ)
]∣∣∣ < ε

2

)
−→ 1,

(S2.6)

as n→∞. A similar result holds when sup is replaced by inf. Thus, from

(S2.6) and the fact that θ̂
∗
n

P−→ θ†, it follows that

P
(∣∣∣ 1
n

n∑
j=1

EGj

[
I†jkl(θ

†)
]
− 1

n

n∑
j=1

I†jkl(θ̃n)
∣∣∣ < ε

)
≥ P

(∣∣∣ 1
n

n∑
j=1

inf
θ∈B(θ†,δ)

I†jkl(θ)− 1

n

n∑
j=1

EGj

[
inf

θ∈B(θ†,δ)
I†jkl(θ)

]∣∣∣ < ε

2
,

∣∣∣ 1
n

n∑
j=1

sup
θ∈B(θ†,δ)

I†jkl(θ)− 1

n

n∑
j=1

EGj

[
sup

θ∈B(θ†,δ)

I†jkl(θ)
]∣∣∣ < ε

2
,
∥∥θ̂∗n − θ†∥∥ < δ

)
−→ 1,

as n→∞. Then,

Λn(θ†)− I†n(θ̃n)
P−→ 0, (S2.7)

as n→∞. C4, Lemma 2.2. in Mak (1982), and (S2.7) imply that I
†
n

−1
(θ̃n)

exists and [
Λn(θ†)− I†n(θ̃n)

]
I
†
n

−1
(θ̃n)

P−→ 0. (S2.8)

Then, from C3 and (S2.8), it follows that

Γ
− 1

2
n (θ†)Λn(θ†)I

†
n

−1
(θ̃n)Γ

1
2
n (θ†)

= Ip + Γ
− 1

2
n (θ†)

[
Λn(θ†)− I†n(θ̃n)

]
I
†
n

−1
(θ̃n)Γ

1
2
n (θ†)

P−→ Ip. (S2.9)
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Finally, to conclude the proof, (S2.5) and (S2.9) imply that

Γ
− 1

2
n (θ†)Λn(θ†)

√
n(θ̂

†
n − θ†)

=
{
Γ
− 1

2
n (θ†)Λn(θ†)I

†
n

−1
(θ̃n)Γ

1
2
n (θ†)

}{
Γ
− 1

2
n (θ†)I

†
n(θ̃n)

√
n(θ̂

∗
n − θ†)

}
D−→ Np(0, Ip).

Remark 2. A simple calculation shows that the expectations in the ma-

trices Λn(θ) and Γn(θ) can be expressed as

EGj [I
†
j(Zj;θ)] = (1−q)A(1)

j +Bj and EGj [U
†
j(Zj;θ)U †j(Zj;θ)T ] = A

(2)
j , re-

spectively, where A
(r)
j = EGj

[
Ũ j(Zj;θ)Ũ j(Zj;θ)T f̃j(Zj;θ)r(1−q)

]
, for r =

1, 2; Bj = EGj

[
∇Ũ j(Zj;θ)T f̃j(Zj;θ)1−q

]
, and f̃j(Zj;θ) and Ũ j(Zj;θ)

are given in (2.7).

Remark 3. As a consistent estimator of the asymptotic covariance matrix,

we can consider the sandwich estimator given by V
−1
n (θ̂

∗
n)Sn(θ̂

∗
n)V

−1
n (θ̂

∗
n)T ,

proposed by Giménez and Bolfarine (1997) in a similar context, where

V n(θ) = 1
n

∑n
j=1

{
(1− q)Ũ j(Zj;θ)Ũ j(Zj;θ)T +∇Ũ j(Zj;θ)T

}
f̃j(Zj;θ)1−q

and Sn(θ) = 1
n

∑n
j=1 Ũ j(Zj;θ)Ũ j(Zj;θ)T f̃j(Zj;θ)2(1−q) are the sample

counterparts of expectations in matrices Λn(θ) and Γn(θ), respectively.
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S2.2 Proof of Proposition 1

We define the function Hn : Θ×Θ→ R, by

Hn(u,v) = Hn(u) + Qn(u,v).

Suppose that Mn(v) 6= v, then we have that

Qn(Mn(v),v) ≤ Qn(v,v). (S2.10)

Considering the function h : R>0 × R>0 → R, defined by h(x, y) = Lqx −

y1−q log x, it is simple to see that for all x 6= y ∈ R>0, we have that h(x, x) <

h(y, x). Particularly, for all j = 1, . . . n

h
(
f̃j(zj,v), f̃j(zj,v)

)
< h

(
f̃j(zj,Mn(v)), f̃j(zj,v)

)
and adding for j = 1, . . . , n, we have that

Hn (v,v) < Hn (Mn(v),v) . (S2.11)

From (S2.10) and (S2.11), it follows that

Hn(v) = Hn (v,v)−Qn(v,v) < Hn (Mn(v),v)−Qn(Mn(v),v) = Hn(Mn(v)).

S2.3 Proof of Proposition 2

The global convergence theorem in Zangwill (1969, p. 91), can be applied

considering the following facts:
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(i) The solution set is the set of all the fixed points of Mn, or equivalently,

the stationary points of Hn.

(ii) The objective function Hn is a continuous function and satisfies the

monotonicity property by Proposition 1.

(iii) The mapping Mn, which generates the sequence θ(s+1) = Mn(θ(s)), can

be treated as a point-to-set mapping and it can be easily seen that is

closed.

S3 Derivation of some results in the simple linear

functional model

In this section we derive some results related with the application of Section

6. We denote the generic elements by θ = (α, β, φ)T ∈ Θ and ξj ∈ Ξ; and

the true values by θ0 = (α0, β0, φ0)T and ξ0j . Also, µj = a+ bξj, with a =

(0, α)T and b = (1, β)T , and analogously, we have the values µ0
j , a

0, b0

and ξ0j .
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S3.1 Computational aspects

The MLqE θ̂
∗
n = (α̂∗n, β̂

∗
n, φ̂

∗
n)T is obtained as the maximizer of (6.2), or

equivalently, as the solution of the estimating equation

n∑
j=1

Ũ j(Zj;θ)f̃j(Zj;θ)1−q = 0,

where Ũ j(Zj;θ) = (Ũj1(Zj;θ), Ũj2(Zj;θ), Ũj3(Zj;θ))T , with

Ũj1(Zj;θ) =
1

cφ
(Yj − α− βXj) (S3.1)

Ũj2(Zj;θ) =
1

φc2
(Yj − α− βXj)[Xj + β(Yj − α)] (S3.2)

Ũj3(Zj;θ) = −1

φ
+

1

2cφ2
(Yj − α− βXj)

2. (S3.3)

A simple reweighting algorithm for computing the estimators, is derived

as follows. If θ(s) = (α(s), β(s), φ(s))T denotes the estimator in step s, then

the estimator in step s + 1, θ(s+1) = (α(s+1), β(s+1), φ(s+1))T , is a solution

of the equations
∑n

j=1 ω
(s)
j Ũji(Zj;θ) = 0, for i = 1, 2, 3, where Ũji(Zj;θ),

for i = 1, 2, 3, are given in (S3.1), (S3.2), and (S3.3), and the weights

ω
(s)
j = ωj(Zj;θ

(s)), computed using (3.2), are updated at each step. These

equations are a weighted version of maximum likelihood equations (Kimura

(1992); Gleser (1981)). Let Z̄
(s)
ω =

∑n
j=1 ω

(s)
j Zj = (X̄

(s)
ω , Ȳ

(s)
ω )T and

S(s)
ω =

n∑
j=1

ω
(s)
j (Zj − Z̄

(s)
ω )(Zj − Z̄

(s)
ω )T =

 S
(s)
ω,XX S

(s)
ω,XY

S
(s)
ω,XY S

(s)
ω,Y Y
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the vector of the weighted means and weighted covariance matrix, respec-

tively. Thus, after some calculations, the MLqE in step s + 1, are given

by

β(s+1) =
S
(s)
ω,Y Y − S

(s)
ω,XX +

√(
S
(s)
ω,XX − S

(s)
ω,Y Y

)2
+ 4

(
S
(s)
ω,XY

)2
2S

(s)
ω,XY

,

α(s+1) = Ȳ (s)
ω − β(s+1)X̄(s)

ω ,

φ(s+1) =
1

2(1 + (β(s+1))2)

(
S
(s)
ω,Y Y − 2β(s+1)S

(s)
ω,XY + (β(s+1))2S

(s)
ω,XX

)
.

The algorithm can be initialized by setting β(0), α(0), and φ(0) as the MLE

estimates.

S3.2 Derivation of some results when the true density belongs

to the model

Assuming that the true density belongs to the model, that isZj ∼ N2(µ
0
j , φ

0I2),

we have that

fj(zj;θ
0, ξ0j) =

1

2πφ0
exp

{
− 1

2φ0
(zj − µ0

j)
T (zj − µ0

j)
}
. (S3.4)

Also, we have that

f̃j(zj;θ) = fj(zj;θ, ξ̂j) =
1

2πφ
exp

{
− 1

2φc
(yj − α− βxj)2

}
=

1

2πφ
exp

{
− 1

2φ
(zj − a)TA(zj − a)

}
, (S3.5)

where A = I2 −
1

c
bbT , with c = bTb = 1 + β2.
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We denote by Ej the expectation with respect to the model distribution

N2(µ
0
j , φ

0I2).

Lemma 1. The maximum of 1
n

∑n
j=1Ej[hj(Zj;θ)] for all large n, where

hj(Zj;θ) = Lq{f̃j(Zj;θ)} = 1
1−q

{
f̃j(Zj;θ)1−q − 1

}
, is attained for θ† =

(α0, β0, kφ0)T , with k = q − 1
2
> 0.

Proof. We need to find the maximum of 1
n

∑n
j=1Ej[f̃j(Zj;θ)1−q] for all large

n. Using (S3.4) and (S3.5), we can see that

Ej[f̃j(Zj;θ)1−q] =

∫
R2

f̃j(zj;θ)1−qfj(zj;θ
0, ξ0j) dzj

=
1

(2πφ)1−q
1

2πφ0

∫
R2

exp{−S(zj;θ, ξj,θ
0, ξ0j , q)} dzj,

(S3.6)

where

S(zj;θ, ξj,θ
0, ξ0j , q) =

(1− q)
2φ

(zj−a)TA(zj−a)+
1

2φ0
(zj−µ0

j)
T (zj−µ0

j).

Using that

(zj − µ0
j)
T (zj − µ0

j) = (zj − a0)T (zj − a0)− 2(zj − a0)Tb0ξ9j + b0Tb0ξ0 2j ,

we can write

S(zj;θ, ξj,θ
0, ξ0j , q) = (zj − a0)TB∗(zj − a0) + b∗T (zj − a0) + b∗0,
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where

B∗ =
(1− q)

2φ
A+

1

2φ0
I2,

b∗ =
(1− q)
φ

A(a0 − a)− 1

φ0
b0ξ0j ,

b∗0 =
(1− q)

2φ
(a0 − a)TA(a0 − a) +

1

2φ0
b0Tb0ξ0 2j .

Using results in Harville (1997, p. 321), we have that∫
R2

exp{−S(zj;θ, ξj,θ
0, ξ0j , q)} dzj =

1

2
π|B∗|−

1
2 exp{1

4
b∗TB∗−1b∗ − b∗0}.

Then, after some algebra, (S3.6) can be written as

1

4(2π)1−q
g1(φ, φ

0, q) exp{−g2(φ, φ0, q)[(a0 − a)T (a0 − a) + (a0 − a)Ab0T ξj

+ b0TAb0ξ0 2j ]}, (S3.7)

where

g1(φ, φ
0, q) =

2

φ( 1
2
−q)[(1− q)φ0 + φ]

1
2

and g2(φ, φ
0, q) =

1− q
2[(1− q)φ0 + φ]

.

From expression (S3.7), we can easily seen that the maximum of (S3.6) is

independent of ξ0j , and it is attained at a = a0, b = b0, and φ = kφ0, with

k = q − 1
2
. Then, we have θ† = (α0, β0, kφ0)T .

Lemma 2. Let f̃j(zj;θ
†) given in (S3.5), with θ† = (α0, β0, kφ0)T , where

k = q − 1
2
> 0 and fj(zj;θ

0, ξ0j) in (S3.4). Then, for all function V (Zj;θ)
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such that the expectation below exists, we have that

Ej[V (Zj;θ
†)f̃j(zj;θ

†)r(1−q)] = c(r)E
(r)
j [V (Zj;θ

†)], r = 1, 2, j = 1, 2, . . . ,

where c(r) = (2πkφ0)−
r(1−q)(p+1)

2 a
− p

2

(r) , a(r) =
r(1− q) + k

k
, and E

(r)
j denotes

expectation taken with respect to the distribution N2(µ
0
j ,Σ

0
(r)), with Σ0

(r) =

φ0

a(r)

(
I2 +

r(1− q)
k c0

b0b0T
)
, c0 = b0Tb0 = 1 + (β0)2, for r = 1, 2.

Proof.

Ej[V (Zj;θ
†)f̃j(Zj;θ

†) r(1−q)] =

∫
V (zj;θ

†)f̃j(zj;θ
†) r(1−q)fj(zj;θ

0, ξ0j ) dzj.

Moreover, from a direct calculation, we can show that

f̃j(zj;θ
†) r(1−q)fj(zj;θ

0, ξ0j )

= c(r)
1

(2π)

a
1
2

(r)

φ0 2
exp

{
−
a(r)
2φ0

(zj − µ0
j)
T

(
I2 −

r(1− q)
k c0 a(r)

b0b0T
)

(zj − µ0
j)

}
= c(r)

1

(2π)

1

|Σ(r)|
1
2

exp

{
−1

2
(zj − µ0

j)
TΣ−1(r)(zj − µ

0
j)

}
.

Then, the result follows inmediately.

Lemma 3. Let U †j(Zj;θ) = Ũ j(Zj;θ)f̃j(Zj;θ)1−q, with Ũ j(Zj;θ) =

(Ũj1(Zj;θ), Ũj2(Zj;θ), Ũj3(Zj;θ))T , where Ũj1, Ũj2, and Ũj3 are given in

(S3.1), (S3.2), and (S3.3), respectively. Then, Ej[U
†
j(Zj;θ

†)] = 0, for

j = 1, 2, . . .
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Proof. From Lemma 2, we have that

Ej[U
†
j(Zj;θ

†)] = c(1)E
(1)
j [Ũ j(Zj;θ

†)],

where E
(1)
j denotes expectation with respect to the distributionN2(µ

0
j ,Σ(1)).

To calculate these expectations, it is convenient to rewrite expressions

(S3.1), (S3.2), and (S3.3) in the following equivalent form

Ũj1(Zj;θ
†) =

1

kφ0c0
dT (Zj − µ0

j),

Ũj2(Zj;θ
†) =

1

kφ0c0

{ 1

c0
dT (Zj − µ0

j)(Zj − µ0
j)
Tb0 + dT (Zj − µ0

j)ξ
0
j

}
,

Ũj3(Zj;θ
†) = − 1

kφ0
+

1

2(kφ0)2
(Zj − µ0

j)
TA(Zj − µ0

j),

with d = (−β0, 1)T and A = I2 − 1
c0
b0b0T . Using that E

(1)
j [Zj − µ0

j ] = 0,

E
(1)
j [(Zj − µ0

j)(Zj − µ0
j)
T ] = Σ(1), and E

(1)
j [(Zj − µ0

j)
TA(Zj − µ0

j)] =

tr(AΣ(1)), after some simple algebra, we have that E
(1)
j [Ũji(Zj;θ

†)] = 0, for

i = 1, 2, 3.
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