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S1 Proofs of Theorem 1 and Lemma 2

For reference, we restate the theorems and formulas in the main article that

are used in the proof.

Theorem 1. Assume the m-component model under Conditions (A1)–(A4)

and let n ą m ě 0 be fixed and d Ñ 8. Then, the first m sample and

prediction scores are systematically biased:

xW1 “ SRTW1 `Oppd
´1{4

q, (S1.1)

xW˚ “ S´1RTW˚ `Oppd
´1{2

q, (S1.2)

where R “ rv1pWq, . . . , vmpWqs, S “ diagpρ1, . . . , ρmq, and ρk “
a

1` τ 2{λkpWq.
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Moreover, for k ą m,

ŵkj “ Oppd
1{2
q, j “ 1, . . . , n, (S1.3)

ŵk˚ “ Opp1q. (S1.4)

Lemma 1. [Theorem S2.1, Jung et al. (2018)] Assume the conditions of

Theorem 1. (i) the sample principal component variances converge in prob-

ability as dÑ 8;

d´1nλ̂i “

$

’

’

&

’

’

%

λipWq ` τ 2 `Oppd
´1{2q, i “ 1, . . . ,m;

τ 2 `Oppd
´1{2q, i “ m` 1, . . . , n.

(ii) The inner product between sample and population PC directions con-

verges in probability as dÑ 8;

ûT

i uj “

$

’

’

&

’

’

%

ρ´1i vijpWq `Oppd
´1{2q, i, j “ 1, . . . ,m;

Oppd
´1{2q, otherwise.

Lemma 2. Assume the m-component model with (A1)–(A4) and let n ą

m ě 0 be fixed. For k “ 1, . . . , n, Epεk˚|W1q “ 0, and

lim
dÑ8

Varpεk˚ | W1q “ υ2O{pλkpWq ` τ 2q, for k ď m; (S1.5)

lim
dÑ8

1

n´m

n
ÿ

k“m`1

Varpεk˚ | W1q “ υ2O{τ
2, (S1.6)

where υ2O “ limdÑ8 d
´1

řd
i“m`1 λ

2
i . As dÑ 8, εk˚ “ Opp1q.

Proof of Lemma 2. Fix k “ 1, . . . , n. Let Yi “
?
λizi˚pki, where pki “ ûT

kui.

Then εk˚ “
řd
i“m`1 Yi. Since zi˚ and pki are independent, for each i ą m,
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EpYi | W1q “ 0 and

Varp
d
ÿ

i“m`1

Yi | W1q “ Ep
d
ÿ

i“m`1

λiz
2
i˚p

2
ki | W1q “

d
ÿ

i“m`1

λiEpp
2
ki | W1q,

where we use the fact that Epzi˚q “ 0, Epz2i˚q “ 1.

For k ď m, if the following claim,

Epp2ki | W1q “ d´1
λi

pλkpWq ` τ 2q
`Opd´3{2q, (S1.7)

is true for any i ą m, then it is easy to check (S1.5).

To show (S1.7), we first post-multiply v̂i to

X “
?
n

n
ÿ

i“1

b

λ̂iûiv̂
T

i , (S1.8)

to obtain ûi “ pnλ̂iq
´1{2X v̂i. By writing zT

i “ λ
´1{2
i wT

i “ pzi1, . . . , zinq, we

have

pki “ uT

i ûk

“ pnλ̂kq
´1{2uT

i X v̂k

“ pnλ̂kq
´1{2λ

1{2
i zT

i v̂k.

Thus,

p2ki “ d´1
λi

nd´1λ̂k
pzT

i v̂kq
2

“ d´1
λi

λkpWq ` τ 2 `Oppd´1{2q
pzT

i v̂kq
2

“ d´1
λi

λkpWq ` τ 2
pzT

i v̂kq
2
`Oppd

´3{2
q. (S1.9)
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In (S1.9), we used Lemma 1(i) and that p1` xq´1 “ 1`Opxq, and the fact

that |zT
i v̂k|

2 ď }zi}
2
2 }v̂k}

2
2 “ }zi}

2
2 “ Opp1q.

Write pzT
i v̂kq

2 “ rzT
i vkpW

T
1 W1q`z

T
i pv̂k´vkpW

T
1 W1qqs

2. Note that W T
1 W1

is an nˆn matrix, and is different from the mˆm matrix W “ W1W
T
1 . It

can be shown that the right singular vector v̂k converges in probability to

vkpW
T
1 W1q (see, e.g., Lemma S1.1 of Jung et al., 2018): For k “ 1, . . . ,m,

v̂k “ vkpW
T

1 W1q `Oppd
´1{2

q. (S1.10)

Thus we get |zT
i pv̂k ´ vkpW

T
1 W1qq| ď }zi}2 }v̂k ´ vkpW

T
1 W1qq}2 “ Oppd

´1{2q.

Therefore,

EppzT

i v̂kq
2
| W1q “ EppzT

i vkpW
T

1 W1qq
2
| W1q `Opd

´1{2
q

“

n
ÿ

`“1

Epz2i`qv
2
k`pW

T

1 W1q `Opd
´1{2

q

“ 1`Opd´1{2q. (S1.11)

Combing (S1.9) and (S1.11), we get (S1.7) for k ď m as desired.

To show (S1.6), note that W “ W1W
T
1 is of rank m. For k ą m, with

λkpWq “ 0, (S1.9) holds. Thus,

1

n´m

n
ÿ

k“m`1

Varpεk˚ | W1q “
1

n´m

n
ÿ

k“m`1

d
ÿ

i“m`1

λiEpp
2
ki | W1q (S1.12)

“
1

dpn´mq

d
ÿ

i“m`1

λ2i {τ
2

n
ÿ

k“m`1

EppzT

i v̂kq
2
| W1q.
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To simplify the expression EppzT
i v̂kq

2 | W1q, one should not naively try

(S1.11). This is because that (S1.11) does not apply for k ą m due to

the non-unique kth eigenvector vkpW
T
1 W1q of the rank-m matrix W T

1 W1.

Instead, from

n
ÿ

k“m`1

pzT

i v̂kq
2
“ zT

i zi ´
m
ÿ

k“1

pzT

i v̂kq
2,

and (S1.11) for k ď m, we get

n
ÿ

k“m`1

EppzT

i v̂kq
2
| W1q “ n´m`Opd´1{2q. (S1.13)

Taking the limit dÑ 8 to (S1.12), combined with (S1.13), leads to (S1.6).

The last statement, εk˚ “ Opp1q, easily follows from the fact limdÑ8 Varpεk˚q ď

υ2O{τ
2pn´mq ă 8, which is obtained by (S1.5) and (S1.6).

We are now ready to show Theorem 1. Note that the results on the

sample scores, (S1.1) and (S1.3), can be easily shown, using the decompo-

sition d´1{2ŵk “
a

d´1nλ̂kv̂k, together with Lemma 1(i) and (S1.10). We

show (S1.2) and (S1.4).

Proof of Theorem 1. Proof of (S1.2). Recall the decomposition

ŵk˚ “ ûT

kX˚ “
m
ÿ

i“1

wi˚û
T

kui ` εk˚, (S1.14)

where εk˚ “
řd
i“m`1wi˚û

T
kui. Using the notation pki “ ûT

kui, we write ŵk˚ “
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ppk1, . . . , pkmqpw1˚, . . . , wm˚q
T ` εk˚. Putting all parts together, we have

xW˚ “ d´1{2pŵ1˚, . . . , ŵm˚q
T
“

¨

˚

˚

˚

˚

˚

˝

p11 ¨ ¨ ¨ p1m

...
. . .

...

pm1 ¨ ¨ ¨ pmm

˛

‹

‹

‹

‹

‹

‚

W˚ ` ε̃k˚,

where ε̃k˚ “ d´1{2pε1˚, . . . , εm˚q
T. By Lemma 2, as dÑ 8, ε̃k˚ “ Oppd

´1{2q.

Since pki “ ρ´1k vkipWq `Oppd
´1{2q, by Lemma 1(ii), we have

xW T

˚ “ S´1RTW T

˚ `Oppd
´1{2

q.

Proof of (S1.4). Using the decomposition (S1.14), and by the fact εk˚ “

Opp1q, from Lemma 2, it is enough to show
řm
i“1wi˚pki “ Opp1q. But, since

Lemma 1 implies d
1
2pki “ Opp1q for any pair of pk, iq such that k ą m, i ď m,

we have
řm
i“1wi˚pki “ σipd

1
2pk1, . . . , d

1
2pkmqpz1˚, . . . , zm˚q “ Opp1q,

S2 Proof of Theorem 2

Theorem 2. Let ζkj “ λkpWq{p
řm
`“1 v

2
`jpWqλ`pWqq and ζ̄kj “ σ2

k{p
řm
`“1 v

2
`jpWqσ2

` q.

Under the assumptions of Theorem 1, as dÑ 8, for k, j “ 1 . . . ,m,

(i) rpŵk, wjq Ñ vkjpWqζ1{2kj in probability ;

(ii) limdÑ8 Corrpŵk˚, wj˚ | W1q “ vkjpWqζ̄kj1{2.

Proof of Theorem 2. Proof of (i). Write the singular value decomposition
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of the mˆ n matrix of scaled scores W1 as

W1 “ Rdiagp
a

λ1pWq, . . . ,
a

λ1pWqqGT, (S2.1)

where G “ rg1, . . . , gms is the n ˆ m matrix consisting of right singular

vectors of W1. The left singular vector matrix R “ rv1pWq, . . . , vmpWqs is

exactly the matrix R appearing in Theorem 1. Since

W1 “

m
ÿ

`“1

a

λ`pWqv`pWqgT

` ,

the jth row of W1 is, for j ď m,

d´
1
2wT

j “

m
ÿ

`“1

a

λ`pWqv`jpWqgT

` .

For the scaled sample score d´1{2ŵk, k ď m, we obtain from Theorem 1

and (S2.1) that xW1 “ Sdiagp
a

λ1pWq, . . . ,
a

λ1pWqqGT`Oppd
´1{4q and its

kth row d´1{2ŵk “
a

λkpWq ` τ 2gk`Oppd
´1{4q. Since g`’s are orthonormal,

}d´
1
2 ŵk}2 “

a

λkpWq ` τ 2 `Oppd
´1{4

q,

and

d´1ŵT

kwj “ pd
´1{2ŵkq

T
pd´1{2wjq

“
a

λkpWq
a

λkpWq ` τ 2vkjpWq `Oppd
´1{4

q.

Since d´1wT
j wj “

řm
`“1 v

2
`jpWqλ`pWq, we have

rpŵk, wjq “
d´1ŵT

kwj
}d´1{2ŵk}2 ¨ }d´1{2wj}2

Ñ vkjpWqζ1{2kj
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in probability, as dÑ 8.

Proof of (ii). From Theorem 1, write

d´1{2ŵk˚ “ ρ´1k

m
ÿ

`“1

vk`pWqd´1{2w`˚ `Oppd
´1{2

q, (S2.2)

and note that Epwk˚q “ Epŵk˚q “ 0. Then for k “ 1, . . . ,m, we have

Varpd´1{2wk˚q “ d´1Epwk˚q
2
“ σ2

kEpzk˚q
2
“ σ2

k,

and, by (S2.2),

Varpd´1{2ŵk˚ | W1q “ ρ´2k

m
ÿ

`“1

pvk`pWqq2 σ2
` `Opd

´1{2
q.

The independence of w`˚ and wk˚ for k ‰ ` and (S2.2) give

Covpd´1{2ŵk˚, d
´1{2wj˚ | W1q “ Epd´1ŵk˚wj˚ | W1q

“ ρ´1k vkjpWqσ2
j `Opd

´1{2
q,

which in turn leads to

corrpŵk˚, wj˚ | W1q “
Covpd´1{2ŵk˚, d

´1{2wj˚ | W1q

pVarpd´1{2wj˚qVarpd´1{2ŵk˚ | W1qq
1{2

“ vkjpWq
σj

“
řm
`“1 pvk`pWqq

2 σ2
`

‰1{2
`Opd´1{2q.
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S3 Proof of Corollary 1

Corollary 1. Suppose the assumptions of Lemma 1 are satisfied. Let dÑ

8. For i “ 1, . . . ,m, conditional to W1, τ̃
2, λ̃ipWq and ρ̃i are consistent

estimators of τ 2, λipWq and ρi, respectively.

Proof of Corollary 1. Lemma 1 is used to show that τ̃ 2 and λ̃ipWq converge

in probability to τ 2 and λipWq as d Ñ 8, respectively. By continuous

mapping theorem, ρ̃i converges in probability to ρi.

S4 Complete Table 2
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ρ1

d n Theory Best Asymp. Jackknife LZW

5000 50 1.41 (0.07) 1.42 1.40 1.43 1.41

Spike model 10000 50 1.42 (0.06) 1.43 1.42 1.44 1.42

β “ 0.3 10000 100 1.23 (0.03) 1.23 1.23 1.24 1.23

20000 100 1.23 (0.02) 1.23 1.23 1.24 1.23

5000 50 1.42 (0.08) 1.45 1.41 1.45 1.40

Spike model 10000 50 1.43 (0.07) 1.45 1.43 1.46 1.42

β “ 0.5 10000 100 1.22 (0.02) 1.23 1.22 1.23 1.21

20000 100 1.23 (0.02) 1.23 1.23 1.24 1.22

5000 50 2.06 (0.06) 2.22 1.92 2.14 2.00

Mixture model 10000 50 2.09 (0.06) 2.17 1.98 2.14 2.02

a “ 0.15 10000 100 1.63 (0.02) 1.67 1.61 1.65 1.63

20000 100 1.64 (0.02) 1.66 1.62 1.66 1.63

ρ2

d n Theory Best Asymp. Jackknife LZW

5000 50 1.79 (0.11) 1.86 1.75 1.78 1.79

Spike model 10000 50 1.79 (0.11) 1.82 1.77 1.77 1.79

β “ 0.3 10000 100 1.43 (0.06) 1.44 1.43 1.42 1.43

20000 100 1.43 (0.05) 1.44 1.43 1.42 1.43

5000 50 1.79 (0.11) 1.99 1.72 1.81 1.71

Spike model 10000 50 1.80 (0.11) 1.88 1.76 1.79 1.74

β “ 0.5 10000 100 1.44 (0.05) 1.47 1.43 1.44 1.41

20000 100 1.42 (0.05) 1.44 1.42 1.41 1.40

5000 50 2.62 (0.21) 5.44 2.20 2.68 2.46

Mixture model 10000 50 2.68 (0.19) 3.20 2.35 2.68 2.50

a “ 0.15 10000 100 2.00 (0.09) 2.13 1.90 2.00 1.99

20000 100 1.99 (0.10) 2.05 1.93 1.97 1.97

Table 1: Simulation results from 100 repetitions. “Theory” is mean (standard deviation)

of ρi; “Best” is ρ̌i ; “Asymp.” is ρ̃i ; “Jackknife” is ρ̂
p1q

i ; “LZW” is from Lee et al. (2010).

Averages are shown for the latter four columns. The standard errors of the quantities in

estimation of ρi are at most 0.04.
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