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S1. Technical proofs

To be self-contained, we first give a special case of Theorem 1 in Zhou [5]

as a lemma on the smooth RKHS below, which plays an important role for

the subsequent analysis. Its proof follows directly from that of Theorem 1

in Zhou [5] and thus is omitted here.

Lemma 1. Let K : X ×X → R be a Mercer kernel such that K ∈ C4(X ×

X ), where C4 is a class of functions whose fourth derivative is continuous.

Then the following statements hold:

(a) For any x ∈ X , ∂lKx, ∂lkKx ∈ HK, for any l, k = 1, ..., pn.
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(b) A derivative reproducing property holds true; that is, for any f ∈ HK,

∂lf(x) = 〈f, ∂lKx〉K , and ∂lkf(x) = 〈f, ∂lkKx〉K .

Proposition 1. Suppose Assumption 2 in the main text is met. Let f̃ be the

minimizer of Eλn(f) = E(y − f(x))2 + λn‖f‖2K in HK. Then conditioning

on the event {Zn : max
i=1,...,n

|yi| ≤Mn} with Mn ≥ (κ21‖f ∗‖2K + σ2)1/2, for any

δn ∈ (0, 1), with probability at least 1− δn, there holds

‖f̂ − f̃‖K ≤
6κ1Mn

λnn1/2
log

2

δn
.

Proof of Proposition 1: Define the sample operators Sx : HK → Rn and

STx : Rn → R as

Sx(f) = (f(x1), ..., f(xn))T and STx c =
n∑
i=1

ciKxi .

Then solving (1) in the main text is equivalent to solve

f̂ = argmin
f∈HK

1

n
yT y− 2

n

〈
f, STx y

〉
K

+
1

n
〈f,STx Sxf〉K + λn〈f, f〉K ,
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where y = (y1, ..., yn)T , and hence that

f̂ =

(
1

n
STx Sx + λnI

)−1
1

n
STx y.

Similarly, the minimizer of Eλn(f) in HK must have the form

f̃ = (LK + λnI)−1 LKf
∗.

Therefore, we have

f̂ − f̃ =
( 1

n
STx Sx + λnI

)−1( 1

n
STx y − 1

n
STx Sxf̃ − λnf̃

)
=
( 1

n
STx Sx + λnI

)−1( 1

n

n∑
i=1

(
yi − f̃(xi)

)
Kxi − LK

(
f ∗ − f̃

))
,

and its RKHS-norm can be upper bounded as

‖f̂ − f̃‖K ≤ λ−1n

∥∥∥ 1

n

n∑
i=1

(
yi − f̃(xi)Kxi − LK

(
f ∗ − f̃

)∥∥∥
K

= λ−1n ∆1.

To bound ∆1, denote ξi =
(
yi− f̃(xi)

)
Kxi , and it follows from Assump-
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tion 2 in the main text and direct calculation that

Eξ = LK
(
f ∗ − f̃

)
, ‖ξ‖K ≤ κ1

(
Mn + ‖f̃‖∞

)
,

E(‖ξ‖2K) ≤ κ21

∫ (
y − f̃(x)

)2
dρx,y.

By Lemma 2 of Smale and Zhou [3] and Assumption 2 in the main text,

with probability at least 1− δn, there holds

∆1 ≤ 2n−1κ1 log
2

δn
(Mn + ‖f̃‖∞)+

n−1/2κ1

(
2 log

2

δn

)1/2(∫ (
y − f̃(x)

)2
dρx,y

)1/2
.

For ‖f̃‖∞, by the definition of f̃ , we have

‖f̃ − f ∗‖22 + λn‖f̃‖2K ≤ ‖0− f ∗‖
2
2 + λn‖0‖2K ≤ ‖f ∗‖

2
2 , (S.1)

where ‖f ∗‖22 is a bounded quantity. Hence, there holds

‖f̃‖∞ ≤ κ1‖f̃‖K ≤ κ1λ
−1/2
n ‖f ∗‖2. (S.2)



5

For
∫ (

y − f̃(x)
)2
dρx,y, note that

∫ (
y − f(x)

)2
dρx,y −

∫ (
y − f ∗(x)

)2
dρx,y = ‖f − f ∗‖22,

for any f . Substituting f = 0 and f = f̃ yield that

∫ (
y − f ∗(x)

)2
dρx,y + ‖f ∗‖22 =

∫
y2dρx,y ≤ κ21‖f ∗‖2K + σ2 ≤M2

n, (S.3)∫ (
y − f̃(x)

)2
dρx,y = ‖f̃ − f ∗‖22 +

∫ (
y − f ∗(x)

)2
dρx,y ≤ 2M2

n, (S.4)

where the last inequality follows from (S.1) and (S.3).

Combing (S.2) and (S.4), we have with probability at least 1− δn that

∆1 ≤ 2n−1κ1 log
2

δn
Mn(1 + κ1λ

−1/2
n ) + 2n−1/2κ1

(
log

2

δn

)1/2
M2

n

≤ 2κ1Mn

n
log

2

δn
+

2κ1Mn

n1/2
log

2

δn

κ1

λ
1/2
n n1/2

+
2κ1Mn

n1/2

(
log

2

δn

)1/2
.

Note that when κ1

λ
1/2
n n1/2

≤
(
3 log 2

δn

)−1
, the above upper bound simplifies to

‖f̂ − f̃‖K ≤ λ−1n ∆1 ≤
6κ1Mn

λnn1/2
log

2

δn
.
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When κ1

λ
1/2
n n1/2

>
(
3 log 2

δn

)−1
, we have

‖f̂ − f̃‖K ≤ ‖f̂‖K + ‖f̃‖K ≤
2Mn

λ
1/2
n

≤ 6κ1Mn

λnn1/2
log

2

δn
,

where the second inequality follows from (S.2), (S.3) and the definition of

f̂ that 1
n

∑n
i=1(yi − f̂(xi))

2 + λn‖f̂‖2K ≤ 1
n

∑n
i=1 y

2
i ≤ M2

n. The desired in-

equality then follows immediately. �

Proof of Theorem 3: For simplicity, denote

C3 =

{
Zn : max

l,k∈Â

∣∣‖ĝlk‖2n − ‖g∗lk‖22∣∣ > bn,2 log
(8p20
δn

)
n−

(2r−1)
2(2r+1)

}
.

Note that P (C3) can be decomposed as

P (C3) = P
(
C3 ∩ {Â = A∗}

)
+ P

(
C2 ∩ {Â 6= A∗}

)
≤ P

(
Â 6= A∗

)
+ P

(
C3|Â = A∗

)
P (Â = A∗) = ∆n + P3(1−∆n),

where ∆n → 0 according to Theorem 2 in the main text, and P3 can be

bounded as follows.

To bound P3, we first introduce some additional notations. Denote the
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operators for the second-order gradients as

D∗lkDlkf =

∫
∂2lkKxglk(x)dρx and D̂∗lkD̂lkf =

1

n

n∑
i=1

∂2lkKxi ĝlk(xi),

where ∂2lkKx = ∂2K(x,·)
∂xl∂xk

. Hence, for any l, k ∈ A∗, we have

∣∣‖ĝlk‖2n − ‖g∗lk‖22∣∣
=
∣∣∣ 1
n

n∑
i=1

(
ĝlk(xi)

)2 − ∫ (g∗lk(x)
)2
dρx

∣∣∣
=
∣∣∣ 1
n

n∑
i=1

ĝlk(xi)
〈
f̂ , ∂2lkKxi

〉
K
−
∫
g∗lk(x)

〈
f ∗, ∂2lkKx

〉
K
dρx

∣∣∣
=
∣∣∣〈f̂ , D̂∗lkD̂lkf̂

〉
K
−
〈
f ∗, D∗lkDlkf

∗〉
K

∣∣∣
=
∣∣∣〈f̂ − f ∗, D̂∗lkD̂lk(f̂ − f ∗)

〉
K

+ 2
〈
f ∗, D̂∗lkD̂lk(f̂ − f ∗)

〉
K

+〈
f ∗, (D̂∗lkD̂lk −D∗lkIlk)f ∗

〉
K

∣∣∣
≤ κ23‖f̂ − f ∗‖2K + 2κ23‖f ∗‖K‖f̂ − f ∗‖K + ‖f ∗‖2K‖D̂∗lkD̂lk −D∗lkDlk‖HS,

where the last inequality follows from the Cauthy-Schwartz inequality.

Note that ‖f ∗‖K is bounded, and Dlk and D̂lk are Hilbert-Schmidt

operators on HK by Assumption 5 in the main text and a slightly modified

proof of Proposition 6 in Vito et al. [?]. It then follows from Rosasco et

al. [?] that maxl,k∈A∗ ‖D̂∗lkD̂lk‖HS ≤ κ23. Hence, conditional on Â = A∗, we
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have

max
l,k∈A∗

∣∣‖ĝlk‖2n − ‖g∗lk‖22∣∣
≤ s3

(
‖f̂ − f ∗‖2K + 2‖f̂ − f ∗‖K + max

l,k∈A∗
‖D̂∗lkD̂lk −D∗lkDlk‖HS

)
≤ s3

(
3‖f̂ − f ∗‖K + max

l,k∈A∗
‖D̂∗lkD̂lk −D∗lkDlk‖HS

)
,

where s3 = max{κ23, ‖f ∗‖2K , κ23‖f ∗‖K}, and the second inequality holds

when ‖f̂ − f ∗‖2K is sufficiently small. Here, by Theorem 1 in the main

text, with probability at least 1 − δn/2, we have ‖f̂ − f ∗‖K is bounded.

Moreover, for any εn ∈ (0, 1) and l, k ∈ A∗, by the concentration inequali-

ties in HS(K) on HK [?], we have

P
(
‖D̂∗lkD̂lk −D∗lkDlk‖HS ≥ εn

)
≤ 2 exp

(
− nε2n

8κ43

)
.

Let εn =
(8κ43
n

log 4
δn

)1/2
, then with probability at least 1− δn/2, there holds

max
l,k∈A∗

∥∥D̂∗lkD̂lk −D∗lkDlk

∥∥
HS
≤
(8κ43
n

log
4p20
δn

)1/2
.

Therefore, conditional on Â = A∗, we have with probability at least
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1− δn, there holds

max
l,k∈Â

∣∣‖ĝlk‖2n − ‖g∗lk‖22∣∣
≤ s3

(
3 log

8

δn

( 3κ1
n1/2λn

(κ1‖f ∗‖K + q−1(log
4c1n

δn
)) + λr−1/2n ‖L−rK f ∗‖2

)
+
(8κ43
n

log
4p20
δn

)1/2)
.

Furthermore, with λn = n−
1

2r+1 , the upper bound reduces to

max
l,k∈Â

∣∣‖ĝlk‖2n − ‖g∗lk‖22∣∣ ≤ bn,2

(
log

8p20
δn

)
n−

(2r−1)
2(2r+1) ,

where bn,2 is given in Theorem 3 of the main text, and hence that P3 ≤ δn.

Therefore, P (C3) ≤ ∆n + δn(1 − ∆n) ≤ ∆n + δn, and the desired result

follows immediately. �

Proof of Theorem 4: Note that

P
(
Â2 = A∗2, Â1 = A∗1

)
= P

(
Â2 = A∗2, Â1 = A∗1, Â = A∗

)
= P

(
Â2 = A∗2, Â1 = A∗1|Â = A∗

)
P
(
Â = A∗

)
≥
(

1− P
(
Â2 6= A∗2|Â = A∗

)
− P

(
Â1 6= A∗1|Â = A∗

))
P
(
Â = A∗

)
=
(

1− 2P
(
Â2 6= A∗2|Â = A∗

))
(1−∆n),
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where the last equality follows from the fact that Â1 ∩ Â2 = A∗1 ∩ A∗2 = ∅,

and then {Â1 6= A∗1} = {Â2 6= A∗2} given Â = A∗. By Theorem 2 in the

main text, ∆n → 0 as n diverges. Therefore, it suffices to show P (Â2 6=

A∗2|Â = A∗)→ 0 as n diverges.

We first show that A∗2 ⊂ Â2 in probability conditional on Â = A∗. If

not, suppose that there exists some l′ ∈ A∗2, which directly implies that

‖g∗
l′k
‖22 > bn,2 max{κ1‖f ∗‖K , q−1(log 4c1n

δn
)}n−ξ4 log p0, for some k ∈ A∗ but

l′ /∈ Â2, and thus ‖ĝl′k‖2n ≤ vintn . By Assumption 6 in the main text, we

have with probability at least 1−∆n − δn that

∣∣‖ĝl′k‖2n − ‖g∗l′k‖22∣∣ ≥ ‖g∗l′k‖22 − ‖ĝl′k‖2n > bn,2
2

max{κ1‖f ∗‖K , q−1(log
4c1n

δn
)}n−ξ4 log p0,

which contradicts with Theorem 3 in the main text. This implies that

conditional on Â = A∗, A∗2 ⊂ Â2 with probability at least 1−∆n − δn.

Next, we show that Â2 ⊂ A∗2 in probability conditional on Â = A∗. If

not, suppose there exists some l′ ∈ Â2 but l′ /∈ A∗2, which implies ‖ĝl′k‖2n >

vintn for some k ∈ A∗ but ‖g∗l′k‖22 = 0. Then with probability at least

1−∆n − δn, there holds

∣∣‖ĝl′k‖2n − ‖g∗l′k‖22∣∣ = ‖ĝl′k‖2n >
bn,2
2

max{κ1‖f ∗‖K , q−1(log
4c1n

δn
)}n−ξ4 log p0,
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which contradicts with Theorem 3 in the main text again. Therefore, con-

ditional on Â = A∗, Â2 ⊂ A∗2 with probability at least 1−∆n − δn.

Combining these two results yields that P (Â2 = A∗2|Â = A∗) ≥ 1 −

2∆n − 2δn, or equivalently, P
(
Â2 6= A∗2|Â = A∗

)
≤ 2∆n + 2δn → 0. The

desired sparsistency then follows immediately. �

S1.1 Verification of theoretical examples

The following two additional assumptions are made to establish the spar-

sistency.

Assumption S1: There exist some positive constant τ1 such that the

smallest eigenvalue of E(x xT ), λmin(E(x xT )) = O(n−τ1).

Assumption S2: There exist some positive constants s1 and ξ2 > 1/3

such that min
l∈A∗
|β∗l | > s1p

1/6
n n−

1−2τ1
6 (log n)ξ2 .

Assumption S1 implies that E(x xT ) is invertible, and that Assumption

1 in the main text is satisfied for the scaled linear kernel with r = 1.

Assumption 2 in the main text is also satisfied due to the fact that ‖x̃‖2 =

p−1n xTx belongs to a compact set X . A similar assumption is made in

Shao and Deng [1], assuming the decay order of the smallest eigenvalue of

n−1 XT X. Assumption S2 is similar to Assumption 3 in the main text, and

requires the true regression coefficients contains sufficient information about
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the truly informative variables in the linear model. Similar assumptions are

also assumed in Shao and Deng [1] and Wang and Leng [4].

Proof of Corollary 1: The estimation consistency for the linear case is

a direct application of Theorem 1 in the main text for the scaled linear

kernel K(x,u) = xTu/pn, and we just need to verify the assumptions of

Theorem 1 in the main text . In fact, Assumption S1 implies that E(x xT ) is

invertible, and thus Assumption 1 in the main text is satisfied for the scaled

linear kernel with r = 1. Assumption 2 in the main text is also satisfied

due to the fact that supx∈X ‖Kx‖K = p
−1/2
n ‖x‖ belongs to a compact set

X ⊂ Rpn . Furthermore,

‖L−1K f ∗‖2 = ‖(E x̃x̃T )−1β∗‖2 = (β∗T (E x xT/pn)−1β∗)1/2

≤ p1/2n λmin(E(x xT ))−1/2‖β∗‖ = O(p1/2n nτ1/2),

where ‖β∗‖ is a bounded quantity. Then, following from Theorem 1 in

the main text, let λn = O(p
1/3
n n−(1+τ1)/3(log n)2/3), for any δn ≥ 4(σ2 +

‖β∗‖22)(log n)−2, there exists some positive constant c3 such that, with prob-

ability at least 1− δn, there holds

‖β̂ − β∗‖ ≤ c3 log
( 4

δn

)
p1/6n n−

1−2τ1
6 (log n)1/3. (S.5)
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To establish the selection consistency, note that A∗ = {l : β∗l 6= 0}

and Âvn = {l : |β̂l| > vn}. Clearly, (S.5) directly implies that for any

l = 1, ..., pn, with probability at least 1− δn, there holds

|β̂l − β∗l | ≤ 2c3 log
4

δn
p1/6n n−

1−2τ1
6 (log n)1/3.

Therefore, following the proof of Theorem 2 in the main text and let vn =

s1
2
p
1/6
n n−

1−2τ1
6 (log n)ξ2 , we have P (Âvn = A∗)→ 1. �

Additional assumptions are made to establish the sparsistency for the

proposed method with quadratic kernel.

Assumption S3: There exists a positive constant τ2 such that the smallest

eigenvalue of E(x̄x̄T ), λmin(E(x̄x̄T )) = O(n−τ2).

Assumption S4: There exist some positive constants s2 and ξ3 > 1/3

such that min
l∈A∗
|β∗l |+

∑pn
k=1 |γ∗lk| > s2p

1/3
n n−

1−2τ2
6 (log n)ξ3 .

Assumptions S3 and S4 can be regarded as an extension of Assumptions

S1 and S2 by requiring E(x̄x̄T ) is invertible, and that the true regression

coefficients have sufficient information in the quadratic model.
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