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A1 Technical Lemmas

Lemma S1 (Bonferroni Inequality). Let A = ∪pt=1At. For any k < [p/2], we have

2k∑
t=1

(−1)t−1Et ≤ P(A) ≤
2k−1∑
t=1

(−1)t−1Et,

where Et =
∑

1≤i1<···<it≤p P(Ai1 ∩ · · · ∩ Ait).

Lemma S2. For any random vector W = (w1, . . . , wb), with E(W ) = 0, and W = ξ1 +

· · · + ξn, where {ξk = (ξ1,k, . . . , ξb,k), k = 1, . . . , n} are independent random vectors and

|ξi,k| ≤ τ , 1 ≤ i ≤ b, we have, for any y, ε > 0,

P (|W | ≥ y) ≤ P (|N | ≥ y − ε) + c1b
5/2 exp

(
− ε

c2b3τ

)
,

P (|W | ≥ y) ≥ P (|N | ≥ y + ε)− c1b5/2 exp

(
− ε

c2b3τ

)
,

for some absolute constants c1, c2 > 0, where | · | is any vector norm, N is a normal random

vector with E(N ) = 0 and the same covariance matrix as W .

Lemma S2 is based on Theorem 1 of Zaı̈tsev (1987), and its proof is omitted. Lemma 1

in Section 2.2 of the paper is proved by applying Lemma S2, similarly as done in the proof of

Theorem 1 in Cai et al. (2013), and its proof is also omitted here.
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A2 Proof of Theorem 1

We rearrange the indices of {Sl,d,i,j, 1 ≤ i < j ≤ p} by {Sl,d,i, i = 1, . . . , q}. Let (Ul,1, ..., Ul,q)
T

be a zero mean random vector, with the covariance matrix Σ = (σi,j) and the diagonal

{σi,i}qi=1 = 1, which satisfies the moment conditions (C1) or (C2) and the regularity con-

ditions (A1) and (A2), l = 1, . . . , n. Note that,

|Vd,i,j/Var(Sl,d,i,j)− 1| = Op{(log q/n)1/2}, 1 ≤ i < j ≤ p, d = 1, 2,

Then under the event that {|Vd,i,j/Var(Sl,d,i,j)− 1| = O{(log q/n)1/2)}, to prove the theorem,

it suffices to show that, for any x ∈ R, as p→∞,

P

max
1≤i≤q

(
n−1/2

n∑
l=1

Ul,i

)2

− 2 log q + log log q ≤ x

→ exp{−π−1/2 exp(−x/2)}.

Let Ûl,i = Ul,iI{|Ul,i| ≤ τn}−E(Ul,iI{|Ul,i| ≤ τn}), l = 1, . . . , n, where τn = η−1/22
√

log(q + n)

if (C1) holds, and τn =
√
n/(log q)8 if (C2) holds. Let Wi =

∑n
l=1 Ul,i/

√
n and Ŵi =∑n

l=1 Ûl,i/
√
n. If (C1) holds, then we have,

max
1≤i≤q

n−1/2
n∑
l=1

E(|Ul,i|)I
{
|Ul,i| ≥ η−1/22

√
log(q + n)

}
≤ Cn1/2 max

1≤l≤n
max
1≤i≤q

E(|Ul,i|)I
{
|Ul,i| ≥ η−1/22

√
log(q + n)

}
≤ Cn1/2(q + n)−2 max

1≤l≤n
max
1≤i≤q

E(|Ul,i|) exp
(
ηU2

l,i/2
)

≤ Cn1/2(q + n)−2.

If (C2) holds, then we have,

max
1≤i≤q

n−1/2
n∑
l=1

E(|Ul,i|)I
{
|Ul,i| ≥

√
n/(log q)8

}
≤ Cn1/2 max

1≤l≤n1+n2

max
1≤i≤q

E(|Ul,i|)I
{
|Ul,i| ≥

√
n/(log q)8

}
≤ Cn−2γ0−ε/4.
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Therefore,

P
{

max
1≤i≤q

|Wi − Ŵi| ≥ (log q)−1
}
≤ P

(
max
1≤i≤q

max
1≤l≤t

|Ul,i| ≥ τn

)
≤ tq max

1≤i≤q
P(|U1i| ≥ τn) = O(q−1 + n−ε/4). (S1)

Note that

∣∣∣ max
1≤i≤q

W 2
i − max

1≤i≤q
Ŵ 2
i

∣∣∣ ≤ 2 max
1≤i≤q

|Wi| max
1≤i≤q

|Wi − Ŵi|+ max
1≤i≤p

|Wi − Ŵi|2. (S2)

By (S1) and (S2), it suffices to prove that, for any x ∈ R, as p→∞,

P
(

max
1≤i≤q

Ŵ 2
i − 2 log q + log log q ≤ x

)
→ exp

{
−π−1/2 exp(−x/2)

}
.

Let xq = 2 log q − log log q + x. It follows from Lemma S1 that, for any fixed k ≤ [q/2],

2k∑
s=1

(−1)s−1
∑

1≤i1<...<in≤q

P
(
|Ŵi1| ≥ xq, ..., |Wis| ≥ xq

)
≤ P

(
max
1≤i≤q

|Ŵi| ≥ xq

)

≤
2k−1∑
s=1

(−1)s−1
∑

1≤i1<...<is≤q

P
(
|Ŵi1 | ≥ xq, ..., |Wis | ≥ xq

)
. (S3)

Define |Ŵ |min = min1≤b≤s |Ŵib |. Then by Lemma S2, we have,

P
(
|Ŵ |min ≥ xq

)
≤ P

{
|Z|min ≥ xq − εn(log q)−1/2

}
+ c1s

5/2 exp

{
− n1/2εn
c2s3τn(log q)1/2

}
, (S4)

where c1 > 0 and c2 > 0 are absolute constants, εn → 0 is to be specified later, and Z =

(Zi1 , ..., Zis)
′ is a s-dimensional normal vector with the same covariance structure as Ŵ .

Because log p = o(n1/5), we can let εn → 0 sufficiently slow, such that

c1s
5/2 exp

{
− n1/2εn
c2s3τn(log q)1/2

}
= O(q−M) (S5)
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for any large M > 0. It then follows from (S3), (S4) and (S5) that

P
(

max
1≤i≤q

|Ŵi| ≥ xq

)
≤

2k−1∑
s=1

(−1)s−1
∑

1≤i1<...<is≤p

P
(
|Z|min ≥ xq − εn(log q)−1/2

)
+ o(1).(S6)

Similarly, using Lemma S2 again, we get

P
(

max
1≤i≤q

|Ŵi| ≥ xq

)
≥

2k∑
s=1

(−1)s−1
∑

1≤i1<...<is≤q

P
(
|Z|min ≥ xq − εn(log q)−1/2

)
− o(1).(S7)

By (S6), (S7) and the proof of Theorem 1 in Cai et al. (2014), our theorem is proved.

A3 Proof of Theorem 2

We first show that, as n1, n2, p→∞,

inf
(s1,s2)∈U(2

√
2)

P(Ψα = 1)→ 1.

Let

M1
n = max

1≤i≤j≤p

(
S̄1,i,j − S̄2,i,j − s1,i,j + s2,i,j

)2
V1,i,j/n1 + V2,i,j/n2

.

By the self-normalized large deviation theorem for independent random variables (Jing et al.,

2003, Theorem 1), we have that,

max
1≤i≤j≤p

P

{(
S̄1,i,j − S̄2,i,j − s1,i,j + s2,i,j

)2
V1,i,j/n1 + V2,i,j/n2

≥ x2

}
≤ C{1− Φ(x)},

uniformly for 0 ≤ x ≤ (8 log p)1/2. Thus we have that,

P
(
M1

n ≤ 2 log q − 1

2
log log q

)
→ 1

as t, q →∞. Note that,

max
1≤i≤j≤p

(s1,i,j − s2,i,j)2

V1,i,j/n1 + V2,i,j/n2

≤ 2M1
n + 2Mn



5

and that

max
1≤i≤j≤p

(s1,i,j − s2,i,j)2

Var(S1,l,i,j)/n1 + Var(S2,l,i,j)/n2

≥ 8 log q.

By the fact that

|Vd,i,j/Var(Sl,d,i,j)− 1| = Op

{
(log q/n)1/2

}
, 1 ≤ i < j ≤ p, d = 1, 2,

we have that,

P (Mn ≥ qα + 2 log q − log log p)→ 1

as n, q →∞.

We next prove that, there exists a constant c0 > 0 such that, for all sufficiently large nd

and p,

inf
(s1,s2)∈U(c0)

sup
Tα∈Tα

P(Tα = 1) ≤ 1− β,

Since Tα contains all the α-level tests over the collection of distributions satisfying (C1) or

(C2), it suffices to take Tα as the set of α-level tests over Gaussian distributions. Then follow-

ing the proof of Theorem 4 of Cai et al. (2014), our theorem is proved.

A4 Proof of Theorem 3

Under the assumption that |Sρ| ≥ [1/{π1/2α}+ δ](log q)1/2, we have that,

∑
(i,j)∈H

I
(
|Ti,j| ≥

√
2 log q

)
≥
{

1

π1/2α
+ δ

}√
log q,

with probability tending to 1. Henceforth, with probability going to one, we have

q∑
(i,j)∈H I

(
|Ti,j| ≥

√
2 log q

) ≤ q

{
1

π1/2α
+ δ

}−1
(log q)−1/2.
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Define hq =
√

2 log q − 2 log log q. Because 1 − Φ(hq) ∼ (
√

2πhq)
−1 exp(−h2q/2), we have

P(0 ≤ ĥ ≤ hq)→ 1 according to the definition of ĥ in Algorithm 1. Namely, we have

P
(
ĥ exists in [0, hq]

)
→ 1.

Thus it suffices to prove the theorem under the event that
{
ĥ exists in [0, hq]

}
.

Note that, by the definition of ĥ, for any h < ĥ, we have

G(h)q

max
{∑

(i,j)∈H I(|Ti,j| ≥ h), 1
} > α.

Because max
{∑

(i,j)∈H I(|Ti,j| ≥ ĥ), 1
}
≤ max

{∑
(i,j)∈H I(|Ti,j| ≥ h), 1

}
, we have that,

G(h)q

max
{∑

(i,j)∈H I(|Ti,j| ≥ ĥ), 1
} > α.

Thus, by letting h→ ĥ, we have,

G(ĥ)q

max
{∑

(i,j)∈H I(|Ti,j| ≥ ĥ), 1
} ≥ α.

On the other hand, based on the definition of ĥ, there exists a sequence {hl} with hl ≥ ĥ and

hl → ĥ, such that,

G(hl)q

max
{∑

(i,j)∈H I(|Ti,j| ≥ hl), 1
} ≤ α.

Since max
{∑

(i,j)∈H I(|Ti,j| ≥ hl), 1
}
≤ max

{∑
(i,j)∈H I(|Ti,j| ≥ ĥ), 1

}
, it implies that,

G(hl)q

max
{∑

(i,j)∈H I(|Ti,j| ≥ ĥ), 1
} ≤ α.

Letting hl → ĥ, we have that,

G(ĥ)q

max
{∑

(i,j)∈H I(|Ti,j| ≥ ĥ), 1
} ≤ α.
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Thus by focusing on the event
{
ĥ exists in [0, hq]

}
, we have that,

G(ĥ)q

max
{∑

(i,j)∈H I(|Ti,j| ≥ ĥ), 1
} = α.

Then it suffices to show that

sup
0≤h≤hq

∣∣∣∣∣
∑

(i,j)∈H0
I(|Ti,j| ≥ h)− |H0|G(h)

qG(h)

∣∣∣∣∣→ 0

in probability. Let 0 ≤ h0 < h1 < · · · < hb = hq, such that hι − hι−1 = vq for 1 ≤ ι ≤ b− 1,

and hb − hb−1 ≤ vq, where vq = 1/
√

log q(log4 q). Then we have b ∼ hq/vq. For any h such

that hι−1 ≤ h ≤ hι, we have that∑
(i,j)∈H0

I(|Ti,j| ≥ hι)

|H0|G(hι)

G(hι)

G(hι−1)
≤
∑

(i,j)∈H0
I(|Ti,j| ≥ h)

|H0|G(h)

≤
∑

(i,j)∈H0
I(|Ti,j| ≥ hι−1)

|H0|G(hι−1)

G(hι−1)

G(hι)
.

Thus it suffices to prove that

max
0≤ι≤b

∣∣∣∣∣
∑

(i,j)∈H0
{I(|Ti,j| ≥ hι)−G(hι)}
|H0|G(hι)

∣∣∣∣∣→ 0

in probability. Note that

P

(
max
0≤ι≤b

∣∣∣∣∣
∑

(i,j)∈H0
{I(|Ti,j| ≥ hι)−G(hι)}
|H0|G(hι)

∣∣∣∣∣ ≥ ε

)

≤
b∑
ι=1

P

(∣∣∣∣∣
∑

(i,j)∈H0
{I(|Ti,j| ≥ hι)−G(hι)}
|H0|G(hι)

∣∣∣∣∣ ≥ ε

)

≤ 1

vq

∫ hq

0

P

(∣∣∣∣∣
∑

(i,j)∈H0
{I(|Ti,j| ≥ h)−G(h)}
|H0|G(h)

∣∣∣∣∣ ≥ ε

)
dt

+
b∑

ι=b−1

P

(∣∣∣∣∣
∑

(i,j)∈H0
{I(|Ti,j| ≥ hι)−G(hι)}
|H0|G(hι)

∣∣∣∣∣ ≥ ε

)
.

By the proof of Theorem 1, we have that

P (|Ti,j| ≥ h) = {1 + o(1)}G(h).
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Thus it suffices to prove the following two statements are true for any ε > 0:

∫ hq

0

P

(∣∣∣∣∣
∑

(i,j)∈H0
{I(|Ti,j| ≥ h)− P(|Ti,j| ≥ h)}

qG(h)

∣∣∣∣∣ ≥ ε

)
dh = o(vq), (S8)

and

sup
0≤h≤hq

P

(∣∣∣∣∣
∑

(i,j)∈H0
{I(|Ti,j| ≥ h)− P(|Ti,j| ≥ h)}

qG(h)

∣∣∣∣∣ ≥ ε

)
= o(1). (S9)

Next we prove (S8), while the proof of (S9) is similar and is thus omitted. Note that the

variance can be calculated as follows

E

[∑
(i,j)∈H0

{I(|Ti,j| ≥ h)− P(|Ti,j| ≥ h)}
qG(h)

]2

=

∑
(i,j),(i′,j′)∈H0

{P (|Ti,j| ≥ h, |Ti′,j′ | ≥ h)− P (|Ti,j| ≥ h) P (|Ti′,j′| ≥ h)}
q2G2(h)

.

We further split the pairs of indices inH0 into three subsets as below. We rearrange the indices

of {(i, j), 1 ≤ i < j ≤ p} by {k, k = 1, . . . , q}, and denote by ki,j the corresponding index of

(i, j) after rearranging:

H01 = {(i, j), (i′, j′) ∈ H0, (i, j) = (i′, j′)} ,

H02 =
{

(i, j), (i′, j′) ∈ H0, (i, j) 6= (i′, j′), ki,j ∈ Aki′,j′ (ξ) or ki′,j′ ∈ Aki,j(ξ)
}
,

H03 = {(i, j), (i′, j′) ∈ H0} \ (H01 ∪H02).

For the subsetH01, the cardinality is q0, thus we have∑
(i,j),(i′,j′)∈H01

{P(|Ti,j| ≥ h, |Ti′,j′ | ≥ h)− P(|Ti,j| ≥ h)P(|Ti′,j′ | ≥ h)}
q2G2(h)

≤ C

qG(h)
. (S10)

For the subsetH02, recall that

Ai(ξ) = {j : max{|r1,i,j|, |r2,i,j|} ≥ (log q)−2−ξ},
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and max1≤i≤q |Ai(ξ)| = o(qν) for 0 < ν < (1 − r)/(1 + r). Thus we have |H02| =

O(q1+ν). Note that, by Assumption (A2), we have that, uniformly for (i, j), (i′, j′) ∈ H02,

Corr(Ti,j, Ti′,j′) ≤ r′ < 1, with r′ < r + ε < 1, 0 < ε < 1−ν
1+ν
− r. Therefore, similar to (S4)

in the proof of Theorem 1, under (C1) or (C2), by applying Lemma S2 and Lemma 6.2 in Liu

(2013), we have that∑
(i,j),(i′,j′)∈H02

{P(|Ti,j| ≥ h, |Ti′,j′ | ≥ h)− P(|Ti,j| ≥ h)P(|Ti′,j′ | ≥ h)}
q2G2(h)

≤ C
q1+νh−2 exp{−h2/(1 + r′)}

q2G2(h)
≤ C

q1−ν{G(h)}2r′/(1+r′)
. (S11)

For the subset H03, Ti,j and Ti′,j′ are weakly correlated with each other. Based on the

conditions in the theorem, by applying Lemma S2 and Lemma 6.1 in Liu (2013), it is easy to

obtain that,

max
(i,j),(i′,j′)∈H03

P (|Ti,j| ≥ h, |Ti′,j′| ≥ h) = [1 +O{(log q)−1−γ}]G2(h),

with γ = min{ξ, 1/2}. Thus, we have that∑
(i,j),(i′,j′)∈H02

{P(|Ti,j| ≥ h, |Ti′,j′ | ≥ h)− P(|Ti,j| ≥ h)P(|Ti′,j′ | ≥ h)}
q2G2(h)

= O{(log q)−1−γ}. (S12)

Combining (S10), (S11) and (S12), we have∫ hq

0

[
C

qG(h)
+

C

q1−ν{G(h)}2r′/(1+r′)
+ C(log q)−1−γ

]
dh = o(vq).

This proves (S8). Along with (S9), we prove Theorem 3.

A5 Proof of Proposition 1

It sufficies to show that

PH0,i,j
(|Ti,j| ≥ h, |Ai,j| ≥ λ) = {1 + o(1)}G(h)P (|N(0, 1) + ai,j| ≥ λ) +O(q−M),



10

uniformly for 0 ≤ h ≤ C
√

log q, 0 ≤ λ ≤ C
√

log q, and 1 ≤ i < j ≤ p. By the fact that N is

fixed, the second part then directly follows.

Note that G[h + o{(log q)−1/2}]/G(h) = 1 + o(1) uniformly in 0 ≤ h ≤ c(log q)1/2 for

any constant c. By the proof of Theorem 1, it suffices to show that,

P (|Ui,j| ≥ t, |Qi,j| ≥ λ) = {1 + o(1)}G(h)P (|N(0, 1)| ≥ λ) +O(q−M),

where

Ui,j =
S̄1,i,j − S̄2,i,j

(σ2
w,i,1 + σ2

w,i,2)
1/2
, and Qi,j =

S̄1,i,j − s1,i,j + (σ2
w,i,1/σ

2
w,i,2)(S̄2,i,j − s2,i,j)√

σ2
w,i,1(1 + σ2

w,i,1/σ
2
w,i,2)

,

with σ2
w,i,d = Var(Sd,l,i,j)/nd, d = 1, 2. Note that Ui,j and Qi,j are uncorrelated with each

other.

We next truncate Vi,j and Qi,j , respectively, by τn as defined in Theorem 1 with rate

{log(q + n)}1+ε for a sufficiently small ε > 0. Then we have the truncated V̂i,j and Q̂i,j

satisfy that,

P
{

max
1≤i≤m

|Vi − V̂i| ≥ (log q)−1
}
≤ P

(
max
1≤i≤q

max
1≤l≤n1+n2

|Ul,i| ≥ τn

)
= O(q−M),

and

P
{

max
1≤i≤m

|Qi − Q̂i| ≥ (log q)−1
}

= O(q−M).

Thus, it suffices to show that

P
(
|Ûi,j| ≥ h, |Q̂i,j| ≥ λ

)
= {1 + o(1)}G(h)G(λ) +O(q−M), (S13)

uniformly for 0 ≤ h ≤ C
√

log q and 0 ≤ λ ≤ C
√

log q. It follows from Lemma S2 that

P
(
|Ûi,j| ≥ h, |Q̂i,j| ≥ λ

)
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≤ P
{
|N1| ≥ h− εn(log q)−1/2, |N2| ≥ λ− εn(log q)−1/2

}
+ c1 exp

{
− n1/2εn
c2τn(log q)1/2

}
,

where c1 > 0 and c2 > 0 are constants, εn → 0 is to be specified later, and N = (N1, N2) is a

normal random vector with E(N ) = 0 and Cov(N1, N2) = 0. Since log q = o(n1/c) for some

c > 5, we let εn → 0 sufficiently slowly, so that for any large M > 0,

c1 exp

{
− n1/2εn
c2τn(log q)1/2

}
= O(q−M).

Thus, we have

P
(
|Ûi,j| ≥ h, |Q̂i,j| ≥ λ

)
≤ P

{
|N1| ≥ h− εn(log q)−1/2, |N2| ≥ λ− εn(log q)−1/2

}
+O(q−M).

Similarly, using Lemma S2 again, we have

P
(
|Ûi,j| ≥ h, |Q̂i,j| ≥ λ

)
≥ P

{
|N1| ≥ h+ εn(log q)−1/2, |N2| ≥ λ+ εn(log q)−1/2

}
−O(q−M).

This proves (S13), then also Proposition 1.

A6 Proof of Theorems 4 and 5

By the proofs of Theorems 1 and 2 in Xia et al. (2020), it suffices to check the asymptotic

normality, the weak dependency, and the asymptotic independence assumptions. By the con-

struction of Ti,j and the proof of Proposition 1, we have that Ti,j is asymptotic normal. In

addition, the assumptions of Theorem 3 ensures the weak dependency. Finally, Proposition 1

proves that the asymptotic independence holds. Thus Theorems 4 and 5 follow.
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