Supplementary materials for 'Efficient kernel-based variable selection with sparsistency,

Xin He^{\dagger}, Junhui Wang ${ }^{\ddagger}$ and Shaogao Lv^{\S}
\dagger Shanghai University of Finance and Economics
\ddagger City University of Hong Kong
§ Nanjing Audit University

S1. Technical proofs

To be self-contained, we first give a special case of Theorem 1 in Zhou [5] as a lemma on the smooth RKHS below, which plays an important role for the subsequent analysis. Its proof follows directly from that of Theorem 1 in Zhou [5] and thus is omitted here.

Lemma 1. Let $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be a Mercer kernel such that $K \in C^{4}(\mathcal{X} \times$ $\mathcal{X})$, where C^{4} is a class of functions whose fourth derivative is continuous. Then the following statements hold:
(a) For any $\mathbf{x} \in \mathcal{X}, \partial_{l} K_{\mathbf{x}}, \partial_{l k} K_{\mathbf{x}} \in \mathcal{H}_{K}$, for any $l, k=1, \ldots, p_{n}$.
(b) A derivative reproducing property holds true; that is, for any $f \in \mathcal{H}_{K}$,

$$
\partial_{l} f(\mathbf{x})=\left\langle f, \partial_{l} K_{\mathbf{x}}\right\rangle_{K}, \quad \text { and } \partial_{l k} f(\mathbf{x})=\left\langle f, \partial_{l k} K_{\mathbf{x}}\right\rangle_{K}
$$

Proposition 1. Suppose Assumption 2 in the main text is met. Let \widetilde{f} be the minimizer of $\mathcal{E}_{\lambda_{n}}(f)=E(y-f(\mathbf{x}))^{2}+\lambda_{n}\|f\|_{K}^{2}$ in \mathcal{H}_{K}. Then conditioning on the event $\left\{\mathcal{Z}^{n}: \max _{i=1, \ldots, n}\left|y_{i}\right| \leq M_{n}\right\}$ with $M_{n} \geq\left(\kappa_{1}^{2}\left\|f^{*}\right\|_{K}^{2}+\sigma^{2}\right)^{1 / 2}$, for any $\delta_{n} \in(0,1)$, with probability at least $1-\delta_{n}$, there holds

$$
\|\widehat{f}-\widetilde{f}\|_{K} \leq \frac{6 \kappa_{1} M_{n}}{\lambda_{n} n^{1 / 2}} \log \frac{2}{\delta_{n}}
$$

Proof of Proposition 1: Define the sample operators $S_{\mathbf{x}}: \mathcal{H}_{K} \rightarrow \mathcal{R}^{n}$ and $S_{\mathrm{x}}^{T}: \mathcal{R}^{n} \rightarrow \mathcal{R}$ as

$$
\mathcal{S}_{\mathbf{x}}(f)=\left(f\left(\mathbf{x}_{1}\right), \ldots, f\left(\mathbf{x}_{n}\right)\right)^{T} \text { and } \mathcal{S}_{\mathbf{x}}^{T} \mathbf{c}=\sum_{i=1}^{n} c_{i} K_{\mathbf{x}_{i}}
$$

Then solving (1) in the main text is equivalent to solve

$$
\widehat{f}=\underset{f \in \mathcal{H}_{K}}{\operatorname{argmin}} \frac{1}{n} \mathbf{y}^{T} \mathbf{y}-\frac{2}{n}\left\langle f, S_{\mathbf{x}}^{T} \mathbf{y}\right\rangle_{K}+\frac{1}{n}\left\langle f, \mathcal{S}_{\mathbf{x}}^{T} \mathcal{S}_{\mathbf{x}} f\right\rangle_{K}+\lambda_{n}\langle f, f\rangle_{K},
$$

where $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{T}$, and hence that

$$
\widehat{f}=\left(\frac{1}{n} \mathcal{S}_{\mathbf{x}}^{T} \mathcal{S}_{\mathbf{x}}+\lambda_{n} I\right)^{-1} \frac{1}{n} \mathcal{S}_{\mathbf{x}}^{T} y
$$

Similarly, the minimizer of $\mathcal{E}_{\lambda_{n}}(f)$ in \mathcal{H}_{K} must have the form

$$
\tilde{f}=\left(L_{K}+\lambda_{n} I\right)^{-1} L_{K} f^{*} .
$$

Therefore, we have

$$
\begin{aligned}
\widehat{f}-\widetilde{f} & =\left(\frac{1}{n} \mathcal{S}_{\mathbf{x}}^{T} \mathcal{S}_{\mathbf{x}}+\lambda_{n} I\right)^{-1}\left(\frac{1}{n} S_{\mathbf{x}}^{T} \mathbf{y}-\frac{1}{n} \mathcal{S}_{\mathbf{x}}^{T} \mathcal{S}_{\mathbf{x}} \tilde{f}-\lambda_{n} \widetilde{f}\right) \\
& =\left(\frac{1}{n} \mathcal{S}_{\mathbf{x}}^{T} \mathcal{S}_{\mathbf{x}}+\lambda_{n} I\right)^{-1}\left(\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\widetilde{f}\left(\mathbf{x}_{i}\right)\right) K_{\mathbf{x}_{i}}-L_{K}\left(f^{*}-\widetilde{f}\right)\right)
\end{aligned}
$$

and its RKHS-norm can be upper bounded as

$$
\|\widehat{f}-\widetilde{f}\|_{K} \leq \lambda_{n}^{-1} \| \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\widetilde{f}\left(\mathbf{x}_{i}\right) K_{\mathbf{x}_{i}}-L_{K}\left(f^{*}-\widetilde{f}\right) \|_{K}=\lambda_{n}^{-1} \Delta_{1} .\right.
$$

To bound Δ_{1}, denote $\xi_{i}=\left(y_{i}-\widetilde{f}\left(\mathbf{x}_{i}\right)\right) K_{\mathbf{x}_{i}}$, and it follows from Assump-
tion 2 in the main text and direct calculation that

$$
\begin{aligned}
& E \xi=L_{K}\left(f^{*}-\widetilde{f}\right), \quad\|\xi\|_{K} \leq \kappa_{1}\left(M_{n}+\|\widetilde{f}\|_{\infty}\right), \\
& E\left(\|\xi\|_{K}^{2}\right) \leq \kappa_{1}^{2} \int(y-\widetilde{f}(x))^{2} d \rho_{\mathbf{x}, y} .
\end{aligned}
$$

By Lemma 2 of Smale and Zhou [3] and Assumption 2 in the main text, with probability at least $1-\delta_{n}$, there holds

$$
\begin{aligned}
& \Delta_{1} \leq 2 n^{-1} \kappa_{1} \log \frac{2}{\delta_{n}}\left(M_{n}+\|\widetilde{f}\|_{\infty}\right)+ \\
& n^{-1 / 2} \kappa_{1}\left(2 \log \frac{2}{\delta_{n}}\right)^{1 / 2}\left(\int(y-\widetilde{f}(\mathbf{x}))^{2} d \rho_{\mathbf{x}, y}\right)^{1 / 2}
\end{aligned}
$$

For $\|\widetilde{f}\|_{\infty}$, by the definition of \widetilde{f}, we have

$$
\begin{equation*}
\left\|\widetilde{f}-f^{*}\right\|_{2}^{2}+\lambda_{n}\|\widetilde{f}\|_{K}^{2} \leq\left\|0-f^{*}\right\|_{2}^{2}+\lambda_{n}\|0\|_{K}^{2} \leq\left\|f^{*}\right\|_{2}^{2} \tag{S.1}
\end{equation*}
$$

where $\left\|f^{*}\right\|_{2}^{2}$ is a bounded quantity. Hence, there holds

$$
\begin{equation*}
\|\widetilde{f}\|_{\infty} \leq \kappa_{1}\|\widetilde{f}\|_{K} \leq \kappa_{1} \lambda_{n}^{-1 / 2}\left\|f^{*}\right\|_{2} \tag{S.2}
\end{equation*}
$$

For $\int(y-\widetilde{f}(\mathbf{x}))^{2} d \rho_{\mathbf{x}, y}$, note that

$$
\int(y-f(\mathbf{x}))^{2} d \rho_{\mathbf{x}, y}-\int\left(y-f^{*}(\mathbf{x})\right)^{2} d \rho_{\mathbf{x}, y}=\left\|f-f^{*}\right\|_{2}^{2}
$$

for any f. Substituting $f=0$ and $f=\tilde{f}$ yield that

$$
\begin{align*}
& \int\left(y-f^{*}(\mathbf{x})\right)^{2} d \rho_{\mathbf{x}, y}+\left\|f^{*}\right\|_{2}^{2}=\int y^{2} d \rho_{\mathbf{x}, y} \leq \kappa_{1}^{2}\left\|f^{*}\right\|_{K}^{2}+\sigma^{2} \leq M_{n}^{2} \tag{S.3}\\
& \int(y-\widetilde{f}(\mathbf{x}))^{2} d \rho_{\mathbf{x}, y}=\left\|\tilde{f}-f^{*}\right\|_{2}^{2}+\int\left(y-f^{*}(\mathbf{x})\right)^{2} d \rho_{\mathbf{x}, y} \leq 2 M_{n}^{2} \tag{S.4}
\end{align*}
$$

where the last inequality follows from (S.1) and (S.3).
Combing (S.2) and (S.4), we have with probability at least $1-\delta_{n}$ that

$$
\begin{aligned}
\Delta_{1} & \leq 2 n^{-1} \kappa_{1} \log \frac{2}{\delta_{n}} M_{n}\left(1+\kappa_{1} \lambda_{n}^{-1 / 2}\right)+2 n^{-1 / 2} \kappa_{1}\left(\log \frac{2}{\delta_{n}}\right)^{1 / 2} M_{n}^{2} \\
& \leq \frac{2 \kappa_{1} M_{n}}{n} \log \frac{2}{\delta_{n}}+\frac{2 \kappa_{1} M_{n}}{n^{1 / 2}} \log \frac{2}{\delta_{n}} \frac{\kappa_{1}}{\lambda_{n}^{1 / 2} n^{1 / 2}}+\frac{2 \kappa_{1} M_{n}}{n^{1 / 2}}\left(\log \frac{2}{\delta_{n}}\right)^{1 / 2} .
\end{aligned}
$$

Note that when $\frac{\kappa_{1}}{\lambda_{n}^{1 / 2} n^{1 / 2}} \leq\left(3 \log \frac{2}{\delta_{n}}\right)^{-1}$, the above upper bound simplifies to

$$
\|\widehat{f}-\widetilde{f}\|_{K} \leq \lambda_{n}^{-1} \Delta_{1} \leq \frac{6 \kappa_{1} M_{n}}{\lambda_{n} n^{1 / 2}} \log \frac{2}{\delta_{n}}
$$

When $\frac{\kappa_{1}}{\lambda_{n}^{1 / 2} n^{1 / 2}}>\left(3 \log \frac{2}{\delta_{n}}\right)^{-1}$, we have

$$
\|\widehat{f}-\widetilde{f}\|_{K} \leq\|\widehat{f}\|_{K}+\|\widetilde{f}\|_{K} \leq \frac{2 M_{n}}{\lambda_{n}^{1 / 2}} \leq \frac{6 \kappa_{1} M_{n}}{\lambda_{n} n^{1 / 2}} \log \frac{2}{\delta_{n}}
$$

where the second inequality follows from (S.2), (S.3) and the definition of \widehat{f} that $\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\widehat{f}\left(\mathbf{x}_{i}\right)\right)^{2}+\lambda_{n}\|\widehat{f}\|_{K}^{2} \leq \frac{1}{n} \sum_{i=1}^{n} y_{i}^{2} \leq M_{n}^{2}$. The desired inequality then follows immediately.

Proof of Theorem 3: For simplicity, denote

$$
\mathcal{C}_{3}=\left\{\mathcal{Z}^{n}: \max _{l, k \in \widehat{\mathcal{A}}}\left|\left\|\widehat{g}_{l k}\right\|_{n}^{2}-\left\|g_{l k}^{*}\right\|_{2}^{2}\right|>b_{n, 2} \log \left(\frac{8 p_{0}^{2}}{\delta_{n}}\right) n^{-\frac{(2 r-1)}{2(2 r+1)}}\right\}
$$

Note that $P\left(\mathcal{C}_{3}\right)$ can be decomposed as

$$
\begin{aligned}
P\left(\mathcal{C}_{3}\right) & =P\left(\mathcal{C}_{3} \cap\left\{\widehat{\mathcal{A}}=\mathcal{A}^{*}\right\}\right)+P\left(\mathcal{C}_{2} \cap\left\{\widehat{\mathcal{A}} \neq \mathcal{A}^{*}\right\}\right) \\
& \leq P\left(\widehat{\mathcal{A}} \neq \mathcal{A}^{*}\right)+P\left(\mathcal{C}_{3} \mid \widehat{\mathcal{A}}=\mathcal{A}^{*}\right) P\left(\widehat{\mathcal{A}}=\mathcal{A}^{*}\right)=\Delta_{n}+P_{3}\left(1-\Delta_{n}\right),
\end{aligned}
$$

where $\Delta_{n} \rightarrow 0$ according to Theorem 2 in the main text, and P_{3} can be bounded as follows.

To bound P_{3}, we first introduce some additional notations. Denote the
operators for the second-order gradients as

$$
D_{l k}^{*} D_{l k} f=\int \partial_{l k}^{2} K_{\mathbf{x}} g_{l k}(\mathbf{x}) d \rho_{\mathbf{x}} \quad \text { and } \quad \widehat{D}_{l k}^{*} \widehat{D}_{l k} f=\frac{1}{n} \sum_{i=1}^{n} \partial_{l k}^{2} K_{\mathbf{x}_{i}} \widehat{g}_{l k}\left(\mathbf{x}_{i}\right)
$$

where $\partial_{l k}^{2} K_{\mathbf{x}}=\frac{\partial^{2} K(\mathbf{x}, \cdot)}{\partial x^{l} \partial x^{k}}$. Hence, for any $l, k \in \mathcal{A}^{*}$, we have

$$
\begin{aligned}
& \left|\left\|\widehat{g}_{l k}\right\|_{n}^{2}-\left\|g_{l k}^{*}\right\|_{2}^{2}\right| \\
& =\left|\frac{1}{n} \sum_{i=1}^{n}\left(\widehat{g}_{l k}\left(\mathbf{x}_{i}\right)\right)^{2}-\int\left(g_{l k}^{*}(\mathbf{x})\right)^{2} d \rho_{\mathbf{x}}\right| \\
& =\left|\frac{1}{n} \sum_{i=1}^{n} \widehat{g}_{l k}\left(\mathbf{x}_{i}\right)\left\langle\widehat{f}, \partial_{l k}^{2} K_{\mathbf{x}_{i}}\right\rangle_{K}-\int g_{l k}^{*}(\mathbf{x})\left\langle f^{*}, \partial_{l k}^{2} K_{\mathbf{x}}\right\rangle_{K} d \rho_{\mathbf{x}}\right| \\
& =\left|\left\langle\widehat{f}, \widehat{D}_{l k}^{*} \widehat{D}_{l k} \widehat{f}\right\rangle_{K}-\left\langle f^{*}, D_{l k}^{*} D_{l k} f^{*}\right\rangle_{K}\right| \\
& =\mid\left\langle\widehat{f}-f^{*}, \widehat{D}_{l k}^{*} \widehat{D}_{l k}\left(\widehat{f}-f^{*}\right)\right\rangle_{K}+2\left\langle f^{*}, \widehat{D}_{l k}^{*} \widehat{D}_{l k}\left(\widehat{f}-f^{*}\right)\right\rangle_{K}+ \\
& \quad\left\langle f^{*},\left(\widehat{D}_{l k}^{*} \widehat{D}_{l k}-D_{l k}^{*} I_{l k}\right) f^{*}\right\rangle_{K} \mid \\
& \leq \kappa_{3}^{2}\left\|\widehat{f}-f^{*}\right\|_{K}^{2}+2 \kappa_{3}^{2}\left\|f^{*}\right\|_{K}\left\|\widehat{f}-f^{*}\right\|_{K}+\left\|f^{*}\right\|_{K}^{2}\left\|\widehat{D}_{l k}^{*} \widehat{D}_{l k}-D_{l k}^{*} D_{l k}\right\|_{H S},
\end{aligned}
$$

where the last inequality follows from the Cauthy-Schwartz inequality.
Note that $\left\|f^{*}\right\|_{K}$ is bounded, and $D_{l k}$ and $\widehat{D}_{l k}$ are Hilbert-Schmidt operators on \mathcal{H}_{K} by Assumption 5 in the main text and a slightly modified proof of Proposition 6 in Vito et al. [?]. It then follows from Rosasco et al. [?] that $\max _{l, k \in \mathcal{A}^{*}}\left\|\widehat{D}_{l k}^{*} \widehat{D}_{l k}\right\|_{H S} \leq \kappa_{3}^{2}$. Hence, conditional on $\widehat{\mathcal{A}}=\mathcal{A}^{*}$, we
have

$$
\begin{aligned}
& \max _{l, k \in \mathcal{A}^{*}}\left|\left\|\widehat{g}_{l k}\right\|_{n}^{2}-\left\|g_{l k}^{*}\right\|_{2}^{2}\right| \\
\leq & s_{3}\left(\left\|\widehat{f}-f^{*}\right\|_{K}^{2}+2\left\|\widehat{f}-f^{*}\right\|_{K}+\max _{l, k \in \mathcal{A}^{*}}\left\|\widehat{D}_{l k}^{*} \widehat{D}_{l k}-D_{l k}^{*} D_{l k}\right\|_{H S}\right) \\
\leq & s_{3}\left(3\left\|\widehat{f}-f^{*}\right\|_{K}+\max _{l, k \in \mathcal{A}^{*}}\left\|\widehat{D}_{l k}^{*} \widehat{D}_{l k}-D_{l k}^{*} D_{l k}\right\|_{H S}\right),
\end{aligned}
$$

where $s_{3}=\max \left\{\kappa_{3}^{2},\left\|f^{*}\right\|_{K}^{2}, \kappa_{3}^{2}\left\|f^{*}\right\|_{K}\right\}$, and the second inequality holds when $\left\|\widehat{f}-f^{*}\right\|_{K}^{2}$ is sufficiently small. Here, by Theorem 1 in the main text, with probability at least $1-\delta_{n} / 2$, we have $\left\|\widehat{f}-f^{*}\right\|_{K}$ is bounded. Moreover, for any $\epsilon_{n} \in(0,1)$ and $l, k \in \mathcal{A}^{*}$, by the concentration inequalities in $H S(K)$ on \mathcal{H}_{K} [?], we have

$$
P\left(\left\|\widehat{D}_{l k}^{*} \widehat{D}_{l k}-D_{l k}^{*} D_{l k}\right\|_{H S} \geq \epsilon_{n}\right) \leq 2 \exp \left(-\frac{n \epsilon_{n}^{2}}{8 \kappa_{3}^{4}}\right)
$$

Let $\epsilon_{n}=\left(\frac{8 \kappa_{3}^{4}}{n} \log \frac{4}{\delta_{n}}\right)^{1 / 2}$, then with probability at least $1-\delta_{n} / 2$, there holds

$$
\max _{l, k \in \mathcal{A}^{*}}\left\|\widehat{D}_{l k}^{*} \widehat{D}_{l k}-D_{l k}^{*} D_{l k}\right\|_{H S} \leq\left(\frac{8 \kappa_{3}^{4}}{n} \log \frac{4 p_{0}^{2}}{\delta_{n}}\right)^{1 / 2}
$$

Therefore, conditional on $\widehat{\mathcal{A}}=\mathcal{A}^{*}$, we have with probability at least
$1-\delta_{n}$, there holds

$$
\begin{aligned}
& \max _{l, k \in \widehat{\mathcal{A}}}\left|\left\|\widehat{g}_{l k}\right\|_{n}^{2}-\left\|g_{l k}^{*}\right\|_{2}^{2}\right| \\
& \leq s_{3}\left(3 \log \frac{8}{\delta_{n}}\left(\frac{3 \kappa_{1}}{n^{1 / 2} \lambda_{n}}\left(\kappa_{1}\left\|f^{*}\right\|_{K}+q^{-1}\left(\log \frac{4 c_{1} n}{\delta_{n}}\right)\right)+\lambda_{n}^{r-1 / 2}\left\|L_{K}^{-r} f^{*}\right\|_{2}\right)+\left(\frac{8 \kappa_{3}^{4}}{n} \log \frac{4 p_{0}^{2}}{\delta_{n}}\right)^{1 / 2}\right) .
\end{aligned}
$$

Furthermore, with $\lambda_{n}=n^{-\frac{1}{2 r+1}}$, the upper bound reduces to

$$
\max _{l, k \in \widehat{\mathcal{A}}}\left|\left\|\widehat{g}_{l k}\right\|_{n}^{2}-\left\|g_{l k}^{*}\right\|_{2}^{2}\right| \leq b_{n, 2}\left(\log \frac{8 p_{0}^{2}}{\delta_{n}}\right) n^{-\frac{(2 r-1)}{2(2 r+1)}},
$$

where $b_{n, 2}$ is given in Theorem 3 of the main text, and hence that $P_{3} \leq \delta_{n}$.
Therefore, $P\left(\mathcal{C}_{3}\right) \leq \Delta_{n}+\delta_{n}\left(1-\Delta_{n}\right) \leq \Delta_{n}+\delta_{n}$, and the desired result follows immediately.

Proof of Theorem 4: Note that

$$
\begin{aligned}
& P\left(\widehat{\mathcal{A}}_{2}=\mathcal{A}_{2}^{*}, \widehat{\mathcal{A}}_{1}=\mathcal{A}_{1}^{*}\right) \\
& =P\left(\widehat{\mathcal{A}}_{2}=\mathcal{A}_{2}^{*}, \widehat{\mathcal{A}}_{1}=\mathcal{A}_{1}^{*}, \widehat{\mathcal{A}}=\mathcal{A}^{*}\right) \\
& =P\left(\widehat{\mathcal{A}}_{2}=\mathcal{A}_{2}^{*}, \widehat{\mathcal{A}}_{1}=\mathcal{A}_{1}^{*} \mid \widehat{\mathcal{A}}=\mathcal{A}^{*}\right) P\left(\widehat{\mathcal{A}}=\mathcal{A}^{*}\right) \\
& \geq\left(1-P\left(\widehat{\mathcal{A}}_{2} \neq \mathcal{A}_{2}^{*} \mid \widehat{\mathcal{A}}=\mathcal{A}^{*}\right)-P\left(\widehat{\mathcal{A}}_{1} \neq \mathcal{A}_{1}^{*} \mid \widehat{\mathcal{A}}=\mathcal{A}^{*}\right)\right) P\left(\widehat{\mathcal{A}}=\mathcal{A}^{*}\right) \\
& =\left(1-2 P\left(\widehat{\mathcal{A}}_{2} \neq \mathcal{A}_{2}^{*} \mid \widehat{\mathcal{A}}=\mathcal{A}^{*}\right)\right)\left(1-\Delta_{n}\right),
\end{aligned}
$$

where the last equality follows from the fact that $\widehat{A}_{1} \cap \widehat{\mathcal{A}}_{2}=A_{1}^{*} \cap \mathcal{A}_{2}^{*}=\emptyset$, and then $\left\{\widehat{\mathcal{A}}_{1} \neq \mathcal{A}_{1}^{*}\right\}=\left\{\widehat{\mathcal{A}}_{2} \neq \mathcal{A}_{2}^{*}\right\}$ given $\widehat{\mathcal{A}}=\mathcal{A}^{*}$. By Theorem 2 in the main text, $\Delta_{n} \rightarrow 0$ as n diverges. Therefore, it suffices to show $P\left(\widehat{\mathcal{A}}_{2} \neq\right.$ $\left.\mathcal{A}_{2}^{*} \mid \widehat{\mathcal{A}}=\mathcal{A}^{*}\right) \rightarrow 0$ as n diverges.

We first show that $\mathcal{A}_{2}^{*} \subset \widehat{\mathcal{A}}_{2}$ in probability conditional on $\widehat{\mathcal{A}}=\mathcal{A}^{*}$. If not, suppose that there exists some $l^{\prime} \in \mathcal{A}_{2}^{*}$, which directly implies that $\left\|g_{l^{\prime} k}^{*}\right\|_{2}^{2}>b_{n, 2} \max \left\{\kappa_{1}\left\|f^{*}\right\|_{K}, q^{-1}\left(\log \frac{4 c_{1} n}{\delta_{n}}\right)\right\} n^{-\xi_{4}} \log p_{0}$, for some $k \in \mathcal{A}^{*}$ but $l^{\prime} \notin \widehat{\mathcal{A}}_{2}$, and thus $\left\|\widehat{g}_{l^{\prime} k}\right\|_{n}^{2} \leq v_{n}^{i n t}$. By Assumption 6 in the main text, we have with probability at least $1-\Delta_{n}-\delta_{n}$ that
$\left|\left\|\widehat{g}_{l^{\prime} k}\right\|_{n}^{2}-\left\|g_{l^{\prime} k}^{*}\right\|_{2}^{2}\right| \geq\left\|g_{l^{\prime} k}^{*}\right\|_{2}^{2}-\left\|\widehat{g}_{l^{\prime} k}\right\|_{n}^{2}>\frac{b_{n, 2}}{2} \max \left\{\kappa_{1}\left\|f^{*}\right\|_{K}, q^{-1}\left(\log \frac{4 c_{1} n}{\delta_{n}}\right)\right\} n^{-\xi_{4}} \log p_{0}$,
which contradicts with Theorem 3 in the main text. This implies that conditional on $\widehat{\mathcal{A}}=\mathcal{A}^{*}, \mathcal{A}_{2}^{*} \subset \widehat{\mathcal{A}}_{2}$ with probability at least $1-\Delta_{n}-\delta_{n}$.

Next, we show that $\widehat{\mathcal{A}}_{2} \subset \mathcal{A}_{2}^{*}$ in probability conditional on $\widehat{\mathcal{A}}=\mathcal{A}^{*}$. If not, suppose there exists some $l^{\prime} \in \widehat{\mathcal{A}}_{2}$ but $l^{\prime} \notin \mathcal{A}_{2}^{*}$, which implies $\left\|\widehat{g}_{l^{\prime} k}\right\|_{n}^{2}>$ $v_{n}^{\text {int }}$ for some $k \in \mathcal{A}^{*}$ but $\left\|g_{l^{\prime} k}^{*}\right\|_{2}^{2}=0$. Then with probability at least $1-\Delta_{n}-\delta_{n}$, there holds
$\left|\left\|\widehat{g}_{l^{\prime} k}\right\|_{n}^{2}-\left\|g_{l^{\prime} k}^{*}\right\|_{2}^{2}\right|=\left\|\widehat{g}_{l^{\prime} k}\right\|_{n}^{2}>\frac{b_{n, 2}}{2} \max \left\{\kappa_{1}\left\|f^{*}\right\|_{K}, q^{-1}\left(\log \frac{4 c_{1} n}{\delta_{n}}\right)\right\} n^{-\xi_{4}} \log p_{0}$,
which contradicts with Theorem 3 in the main text again. Therefore, conditional on $\widehat{\mathcal{A}}=\mathcal{A}^{*}, \widehat{\mathcal{A}}_{2} \subset \mathcal{A}_{2}^{*}$ with probability at least $1-\Delta_{n}-\delta_{n}$.

Combining these two results yields that $P\left(\widehat{\mathcal{A}}_{2}=\mathcal{A}_{2}^{*} \mid \widehat{\mathcal{A}}=\mathcal{A}^{*}\right) \geq 1-$ $2 \Delta_{n}-2 \delta_{n}$, or equivalently, $P\left(\widehat{\mathcal{A}}_{2} \neq \mathcal{A}_{2}^{*} \mid \widehat{\mathcal{A}}=\mathcal{A}^{*}\right) \leq 2 \Delta_{n}+2 \delta_{n} \rightarrow 0$. The desired sparsistency then follows immediately.

S1.1 Verification of theoretical examples

The following two additional assumptions are made to establish the sparsistency.

Assumption S1: There exist some positive constant τ_{1} such that the smallest eigenvalue of $\mathrm{E}\left(\mathbf{x} \mathbf{x}^{T}\right), \lambda_{\text {min }}\left(\mathrm{E}\left(\mathbf{x} \mathbf{x}^{T}\right)\right)=O\left(n^{-\tau_{1}}\right)$.

Assumption S2: There exist some positive constants s_{1} and $\xi_{2}>1 / 3$ such that $\min _{l \in \mathcal{A}^{*}}\left|\boldsymbol{\beta}_{l}^{*}\right|>s_{1} p_{n}^{1 / 6} n^{-\frac{1-2 \tau_{1}}{6}}(\log n)^{\xi_{2}}$.

Assumption S1 implies that $\mathrm{E}\left(\mathbf{x} \mathbf{x}^{T}\right)$ is invertible, and that Assumption 1 in the main text is satisfied for the scaled linear kernel with $r=1$. Assumption 2 in the main text is also satisfied due to the fact that $\|\widetilde{\mathbf{x}}\|^{2}=$ $p_{n}^{-1} \mathbf{x}^{T} \mathbf{x}$ belongs to a compact set \mathcal{X}. A similar assumption is made in Shao and Deng [1], assuming the decay order of the smallest eigenvalue of $n^{-1} \mathbf{X}^{T} \mathbf{X}$. Assumption S 2 is similar to Assumption 3 in the main text, and requires the true regression coefficients contains sufficient information about
the truly informative variables in the linear model. Similar assumptions are also assumed in Shao and Deng [1] and Wang and Leng [4].

Proof of Corollary 1: The estimation consistency for the linear case is a direct application of Theorem 1 in the main text for the scaled linear kernel $K(\mathbf{x}, \mathbf{u})=\mathbf{x}^{T} \mathbf{u} / p_{n}$, and we just need to verify the assumptions of Theorem 1 in the main text. In fact, Assumption S1 implies that $\mathrm{E}\left(\mathbf{x ~}^{T}\right)$ is invertible, and thus Assumption 1 in the main text is satisfied for the scaled linear kernel with $r=1$. Assumption 2 in the main text is also satisfied due to the fact that $\sup _{\mathbf{x} \in \mathcal{X}}\left\|K_{\mathbf{x}}\right\|_{K}=p_{n}^{-1 / 2}\|\mathbf{x}\|$ belongs to a compact set $\mathcal{X} \subset \mathcal{R}^{p_{n}}$. Furthermore,

$$
\begin{aligned}
\left\|L_{K}^{-1} f^{*}\right\|_{2} & =\left\|\left(\mathbf{E} \widetilde{\mathbf{x}} \widetilde{\mathbf{x}}^{T}\right)^{-1} \boldsymbol{\beta}^{*}\right\|_{2}=\left(\boldsymbol{\beta}^{* T}\left(\mathrm{E} \mathbf{x} \mathbf{x}^{T} / p_{n}\right)^{-1} \boldsymbol{\beta}^{*}\right)^{1 / 2} \\
& \leq p_{n}^{1 / 2} \lambda_{\min }\left(\mathrm{E}\left(\mathbf{x} \mathbf{x}^{T}\right)\right)^{-1 / 2}\left\|\boldsymbol{\beta}^{*}\right\|=O\left(p_{n}^{1 / 2} n^{\tau_{1} / 2}\right)
\end{aligned}
$$

where $\left\|\boldsymbol{\beta}^{*}\right\|$ is a bounded quantity. Then, following from Theorem 1 in the main text, let $\lambda_{n}=O\left(p_{n}^{1 / 3} n^{-\left(1+\tau_{1}\right) / 3}(\log n)^{2 / 3}\right)$, for any $\delta_{n} \geq 4\left(\sigma^{2}+\right.$ $\left.\left\|\boldsymbol{\beta}^{*}\right\|_{2}^{2}\right)(\log n)^{-2}$, there exists some positive constant c_{3} such that, with probability at least $1-\delta_{n}$, there holds

$$
\begin{equation*}
\left\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right\| \leq c_{3} \log \left(\frac{4}{\delta_{n}}\right) p_{n}^{1 / 6} n^{-\frac{1-2 \tau_{1}}{6}}(\log n)^{1 / 3} . \tag{S.5}
\end{equation*}
$$

To establish the selection consistency, note that $\mathcal{A}^{*}=\left\{l: \beta_{l}^{*} \neq 0\right\}$ and $\widehat{\mathcal{A}}_{v_{n}}=\left\{l:\left|\widehat{\beta}_{l}\right|>v_{n}\right\}$. Clearly, (S.5) directly implies that for any $l=1, \ldots, p_{n}$, with probability at least $1-\delta_{n}$, there holds

$$
\left|\widehat{\beta}_{l}-\beta_{l}^{*}\right| \leq 2 c_{3} \log \frac{4}{\delta_{n}} p_{n}^{1 / 6} n^{-\frac{1-2 \tau_{1}}{6}}(\log n)^{1 / 3} .
$$

Therefore, following the proof of Theorem 2 in the main text and let $v_{n}=$ $\frac{s_{1}}{2} p_{n}^{1 / 6} n^{-\frac{1-2 \tau_{1}}{6}}(\log n)^{\xi_{2}}$, we have $P\left(\widehat{\mathcal{A}}_{v_{n}}=A^{*}\right) \rightarrow 1$.

Additional assumptions are made to establish the sparsistency for the proposed method with quadratic kernel.

Assumption S3: There exists a positive constant τ_{2} such that the smallest eigenvalue of $\mathrm{E}\left(\overline{\mathbf{x}} \overline{\mathbf{x}}^{T}\right), \lambda_{\text {min }}\left(\mathrm{E}\left(\overline{\mathbf{x}} \overline{\mathbf{x}}^{T}\right)\right)=O\left(n^{-\tau_{2}}\right)$.

Assumption S4: There exist some positive constants s_{2} and $\xi_{3}>1 / 3$ such that $\min _{l \in \mathcal{A}^{*}}\left|\beta_{l}^{*}\right|+\sum_{k=1}^{p_{n}}\left|\gamma_{l k}^{*}\right|>s_{2} p_{n}^{1 / 3} n^{-\frac{1-2 \tau_{2}}{6}}(\log n)^{\xi_{3}}$.

Assumptions S3 and S4 can be regarded as an extension of Assumptions S1 and S2 by requiring $\mathrm{E}\left(\overline{\mathbf{x}} \overline{\mathbf{x}}^{T}\right)$ is invertible, and that the true regression coefficients have sufficient information in the quadratic model.

References

[1] Shao, J. and Deng, X. (2013). Estimation in high-dimensional linear models with deterministic design matrices. Annals of Statistics, 40, 1821-1831.

REFERENCES

[2] She, Y. and Wang, Z. and Jiang, H. (2018). Group regularized estimation under structural hierarchy. Journal of the American Statistical Association, 113, 445-454.
[3] Smale, S. and Zhou, D. (2005). Shannon sampling II: connections to learning theory. Applied and Computational Harmonic Analysis, 19, 285-302.
[4] Wang, X. and Leng, C. (2016). High dimensional ordinary least squares projection for screening variables. Journal of the Royal Statistical Society, Series B, 78, 589-611.
[5] Zhou, D. (2007). Derivative reproducing properties for kernel methods in learning theory. Journal of Computational and Applied Mathematics, 220, 456-463.

[^0]
[^0]: School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai

 200433, China

 E-mail: he.xin17@mail.shufe.edu.cn

 School of Data Science, City University of Hong Kong, Hong Kong, China

 E-mail: j.h.wang@cityu.edu.hk

 School of Statistics and Mathematics, Nanjing Audit University, China

 E-mail: lvsg716@swufe.edu.cn

