Adjusting systematic bias in high dimensional principal component scores

Sungkyu Jung

Seoul National University

Supplementary Material

This supplementary material contains technical details and proofs, and a table summarizing simulation results.

S1 Proofs of Theorem 1 and Lemma 2

For reference, we restate the theorems and formulas in the main article that are used in the proof.

Theorem 1. Assume the m-component model under Conditions (A1)-(A4) and let $n>m \geqslant 0$ be fixed and $d \rightarrow \infty$. Then, the first m sample and prediction scores are systematically biased:

$$
\begin{align*}
& \widehat{W}_{1}=S R^{\mathrm{T}} W_{1}+O_{p}\left(d^{-1 / 4}\right), \tag{S1.1}\\
& \widehat{W}_{*}=S^{-1} R^{\mathrm{T}} W_{*}+O_{p}\left(d^{-1 / 2}\right), \tag{S1.2}
\end{align*}
$$

where $R=\left[v_{1}(\mathcal{W}), \ldots, v_{m}(\mathcal{W})\right], S=\operatorname{diag}\left(\rho_{1}, \ldots, \rho_{m}\right)$, and $\rho_{k}=\sqrt{1+\tau^{2} / \lambda_{k}(\mathcal{W})}$.

Moreover, for $k>m$,

$$
\begin{align*}
\hat{w}_{k j} & =O_{p}\left(d^{1 / 2}\right), \quad j=1, \ldots, n \tag{S1.3}\\
\hat{w}_{k *} & =O_{p}(1) \tag{S1.4}
\end{align*}
$$

Lemma 1. [Theorem S2.1, Jung et al. (2018)] Assume the conditions of Theorem 1. (i) the sample principal component variances converge in probability as $d \rightarrow \infty$;

$$
d^{-1} n \hat{\lambda}_{i}= \begin{cases}\lambda_{i}(\mathcal{W})+\tau^{2}+O_{p}\left(d^{-1 / 2}\right), & i=1, \ldots, m \\ \tau^{2}+O_{p}\left(d^{-1 / 2}\right), & i=m+1, \ldots, n\end{cases}
$$

(ii) The inner product between sample and population PC directions converges in probability as $d \rightarrow \infty$;

$$
\hat{u}_{i}^{\mathrm{T}} u_{j}= \begin{cases}\rho_{i}^{-1} v_{i j}(\mathcal{W})+O_{p}\left(d^{-1 / 2}\right), & i, j=1, \ldots, m \\ O_{p}\left(d^{-1 / 2}\right), & \text { otherwise }\end{cases}
$$

Lemma 2. Assume the m-component model with (A1)-(A4) and let $n>$ $m \geqslant 0$ be fixed. For $k=1, \ldots, n, E\left(\epsilon_{k *} \mid W_{1}\right)=0$, and

$$
\begin{align*}
\lim _{d \rightarrow \infty} \operatorname{Var}\left(\epsilon_{k *} \mid W_{1}\right) & =v_{O}^{2} /\left(\lambda_{k}(\mathcal{W})+\tau^{2}\right), \quad \text { for } k \leqslant m \tag{S1.5}\\
\lim _{d \rightarrow \infty} \frac{1}{n-m} \sum_{k=m+1}^{n} \operatorname{Var}\left(\epsilon_{k *} \mid W_{1}\right) & =v_{O}^{2} / \tau^{2} \tag{S1.6}
\end{align*}
$$

where $v_{O}^{2}=\lim _{d \rightarrow \infty} d^{-1} \sum_{i=m+1}^{d} \lambda_{i}^{2}$. As $d \rightarrow \infty, \epsilon_{k *}=O_{p}(1)$.
Proof of Lemma 园. Fix $k=1, \ldots, n$. Let $Y_{i}=\sqrt{\lambda_{i}} z_{i *} p_{k i}$, where $p_{k i}=\hat{u}_{k}^{\mathrm{T}} u_{i}$. Then $\epsilon_{k *}=\sum_{i=m+1}^{d} Y_{i}$. Since $z_{i *}$ and $p_{k i}$ are independent, for each $i>m$,
$\mathrm{E}\left(Y_{i} \mid W_{1}\right)=0$ and

$$
\operatorname{Var}\left(\sum_{i=m+1}^{d} Y_{i} \mid W_{1}\right)=\mathrm{E}\left(\sum_{i=m+1}^{d} \lambda_{i} z_{i *}^{2} p_{k i}^{2} \mid W_{1}\right)=\sum_{i=m+1}^{d} \lambda_{i} \mathrm{E}\left(p_{k i}^{2} \mid W_{1}\right),
$$

where we use the fact that $\mathrm{E}\left(z_{i *}\right)=0, \mathrm{E}\left(z_{i *}^{2}\right)=1$.
For $k \leqslant m$, if the following claim,

$$
\begin{equation*}
\mathrm{E}\left(p_{k i}^{2} \mid W_{1}\right)=d^{-1} \frac{\lambda_{i}}{\left(\lambda_{k}(\mathcal{W})+\tau^{2}\right)}+O\left(d^{-3 / 2}\right) \tag{S1.7}
\end{equation*}
$$

is true for any $i>m$, then it is easy to check (S1.5).
To show (S1.7), we first post-multiply \hat{v}_{i} to

$$
\begin{equation*}
\mathcal{X}=\sqrt{n} \sum_{i=1}^{n} \sqrt{\hat{\lambda}_{i}} \hat{u}_{i} \hat{v}_{i}^{\mathrm{T}}, \tag{S1.8}
\end{equation*}
$$

to obtain $\hat{u}_{i}=\left(n \hat{\lambda}_{i}\right)^{-1 / 2} \mathcal{X} \hat{v}_{i}$. By writing $z_{i}^{\mathrm{T}}=\lambda_{i}^{-1 / 2} w_{i}^{\mathrm{T}}=\left(z_{i 1}, \ldots, z_{i n}\right)$, we have

$$
\begin{aligned}
p_{k i} & =u_{i}^{\mathrm{T}} \hat{u}_{k} \\
& =\left(n \hat{\lambda}_{k}\right)^{-1 / 2} u_{i}^{\mathrm{T}} \mathcal{X} \hat{v}_{k} \\
& =\left(n \hat{\lambda}_{k}\right)^{-1 / 2} \lambda_{i}^{1 / 2} z_{i}^{\mathrm{T}} \hat{v}_{k} .
\end{aligned}
$$

Thus,

$$
\begin{align*}
p_{k i}^{2} & =d^{-1} \frac{\lambda_{i}}{n d^{-1} \hat{\lambda}_{k}}\left(z_{i}^{\mathrm{T}} \hat{v}_{k}\right)^{2} \\
& =d^{-1} \frac{\lambda_{i}}{\lambda_{k}(\mathcal{W})+\tau^{2}+O_{p}\left(d^{-1 / 2}\right)}\left(z_{i}^{\mathrm{T}} \hat{v}_{k}\right)^{2} \\
& =d^{-1} \frac{\lambda_{i}}{\lambda_{k}(\mathcal{W})+\tau^{2}}\left(z_{i}^{\mathrm{T}} \hat{v}_{k}\right)^{2}+O_{p}\left(d^{-3 / 2}\right) . \tag{S1.9}
\end{align*}
$$

In S1.9), we used Lemma 1 (i) and that $(1+x)^{-1}=1+O(x)$, and the fact that $\left|z_{i}^{\mathrm{T}} \hat{v}_{k}\right|^{2} \leqslant\left\|z_{i}\right\|_{2}^{2}\left\|\hat{v}_{k}\right\|_{2}^{2}=\left\|z_{i}\right\|_{2}^{2}=O_{p}(1)$.

Write $\left(z_{i}^{\mathrm{T}} \hat{v}_{k}\right)^{2}=\left[z_{i}^{\mathrm{T}} v_{k}\left(W_{1}^{\mathrm{T}} W_{1}\right)+z_{i}^{\mathrm{T}}\left(\hat{v}_{k}-v_{k}\left(W_{1}^{\mathrm{T}} W_{1}\right)\right)\right]^{2}$. Note that $W_{1}^{\mathrm{T}} W_{1}$ is an $n \times n$ matrix, and is different from the $m \times m$ matrix $\mathcal{W}=W_{1} W_{1}^{\mathrm{T}}$. It can be shown that the right singular vector \hat{v}_{k} converges in probability to $v_{k}\left(W_{1}^{\mathrm{T}} W_{1}\right)$ (see, e.g., Lemma S1.1 of Jung et al., 2018): For $k=1, \ldots, m$,

$$
\begin{equation*}
\hat{v}_{k}=v_{k}\left(W_{1}^{\mathrm{T}} W_{1}\right)+O_{p}\left(d^{-1 / 2}\right) . \tag{S1.10}
\end{equation*}
$$

Thus we get $\left.\left|z_{i}^{\mathrm{T}}\left(\hat{v}_{k}-v_{k}\left(W_{1}^{\mathrm{T}} W_{1}\right)\right)\right| \leqslant\left\|z_{i}\right\|_{2} \| \hat{v}_{k}-v_{k}\left(W_{1}^{\mathrm{T}} W_{1}\right)\right) \|_{2}=O_{p}\left(d^{-1 / 2}\right)$.
Therefore,

$$
\begin{align*}
\mathrm{E}\left(\left(z_{i}^{\mathrm{T}} \hat{v}_{k}\right)^{2} \mid W_{1}\right) & =\mathrm{E}\left(\left(z_{i}^{\mathrm{T}} v_{k}\left(W_{1}^{\mathrm{T}} W_{1}\right)\right)^{2} \mid W_{1}\right)+O\left(d^{-1 / 2}\right) \\
& =\sum_{\ell=1}^{n} \mathrm{E}\left(z_{i \ell}^{2}\right) v_{k \ell}^{2}\left(W_{1}^{\mathrm{T}} W_{1}\right)+O\left(d^{-1 / 2}\right) \\
& =1+O\left(d^{-1 / 2}\right) \tag{S1.11}
\end{align*}
$$

Combing (S1.9) and (S1.11), we get (S1.7) for $k \leqslant m$ as desired.
To show (S1.6), note that $\mathcal{W}=W_{1} W_{1}^{\mathrm{T}}$ is of rank m. For $k>m$, with $\lambda_{k}(\mathcal{W})=0$, S1.9) holds. Thus,

$$
\begin{align*}
\frac{1}{n-m} \sum_{k=m+1}^{n} \operatorname{Var}\left(\epsilon_{k *} \mid W_{1}\right) & =\frac{1}{n-m} \sum_{k=m+1}^{n} \sum_{i=m+1}^{d} \lambda_{i} \mathrm{E}\left(p_{k i}^{2} \mid W_{1}\right) \tag{S1.12}\\
& =\frac{1}{d(n-m)} \sum_{i=m+1}^{d} \lambda_{i}^{2} / \tau^{2} \sum_{k=m+1}^{n} \mathrm{E}\left(\left(z_{i}^{\mathrm{T}} \hat{v}_{k}\right)^{2} \mid W_{1}\right) .
\end{align*}
$$

To simplify the expression $\mathrm{E}\left(\left(z_{i}^{\mathrm{T}} \hat{v}_{k}\right)^{2} \mid W_{1}\right)$, one should not naively try (S1.11). This is because that (S1.11) does not apply for $k>m$ due to the non-unique k th eigenvector $v_{k}\left(W_{1}^{\mathrm{T}} W_{1}\right)$ of the rank- m matrix $W_{1}^{\mathrm{T}} W_{1}$. Instead, from

$$
\sum_{k=m+1}^{n}\left(z_{i}^{\mathrm{T}} \hat{v}_{k}\right)^{2}=z_{i}^{\mathrm{T}} z_{i}-\sum_{k=1}^{m}\left(z_{i}^{\mathrm{T}} \hat{v}_{k}\right)^{2},
$$

and S1.11) for $k \leqslant m$, we get

$$
\begin{equation*}
\sum_{k=m+1}^{n} \mathrm{E}\left(\left(z_{i}^{\mathrm{T}} \hat{v}_{k}\right)^{2} \mid W_{1}\right)=n-m+O\left(d^{-1 / 2}\right) \tag{S1.13}
\end{equation*}
$$

Taking the limit $d \rightarrow \infty$ to S1.12), combined with S1.13), leads to (S1.6).
The last statement, $\epsilon_{k *}=O_{p}(1)$, easily follows from the fact $\lim _{d \rightarrow \infty} \operatorname{Var}\left(\epsilon_{k *}\right) \leqslant$ $v_{O}^{2} / \tau^{2}(n-m)<\infty$, which is obtained by (S1.5) and S1.6).

We are now ready to show Theorem 1. Note that the results on the sample scores, S1.1) and (S1.3), can be easily shown, using the decomposition $d^{-1 / 2} \hat{w}_{k}=\sqrt{d^{-1} n \hat{\lambda}_{k}} \hat{v}_{k}$, together with Lemma 1 (i) and S1.10. We show (S1.2) and (S1.4).

Proof of Theorem 1. Proof of (S1.2). Recall the decomposition

$$
\begin{equation*}
\hat{w}_{k *}=\hat{u}_{k}^{\mathrm{T}} X_{*}=\sum_{i=1}^{m} w_{i *} \hat{u}_{k}^{\mathrm{T}} u_{i}+\epsilon_{k *}, \tag{S1.14}
\end{equation*}
$$

where $\epsilon_{k *}=\sum_{i=m+1}^{d} w_{i *} \hat{u}_{k}^{\mathrm{T}} u_{i}$. Using the notation $p_{k i}=\hat{u}_{k}^{\mathrm{T}} u_{i}$, we write $\hat{w}_{k *}=$
$\left(p_{k 1}, \ldots, p_{k m}\right)\left(w_{1 *}, \ldots, w_{m *}\right)^{\mathrm{T}}+\epsilon_{k *}$. Putting all parts together, we have

$$
\widehat{W}_{*}=d^{-1 / 2}\left(\hat{w}_{1 *}, \ldots, \hat{w}_{m *}\right)^{\mathrm{T}}=\left(\begin{array}{ccc}
p_{11} & \cdots & p_{1 m} \\
\vdots & \ddots & \vdots \\
p_{m 1} & \cdots & p_{m m}
\end{array}\right) W_{*}+\tilde{\boldsymbol{\epsilon}}_{k *},
$$

where $\tilde{\boldsymbol{\epsilon}}_{k *}=d^{-1 / 2}\left(\epsilon_{1 *}, \ldots, \epsilon_{m *}\right)^{\mathrm{T}}$. By Lemma 2, as $d \rightarrow \infty, \tilde{\boldsymbol{\epsilon}}_{k *}=O_{p}\left(d^{-1 / 2}\right)$. Since $p_{k i}=\rho_{k}^{-1} v_{k i}(\mathcal{W})+O_{p}\left(d^{-1 / 2}\right)$, by Lemma 11 (ii), we have

$$
\widehat{W}_{*}^{\mathrm{T}}=S^{-1} R^{\mathrm{T}} W_{*}^{\mathrm{T}}+O_{p}\left(d^{-1 / 2}\right) .
$$

Proof of (S1.4). Using the decomposition (S1.14), and by the fact $\epsilon_{k *}=$ $O_{p}(1)$, from Lemma 2, it is enough to show $\sum_{i=1}^{m} w_{i *} p_{k i}=O_{p}(1)$. But, since Lemma 1 implies $d^{\frac{1}{2}} p_{k i}=O_{p}(1)$ for any pair of (k, i) such that $k>m, i \leqslant m$, we have $\sum_{i=1}^{m} w_{i *} p_{k i}=\sigma_{i}\left(d^{\frac{1}{2}} p_{k 1}, \ldots, d^{\frac{1}{2}} p_{k m}\right)\left(z_{1 *}, \ldots, z_{m *}\right)=O_{p}(1)$,

S2 Proof of Theorem 2

Theorem 2. $\operatorname{Let} \zeta_{k j}=\lambda_{k}(\mathcal{W}) /\left(\sum_{\ell=1}^{m} v_{\ell j}^{2}(\mathcal{W}) \lambda_{\ell}(\mathcal{W})\right)$ and $\bar{\zeta}_{k j}=\sigma_{k}^{2} /\left(\sum_{\ell=1}^{m} v_{\ell j}^{2}(\mathcal{W}) \sigma_{\ell}^{2}\right)$.
Under the assumptions of Theorem 1, as $d \rightarrow \infty$, for $k, j=1 \ldots, m$,
(i) $r\left(\hat{w}_{k}, w_{j}\right) \rightarrow v_{k j}(\mathcal{W}) \zeta_{k j}^{1 / 2}$ in probability;
(ii) $\lim _{d \rightarrow \infty} \operatorname{Corr}\left(\hat{w}_{k *}, w_{j *} \mid W_{1}\right)=v_{k j}(\mathcal{W}) \bar{\zeta}_{k j}{ }^{1 / 2}$.

Proof of Theorem 2. Proof of (i). Write the singular value decomposition
of the $m \times n$ matrix of scaled scores W_{1} as

$$
\begin{equation*}
W_{1}=R \operatorname{diag}\left(\sqrt{\lambda_{1}(\mathcal{W})}, \ldots, \sqrt{\lambda_{1}(\mathcal{W})}\right) G^{\mathrm{T}} \tag{S2.1}
\end{equation*}
$$

where $G=\left[g_{1}, \ldots, g_{m}\right]$ is the $n \times m$ matrix consisting of right singular vectors of W_{1}. The left singular vector matrix $R=\left[v_{1}(\mathcal{W}), \ldots, v_{m}(\mathcal{W})\right]$ is exactly the matrix R appearing in Theorem 1. Since

$$
W_{1}=\sum_{\ell=1}^{m} \sqrt{\lambda_{\ell}(\mathcal{W})} v_{\ell}(\mathcal{W}) g_{\ell}^{\mathrm{T}}
$$

the j th row of W_{1} is, for $j \leqslant m$,

$$
d^{-\frac{1}{2}} w_{j}^{\mathrm{T}}=\sum_{\ell=1}^{m} \sqrt{\lambda_{\ell}(\mathcal{W})} v_{\ell j}(\mathcal{W}) g_{\ell}^{\mathrm{T}}
$$

For the scaled sample score $d^{-1 / 2} \hat{w}_{k}, k \leqslant m$, we obtain from Theorem 1 and S2.1) that $\widehat{W}_{1}=S \operatorname{diag}\left(\sqrt{\lambda_{1}(\mathcal{W})}, \ldots, \sqrt{\lambda_{1}(\mathcal{W})}\right) G^{\mathrm{T}}+O_{p}\left(d^{-1 / 4}\right)$ and its k th row $d^{-1 / 2} \hat{w}_{k}=\sqrt{\lambda_{k}(\mathcal{W})+\tau^{2}} g_{k}+O_{p}\left(d^{-1 / 4}\right)$. Since g_{ℓ} 's are orthonormal,

$$
\left\|d^{-\frac{1}{2}} \hat{w}_{k}\right\|_{2}=\sqrt{\lambda_{k}(\mathcal{W})+\tau^{2}}+O_{p}\left(d^{-1 / 4}\right)
$$

and

$$
\begin{aligned}
d^{-1} \hat{w}_{k}^{\mathrm{T}} w_{j} & =\left(d^{-1 / 2} \hat{w}_{k}\right)^{\mathrm{T}}\left(d^{-1 / 2} w_{j}\right) \\
& =\sqrt{\lambda_{k}(\mathcal{W})} \sqrt{\lambda_{k}(\mathcal{W})+\tau^{2}} v_{k j}(\mathcal{W})+O_{p}\left(d^{-1 / 4}\right)
\end{aligned}
$$

Since $d^{-1} w_{j}^{\mathrm{T}} w_{j}=\sum_{\ell=1}^{m} v_{\ell j}^{2}(\mathcal{W}) \lambda_{\ell}(\mathcal{W})$, we have

$$
r\left(\hat{w}_{k}, w_{j}\right)=\frac{d^{-1} \hat{w}_{k}^{\mathrm{T}} w_{j}}{\left\|d^{-1 / 2} \hat{w}_{k}\right\|_{2} \cdot\left\|d^{-1 / 2} w_{j}\right\|_{2}} \rightarrow v_{k j}(\mathcal{W}) \zeta_{k j}^{1 / 2}
$$

in probability, as $d \rightarrow \infty$.
Proof of (ii). From Theorem 1, write

$$
\begin{equation*}
d^{-1 / 2} \hat{w}_{k *}=\rho_{k}^{-1} \sum_{\ell=1}^{m} v_{k \ell}(\mathcal{W}) d^{-1 / 2} w_{\ell *}+O_{p}\left(d^{-1 / 2}\right) \tag{S2.2}
\end{equation*}
$$

and note that $\mathrm{E}\left(w_{k *}\right)=\mathrm{E}\left(\hat{w}_{k *}\right)=0$. Then for $k=1, \ldots, m$, we have

$$
\operatorname{Var}\left(d^{-1 / 2} w_{k *}\right)=d^{-1} \mathrm{E}\left(w_{k *}\right)^{2}=\sigma_{k}^{2} \mathrm{E}\left(z_{k *}\right)^{2}=\sigma_{k}^{2},
$$

and, by (S2.2),

$$
\operatorname{Var}\left(d^{-1 / 2} \hat{w}_{k *} \mid W_{1}\right)=\rho_{k}^{-2} \sum_{\ell=1}^{m}\left(v_{k \ell}(\mathcal{W})\right)^{2} \sigma_{\ell}^{2}+O\left(d^{-1 / 2}\right)
$$

The independence of $w_{\ell *}$ and $w_{k *}$ for $k \neq \ell$ and (S2.2) give

$$
\begin{aligned}
\operatorname{Cov}\left(d^{-1 / 2} \hat{w}_{k *}, d^{-1 / 2} w_{j *} \mid W_{1}\right) & =\mathrm{E}\left(d^{-1} \hat{w}_{k *} w_{j *} \mid W_{1}\right) \\
& =\rho_{k}^{-1} v_{k j}(\mathcal{W}) \sigma_{j}^{2}+O\left(d^{-1 / 2}\right),
\end{aligned}
$$

which in turn leads to

$$
\begin{aligned}
\operatorname{corr}\left(\hat{w}_{k *}, w_{j *} \mid W_{1}\right) & =\frac{\operatorname{Cov}\left(d^{-1 / 2} \hat{w}_{k *}, d^{-1 / 2} w_{j *} \mid W_{1}\right)}{\left(\operatorname{Var}\left(d^{-1 / 2} w_{j *}\right) \operatorname{Var}\left(d^{-1 / 2} \hat{w}_{k *} \mid W_{1}\right)\right)^{1 / 2}} \\
& =v_{k j}(\mathcal{W}) \frac{\sigma_{j}}{\left[\sum_{\ell=1}^{m}\left(v_{k \ell}(\mathcal{W})\right)^{2} \sigma_{\ell}^{2}\right]^{1 / 2}}+O\left(d^{-1 / 2}\right)
\end{aligned}
$$

S3 Proof of Corollary 1

Corollary 1. Suppose the assumptions of Lemma 1 are satisfied. Let $d \rightarrow$ ∞. For $i=1, \ldots, m$, conditional to $W_{1}, \tilde{\tau}^{2}, \tilde{\lambda}_{i}(\mathcal{W})$ and $\tilde{\rho}_{i}$ are consistent estimators of $\tau^{2}, \lambda_{i}(\mathcal{W})$ and ρ_{i}, respectively.

Proof of Corollary 1. Lemma 1 is used to show that $\tilde{\tau}^{2}$ and $\tilde{\lambda}_{i}(\mathcal{W})$ converge in probability to τ^{2} and $\lambda_{i}(\mathcal{W})$ as $d \rightarrow \infty$, respectively. By continuous mapping theorem, $\tilde{\rho}_{i}$ converges in probability to ρ_{i}.

S4 Complete Table 2

Bibliography

Jung, S., Ahn, J. \& Lee, M. H. (2018). On the number of principal components in high dimensions. Biometrika 105, 389-402.

Lee, S., Zou, F. \& Wright, F. A. (2010). Convergence and prediction of principal component scores in high-dimensional settings. Ann. Stat. 38, 3605.

		d	n	ρ_{1}					
					Theory	Best	Asymp.	Jackknife	LZW
		5000	50		41 (0.07)	1.42	1.40	1.43	1.41
Spike	odel	10000	50		42 (0.06)	1.43	1.42	1.44	1.42
$\beta=0.3$		10000	100		23 (0.03)	1.23	1.23	1.24	1.23
		20000	100		23 (0.02)	1.23	1.23	1.24	1.23
		5000	50		42 (0.08)	1.45	1.41	1.45	1.40
Spike model		10000	50		43 (0.07)	1.45	1.43	1.46	1.42
$\beta=0.5$		10000	100		22 (0.02)	1.23	1.22	1.23	1.21
		20000	100		23 (0.02)	1.23	1.23	1.24	1.22
Mixture model		5000	50		. 06 (0.06)	2.22	1.92	2.14	2.00
		10000	50		. 09 (0.06)	2.17	1.98	2.14	2.02
$a=0.15$		10000	100		63 (0.02)	1.67	1.61	1.65	1.63
		20000	100		64 (0.02)	1.66	1.62	1.66	1.63
d			ρ_{2}						
		n	The		Best	Asymp.	Jackkn	fe LZW	
	5000	50	1.79	.11)) 1.86	1.75	1.78	1.79	
Spike model	10000	50	1.79	.11)) 1.82	1.77	1.77	1.79	
$\beta=0.3$	10000	100	1.43	.06)) 1.44	1.43	1.42	1.43	
	20000	100	1.43	.05)) 1.44	1.43	1.42	1.43	
	5000	50	1.79	.11)) 1.99	1.72	1.81	1.71	
Spike model	10000	50	1.80	.11)) 1.88	1.76	1.79	1.74	
$\beta=0.5$	10000	100	1.44	.05)) 1.47	1.43	1.44	1.41	
	20000	100	1.42	.05)) 1.44	1.42	1.41	1.40	
	5000	50	2.62	.21)) 5.44	2.20	2.68	2.46	
Mixture model	10000	50	2.68	.19)) 3.20	2.35	2.68	2.50	
$a=0.15$	10000	100	2.00	.09)) 2.13	1.90	2.00	1.99	
	20000	100	1.99	.10)) 2.05	1.93	1.97	1.97	

Table 1: Simulation results from 100 repetitions. "Theory" is mean (standard deviation) of ρ_{i}; "Best" is $\check{\rho}_{i}$; "Asymp." is $\tilde{\rho}_{i}$; "Jackknife" is $\hat{\rho}_{i}^{(1)}$; "LZW" is from Lee et al. 2010). Averages are shown for the latter four columns. The standard errors of the quantities in estimation of ρ_{i} are at most 0.04 .

