Supplement to "Hypothesis Testing for Network Data with Power Enhancement"

Yin Xia and Lexin Li

Fudan University and University of California at Berkeley

A1 Technical Lemmas

Lemma S1 (Bonferroni Inequality). Let $A = \bigcup_{t=1}^{p} A_t$. For any $k < \lfloor p/2 \rfloor$, we have

$$\sum_{t=1}^{2k} (-1)^{t-1} E_t \le \mathbf{P}(A) \le \sum_{t=1}^{2k-1} (-1)^{t-1} E_t,$$

where $E_t = \sum_{1 \leq i_1 < \cdots < i_t \leq p} \mathcal{P}(A_{i_1} \cap \cdots \cap A_{i_t}).$

Lemma S2. For any random vector $W = (w_1, ..., w_b)$, with E(W) = 0, and $W = \xi_1 + \cdots + \xi_n$, where $\{\xi_k = (\xi_{1,k}, ..., \xi_{b,k}), k = 1, ..., n\}$ are independent random vectors and $|\xi_{i,k}| \le \tau, 1 \le i \le b$, we have, for any $y, \epsilon > 0$,

$$\begin{aligned} \boldsymbol{\mathcal{P}}(|\boldsymbol{W}| \geq y) &\leq \boldsymbol{\mathcal{P}}(|\boldsymbol{N}| \geq y - \epsilon) + c_1 b^{5/2} \exp\left(-\frac{\epsilon}{c_2 b^3 \tau}\right), \\ \boldsymbol{\mathcal{P}}(|\boldsymbol{W}| \geq y) &\geq \boldsymbol{\mathcal{P}}(|\boldsymbol{N}| \geq y + \epsilon) - c_1 b^{5/2} \exp\left(-\frac{\epsilon}{c_2 b^3 \tau}\right), \end{aligned}$$

for some absolute constants $c_1, c_2 > 0$, where $|\cdot|$ is any vector norm, N is a normal random vector with E(N) = 0 and the same covariance matrix as W.

Lemma S2 is based on Theorem 1 of Zaïtsev (1987), and its proof is omitted. Lemma 1 in Section 2.2 of the paper is proved by applying Lemma S2, similarly as done in the proof of Theorem 1 in Cai et al. (2013), and its proof is also omitted here.

A2 Proof of Theorem 1

We rearrange the indices of $\{S_{l,d,i,j}, 1 \le i < j \le p\}$ by $\{S_{l,d,i}, i = 1, ..., q\}$. Let $(U_{l,1}, ..., U_{l,q})^{\mathsf{T}}$ be a zero mean random vector, with the covariance matrix $\Sigma = (\sigma_{i,j})$ and the diagonal $\{\sigma_{i,i}\}_{i=1}^{q} = 1$, which satisfies the moment conditions (C1) or (C2) and the regularity conditions (A1) and (A2), l = 1, ..., n. Note that,

$$|V_{d,i,j}/\operatorname{Var}(S_{l,d,i,j}) - 1| = O_p\{(\log q/n)^{1/2}\}, \quad 1 \le i < j \le p, d = 1, 2,$$

Then under the event that $\{|V_{d,i,j}/\operatorname{Var}(S_{l,d,i,j}) - 1| = O\{(\log q/n)^{1/2})\}$, to prove the theorem, it suffices to show that, for any $x \in R$, as $p \to \infty$,

$$\mathsf{P}\left\{\max_{1\leq i\leq q} \left(n^{-1/2}\sum_{l=1}^{n} U_{l,i}\right)^{2} - 2\log q + \log\log q \leq x\right\} \to \exp\{-\pi^{-1/2}\exp(-x/2)\}.$$
Let $\hat{U}_{l,i} = U_{l,i}I\{|U_{l,i}| \leq \tau_{n}\} - \mathsf{E}(U_{l,i}I\{|U_{l,i}| \leq \tau_{n}\}), l = 1, \dots, n, \text{ where } \tau_{n} = \eta^{-1/2}2\sqrt{\log(q+n)}$
if (C1) holds, and $\tau_{n} = \sqrt{n}/(\log q)^{8}$ if (C2) holds. Let $W_{i} = \sum_{l=1}^{n} U_{l,i}/\sqrt{n}$ and $\hat{W}_{i} = \sum_{l=1}^{n} \hat{U}_{l,i}/\sqrt{n}$. If (C1) holds, then we have,

$$\begin{split} \max_{1 \le i \le q} n^{-1/2} \sum_{l=1}^{n} \mathsf{E}(|U_{l,i}|) I\left\{ |U_{l,i}| \ge \eta^{-1/2} 2\sqrt{\log(q+n)} \right\} \\ \le C n^{1/2} \max_{1 \le l \le n} \max_{1 \le i \le q} \mathsf{E}(|U_{l,i}|) I\left\{ |U_{l,i}| \ge \eta^{-1/2} 2\sqrt{\log(q+n)} \right\} \\ \le C n^{1/2} (q+n)^{-2} \max_{1 \le l \le n} \max_{1 \le i \le q} \mathsf{E}(|U_{l,i}|) \exp\left(\eta U_{l,i}^2/2\right) \\ \le C n^{1/2} (q+n)^{-2}. \end{split}$$

If (C2) holds, then we have,

$$\max_{1 \le i \le q} n^{-1/2} \sum_{l=1}^{n} \mathsf{E}(|U_{l,i}|) I\left\{ |U_{l,i}| \ge \sqrt{n}/(\log q)^{8} \right\}$$

$$\le C n^{1/2} \max_{1 \le l \le n_{1}+n_{2}} \max_{1 \le i \le q} \mathsf{E}(|U_{l,i}|) I\left\{ |U_{l,i}| \ge \sqrt{n}/(\log q)^{8} \right\}$$

$$\le C n^{-2\gamma_{0}-\epsilon/4}.$$

Therefore,

$$\mathsf{P}\left\{\max_{1\leq i\leq q}|W_{i}-\hat{W}_{i}|\geq (\log q)^{-1}\right\} \leq \mathsf{P}\left(\max_{1\leq i\leq q}\max_{1\leq l\leq t}|U_{l,i}|\geq \tau_{n}\right) \\ \leq tq\max_{1\leq i\leq q}\mathsf{P}(|U_{1i}|\geq \tau_{n}) = O(q^{-1}+n^{-\epsilon/4}).$$
(S1)

Note that

$$\left|\max_{1 \le i \le q} W_i^2 - \max_{1 \le i \le q} \hat{W}_i^2\right| \le 2 \max_{1 \le i \le q} |W_i| \max_{1 \le i \le q} |W_i - \hat{W}_i| + \max_{1 \le i \le p} |W_i - \hat{W}_i|^2.$$
(S2)

By (S1) and (S2), it suffices to prove that, for any $x \in R$, as $p \to \infty$,

$$\mathsf{P}\left(\max_{1\leq i\leq q}\hat{W}_i^2 - 2\log q + \log\log q \leq x\right) \to \exp\left\{-\pi^{-1/2}\exp(-x/2)\right\}.$$

Let $x_q = 2 \log q - \log \log q + x$. It follows from Lemma S1 that, for any fixed $k \leq [q/2]$,

$$\sum_{s=1}^{2k} (-1)^{s-1} \sum_{1 \le i_1 < \dots < i_n \le q} \mathsf{P}\left(|\hat{W}_{i_1}| \ge x_q, \dots, |W_{i_s}| \ge x_q\right) \le \mathsf{P}\left(\max_{1 \le i \le q} |\hat{W}_i| \ge x_q\right)$$
$$\le \sum_{s=1}^{2k-1} (-1)^{s-1} \sum_{1 \le i_1 < \dots < i_s \le q} \mathsf{P}\left(|\hat{W}_{i_1}| \ge x_q, \dots, |W_{i_s}| \ge x_q\right). \tag{S3}$$

Define $|\hat{W}|_{\min} = \min_{1 \le b \le s} |\hat{W}_{i_b}|$. Then by Lemma S2, we have,

$$\mathbf{P}\left(|\hat{\boldsymbol{W}}|_{\min} \ge x_q\right) \le \mathbf{P}\left\{|\boldsymbol{Z}|_{\min} \ge x_q - \epsilon_n (\log q)^{-1/2}\right\} \\
+ c_1 s^{5/2} \exp\left\{-\frac{n^{1/2} \epsilon_n}{c_2 s^3 \tau_n (\log q)^{1/2}}\right\},$$
(S4)

where $c_1 > 0$ and $c_2 > 0$ are absolute constants, $\epsilon_n \to 0$ is to be specified later, and $\mathbf{Z} = (Z_{i_1}, ..., Z_{i_s})'$ is a s-dimensional normal vector with the same covariance structure as $\hat{\mathbf{W}}$. Because $\log p = o(n^{1/5})$, we can let $\epsilon_n \to 0$ sufficiently slow, such that

$$c_1 s^{5/2} \exp\left\{-\frac{n^{1/2} \epsilon_n}{c_2 s^3 \tau_n (\log q)^{1/2}}\right\} = O(q^{-M})$$
(S5)

for any large M > 0. It then follows from (S3), (S4) and (S5) that

$$\mathsf{P}\left(\max_{1 \le i \le q} |\hat{W}_i| \ge x_q\right) \le \sum_{s=1}^{2k-1} (-1)^{s-1} \sum_{1 \le i_1 < \dots < i_s \le p} \mathsf{P}\left(|Z|_{\min} \ge x_q - \epsilon_n (\log q)^{-1/2}\right) + o(1).(\mathbf{S6})$$

Similarly, using Lemma S2 again, we get

$$\mathsf{P}\left(\max_{1\leq i\leq q} |\hat{W}_i| \geq x_q\right) \geq \sum_{s=1}^{2k} (-1)^{s-1} \sum_{1\leq i_1<\ldots< i_s\leq q} \mathsf{P}\left(|Z|_{\min} \geq x_q - \epsilon_n (\log q)^{-1/2}\right) - o(1).(S7)$$

By (S6), (S7) and the proof of Theorem 1 in Cai et al. (2014), our theorem is proved. \Box

A3 Proof of Theorem 2

We first show that, as $n_1, n_2, p \to \infty$,

$$\inf_{(s_1,s_2)\in U(2\sqrt{2})} \mathsf{P}(\Psi_{\alpha}=1) \to 1.$$

Let

$$M_n^1 = \max_{1 \le i \le j \le p} \frac{\left(\bar{S}_{1,i,j} - \bar{S}_{2,i,j} - s_{1,i,j} + s_{2,i,j}\right)^2}{V_{1,i,j}/n_1 + V_{2,i,j}/n_2}.$$

By the self-normalized large deviation theorem for independent random variables (Jing et al., 2003, Theorem 1), we have that,

$$\max_{1 \le i \le j \le p} \mathsf{P}\left\{\frac{\left(\bar{S}_{1,i,j} - \bar{S}_{2,i,j} - s_{1,i,j} + s_{2,i,j}\right)^2}{V_{1,i,j}/n_1 + V_{2,i,j}/n_2} \ge x^2\right\} \le C\{1 - \Phi(x)\},$$

uniformly for $0 \le x \le (8 \log p)^{1/2}$. Thus we have that,

$$\mathsf{P}\left(M_n^1 \le 2\log q - \frac{1}{2}\log\log q\right) \to 1$$

as $t, q \to \infty$. Note that,

$$\max_{1 \le i \le j \le p} \frac{(s_{1,i,j} - s_{2,i,j})^2}{V_{1,i,j}/n_1 + V_{2,i,j}/n_2} \le 2M_n^1 + 2M_n$$

and that

$$\max_{1 \le i \le j \le p} \frac{(s_{1,i,j} - s_{2,i,j})^2}{\mathsf{Var}(S_{1,l,i,j})/n_1 + \mathsf{Var}(S_{2,l,i,j})/n_2} \ge 8 \log q.$$

By the fact that

$$|V_{d,i,j} / \mathsf{Var}(S_{l,d,i,j}) - 1| = O_p \left\{ (\log q/n)^{1/2} \right\}, \quad 1 \le i < j \le p, d = 1, 2,$$

we have that,

$$\mathsf{P}\left(M_n \ge q_\alpha + 2\log q - \log\log p\right) \to 1$$

as $n, q \to \infty$.

We next prove that, there exists a constant $c_0 > 0$ such that, for all sufficiently large n_d and p,

$$\inf_{(s_1,s_2)\in U(c_0)}\sup_{T_{\alpha}\in\mathcal{T}_{\alpha}}\mathsf{P}(T_{\alpha}=1)\leq 1-\beta,$$

Since \mathcal{T}_{α} contains all the α -level tests over the collection of distributions satisfying (C1) or (C2), it suffices to take \mathcal{T}_{α} as the set of α -level tests over Gaussian distributions. Then following the proof of Theorem 4 of Cai et al. (2014), our theorem is proved.

A4 Proof of Theorem 3

Under the assumption that $|\mathcal{S}_{\rho}| \geq [1/\{\pi^{1/2}\alpha\} + \delta](\log q)^{1/2}$, we have that,

$$\sum_{(i,j)\in\mathcal{H}} I\left(|T_{i,j}| \ge \sqrt{2\log q}\right) \ge \left\{\frac{1}{\pi^{1/2}\alpha} + \delta\right\}\sqrt{\log q},$$

with probability tending to 1. Henceforth, with probability going to one, we have

$$\frac{q}{\sum_{(i,j)\in\mathcal{H}} I\left(|T_{i,j}| \ge \sqrt{2\log q}\right)} \le q \left\{\frac{1}{\pi^{1/2}\alpha} + \delta\right\}^{-1} (\log q)^{-1/2}.$$

Define $h_q = \sqrt{2 \log q - 2 \log \log q}$. Because $1 - \Phi(h_q) \sim (\sqrt{2\pi}h_q)^{-1} \exp(-h_q^2/2)$, we have $\mathsf{P}(0 \le \hat{h} \le h_q) \to 1$ according to the definition of \hat{h} in Algorithm 1. Namely, we have

$$\mathsf{P}\left(\hat{h} \text{ exists in } [0, h_q]\right) \to 1.$$

Thus it suffices to prove the theorem under the event that $\{\hat{h} \text{ exists in } [0, h_q]\}$.

Note that, by the definition of \hat{h} , for any $h < \hat{h}$, we have

$$\begin{split} &\frac{G(h)q}{\max\left\{\sum_{(i,j)\in\mathcal{H}}I(|T_{i,j}|\geq h),1\right\}} > \alpha.\\ &\text{Because}\max\left\{\sum_{(i,j)\in\mathcal{H}}I(|T_{i,j}|\geq \hat{h}),1\right\}\leq \max\left\{\sum_{(i,j)\in\mathcal{H}}I(|T_{i,j}|\geq h),1\right\}, \text{we have that,}\\ &\frac{G(h)q}{\max\left\{\sum_{(i,j)\in\mathcal{H}}I(|T_{i,j}|\geq \hat{h}),1\right\}} > \alpha. \end{split}$$

Thus, by letting $h \rightarrow \hat{h}$, we have,

$$\frac{G(\hat{h})q}{\max\left\{\sum_{(i,j)\in\mathcal{H}}I(|T_{i,j}|\geq\hat{h}),1\right\}}\geq\alpha.$$

On the other hand, based on the definition of \hat{h} , there exists a sequence $\{h_l\}$ with $h_l \ge \hat{h}$ and $h_l \rightarrow \hat{h}$, such that,

$$\begin{aligned} \frac{G(h_l)q}{\max\left\{\sum_{(i,j)\in\mathcal{H}}I(|T_{i,j}|\geq h_l),1\right\}} &\leq \alpha.\\ \text{Since} \max\left\{\sum_{(i,j)\in\mathcal{H}}I(|T_{i,j}|\geq h_l),1\right\} &\leq \max\left\{\sum_{(i,j)\in\mathcal{H}}I(|T_{i,j}|\geq \hat{h}),1\right\}, \text{it implies that,}\\ \frac{G(h_l)q}{\max\left\{\sum_{(i,j)\in\mathcal{H}}I(|T_{i,j}|\geq \hat{h}),1\right\}} &\leq \alpha. \end{aligned}$$

Letting $h_l \rightarrow \hat{h}$, we have that,

$$\frac{G(\hat{h})q}{\max\left\{\sum_{(i,j)\in\mathcal{H}}I(|T_{i,j}|\geq\hat{h}),1\right\}}\leq\alpha.$$

Thus by focusing on the event $\left\{\hat{h} \text{ exists in } [0, h_q]\right\}$, we have that,

$$\frac{G(\hat{h})q}{\max\left\{\sum_{(i,j)\in\mathcal{H}}I(|T_{i,j}|\geq\hat{h}),1\right\}}=\alpha.$$

Then it suffices to show that

$$\sup_{0 \le h \le h_q} \left| \frac{\sum_{(i,j) \in \mathcal{H}_0} I(|T_{i,j}| \ge h) - |\mathcal{H}_0|G(h)}{qG(h)} \right| \to 0$$

in probability. Let $0 \le h_0 < h_1 < \cdots < h_b = h_q$, such that $h_{\iota} - h_{\iota-1} = v_q$ for $1 \le \iota \le b - 1$, and $h_b - h_{b-1} \le v_q$, where $v_q = 1/\sqrt{\log q(\log_4 q)}$. Then we have $b \sim h_q/v_q$. For any h such that $h_{\iota-1} \le h \le h_{\iota}$, we have that

$$\frac{\sum_{(i,j)\in\mathcal{H}_{0}}I(|T_{i,j}|\geq h_{\iota})}{|\mathcal{H}_{0}|G(h_{\iota})}\frac{G(h_{\iota})}{G(h_{\iota-1})} \leq \frac{\sum_{(i,j)\in\mathcal{H}_{0}}I(|T_{i,j}|\geq h)}{|\mathcal{H}_{0}|G(h)} \leq \frac{\sum_{(i,j)\in\mathcal{H}_{0}}I(|T_{i,j}|\geq h_{\iota-1})}{|\mathcal{H}_{0}|G(h_{\iota-1})}\frac{G(h_{\iota-1})}{G(h_{\iota})}.$$

Thus it suffices to prove that

$$\max_{0 \le \iota \le b} \left| \frac{\sum_{(i,j) \in \mathcal{H}_0} \left\{ I(|T_{i,j}| \ge h_\iota) - G(h_\iota) \right\}}{|\mathcal{H}_0| G(h_\iota)} \right| \to 0$$

in probability. Note that

$$\begin{split} \mathsf{P}\left(\max_{0\leq \iota\leq b}\left|\frac{\sum_{(i,j)\in\mathcal{H}_{0}}\left\{I(|T_{i,j}|\geq h_{\iota})-G(h_{\iota})\right\}}{|\mathcal{H}_{0}|G(h_{\iota})}\right|\geq\epsilon\right)\\ &\leq\sum_{\iota=1}^{b}\mathsf{P}\left(\left|\frac{\sum_{(i,j)\in\mathcal{H}_{0}}\left\{I(|T_{i,j}|\geq h_{\iota})-G(h_{\iota})\right\}}{|\mathcal{H}_{0}|G(h_{\iota})}\right|\geq\epsilon\right)\\ &\leq\frac{1}{v_{q}}\int_{0}^{h_{q}}\mathsf{P}\left(\left|\frac{\sum_{(i,j)\in\mathcal{H}_{0}}\left\{I(|T_{i,j}|\geq h)-G(h)\right\}}{|\mathcal{H}_{0}|G(h)}\right|\geq\epsilon\right)dt\\ &+\sum_{\iota=b-1}^{b}\mathsf{P}\left(\left|\frac{\sum_{(i,j)\in\mathcal{H}_{0}}\left\{I(|T_{i,j}|\geq h_{\iota})-G(h_{\iota})\right\}}{|\mathcal{H}_{0}|G(h_{\iota})}\right|\geq\epsilon\right). \end{split}$$

By the proof of Theorem 1, we have that

$$\mathsf{P}(|T_{i,j}| \ge h) = \{1 + o(1)\}G(h).$$

Thus it suffices to prove the following two statements are true for any $\epsilon > 0$:

$$\int_{0}^{h_{q}} \mathsf{P}\left(\left|\frac{\sum_{(i,j)\in\mathcal{H}_{0}}\left\{I(|T_{i,j}|\geq h)-\mathsf{P}(|T_{i,j}|\geq h)\right\}}{qG(h)}\right|\geq\epsilon\right)dh=o(v_{q}),\tag{S8}$$

and

$$\sup_{0 \le h \le h_q} \mathsf{P}\left(\left|\frac{\sum_{(i,j)\in\mathcal{H}_0} \left\{I(|T_{i,j}| \ge h) - \mathsf{P}(|T_{i,j}| \ge h)\right\}}{qG(h)}\right| \ge \epsilon\right) = o(1).$$
(S9)

Next we prove (S8), while the proof of (S9) is similar and is thus omitted. Note that the variance can be calculated as follows

$$\mathsf{E} \left[\frac{\sum_{(i,j)\in\mathcal{H}_{0}} \left\{ I(|T_{i,j}| \ge h) - \mathsf{P}(|T_{i,j}| \ge h) \right\}}{qG(h)} \right]^{2} \\ = \frac{\sum_{(i,j),(i',j')\in\mathcal{H}_{0}} \left\{ \mathsf{P}(|T_{i,j}| \ge h, |T_{i',j'}| \ge h) - \mathsf{P}(|T_{i,j}| \ge h) \mathsf{P}(|T_{i',j'}| \ge h) \right\}}{q^{2}G^{2}(h)} .$$

We further split the pairs of indices in \mathcal{H}_0 into three subsets as below. We rearrange the indices of $\{(i, j), 1 \le i < j \le p\}$ by $\{k, k = 1, ..., q\}$, and denote by $k_{i,j}$ the corresponding index of (i, j) after rearranging:

$$\begin{aligned} \mathcal{H}_{01} &= \{(i,j), (i',j') \in \mathcal{H}_0, (i,j) = (i',j')\}, \\ \mathcal{H}_{02} &= \left\{(i,j), (i',j') \in \mathcal{H}_0, (i,j) \neq (i',j'), k_{i,j} \in \mathcal{A}_{k_{i',j'}}(\xi) \text{ or } k_{i',j'} \in \mathcal{A}_{k_{i,j}}(\xi)\right\}, \\ \mathcal{H}_{03} &= \{(i,j), (i',j') \in \mathcal{H}_0\} \setminus (\mathcal{H}_{01} \cup \mathcal{H}_{02}). \end{aligned}$$

For the subset \mathcal{H}_{01} , the cardinality is q_0 , thus we have

$$\frac{\sum_{(i,j),(i',j')\in\mathcal{H}_{01}} \left\{ \mathsf{P}(|T_{i,j}| \ge h, |T_{i',j'}| \ge h) - \mathsf{P}(|T_{i,j}| \ge h) \mathsf{P}(|T_{i',j'}| \ge h) \right\}}{q^2 G^2(h)} \le \frac{C}{qG(h)}.$$
 (S10)

For the subset \mathcal{H}_{02} , recall that

$$\mathcal{A}_i(\xi) = \{j : \max\{|r_{1,i,j}|, |r_{2,i,j}|\} \ge (\log q)^{-2-\xi}\},\$$

and $\max_{1 \le i \le q} |\mathcal{A}_i(\xi)| = o(q^{\nu})$ for $0 < \nu < (1 - r)/(1 + r)$. Thus we have $|\mathcal{H}_{02}| = O(q^{1+\nu})$. Note that, by Assumption (A2), we have that, uniformly for $(i, j), (i', j') \in \mathcal{H}_{02}$, $\mathsf{Corr}(T_{i,j}, T_{i',j'}) \le r' < 1$, with $r' < r + \epsilon < 1$, $0 < \epsilon < \frac{1-\nu}{1+\nu} - r$. Therefore, similar to (S4) in the proof of Theorem 1, under (C1) or (C2), by applying Lemma S2 and Lemma 6.2 in Liu (2013), we have that

$$\frac{\sum_{(i,j),(i',j')\in\mathcal{H}_{02}} \left\{ \mathsf{P}(|T_{i,j}| \ge h, |T_{i',j'}| \ge h) - \mathsf{P}(|T_{i,j}| \ge h) \mathsf{P}(|T_{i',j'}| \ge h) \right\}}{q^2 G^2(h)} \le \frac{q^{1+\nu}h^{-2}\exp\{-h^2/(1+r')\}}{q^2 G^2(h)} \le \frac{C}{q^{1-\nu}\{G(h)\}^{2r'/(1+r')}}.$$
(S11)

For the subset \mathcal{H}_{03} , $T_{i,j}$ and $T_{i',j'}$ are weakly correlated with each other. Based on the conditions in the theorem, by applying Lemma S2 and Lemma 6.1 in Liu (2013), it is easy to obtain that,

$$\max_{(i,j),(i',j')\in\mathcal{H}_{03}} \mathsf{P}\left(|T_{i,j}| \ge h, |T_{i',j'}| \ge h\right) = [1 + O\{(\log q)^{-1-\gamma}\}]G^2(h),$$

with $\gamma = \min\{\xi, 1/2\}$. Thus, we have that

$$\frac{\sum_{(i,j),(i',j')\in\mathcal{H}_{02}} \left\{ \mathsf{P}(|T_{i,j}| \ge h, |T_{i',j'}| \ge h) - \mathsf{P}(|T_{i,j}| \ge h) \mathsf{P}(|T_{i',j'}| \ge h) \right\}}{q^2 G^2(h)}$$

= $O\{(\log q)^{-1-\gamma}\}.$ (S12)

Combining (S10), (S11) and (S12), we have

$$\int_0^{h_q} \left[\frac{C}{qG(h)} + \frac{C}{q^{1-\nu} \{G(h)\}^{2r'/(1+r')}} + C(\log q)^{-1-\gamma} \right] dh = o(v_q).$$

This proves (S8). Along with (S9), we prove Theorem 3.

A5 **Proof of Proposition 1**

It sufficies to show that

$$\mathsf{P}_{H_{0,i,j}}\left(|T_{i,j}| \ge h, |A_{i,j}| \ge \lambda\right) = \{1 + o(1)\}G(h)\mathsf{P}\left(|N(0,1) + a_{i,j}| \ge \lambda\right) + O(q^{-M}),$$

uniformly for $0 \le h \le C\sqrt{\log q}$, $0 \le \lambda \le C\sqrt{\log q}$, and $1 \le i < j \le p$. By the fact that N is fixed, the second part then directly follows.

Note that $G[h + o\{(\log q)^{-1/2}\}]/G(h) = 1 + o(1)$ uniformly in $0 \le h \le c(\log q)^{1/2}$ for any constant c. By the proof of Theorem 1, it suffices to show that,

$$\mathsf{P}(|U_{i,j}| \ge t, |Q_{i,j}| \ge \lambda) = \{1 + o(1)\}G(h)\mathsf{P}(|N(0,1)| \ge \lambda) + O(q^{-M}),$$

where

$$U_{i,j} = \frac{\bar{S}_{1,i,j} - \bar{S}_{2,i,j}}{(\sigma_{w,i,1}^2 + \sigma_{w,i,2}^2)^{1/2}}, \quad \text{and} \quad Q_{i,j} = \frac{\bar{S}_{1,i,j} - s_{1,i,j} + (\sigma_{w,i,1}^2 / \sigma_{w,i,2}^2)(\bar{S}_{2,i,j} - s_{2,i,j})}{\sqrt{\sigma_{w,i,1}^2 (1 + \sigma_{w,i,1}^2 / \sigma_{w,i,2}^2)}},$$

with $\sigma_{w,i,d}^2 = \text{Var}(S_{d,l,i,j})/n_d$, d = 1, 2. Note that $U_{i,j}$ and $Q_{i,j}$ are uncorrelated with each other.

We next truncate $V_{i,j}$ and $Q_{i,j}$, respectively, by τ_n as defined in Theorem 1 with rate $\{\log(q+n)\}^{1+\epsilon}$ for a sufficiently small $\epsilon > 0$. Then we have the truncated $\hat{V}_{i,j}$ and $\hat{Q}_{i,j}$ satisfy that,

$$\mathsf{P}\left\{\max_{1\leq i\leq m}|V_i-\hat{V}_i|\geq (\log q)^{-1}\right\}\leq \mathsf{P}\left(\max_{1\leq i\leq q}\max_{1\leq l\leq n_1+n_2}|U_{l,i}|\geq \tau_n\right)=O(q^{-M}),$$

and

$$\mathsf{P}\left\{\max_{1\leq i\leq m}|Q_i-\hat{Q}_i|\geq (\log q)^{-1}\right\}=O(q^{-M})$$

Thus, it suffices to show that

$$\mathsf{P}\left(|\hat{U}_{i,j}| \ge h, |\hat{Q}_{i,j}| \ge \lambda\right) = \{1 + o(1)\}G(h)G(\lambda) + O(q^{-M}),\tag{S13}$$

uniformly for $0 \le h \le C\sqrt{\log q}$ and $0 \le \lambda \le C\sqrt{\log q}$. It follows from Lemma S2 that

$$\mathsf{P}\left(|\hat{U}_{i,j}| \ge h, |\hat{Q}_{i,j}| \ge \lambda\right)$$

$$\leq \mathsf{P}\left\{|N_1| \geq h - \epsilon_n (\log q)^{-1/2}, |N_2| \geq \lambda - \epsilon_n (\log q)^{-1/2}\right\} + c_1 \exp\left\{-\frac{n^{1/2} \epsilon_n}{c_2 \tau_n (\log q)^{1/2}}\right\},\$$

where $c_1 > 0$ and $c_2 > 0$ are constants, $\epsilon_n \to 0$ is to be specified later, and $\mathbf{N} = (N_1, N_2)$ is a normal random vector with $\mathsf{E}(\mathbf{N}) = 0$ and $\mathsf{Cov}(N_1, N_2) = 0$. Since $\log q = o(n^{1/c})$ for some c > 5, we let $\epsilon_n \to 0$ sufficiently slowly, so that for any large M > 0,

$$c_1 \exp\left\{-\frac{n^{1/2}\epsilon_n}{c_2\tau_n(\log q)^{1/2}}\right\} = O(q^{-M}).$$

Thus, we have

$$\mathsf{P}\left(|\hat{U}_{i,j}| \ge h, |\hat{Q}_{i,j}| \ge \lambda\right) \le \mathsf{P}\left\{|N_1| \ge h - \epsilon_n(\log q)^{-1/2}, |N_2| \ge \lambda - \epsilon_n(\log q)^{-1/2}\right\} + O(q^{-M}).$$

Similarly, using Lemma S2 again, we have

$$\mathsf{P}\left(|\hat{U}_{i,j}| \ge h, |\hat{Q}_{i,j}| \ge \lambda\right) \ge \mathsf{P}\left\{|N_1| \ge h + \epsilon_n(\log q)^{-1/2}, |N_2| \ge \lambda + \epsilon_n(\log q)^{-1/2}\right\} - O(q^{-M})$$

This proves (S13), then also Proposition 1.

A6 Proof of Theorems 4 and 5

By the proofs of Theorems 1 and 2 in Xia et al. (2020), it suffices to check the asymptotic normality, the weak dependency, and the asymptotic independence assumptions. By the construction of $T_{i,j}$ and the proof of Proposition 1, we have that $T_{i,j}$ is asymptotic normal. In addition, the assumptions of Theorem 3 ensures the weak dependency. Finally, Proposition 1 proves that the asymptotic independence holds. Thus Theorems 4 and 5 follow.

References

- Cai, T. T., Liu, W., and Xia, Y. (2013). Two-sample covariance matrix testing and support recovery in high-dimensional and sparse settings. *Journal of the American Statistical Association*, **108**, 265–277.
- Cai, T. T., Liu, W., and Xia, Y. (2014). Two-sample test of high dimensional means under dependency. *Journal of the Royal Statistical Society, Series B.*, **76**, 349–372.
- Jing, B.-Y., Shao, Q.-M., Wang, Q., et al. (2003). Self-normalized cramér-type large deviations for independent random variables. *The Annals of Probability*, **31**, 2167–2215.
- Liu, W. (2013). Gaussian graphical model estimation with false discovery rate control. *The Annals of Statistics*, **41**, 2948–2978.
- Xia, Y., Cai, T. T., and Sun, W. (2020). GAP: a general framework for information pooling in two-sample sparse inference. *Journal of the American Statistical Association*, **115**, 1279– 1291.
- Zaïtsev, A. Y. (1987). On the Gaussian approximation of convolutions under multidimensional analogues of S.N. Bernstein's inequality conditions. *Probability Theory and Related Fields*, 74, 535–566.