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S1 Detailed conditions for estimation bounds

Before stating the results, we first introduce some assumptions. For any

matrix X, we say it satisfies the restricted eigenvalue (RE) condition if its

restricted eigenvalue is strictly bounded away from 0. That is, for some

1 ≤ s ≤ p, the following condition holds:

κ(s,X) , min
J⊆{1,...,p}
|J |≤s

min
δ 6=0

‖δJc‖1≤3‖δJ‖1

‖Xδ‖2√
n‖δJ‖2

> 0.

Denote s1 = ‖β0‖0, s2 = maxj ‖Γ·,j‖0, r = maxj ‖θj‖0 and κ is the re-

stricted eigenvalue defined above. The following assumptions are needed:

(A1) The instrumental variable matrix Z and matrix D = ZΓ0 satisfies the

restricted eigenvalue condition with some constants κ(s2,Z), κ(s1,D) >
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0, respectively.

(A2) There exists a positive constant C such that max{‖β0‖1, ‖Γ0‖1, {‖θi‖1}i=1,...,p} ≤

C.

(A3) There exists a positive constant C such that max1≤j≤p
(
Σe
j,j

)
≤ C2.

Since our test statistics rely on the estimation of the parameters in

models (??) and (??), we first provide a lemma on the estimation errors of

Γ·,j and β.

Lemma 1 (Estimation error bounds of Γ·,j and β0 (?)). Under assumptions

(A1)-(A3), for each j = 1, 2, . . . , p, if the tuning parameter λ2j is chosen as

λ2j = C̃

√
Σe
j,j (log p+ log q)

n
,

for some C̃ ≥ 2
√

2, then with probability at least 1 − (pq)1−C̃
2/8, Γ̂ defined

in (??) satisfies

‖Γ̂− Γ0‖1 ≤
16C̃C

κ2(s2,Z)
s2

√
log p+ log q

n
,

and

‖Z
(
Γ̂− Γ0

)
‖2F ≤

16C̃2C2

κ2(s2,Z)
s2p (log p+ log q) .

Furthermore, if the set of tuning parameters {λ2j : j = 1, . . . , p} satisfy

λmax(2C + λmax) ≤
κ2(s2,Z)κ2(s1,D)

1024s1s2
,
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where λmax = max1≤j≤p λ2j, if λ1 is chosen as:

λ1 = C0

√
s2 (log p+ log q)

n
,

then with probability at least 1− C1(pq)
−C2, β̂ defined in (??) satisfies

‖β̂ − β0‖1 ≤ C3s1

√
s2 (log p+ log q)

n
,

for some positive constants C0 − C3.

S2 Detailed Proofs

In the appendix we provided the proofs for the lemmas and theorems. We

refer the proof of Lemma 1 to ?. Before proving lemma ??, we first state a

useful proposition.

Proposition 1. Denote D̂i as defined previously, M̂i as
(
Y, D̂·,−i

)
for

i = 1, 2. . . . p. Further for each l = 1, 2, . . . p, we use Mi,l and M̂i,l to be

the l-th column of the matrix Mi and M̂i respectively (Notice that Mi is a

matrix so Mi,l is a column vector, not the (i, l)−th element of matrix M).

Then under the assumptions stated in lemma 1, with the same choice of

the tuning parameters λ2i, with probability at least 1− (pq)1−C
2/8 for some

C ≥ 2
√

2, we have:

‖D̂i −Di‖2 ≤
4
√
n
√
s2λ2i

κ2(s2,Z)
, i = 1, 2, . . . , p,



Jiarui Lu and Hongzhe Li

‖M̂i,l −Mi,l‖2 ≤
4
√
n
√
s2λ2i

κ2(s2,Z)
, i = 1, 2, . . . , p,

In addition, the estimated M̂i satisfies the RE condition with some constant

κ(ri, M̂i) which satisfies κ(ri, M̂i) ≥
1

2
κ(ri,Mi).

Proof of proposition 1. Notice that for i = 1, 2, . . . , p,

‖D̂i −Di‖2 =
∥∥∥Z(Γ̂0,i − Γ0,i

)∥∥∥
2
≤

4
√
n
√
s2λ2i

κ(s2,Z)
,

where the last inequality follows from ?.

For the second inequality, notice that M̂i =
(
Y, D̂·,−i

)
, so there exists some

i0 such that:

‖M̂i,l −Mi,l‖2 =


0 if l = 1,∥∥∥Z(Γ̂0,i0 − Γ0,i0

)∥∥∥
2
.

So similarly we have:

‖M̂i,l −Mi,l‖2 ≤
4
√
n
√
s2λ2i

κ(s2,Z)
.

Furthermore, according to ?, they proved that ZΓ̂ satisfies the RE condition

with κ(s1, ZΓ̂) ≥ 1

2
κ(s1,D). Using the relationship between Mi and D, it

is straightforward that κ(ri, M̂i) ≥
1

2
κ(ri,Mi).

Then we provide the proof of lemma ??.

Proof of lemma ??. Without lose of generality, we assume ai = 0. For each
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i = 1, 2, . . . , p, by the definition of θ̂i in (??), we have:

1

2n
‖D̂i − M̂iθ̂i‖22 + µi‖θ̂i‖1 ≤

1

2n
‖D̂i − M̂iθi‖22 + µi‖θi‖1. (S2.1)

For the left hand side (LHS), notice that:

1

2n
‖D̂i − M̂iθ̂i‖22 =

1

2n
‖D̂i −Di‖22 +

1

2n
‖Di − M̂iθ̂i‖22 −

1

n

(
D̂i −Di

)> (
Di − M̂iθ̂i

)
,

=
1

2n
‖D̂i −Di‖22 +

1

2n
‖ζi‖22 +

1

2n
‖M̂i(θ̂i − θi)‖22 +

1

2n
‖(M̂i −Mi)θi‖22,

− 1

n
ζ>
(
M̂iθ̂i −Miθ

)
+

1

n
θi

(
M̂i −Mi

)>
M̂i

(
θ̂i − θi

)
,

− 1

n

(
D̂i −Di

)> (
Di − M̂iθ̂i

)
. (S2.2)

While for the right hand side(RHS), similarly,

1

2n
‖D̂i − M̂iθi‖22 =

1

2n
‖D̂i −Di‖22 +

1

2n
‖Di − M̂iθi‖22 −

1

n

(
D̂i −Di

)> (
Di − M̂iθi

)
,

=
1

2n
‖D̂i −Di‖22 +

1

2n
‖ζi‖22 +

1

2n
‖(M̂i −Mi)θi‖22 −

1

n
ζ>i

(
M̂i −Mi

)
θi,

− 1

n

(
D̂i −Di

)> (
Di − M̂iθ̂i

)
. (S2.3)

Combining (S2.2), (S2.3) and (S2.1) we have:

1

2n
‖M̂i(θ̂i − θi)‖22 ≤

1

n
ζ>i M̂i

(
θ̂i − θ

)
− 1

n
θi

(
M̂i −Mi

)>
M̂i

(
θ̂i − θi

)
,

+
1

n

(
D̂i −Di

)>
M̂i

(
θ̂i − θi

)
+ µi

(
‖θi‖1 − ‖θ̂i‖1

)
,

≤
∥∥∥∥ 1

n
M̂>

i ζi −
1

n
M̂>

i

(
M̂i −Mi

)
θi +

1

n
M̂>

i

(
D̂i −Di

)∥∥∥∥
∞
‖θ̂i − θi‖1,

+ µi

(
‖θi‖1 − ‖θ̂i‖1

)
.

We first show that the event

∥∥∥∥ 1

n
M̂>

i ζi −
1

n
M̂>

i

(
M̂i −Mi

)
θi +

1

n
M̂>

i

(
D̂i −Di

)∥∥∥∥
∞
≤
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µi
2

happens with large probability.

As

1

n
M̂>

i ζi −
1

n
M̂>

i

(
M̂i −Mi

)
θi +

1

n
M̂>

i

(
D̂i −Di

)
,

=
1

n
M>

i ζi︸ ︷︷ ︸
T1

+
1

n
(M̂i −Mi)

>ζi︸ ︷︷ ︸
T2

− 1

n
M>

i (M̂i −Mi)θi︸ ︷︷ ︸
T3

− 1

n
(M̂i −Mi)

>(M̂i −Mi)θi︸ ︷︷ ︸
T4

,

+
1

n
M>

i (D̂i −Di)︸ ︷︷ ︸
T5

+
1

n
(M̂i −Mi)

>(D̂i −Di)︸ ︷︷ ︸
T6

,

we label these terms from T1 to T6. To bound term T1, it follows from the

union bound and the Gaussian tail bound:

P(‖T1‖∞ ≥
µi
12

) = P
(∥∥∥∥ 1

n
M>

i ζ

∥∥∥∥
∞
≥ µi

12

)
≤ p exp

{
− n

2σ2
ζi

·
(µi

12

)2}
.

(S2.4)

To bound term T2, noticing that ‖Γ̂0,i − Γ̂0,i‖1 ≤
16s2λ2i
κ2(s2,Z)

,

P(‖T2‖∞ ≥
µi
12

) ≤ P
(∥∥∥∥ 1

n
Z>ζi

∥∥∥∥
∞
≥ µi

12
· κ

2(s2,Z)

16s2λ2i

)
,

≤ qC∗ exp

{
− n

2σ2
ζi

·
(
µi
12
· κ

2(s2,Z)

16s2λmax

)2
}
, (S2.5)

for some positive constant C∗. As for term T3, as ‖θi‖∞ ≤ C and by

proposition 1,

‖T3‖∞ =

∥∥∥∥ 1

n
M>

i (M̂i −Mi)θi

∥∥∥∥
∞
≤ C max

1≤l,k≤p

∣∣∣∣ 1nM>
i,l(M̂i,k −Mi,k)

∣∣∣∣ ,
≤ C max

1≤k≤p

1√
n

∥∥∥M̂i,k −Mi,k

∥∥∥
2
≤

4C
√
s2λmax

κ(s2,Z)
. (S2.6)
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For T4, using the result in proposition 1, we have:

‖T4‖∞ =

∥∥∥∥ 1

n
(M̂i −Mi)

>(M̂i −Mi)θi

∥∥∥∥
∞
,

≤ C max
1≤l,k≤p

1

n

∥∥∥(M̂i,l −Mi,l)
∥∥∥
2
·
∥∥∥(M̂i,k −Mi,k)

∥∥∥
2
,

≤ 16Cs2λ
2
max

κ2(s2,Z)
. (S2.7)

For T5, similar to T3, we have

‖T5‖∞ =
1

n

∥∥∥M>
i (D̂i −Di)

∥∥∥
∞
≤ max

1≤l≤p

1

n

∣∣∣M>
i,l(D̂i −Di)

∣∣∣ ,
≤ 1√

n
‖D̂i −Di‖2 ≤

4C
√
s2λmax

κ(s2,Z)
. (S2.8)

Finally for T6,

‖T6‖∞ =
1

n

∥∥∥(M̂i −Mi)
>(D̂i −Di)

∥∥∥
∞
≤ max

1≤l≤p

1

n

∣∣∣(M̂i,l −Mi,l)
>(D̂i −Di)

∣∣∣ ,
≤ max

1≤l≤p

1

n
‖M̂i,l −Mi,l‖2 · ‖D̂i −Di‖2 ≤

16Cs2λ
2
max

κ2(s2,Z)
. (S2.9)

Combining the results from (S2.4) to (S2.9), there exists some positive

constant C4, C5, C
∗
5 , such that with the tuning parameter µi chosen as:

µi =
C∗4

κ(s2,Z)

√
s2(log p+ log q)

n
,

with C∗4 = C∗5 max(C, σζi), then with probability at least 1− C4 (pq)−C5 ,∥∥∥∥ 1

n
M̂>

i ζi −
1

n
M̂>

i

(
M̂i −Mi

)
θi +

1

n
M̂>

i

(
D̂i −Di

)∥∥∥∥
∞
≤ µi

2
(S2.10)

Then under (S2.10), we have:

1

2n
‖M̂i(θ̂i − θi)‖22 ≤

µi
2
‖θ̂i − θi‖1 + µi

(
‖θi‖1 − ‖θ̂i‖1

)
. (S2.11)
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Let Ri be the support of the true parameter θi and without any abuse of

using notations, we use θi,Ri
and θ̂i,Ri

to represent the subvector of θi and

θ̂i restricted on the set Ri. Also let |Ri| = ri. Adding
µi
2
‖θ̂i− θi‖1 to both

sides of (S2.11) yields:

1

2n
‖M̂i(θ̂i − θi)‖22 +

µi
2
‖θ̂i − θi‖1 ≤ µi

(
‖θ̂i − θi‖1 + ‖θi‖1 − ‖θ̂i‖1

)
,

= µi

(
‖θi,Ri

‖1 − ‖θ̂i,Ri
‖1 + ‖θ̂i,Ri

− θi,Ri
‖1
)
,

≤ 2µi‖θ̂i,Ri
− θi,Ri

‖1 ≤ 2µi
√
ri‖θ̂i,Ri

− θi,Ri
‖2.

(S2.12)

The last two inequalities in (S2.12) imply:

1

2n
‖M̂i(θ̂i − θi)‖22 ≤ 2µi

√
ri‖θ̂i,Ri

− θi,Ri
‖2, (S2.13)

µi
2
‖θ̂i − θi‖1 ≤ 2µi‖θ̂i,Ri

− θi,Ri
‖1, (S2.14)

and (S2.14) is equivalent to

‖θ̂i,Rc
i
− θi,Rc

i
‖1 ≤ 3‖θ̂i,Ri

− θi,Ri
‖1. (S2.15)

As stated in proposition 1, M̂i satisfies the RE condition with some constant

κ(ri, M̂i) ≥
1

2
κ(ri,Mi), together with (S2.15) we have:

1

2n
‖M̂i(θ̂i − θi)‖22 ≥

1

2
κ2(ri, M̂i)‖θ̂i,Ri

− θi,Ri
‖22 ≥

1

8
κ2(ri,Mi)‖θ̂i,Ri

− θi,Ri
‖22.

Combining with (S2.13),

‖θ̂i,Ri
− θi,Ri

‖2 ≤
16µi
√
ri

κ2(ri,Mi)
, (S2.16)
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Plugging in the tuning parameter µi gives the final result in lemma ??:

‖θ̂i − θi‖1 ≤ 4‖θ̂i,Ri
− θi,Ri

‖1 ≤ 4
√
ri‖θ̂i,Ri

− θi,Ri
‖2,

≤ 64C∗4
κ2(ri,Mi)κ(s2,Z)

ri

√
s2(log p+ log q)

n
,

≤ 64C∗4
κ2(Y,D)κ(s2,Z)

ri

√
s2(log p+ log q)

n
.

Based on the previous results, we provide the proof for the main theo-

rems. First we prove the asymptotic distribution of the test statistics for a

single hypothesis.

Proof of Theorem ??. The form of the test statistic Ti is a de-biased version

of the sample correlation. To show it follows a standard normal distribution,

we list the following notation. Denote:

ξ̃k = ξk − ξ, ζ̃k,i = ζk,i − ζi,

where ξ =
∑n

k=1 ξk and ζi =
∑n

k=1 ζk,i. Recall that by the previous defini-

tion, we have:

ξk = yk − µ−D>k β,

ζk,i = Dk,i − ai − (yk, D
>
k,−i)

>θi,

ξ̂k = yk − Y − (D̂k − D̂)>β̂,
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ζ̂k,i = D̂k,i − D̂i −
(
yk − Y ,

(
D̂k,−i − D̂−i

)>)
θ̂i.

Based on these notations, we have the following decomposition:

1

n

n∑
k=1

ξ̂kζ̂k,i =
1

n

n∑
k=1

ξ̃kζ̃k,i −
1

n

n∑
k=1

ξ̃k(ζ̃k,i − ζ̂k,i)︸ ︷︷ ︸
A1

− 1

n

n∑
k=1

ζ̃k,i(ξ̃k − ξ̂k)︸ ︷︷ ︸
A2

+
1

n

n∑
k=1

(ξ̃k − ξ̂k)(ζ̃k,i − ζ̂k,i)︸ ︷︷ ︸
A3

.

For simplicity, denote the second, third and forth term as A1, A2 and A3.

Then for A1, we have:

A1 =
1

n

n∑
k=1

ξ̃2k(θ̂1,i − θ1,i) +
1

n

n∑
k=1

ξ̃k(Dk −D)>β(θ̂1,i − θ1,i),

+
1

n

n∑
k=1

ξ̃k

{
(Dk,i −Di)− (D̂k,i − D̂i)

}
+

1

n

n∑
k=1

ξ̃k(Dk,−i −D−i)
>(θ̂−1,i − θ−1,i),

+
1

n

n∑
k=1

ξ̃k

{
(Dk,−i −D−i)− (D̂k,−i − D̂−i)

}>
θ̂−1,i.

We denote these five terms as A1.1 to A1.5. For A1.2, combining the result

in lemma ?? and the fact that ξ and D are independent, we know that for

some positive constant C, there exists some C ′ > 0 such that:

|θ̂1,i − θ1,i| .p r
√
s2(log p+ log q)

n
,

P

(∣∣∣∣∣ 1n
n∑
k=1

ξ̃k(Dk −D)>β

∣∣∣∣∣ ≥ C

√
log p

n

)
= O(p−C

′
).

Hence,

A1,2 ≤

∣∣∣∣∣ 1n
n∑
k=1

ξ̃k(Dk −D)>β

∣∣∣∣∣ · |θ̂1,i − θ1,i|,

. Op

(√
log p

n
· r
√
s2(log p+ log q)

n

)
. (S2.17)
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Similarly for A1.4, as

P

(
max
1≤j≤p

∣∣∣∣∣ 1n
n∑
k=1

ξ̃k(Dk,j −Dj)

∣∣∣∣∣ ≤ C

√
log p

n

)
= O(p−C

′
),

so we have:

A1.4 ≤

∥∥∥∥∥ 1

n

n∑
k=1

ξ̃k(Dk,−i −D−i)

∥∥∥∥∥
∞

· ‖θ̂−1,i − θ−1,i‖1,

. Op

(√
log p

n
· r
√
s2(log p+ log q)

n

)
. (S2.18)

Then for A1.3, by the estimation error for Di as we used in proposition 1,

we have:∣∣∣∣∣ 1n
n∑
k=1

ξ̃k(Dk,i − D̂k,i)

∣∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
k=1

ξ̃k

(
Zk(Γ̂0,i − Γ0,i)

)∣∣∣∣∣ ,
≤

∥∥∥∥∥ 1

n

n∑
k=1

ξ̃kZk

∥∥∥∥∥
∞

· ‖Γ̂0,i − Γ0,i‖1,

. Op

(√
log p

n
· s2

√
log p+ log q

n

)
. (S2.19)

For the last term A1.5, similar to A1.3,

A1.5 . Op

(√
log p

n
· s2

√
log p+ log q

n

)
. (S2.20)

Combining the result from (S2.17) to (S2.20) we know that uniformly for

1 ≤ i ≤ p:

A1 =
1

n

n∑
k=1

ξ̃2k(θ̂1,i − θ1,i) +Op

(√
log p

n
· r
√
s2(log p+ log q)

n

)

+Op

(√
log p

n
· s2

√
log p+ log q

n

)
. (S2.21)
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And as for term A2, we have a similar decomposition given by:

A2 =
1

n

n∑
k=1

ζ̃2k,i(β̂i − βi) +
1

n

n∑
k=1

ζ̃k,i

(
yk − Y ,

(
Dk,−i −D−i

)>)
θi(β̂i − βi),

+
1

n

n∑
k=1

ζ̃k,i
(
Dk,−i −D−i

)>
(β̂−i − β−i) +

1

n

n∑
k=1

ζ̃k,i

[
(D̂k −Dk) + (D̂−D)

]
β̂.

By using the similar techniques as in A1, we know that uniformly over

1 ≤ i ≤ p,

A2 =
1

n

n∑
k=1

ζ̃2k,i(β̂i − βi) +Op

(√
log p

n
· s1

√
s2(log p+ log q)

n

)

+Op

(√
log p

n
· s2

√
log p+ log q

n

)
. (S2.22)

For the last term A3, the decomposition is given as following:

A3 =
1

n

n∑
k=1

(Dk −D)>(β̂ − β)︸ ︷︷ ︸
B1

+
(

(D̂k −Dk)− (D̂−D)
)>

(β̂ − β)︸ ︷︷ ︸
B2

 ,

·


(

(Dk,i −Di)− (D̂k,i − D̂i)
)

︸ ︷︷ ︸
B3

+
(
yk − Y ,

(
Dk,−i −D−i

)>)
(θ̂i − θi)︸ ︷︷ ︸

B4

+
(

(D̂k,−i − D̂−i)− (Dk,−i −D−i)
)
θ̂i︸ ︷︷ ︸

B5

 .

For simplicity we denote the five terms above as B1 to B5. Then,

A3 = B1(B3 +B4 +B5) +B2(B3 +B4 +B5).
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For B1B3, based on the bounds in proposition 1, we have:

B1B3 ≤ ‖β̂ − β‖1 ·

∥∥∥∥∥ 1

n

n∑
k=1

(Dk −D)>
(

(Dk,i −Di)− (D̂k,i − D̂i)
)∥∥∥∥∥
∞

,

. Op

(
s1

√
s2(log p+ log q)

n
·
√
s2(log p+ log q)

n

)
. (S2.23)

For B1B4, it follows from the proof in ? that:

B1B4 . Op

(√
log p

n
· s1

√
s2(log p+ log q)

n
· r
√
s2(log p+ log q)

n

)

+Op

(
r

√
s2(log p+ log q)

n
· an

)
,

+Op
(
λmax(ΣD) · a2n

)
, (S2.24)

where max(‖β̂ − β‖2, ‖θ̂i − θ‖2) = Op(an). For term B2B3, we have:

B2B3 ≤ ‖β̂ − β‖1 ·

∥∥∥∥∥ 1

n

n∑
k=1

(
(D̂k −Dk)− (D̂−D)

)(
(Dk,i −Di)− (D̂k,i − D̂i)

)∥∥∥∥∥
∞

,

≤ ‖β̂ − β‖1 · max
1≤j≤p

∣∣∣∣∣ 1n
n∑
k=1

(
(Dk,j −Dj)− (D̂k,j − D̂j)

)
·
(

(Dk,i −Di)− (D̂k,i − D̂i)
)∣∣∣∣∣ ,

. Op

(
s1

√
s2(log p+ log q)

n
· s2(log p+ log q)

n

)
. (S2.25)

Then for B2B4, it follows from the estimator bounds of θ̂,

B2B4 ≤ ‖θ̂i − θi‖1 ·

∥∥∥∥∥ 1

n

n∑
k=1

(β̂ − β)>
(

(D̂k −Dk)− (D̂−D)
)(

yk − Y ,
(
Dk,−i −D−i

)>)∥∥∥∥∥ .
(S2.26)

Notice that the second term is in the same order as the term B1B3, so the

order of the whole term B2B4 is actually dominated by the term B1B3.
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And terms B1B5 and B2B5 are in the same order as B1B3 and B2B3. So

together with the result in (S2.23) to (S2.26) and summing up the previous

results in (S2.21), (S2.22) and the form of test statistic Ti, we have:

Ti =
√
n

(
1

n

n∑
k=1

ξ̂kζ̂k,i +
1

n

n∑
k=1

ξ̂2kθ̂1,i +
1

n

n∑
k=1

ζ̂2k,iβ̂i

)
/σ̂ξσ̂ζi ,

=

√
n

σ̂ξσ̂ζi

{
1

n

n∑
k=1

ξ̃kζ̃k,i − A1 − A2 + A3 +
1

n

n∑
k=1

ξ̂2kθ̂1,i +
1

n

n∑
k=1

ζ̂2k,iβ̂i

}
,

=

√
n

σ̂ξσ̂ζi

{
1

n

n∑
k=1

ξ̃kζ̃k,i +
1

n

n∑
k=1

ξ̃2kθ1,i +
1

n

n∑
k=1

ζ̃2k,iβi +
1

n

n∑
k=1

θ̂1,i(ξ̂
2
k − ξ̃2k)

+
1

n

n∑
k=1

β̂i(ζ̂
2
k,i − ζ̃2k,i) + order

}
, (S2.27)

where order is the sum of all the reminder terms, which is given by:

order = Op

(√
log p

n
· r
√
s2(log p+ log q)

n

)
+Op

(√
log p

n
· s2

√
log p+ log q

n

)

+Op

(√
log p

n
· s1

√
s2(log p+ log q)

n

)
+Op

(
s1

√
s2(log p+ log q)

n
·
√
s2(log p+ log q)

n

)

+Op

(√
log p

n
· s1

√
s2(log p+ log q)

n
· r
√
s2(log p+ log q)

n

)
+Op

(
r

√
s2(log p+ log q)

n
· an

)

+Op
(
λmax(ΣD) · a2n

)
+Op

(
s1

√
s2(log p+ log q)

n
· s2(log p+ log q)

n

)
.

(S2.28)

Define ω̃ii = ΩD
i,i +

β2
i

σ2
ξ

. Notice that:

1

n

n∑
k=1

ξ̃kζ̃k,i +
1

n

n∑
k=1

ξ̃2kθ1,i +
1

n

n∑
k=1

ζ̃2k,iβi,
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=

(
1

n

n∑
k=1

ξkζk,i − Eξζi

)
+
(
EξEζi − ξ̄ζ̄i

)
− βi
ω̃ii

(
1−

σ̃2
ξ

σ2
ξ

−
σ̃2
ζi

σ2
ζi

)
,

=

(
1

n

n∑
k=1

ξkζk,i − Eξζi

)
+Op

(
log p

n

)
− βi
ω̃ii

(
1−

σ̃2
ξ

σ2
ξ

−
σ̃2
ζi

σ2
ζi

)
. (S2.29)

Denote order An = order +Op
(

log p

n

)
, followed by the argument in ? we

know that:

σ̂2
ξ = σ2

ξ +Op(An +

√
log p

n
), σ̂2

ζi
= σ2

ζi
+Op(An +

√
log p

n
). (S2.30)

In addition, notice that the required assumption λmax(ΣD)a2n = o(n−
1
2 ) and

r
√
s2(log p+ log q) · an = o(1) are naturally hold for the estimators we are

using and under assumptions C1-2. Hence, based on assumptions C1-2,

together with (S2.27), (S2.28), (S2.29) and (S2.30) we know that

Ti  N(0, 1).

And further recalls the relation between Ti and T̂i given by:

T̂i =
Ti

1− T 2
i

n
1

(
T 2
i

n
< 1

) .
So finally Slutsky’s theorem, we know that

Ti  N(0, 1).

So we have finished the proof of theorem ??.

Once we were able to prove that our test statistic follows a standard

normal distribution,the proofs for theorem ?? and ?? become rather straight
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forward. We refer the details of the proofs to section 5.2 of ?. The proofs

for ours differ from theirs in the error terms which have already been shown

to be controlled in preferred orders in the proofs of theorem ??.

S3 Results of simulation studies

S3.1 Evaluation of testing single hypothesis

Figures S1 and S2 show additional simulation results for testing single hy-

pothesis.

S3.2 Obtaining first stage regression via Ridge regression method

In our method, the first stage regression X = ZΓ0 + E, the regression effi-

cients are obtained via Lasso and are used to predict X. In genetic studies,

the gene expression could also be predicted by imposing a Gaussian prior,

which leads to the Ridge regression method. Although we proof replies on

the theoretical results that are built upon the first stage regression using

Lasso, it is still of interest to compare the numerical performance when us-

ing Ridge regression instead. As a result, we present in this supplementary

some additional simulation results. For the Ridge regression, the tuning

parameter is selected by a 10-fold cross-validation method.

Table S1 shows the empirical FDR and FDV for the proposed procedure
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure S1: QQ-plots of the test statistic T̂i based on the two-stage IV model for sev-

eral randomly selected variables to demonstrate the validity of its asymptotic distribu-

tion. The panels in the first and second row correspond to selected variables whose true

value are zero and the third row are variables that are not zero. For different columns,

(a)(d)(g), (b)(e)(h) and (c)(f)(i) correspond to different (n, p, q) values as (200, 100, 100),

(400, 200, 200) and (200, 500, 500).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure S2: Selected QQ-plots of the test statistics T̂i developed for fitting naive high

dimensional regression models. The panels in the first and second row corresponds to

selected variables whose true value are zero and the third row are variables that are

not zero. For different columns, (a)(d)(g), (b)(e)(h) and (c)(f)(i) correspond to different

(n, p, q) values as (200, 100, 100), (400, 200, 200) and 200, 500, 500).

using Ridge regression in the first stage. The result indicates that our

method could still successfully control the FDR and FDV in this scenario.

When p is relatively large, the simulation demonstrate that the procedure
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Table S1: Sensitivity analysis results based on 500 replications. Ridge regression is

applied in the first stage regression. The eFDR and eFDV for multiple testing procedures

based on IV regression for different combinations of (n, p, q) and different α, k levels.

(n, p, q) α-level eFDR k-level eFDV

(n, p, q) = (200, 100, 100)

0.05 0.055 2 1.95

0.1 0.10 3 2.96

0.2 0.20 4 3.75

(n, p, q) = (400, 200, 200)

0.05 0.020 2 1.02

0.1 0.045 3 1.61

0.2 0.10 4 2.29

is slightly conservative as the eFDR and eFDV is much smaller than the

desired α and k levels. This indicates that Ridge regression could be used in

practice but may lead to hypothesis testing procedure that is conservative

and hence lack of power.

S4 Additional results of yeast data set

We further compared the the fitted versus the observed yeast growth yields

using three different scenarios in Figure S3. The first model was to use the

15 genes selected using our proposed multiple testing method and to refit

a linear model with the estimated X̂. The second model used the 34 genes

selected based on nominal p-value< 0.05 and refitted a linear model using



Jiarui Lu and Hongzhe Li

−0.25

0.00

0.25

0.50

−0.3 0.0 0.3 0.6 0.9
Observed

F
it
te

d

−0.4

−0.2

0.0

0.2

0.4

0.6

−0.3 0.0 0.3 0.6 0.9
Observed

F
it
te

d
−0.2

0.0

0.2

0.4

0.6

−0.3 0.0 0.3 0.6 0.9
Observed

F
it
te

d

(a) (b) (c)

Figure S3: Scatter-plots of the fitted versus the observed yeast growth yields. (a): refitted

model using the estimated expression levels of the 15 genes selected by our proposed

method; (b): refitted model using expression levels of 34 genes selected with nominal

p-value< 0.05. (c): the refitted model using expression levels of the genes selected by

Lasso.

the original X. The last model used the genes selected by Lasso using X

with refitted coefficients using the original X. Overall, we observe that the

proposed IV regression gave better fit than those based on linear regression

with gene expressions as the covariates.

S5 Software and data sets used in the paper

The codes and data sets are available upon request.
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