CONDITIONAL MARGINAL TEST IN

HIGH DIMENSIONAL QUANTILE REGRESSION

Yanlin Tang ${ }^{1}$, Yinfeng Wang $\left.{ }^{2}\right]$ Huixia Judy Wang ${ }^{3}$ and Qing Pan ${ }^{3}$
${ }^{1}$ East China Normal University
${ }^{2}$ Shanghai Lixin University of Accounting and Finance and ${ }^{3}$ George Washington University

Supplementary Material

The online Supplementary Material includes additional numerical results, a discussion of condition A5, and proofs of the main results.

S1 Additional numerical results

S1.1 Computing time and empirical size of Case 2

The simulation is done in the cluster with the configuration of each node similar to MacBook Pro 2.3 GHz Intel Core i5, 8 GB 2133 MHz LPDDR3. Table S. 1 summarizes the average computing time of different methods for analyzing one data in Case 1 at $\tau=0.5$ or the mean, where $T_{n, k}(\tau)$ is the sum of computing
time for $T_{n, k}^{E}(\tau)$ and $T_{n, k}^{B}(\tau)$, for $k=1,2$; the average computing times are similar in Cases 2-3 and, thus, are omitted. Results show that the methods that do not require the estimation of f_{τ}, namely, $\mathrm{RS}, T_{n, 2}(\tau)$, and GC, are more efficient than that do, namely, $T_{n, 1}(\tau), \mathrm{BON}$, and CCT. In addition, the resampling-bootstrapbased methods, QME and CAR, are computationally much more expensive than the other methods, even if double bootstrap is not used for tuning parameter selection.

Table S. 2 summarizes the empirical sizes from Case 2, which is similar to Case 1.

Table S.1: The average computing time (seconds) of different methods for analyzing one data in
Case 1.

$\mathrm{method}^{p_{n}}$	$n=200$				$n=800$			
	10	50	200	1000	10	50	200	1000
$T_{n, 1}(\tau)$	2.10	9.05	34.63	180.01	3.68	16.50	64.72	354.41
$T_{n, 2}(\tau)$	0.16	0.64	2.31	11.59	0.37	1.78	7.09	37.82
RS	0.00	0.00	0.00	0.00	0.01	0.01	0.04	0.00
QME	2.26	4.45	19.64	284.27	5.66	12.62	69.91	1128.14
BON	1.93	8.36	32.40	167.52	3.31	15.23	61.56	309.93
CCT	1.93	8.36	32.40	167.52	3.31	15.23	61.56	309.93
CAR	1.70	3.19	18.66	354.39	2.39	8.66	66.84	1582.43
GC	0.79	1.02	1.60	4.42	12.54	16.68	26.29	86.60

$T_{n, k}^{E}(\tau)$ and $T_{n, k}^{B}(\tau), k=1,2$: four variations of the proposed test; RS: the rank score test of Park and He 2017; ; QME: the quantile marginal effect test of Wang et al. 2018; BON, Bonferroni adjustment on d_{n} individual P-values; CCT, Cauchy combination test of Liu and Xie 2019; CAR: the conditional adaptive resampling test of Tang et al. (2018); GC: the sum-squared-type test of Guo and Chen (2016).

Table S.2: Rejection percentages for Case 2 with $\mathbf{b}_{0}=\mathbf{0}$. All scenarios correspond to the null model.

$T_{n, k}^{E}(\tau)$ and $T_{n, k}^{B}(\tau), k=1,2$: four variations of the proposed test; RS: the rank score test of Park and He 2017); QME: the quantile marginal effect test of Wang et al. 2018; BON, Bonferroni adjustment on d_{n} individual P-values; CCT, Cauchy combination test of Liu and Xie 2019; CAR: the conditional adaptive resampling test of Tang et al. (2018); GC: the sum-squared-type test of Guo and Chen 2016.

S1.2 Additional Case 4

We consider a Case 4 to mimic the motivating GFR study and generate \mathbf{X}_{i}. as multivariate Bernoulli variables that are correlated with \mathbf{Z}_{i}. Specifically, we generate \mathbf{U}_{i}. and \mathbf{Z}_{i}. as in Case 3, and let $X_{i, l-5}=1-2 I\left(U_{i, l} \leq 0\right)$ for $l=$ $6, \ldots, p_{n}-1$. In addition, we let ε_{i} be standard exponential with median centered
at zero. Table S. 3 and Figure S. 1 present the rejection rates under the null and the power curves of different methods in Case 4.

Table S.3: Rejection percentages for Case 4 with $\mathbf{b}_{0}=\mathbf{0}$. All scenarios correspond to the null model.

Case	location	$\mathrm{method} p_{n}$	$n=200$				$n=800$			
			10	50	200	1000	10	50	200	1000
4	$\tau=0.25$	$T_{n, 1}^{E}(\tau)$	3.2	4.1	3.8	4.0	2.5	3.6	4.1	6.0
		$T_{n, 1}^{B}(\tau)$	5.7	5.7	5.3	5.1	4.7	4.8	5.8	6.5
		$T_{n, 2}^{E}(\tau)$	3.1	4.8	4.1	4.7	2.9	3.6	4.4	6.5
		$T_{n, 2}^{B}(\tau)$	5.4	6.2	6.0	5.2	5.1	4.9	5.6	7.3
		RS	6.1	2.5	1	/	5.4	4.1	2.2	/
		QME	2.5	1.8	2.5	7.1	4.0	2.6	3.8	7.7
		BON	5.4	4.2	4.7	3.2	4.3	4.7	5.5	6.1
		CCT	2.9	2.6	2.1	1.8	2.3	2.6	3.4	3.2
	$\tau=0.5$	$T_{n, 1}^{E}(\tau)$	2.7	4.5	3.7	3.4	3.0	4.7	4.0	4.1
		$T_{n, 1}^{B}(\tau)$	4.7	6.5	5.3	4.8	4.9	6.2	5.0	5.0
		$T_{n, 2}^{E}(\tau)$	2.9	4.7	4.0	3.8	3.1	4.8	3.9	4.2
		$T_{n, 2}^{B}(\tau)$	5.4	6.5	5.7	5.6	5.1	6.2	4.8	5.1
		RS	5.0	2.8	1	/	5.2	3.2	2.4	/
		QME	2.2	1.0	0.3	1.8	3.1	1.6	2.0	1.8
		BON	4.5	5.6	4.3	3.7	4.6	5.6	4.5	4.6
		CCT	2.4	2.9	1.8	2.1	2.9	3.0	1.5	2.4
	mean	CAR	5.0	3.8	5.2	5.1	6.2	6.4	6.2	5.8
		GC	5.5	7.0	5.7	6.1	6.2	5.1	5.7	4.9

$T_{n, k}^{E}(\tau)$ and $T_{n, k}^{B}(\tau), k=1,2$: four variations of the proposed test; RS: the rank score test of Park and He 2017; ; QME: the quantile marginal effect test of Wang et al. 2018; BON, Bonferroni adjustment on d_{n} individual P-values; CCT, Cauchy combination test of Liu and Xie 2019; CAR: the conditional adaptive resampling test of Tang et al. (2018); GC: the sum-squared-type test of Guo and Chen 2016.

Figure S.1: Power curves of the methods in Case 4 with $n=200$ and $\tau=0.5: T_{n, 1}^{E}(\tau)$ (dashed), $T_{n, 1}^{B}(\tau)$ (line with solid square), $T_{n, 2}^{E}(\tau)$ (line with solid dots), $T_{n, 2}^{B}(\tau)$ (line with triangle), RS (line with open circle), CAR (dotted), GC (line with diamond). The gray horizontal line indicates the nominal level of 0.05 .

S2 Discussion on condition A5

Discussion on condition A5. The term $\omega_{j, l, \tau}^{*}$ in A5 measures the weighted partial correlation between $X_{i, j, \tau}^{*}$ and $X_{i, l, \tau}^{*}$ after accounting for the effect of \mathbf{Z}, where the weights are due to the heteroscedasticity. Condition A5 requires the maximum of the weighted coefficients to have a lower bound. If $X_{j}, j=1, \ldots, d_{n}$ are uncorrelated across j, we have

$$
\sum_{l=1}^{s_{0}(\tau)} b_{l, 0}(\tau) \omega_{j, l, \tau}^{*}= \begin{cases}b_{j, 0}(\tau) E\left\{f_{i, \tau}(0) X_{i, j, \tau}^{* 2}\right\} /\left\{\tau(1-\tau) E\left(X_{i, j, \tau}^{* 2}\right)\right\}^{1 / 2}, & 1 \leq j \leq s_{0}(\tau) \\ 0, & j>s_{0}(\tau)\end{cases}
$$

Thus condition A5 is equivalent to

$$
\begin{equation*}
\max _{1 \leq j \leq s_{0}(\tau)}\left|b_{j, 0}(\tau)\right| E\left\{f_{i, \tau}(0) X_{i, j, \tau}^{* 2}\right\} /\left\{\tau(1-\tau) E\left(X_{i, j, \tau}^{* 2}\right)\right\}^{1 / 2}>\sqrt{2}+\epsilon \tag{S.1}
\end{equation*}
$$

Furthermore, if the errors are homoscedastic with $f_{i, \tau}(\cdot) \equiv f_{\tau}(\cdot)$, then A5 requires that

$$
\left|b_{j_{0}, 0}(\tau)\right|>\sqrt{2}\left\{\frac{\tau(1-\tau)}{f_{\tau}^{2}(0)}\right\}^{1 / 2} \frac{1}{\left\{E\left(X_{i, j_{0}}^{* 2}\right)\right\}^{1 / 2}}
$$

where j_{0} is the maxima of the left side of (S.1). This indicates that the larger the partial variance of $X_{j_{0}}$ given \mathbf{Z} is, the smaller signal is needed to achieve the desired power for testing.

S3 Proofs of Theorems 1-3

This section includes the proofs of Theorems 1-3.

S3.1 Some useful lemmas

Note that in the "bandwidth.rq" function of the R package quantreg,

$$
h=n^{-1 / 5}\left[4.5 \phi\left\{\Phi^{-1}(\tau)\right\}^{4} /\left\{2 \Phi^{-1}(\tau)^{2}+1\right\}^{2}\right]^{1 / 5} \triangleq C_{6} n^{-1 / 5},
$$

where $\Phi(\cdot), \phi(\cdot)$ are the distribution and density functions of the standard normal distribution, respectively.

Lemma S.1. Assume that conditions A.1-A. 4 hold, and h in (2.6) of the main text satisfies $h \leq h_{n}^{*}$ and $h^{-1}\left(q+s_{n}\right) \sqrt{\log \left(p_{n} \vee n\right) / n} \rightarrow 0$, where $s_{n}=$ $\max _{\nu \in\left[\tau-h_{n}^{*}, \tau+h_{n}^{*}\right]}\left\|\boldsymbol{\theta}_{0}(\nu)\right\|_{0}$. We have

$$
\delta_{\widehat{f}}=\max _{1 \leq i \leq n}\left|\widehat{f}_{i, \tau}(0)-f_{i, \tau}(0)\right|=O_{p}\left(h^{2}+h^{-1}\left(q+s_{n}\right) \sqrt{\log \left(p_{n} \vee n\right) / n}\right) .
$$

Especially, in our implementation, we have $h=C_{6} n^{-1 / 5}$, thus

$$
\delta_{\widehat{f}}=O_{p}\left(n^{-2 / 5}+n^{-3 / 10} \sqrt{\log \left(p_{n} \vee n\right)}\right)=O_{p}\left(n^{-3 / 10} \sqrt{\log \left(p_{n} \vee n\right)}\right) .
$$

Proof. Lemma S. 1 is quite similar to Lemma 19 in the supplementary file of Belloni et al. (2019), and we present the detailed proof in the following.

Let $\widetilde{\mathbf{X}}_{i} .=\left(\mathbf{Z}_{i}^{\top}, \mathbf{X}_{i}^{\top} .\right)^{\top}$, then

$$
\begin{align*}
& \widehat{f}_{i, \tau}(0) \\
= & \frac{2 h}{\widehat{Q}_{\tau+h}\left(Y_{i} \mid \mathbf{Z}_{i \cdot}, \mathbf{X}_{i \cdot}\right)-\widehat{Q}_{\tau-h}\left(Y_{i} \mid \mathbf{Z}_{i \cdot}, \mathbf{X}_{i \cdot}\right)}=\frac{2 h}{\widetilde{\mathbf{X}}_{i}^{\top}\{\widehat{\boldsymbol{\theta}}(\tau+h)-\widehat{\boldsymbol{\theta}}(\tau-h)\}} \\
= & \frac{2 h}{\widetilde{\mathbf{X}}_{i .}^{\top}\{\widehat{\boldsymbol{\theta}}(\tau+h)-\widehat{\boldsymbol{\theta}}(\tau-h)\}} \\
= & \frac{\left.2 h \boldsymbol{\theta}_{0}(\tau+h)-\boldsymbol{\theta}_{0}(\tau-h)\right\}}{\widetilde{\mathbf{X}}_{i \cdot}^{\top}\left\{\boldsymbol{\theta}_{0}(\tau+h)-\boldsymbol{\theta}_{0}(\tau-h)\right\}} \\
\triangleq & \frac{2 h}{\widetilde{\mathbf{X}}_{i \cdot}^{\top}\left\{\boldsymbol{\theta}_{0}(\tau+h)-\boldsymbol{\theta}_{0}(\tau-h)\right\}} /\left[1+\frac{\widetilde{\mathbf{X}}_{i \cdot}^{\top}\left\{\widehat{\boldsymbol{\theta}}(\tau+h)-\boldsymbol{\theta}_{0}(\tau+h)\right\}-\widetilde{\mathbf{X}}_{i \cdot}^{\top}\left\{\widehat{\boldsymbol{\theta}}(\tau-h)-\boldsymbol{\theta}_{0}(\tau-h)\right\}}{\widetilde{\mathbf{X}}_{i .}^{\top}\left\{\boldsymbol{\theta}_{0}(\tau+h)-\boldsymbol{\theta}_{0}(\tau-h)\right\}}\right] \tag{S.1}\\
\triangleq & \frac{2 h}{\widetilde{\mathbf{X}}_{i \cdot}^{\top}\left\{\boldsymbol{\theta}_{0}(\tau+h)-\boldsymbol{\theta}_{0}(\tau-h)\right\}} / I_{i} .
\end{align*}
$$

By assumption A4, we have $f_{Y_{i} \mid} \widetilde{\mathbf{x}}_{i} .(y)=f_{i, \tau}\left(y-\widetilde{\mathbf{X}}_{i}^{\top} \cdot \boldsymbol{\theta}_{0}(\tau)\right)$, thus it is easy to see that $f_{i, \tau}(0)=\frac{1}{Q_{\tau}^{\prime}\left(Y_{i} \mid \widetilde{\mathbf{X}}_{i .}\right)}$, where $Q_{\tau}^{\prime}\left(Y_{i} \mid \widetilde{\mathbf{X}}_{i .}\right)$ is the derivative of $Q_{\tau}\left(Y_{i} \mid \widetilde{\mathbf{X}}_{i}\right.$.) with respect to τ. By assumption A4, we get

$$
\begin{align*}
& (2 h)^{-1} \widetilde{\mathbf{X}}_{i \cdot}^{\top}\left\{\boldsymbol{\theta}_{0}(\tau+h)-\boldsymbol{\theta}_{0}(\tau-h)\right\}=(2 h)^{-1}\left\{Q_{\tau+h}\left(Y_{i} \mid \widetilde{\mathbf{X}}_{i \cdot}\right)-Q_{\tau-h}\left(Y_{i} \mid \widetilde{\mathbf{X}}_{i .}\right)\right\} \\
= & (2 h)^{-1}\left[\left\{Q_{\tau+h}\left(Y_{i} \mid \widetilde{\mathbf{X}}_{i .}\right)-Q_{\tau}\left(Y_{i} \mid \widetilde{\mathbf{X}}_{i .}\right)\right\}-\left\{Q_{\tau-h}\left(Y_{i} \mid \widetilde{\mathbf{X}}_{i .}\right)-Q_{\tau}\left(Y_{i} \mid \widetilde{\mathbf{X}}_{i \cdot}\right)\right\}\right] \\
= & (2 h)^{-1}\left[\left\{Q_{\tau}^{\prime}\left(Y_{i} \mid \widetilde{\mathbf{X}}_{i .}\right) h+\frac{1}{2} Q_{\tau}^{\prime \prime}\left(Y_{i} \mid \widetilde{\mathbf{X}}_{i} \cdot\right) h^{2}+\frac{1}{6} Q_{\tau}^{\prime \prime \prime}\left(Y_{i} \mid \widetilde{\mathbf{X}}_{i .}\right) h^{3}+O\left(h^{3}\right)\right\}\right. \\
& \left.-\left\{-Q_{\tau}^{\prime}\left(Y_{i} \mid \widetilde{\mathbf{X}}_{i .}\right) h+\frac{1}{2} Q_{\tau}^{\prime \prime}\left(Y_{i} \mid \widetilde{\mathbf{X}}_{i \cdot} .\right) h^{2}-\frac{1}{6} Q_{\tau}^{\prime \prime \prime}\left(Y_{i} \mid \widetilde{\mathbf{X}}_{i \cdot}\right) h^{3}+O\left(h^{3}\right)\right\}\right] \\
= & Q_{\tau}^{\prime}\left(Y_{i} \mid \widetilde{\mathbf{X}}_{i \cdot}\right)+O\left(h^{2}\right)=\frac{1}{f_{i, \tau}(0)}+O\left(h^{2}\right) . \tag{S.2}
\end{align*}
$$

Now we derive the term I_{i} in S.1). By the definition of the conditional quantiles, we have

$$
\int_{\tilde{\mathbf{x}}_{i \cdot}^{\top} \cdot \boldsymbol{\theta}_{0}(\tau-h)}^{\widetilde{\mathbf{X}}_{i}^{\top} \boldsymbol{\theta}_{0}(\tau+h)} f_{Y_{i} \mid \widetilde{\mathbf{x}}_{i},}(y) d y=2 h
$$

Since $f_{Y_{i} \mid \widetilde{\mathbf{X}}_{i} .}(y)$ is continuous in y by assumption A3, there exists $\xi_{i, \tau} \in\left[\widetilde{\mathbf{X}}_{i}^{\top} . \boldsymbol{\theta}_{0}(\tau-\right.$ $\left.h), \widetilde{\mathbf{X}}_{i}^{\top} \cdot \boldsymbol{\theta}_{0}(\tau+h)\right]$ such that

$$
\begin{equation*}
f_{Y_{i} \mid \widetilde{\mathbf{X}}_{i .}}\left(\xi_{i, \tau}\right)=\frac{2 h}{\widetilde{\mathbf{X}}_{i .}^{\top}\left\{\boldsymbol{\theta}_{0}(\tau+h)-\boldsymbol{\theta}_{0}(\tau-h)\right\}} \tag{S.3}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\widetilde{\mathbf{X}}_{i .}^{\top}\left\{\boldsymbol{\theta}_{0}(\tau+h)-\boldsymbol{\theta}_{0}(\tau-h)\right\}=\frac{2 h}{f_{Y_{i} \mid \widetilde{\mathbf{X}}_{i .}}\left(\xi_{i, \tau}\right)} \tag{S.4}
\end{equation*}
$$

By theorem 1 of Belloni and Chernozhukov (2011), we have $\left\|\widehat{\boldsymbol{\theta}}(\tau)-\boldsymbol{\theta}_{0}(\tau)\right\|_{0}=$ $O_{p}\left(q+s_{n}\right)$, and $\left\|\widehat{\boldsymbol{\theta}}(\tau)-\boldsymbol{\theta}_{0}(\tau)\right\|_{2}=O_{p}\left(\sqrt{\left(q+s_{n}\right) \log \left(p_{n} \vee n\right) / n}\right)$, thus $\widetilde{\mathbf{X}}_{i}^{\top}\{\widehat{\boldsymbol{\theta}}(\tau)-$ $\left.\boldsymbol{\theta}_{0}(\tau)\right\}=O_{p}\left\{\left(q+s_{n}\right) \sqrt{\log \left(p_{n} \vee n\right) / n}\right\}$. Thus, we use S. 4 to derive that

$$
\begin{align*}
I_{i} & =1+O_{p}\left[\left(q+s_{n}\right) \sqrt{\log \left(p_{n} \vee n\right) / n} / \widetilde{\mathbf{X}}_{i \cdot}^{\top} .\left\{\boldsymbol{\theta}_{0}(\tau+h)-\boldsymbol{\theta}_{0}(\tau-h)\right\}\right] \\
& =1+O_{p}\left\{\left(q+s_{n}\right) \sqrt{\log \left(p_{n} \vee n\right) / n} f_{Y_{i} \mid \widetilde{\mathbf{x}}_{i} .}\left(\xi_{i, \tau}\right) /(2 h)\right\} \\
& =1+O_{p}\left\{h^{-1}\left(q+s_{n}\right) \sqrt{\log \left(p_{n} \vee n\right) / n}\right\}, \tag{S.5}
\end{align*}
$$

where the last " $=$ " is because of the boundedness of $f_{Y_{i} \mid \tilde{\mathbf{X}}_{i}} .(\cdot)$ implied by assumption A3.

Combining (S.1), (S.2) and S.5), the proof of Lemma S.1 is completed. \square

Lemma S.2. Assume that conditions A.1-A. 3 hold. Let $\Theta_{n}=\{\boldsymbol{\alpha}: \| \boldsymbol{\alpha}-$ $\left.\boldsymbol{\alpha}_{\mathbf{Z}, 0}(\tau) \| \leq C_{7} \sqrt{\log \left(d_{n}\right) / n}\right\}$, where C_{7} is some large enough positive constant.

Under the null hypothesis $\boldsymbol{\beta}_{\mathbf{X}, 0}(\tau)=\mathbf{0}_{d_{n}}$, we have

$$
\begin{gather*}
\sup _{1 \leq j \leq d_{n}, \boldsymbol{\alpha} \in \boldsymbol{\Theta}_{n}}\left|S_{\tau, j}(\boldsymbol{\alpha})-S_{\tau, j}\left\{\boldsymbol{\alpha}_{\mathbf{Z}, 0}(\tau)\right\}-E\left[S_{\tau, j}(\boldsymbol{\alpha})-S_{\tau, j}\left\{\boldsymbol{\alpha}_{\mathbf{Z}, 0}(\tau)\right\}\right]\right| \\
=O_{p}\left\{n^{-1 / 4}(\log n)^{3 / 4}\right\}, \tag{S.6}
\end{gather*}
$$

where $S_{\tau, j}(\cdot)$ is either based on \mathbf{f}_{τ} or its estimate from the quotient method.
Lemma S. 2 follows directly from the proof of lemma A. 2 (expression (A.5)) of Wang and He (2007).

Lemma S.3. Assume that conditions A.1-A.4 hold. Then, for any $x \in \mathbb{R}$, as $n \rightarrow \infty, d_{n} \rightarrow \infty$,

$$
\begin{array}{r}
P\left[\max _{1 \leq j \leq d_{n}} S_{j}^{2}-2 \log \left(d_{n}\right)+\log \left\{\log \left(d_{n}\right)\right\} \leq x\right] \rightarrow \exp \left\{-\pi^{-1 / 2} \exp \left(-\frac{x}{2}\right)\right\}, \\
P\left[\max _{1 \leq j \leq d_{n}} S_{j} \leq \sqrt{2 \log \left(d_{n}\right)-\log \left\{\log \left(d_{n}\right)\right\}+x}\right] \rightarrow \exp \left\{-\frac{1}{2} \pi^{-1 / 2} \exp \left(-\frac{x}{2}\right)\right\}, \tag{S.8}
\end{array}
$$

where $S_{j}=n^{-1 / 2} \sum_{i=1}^{n} X_{i, j, \tau}^{*} \psi_{\tau}\left\{Y_{i}-\mathbf{Z}_{i \cdot}^{\top} \boldsymbol{\alpha}_{\mathbf{Z}, 0}(\tau)\right\} /\left\{\tau(1-\tau)\left\|\mathbb{X}_{\cdot j, \tau}^{*}\right\|^{2} / n\right\}^{1 / 2}$, $j=1, \ldots, d_{n}$.

Lemma S. 3 is similar to Lemma 6 of Cai et al. (2014), while the difference lies in the asymptotic normality of S_{j} and the normality assumption required by Lemma 6 of Cai et al. (2014). We fill the theoretical gap by Theorem 1.1 in Zaïtsev (1987), similar to the proof of Theorem 6 of Cai et al. (2014).

Proof. We only prove (S.7), and the proof of (S.8) is similar.
Let $V_{i, j}=X_{i, j, \tau}^{*} \psi_{\tau}\left\{Y_{i}-\mathbf{Z}_{i}^{\top} \cdot \boldsymbol{\alpha}_{\mathbf{Z}, 0}(\tau)\right\} /\left\{\tau(1-\tau)\left\|\mathbb{X}_{\cdot j, \tau}^{*}\right\|^{2} / n\right\}^{1 / 2}$, thus $S_{j}=$ $n^{-1 / 2} \sum_{i=1}^{n} V_{i, j}$. Let $\check{V}_{i, j}=V_{i, j} I\left(\left|V_{i, j}\right| \leq \zeta_{n}\right)$ for $i=1, \ldots, n$ and $\check{S}_{j}=$
$n^{-1 / 2} \sum_{i=1}^{n} \check{V}_{i, j}$, where $\zeta_{n}=2 C_{1}^{-1 / 2} \sqrt{d_{n}+n}$, with C_{1} defined in Assumption
A1 (ii). Then

$$
\begin{align*}
& P\left\{\max _{1 \leq j \leq d_{n}}\left|S_{j}-\check{S}_{j}\right| \geq \frac{1}{\log \left(d_{n}\right)}\right\} \leq P\left(\max _{1 \leq j \leq d_{n}} \max _{1 \leq i \leq n}\left|V_{i, j}\right| \geq \zeta_{n}\right) \\
\leq & n d_{n} \max _{1 \leq j \leq d_{n}} P\left(\left|V_{1, j}\right| \geq \zeta_{n}\right)=O\left(d_{n}^{-1}\right) . \tag{S.9}
\end{align*}
$$

Note that

$$
\begin{equation*}
\left|\max _{1 \leq j \leq d_{n}} S_{j}^{2}-\max _{1 \leq j \leq d_{n}} \check{S}_{j}^{2}\right| \leq 2 \max _{1 \leq j \leq d_{n}}\left|S_{j}\right| \max _{1 \leq j \leq d_{n}}\left|S_{j}-\check{S}_{j}\right|+\max _{1 \leq j \leq d_{n}}\left|S_{j}-\check{S}_{j}\right|^{2} \tag{S.10}
\end{equation*}
$$

By expression (S.9) and (S.10), it is enough to prove that, for any $x \in \mathbb{R}$, as
$n \rightarrow \infty, d_{n} \rightarrow \infty$,
$P\left[\max _{1 \leq j \leq d_{n}} \check{S}_{j}^{2}-2 \log \left(d_{n}\right)+\log \left\{\log \left(d_{n}\right)\right\} \leq x\right] \rightarrow \exp \left\{-\frac{1}{\sqrt{\pi}} \exp (-x / 2)\right\}$.
Given t, we define $\mathcal{I}=\left\{1 \leq j_{1}<\ldots<j_{t} \leq d_{n}: \max _{1 \leq k<l \leq t}\left|\operatorname{corr}\left(S_{j_{k}}, S_{j_{l}}\right)\right| \geq\right.$ $\left.d_{n}^{-\gamma_{0}}\right\}$, where γ_{0} is a sufficiently small number satisfying $\gamma_{0}<1 /(2 t)$; we omit t from the definition of \mathcal{I} for notation ease. For $2 \leq g \leq t-1$, define
$\mathcal{I}_{g}=\left\{1 \leq j_{1}<\ldots<j_{t} \leq d_{n}: \operatorname{card}(\Delta)=g\right.$, where Δ is the largest subset of $\left\{j_{1}, \ldots, j_{t}\right\}$ such that $\left.\forall j_{k} \neq j_{l} \in \Delta,\left|\operatorname{corr}\left(S_{j_{k}}, S_{j_{l}}\right)\right|<d_{n}^{-\gamma_{0}}\right\}$.

For $g=1$, define $\mathcal{I}_{1}=\left\{1 \leq j_{1}<\ldots<j_{t} \leq d_{n}:\left|\operatorname{corr}\left(S_{j_{k}}, S_{j_{l}}\right)\right| \geq\right.$ $d_{n}^{-\gamma_{0}}$ for every $\left.1 \leq k<l \leq t\right\}$. So we have $\mathcal{I}=\cup_{g=1}^{t-1} \mathcal{I}_{g}$.

It follows from lemma 1 of Cai et al. (2014) that, for any fixed $k \leq\left[d_{n} / 2\right]$,

$$
\begin{equation*}
\sum_{t=1}^{2 k}(-1)^{t-1} E_{t} \leq P\left(\max _{1 \leq j \leq d_{n}}\left|\check{S}_{j}\right| \geq \sqrt{x_{d_{n}}}\right) \leq \sum_{t=1}^{2 k-1}(-1)^{t-1} E_{t} \tag{S.11}
\end{equation*}
$$

where $x_{d_{n}}=2 \log \left(d_{n}\right)-\log \left\{\log \left(d_{n}\right)\right\}+x, E_{t}=\sum_{1 \leq j_{1}<\ldots<j_{t} \leq d_{n}} P\left(\left|\check{S}_{j_{1}}\right| \geq\right.$ $\sqrt{x_{d_{n}}}, \ldots,\left|\check{S}_{j_{t}}\right| \geq \sqrt{x_{d_{n}}}$.

Then, by Theorem 1.1 of Zaïtsev (1987), we have

$$
\begin{align*}
P\left(\min _{1 \leq l \leq t}\left|\check{S}_{j_{l}}\right| \geq \sqrt{x_{d_{n}}}\right) \leq & P\left\{\min _{1 \leq l \leq t}\left|S_{j_{l}}^{*}\right| \geq \sqrt{x_{d_{n}}}-\epsilon_{n} \log \left(d_{n}\right)^{-1 / 2}\right\} \\
& +a_{1} g^{5 / 2} \exp \left\{-\frac{n^{1 / 2} \epsilon_{n}}{a_{2} g^{3} \zeta_{n} \log \left(d_{n}\right)^{1 / 2}}\right\}, \tag{S.12}
\end{align*}
$$

where $a_{1}>0$ and $a_{2}>0$ are positive constants, $\epsilon_{n} \rightarrow 0$ will be specified later, and $\left(S_{j_{1}}^{*}, \ldots, S_{j_{t}}^{*}\right)^{\top}$ is a t-dimensional normal vector, which is a sub vector of

$$
\mathbf{S}^{*}=\left(S_{1}^{*}, \ldots, S_{d_{n}}^{*}\right)^{\top} \sim N\left(\mathbf{0}, \mathbf{R}_{\tau, \mathbf{X} \mid \mathbf{Z}}\right)
$$

Because $\log \left(d_{n}\right)=o\left\{n^{1 / 4} / \log (n)^{3 / 4}\right\}$, we can let $\epsilon_{n} \rightarrow 0$ sufficiently slowly such that

$$
\begin{equation*}
a_{1} g^{5 / 2} \exp \left\{-\frac{n^{1 / 2} \epsilon_{n}}{a_{2} g^{3} \zeta_{n} \log \left(d_{n}\right)^{1 / 2}}\right\}=O\left(d_{n}^{-M}\right) \tag{S.13}
\end{equation*}
$$

for any large $M>0$. It follows from expressions (S.11), (S.12) and (S.13) that

$$
\begin{align*}
& P\left(\min _{1 \leq j \leq d_{n}}\left|\check{S}_{j}\right| \geq \sqrt{x_{d_{n}}}\right) \\
\leq & \sum_{t=1}^{2 k-1}(-1)^{t-1} \sum_{1 \leq j_{1}<\ldots<j_{t} \leq d_{n}} P\left\{\min _{1 \leq l \leq t}\left|S_{j_{l}}^{*}\right| \geq \sqrt{x_{d_{n}}}-\epsilon_{n} \log \left(d_{n}\right)^{-1 / 2}\right\}+o(1) . \tag{S.14}
\end{align*}
$$

Similarly, using Theorem 1.1 of Zaïtsev (1987) again, we can obtain

$$
\begin{align*}
& P\left(\min _{1 \leq j \leq d_{n}}\left|\check{S}_{j}\right| \geq \sqrt{x_{d_{n}}}\right) \\
\geq & \sum_{t=1}^{2 k}(-1)^{t-1} \sum_{1 \leq j_{1}<\ldots<j_{t} \leq d_{n}} P\left\{\min _{1 \leq l \leq t}\left|S_{j_{l}}^{*}\right| \geq \sqrt{x_{d_{n}}}-\epsilon_{n} \log \left(d_{n}\right)^{-1 / 2}\right\}+o(1) . \tag{S.15}
\end{align*}
$$

So, by expression (S.14) and (S.15) and the proof of Theorem 1 (Lemma 6) of Cai et al. (2014), the lemma is proved. \square

S3.2 Proof of Theorem 1

Recall that
$S_{\tau, j}\left(\boldsymbol{\alpha}_{\mathbf{Z}}\right)=n^{-1 / 2} \sum_{i=1}^{n} X_{i, j, \tau}^{*} \psi_{\tau}\left(Y_{i}-\mathbf{Z}_{i}^{\top} \cdot \boldsymbol{\alpha}_{\mathbf{Z}}\right) /\left\{\tau(1-\tau)\left\|\mathbb{X}_{\cdot j, \tau}^{*}\right\|^{2} / n\right\}^{1 / 2}, j=1, \ldots, d_{n}$.

Since the density function matrix \mathbf{f}_{τ} is estimated by $\widehat{\mathbf{f}}_{\tau}$, we further define

$$
\begin{aligned}
\widehat{\mathbb{X}}_{\cdot j, \tau}^{*} & =\left\{\mathbf{I}_{n}-\widehat{\mathbf{f}}_{\tau} \mathbb{Z}\left(\mathbb{Z}^{\top} \widehat{\mathbf{f}}_{\tau}^{2} \mathbb{Z}\right)^{-1} \mathbb{Z}^{\top} \widehat{\mathbf{f}}_{\tau}\right\} \mathbb{X}_{\cdot j} \doteq\left(\widehat{X}_{1, j, \tau}^{*}, \ldots, \widehat{X}_{n, j, \tau}^{*}\right)^{\top} \\
S_{\tau, j}\left(\boldsymbol{\alpha}_{\mathbf{Z}} ; \widehat{\mathbb{X}}_{\cdot j, \tau}^{*}\right) & =n^{-1 / 2} \sum_{i=1}^{n} \widehat{X}_{i, j, \tau}^{*} \psi_{\tau}\left(Y_{i}-\mathbf{Z}_{i \cdot}^{\top} \boldsymbol{\alpha}_{\mathbf{Z}}\right) /\left\{\tau(1-\tau)\left\|\widehat{\mathbb{X}}_{\cdot j, \tau}^{*}\right\|^{2} / n\right\}^{1 / 2},
\end{aligned}
$$

$j=1, \ldots, d_{n}$. Because we actually use $S_{\tau, j}\left(\boldsymbol{\alpha}_{\mathbf{Z}} ; \widehat{\mathbb{X}}_{\cdot j, \tau}^{*}\right)$ to construct our test statistic, we prove Theorem 1 with $S_{\tau, j}\left(\boldsymbol{\alpha}_{\mathbf{Z}} ; \widehat{\mathbb{X}}_{\cdot j, \tau}^{*}\right)$.

Under the null hypothesis $\boldsymbol{\beta}_{\mathbf{X}, 0}(\tau)=\mathbf{0}_{d_{n}}^{\top}$, it is easy to show that $E\left[S_{\tau, j}\left\{\boldsymbol{\alpha}_{\mathbf{Z}, 0}(\tau) ; \widehat{\mathbb{X}}_{\cdot j, \tau}^{*}\right\} \mid\right.$
$\mathbb{Z}, \mathbb{X}]=0, j=1, \ldots, d_{n}$. Due to the fact that $\mathbb{Z}^{\top} \widehat{\mathbf{f}}_{\tau} \widehat{\mathbb{X}}_{\cdot j, \tau}^{*}=\mathbf{0}$, we have

$$
\begin{align*}
& E\left\{S_{\tau, j}\left(\boldsymbol{\alpha} ; \widehat{\mathbb{X}}_{\cdot j, \tau}^{*}\right) \mid \mathbb{Z}, \mathbb{X}\right\} \cdot\left\{\tau(1-\tau)\left\|\widehat{\mathbb{X}}_{\cdot j, \tau}^{*}\right\|^{2} / n\right\}^{1 / 2} \\
= & n^{-1 / 2} \sum_{i=1}^{n} \widehat{X}_{i, j, \tau}^{*}\left\{\tau-P\left(Y_{i}<\mathbf{Z}_{i \cdot}^{\top} \boldsymbol{\alpha}\right)\right\} \\
= & n^{-1 / 2} \sum_{i=1}^{n} \widehat{X}_{i, j, \tau}^{*}\left[P\left\{Y_{i}<\mathbf{Z}_{i \cdot}^{\top} \boldsymbol{\alpha}_{\mathbf{Z}, 0}(\tau)\right\}-P\left(Y_{i}<\mathbf{Z}_{i \cdot}^{\top} \boldsymbol{\alpha}\right)\right] \\
= & n^{-1 / 2} \sum_{i=1}^{n} \widehat{X}_{i, j, \tau}^{*}\left\{-f_{i, \tau}(0) \mathbf{Z}_{i .}^{\top}\left\{\boldsymbol{\alpha}-\boldsymbol{\alpha}_{\mathbf{Z}, 0}(\tau)\right\}-O\left(f_{i, \tau}^{\prime}(0)\left[\mathbf{Z}_{i \cdot}^{\top}\left\{\boldsymbol{\alpha}-\boldsymbol{\alpha}_{\mathbf{Z}, 0}(\tau)\right\}\right]^{2}\right)\right\} \\
= & n^{-1 / 2} \sum_{i=1}^{n} \widehat{X}_{i, j, \tau}^{*}\left[\left\{\widehat{f}_{i, \tau}(0)-f_{i, \tau}(0)\right\} \mathbf{Z}_{i \cdot}^{\top}\left\{\boldsymbol{\alpha}-\boldsymbol{\alpha}_{\mathbf{Z}, 0}(\tau)\right\}\right] \\
& +O_{p}\left\{n^{-1 / 2} \sum_{i=1}^{n} X_{i, j, \tau}^{*}\left(f_{i, \tau}^{\prime}(0)\left[\mathbf{Z}_{i .}^{\top}\left\{\boldsymbol{\alpha}-\boldsymbol{\alpha}_{\mathbf{Z}, 0}(\tau)\right\}\right]^{2}\right)\right\} \\
= & O_{p}\left(\sqrt{\log \left(d_{n}\right)} \max _{1 \leq i \leq n}\left|\widehat{f}_{i, \tau}(0)-f_{i, \tau}(0)\right|+n^{-1 / 2} \log \left(d_{n}\right)\right) \\
= & O_{p}\left(\delta_{\widehat{f}} \sqrt{\log \left(d_{n}\right)}+n^{-1 / 2} \log \left(d_{n}\right)\right), \tag{S.16}
\end{align*}
$$

uniformly over $\boldsymbol{\alpha} \in \boldsymbol{\Theta}_{n}=\left\{\boldsymbol{\alpha}:\left\|\boldsymbol{\alpha}-\boldsymbol{\alpha}_{\mathbf{Z}, 0}(\tau)\right\| \leq C_{7} \sqrt{\log \left(d_{n}\right) / n}\right\}$. It is easy to show that $\widehat{\boldsymbol{\alpha}}_{\mathbf{Z}}(\tau) \in \Theta_{n}$ with probability approaching 1 . Thus, combined with Lemmas S.1-S.2 and assumption A1, we have

$$
\begin{align*}
& S_{\tau, j}\left\{\widehat{\boldsymbol{\alpha}}_{\mathbf{Z}}(\tau) ; \widehat{\mathbb{X}}_{\cdot j, \tau}^{*}\right\} \\
= & S_{\tau, j}\left\{\boldsymbol{\alpha}_{\mathbf{Z}, 0}(\tau) ; \widehat{\mathbb{X}}_{\cdot j, \tau}^{*}\right\}+E\left[S_{\tau, j}\left\{\widehat{\boldsymbol{\alpha}}_{\mathbf{Z}}(\tau) ; \widehat{\mathbb{X}}_{\cdot j, \tau}^{*}\right\}\right]+O_{p}\left\{n^{-1 / 4}(\log n)^{3 / 4}\right\} \\
= & S_{\tau, j}\left\{\boldsymbol{\alpha}_{\mathbf{Z}, 0}(\tau) ; \widehat{\mathbb{X}}_{\cdot j, \tau}^{*}\right\}+O_{p}\left\{\delta_{\widehat{f}} \sqrt{\log \left(d_{n}\right)}+n^{-1 / 2} \log \left(d_{n}\right)+n^{-1 / 4}(\log n)^{3 / 4}\right\} \\
= & S_{\tau, j}\left\{\boldsymbol{\alpha}_{\mathbf{Z}, 0}(\tau) ; \widehat{\mathbb{X}}_{\cdot j, \tau}^{*}\right\}+o_{p}(1) . \tag{S.17}
\end{align*}
$$

Since we assume that $X_{i, j}$ is subGaussian, it is easy to prove that $S_{\tau, j}\left\{\boldsymbol{\alpha}_{\mathbf{Z}, 0}(\tau) ; \widehat{\mathbb{X}}_{\cdot j, \tau}^{*}\right\}$
is asymptotic normal. The proof of Theorem 1 follows by Lemma S.3. \square

S3.3 Proof of Theorem 2

From the proof of Theorem 1, we find that the plug-in of $\widehat{\mathbf{f}}_{\tau}$ doesn't affect the proof, thus here we use \mathbf{f}_{τ} for notational ease.

Recall that $S_{\tau, j}(\boldsymbol{\alpha})=n^{-1 / 2} \sum_{i=1}^{n} X_{i, j, \tau}^{*} \psi_{\tau}\left(Y_{i}-\mathbf{Z}_{i \cdot}^{\top} \boldsymbol{\alpha}\right) /\left\{\tau(1-\tau)\left\|\mathbb{X}_{\cdot j, \tau}^{*}\right\|^{2} / n\right\}^{1 / 2}, j=$ $1, \ldots, d_{n}$. Under the local alternative $\boldsymbol{\beta}_{\mathbf{X}, n}(\tau)=\mathbf{b}_{0}(\tau) \sqrt{\log \left(d_{n}\right) / n}$ with fixed $s_{0}(\tau)=\left\|\mathbf{b}_{0}(\tau)\right\|_{0}$, we assume without loss of generality that $b_{j, 0}(\tau) \neq 0, j=$ $1, \ldots, s_{0}(\tau)$. For notational ease, we omit τ from $s_{0}(\tau)$, and for a vector \mathbf{b}, we use $\mathbf{b}_{1: s_{0}}$ to represent the first s_{0} components. To derive the asymptotic property under the local alternative, we define
$S_{\tau, j}^{A}\left(\boldsymbol{\alpha}, \boldsymbol{\beta}_{1: s_{0}}\right)=n^{-1 / 2} \sum_{i=1}^{n} X_{i, j, \tau}^{*} \psi_{\tau}\left(Y_{i}-\mathbf{Z}_{i \cdot}^{\top} \boldsymbol{\alpha}-\mathbf{X}_{i, 1: s_{0}}^{\top} \boldsymbol{\beta}_{1: s_{0}}\right) /\left\{\tau(1-\tau)\left\|\mathbb{X}_{\cdot j, \tau}^{*}\right\|^{2} / n\right\}^{1 / 2}$,
so that $S_{\tau, j}(\boldsymbol{\alpha})=S_{\tau, j}^{A}(\boldsymbol{\alpha}, \mathbf{0})$.
Recall that $\Theta_{n}=\left\{\boldsymbol{\alpha}:\left\|\boldsymbol{\alpha}-\boldsymbol{\alpha}_{\mathbf{Z}, 0}(\tau)\right\| \leq C_{7} \sqrt{\log \left(d_{n}\right) / n}\right\}$. By Lemma S.2.
we have

$$
\begin{align*}
\sup _{\boldsymbol{\alpha} \in \boldsymbol{\Theta}_{n}} & \mid S_{\tau, j}^{A}(\boldsymbol{\alpha}, \mathbf{0})-S_{\tau, j}^{A}\left\{\boldsymbol{\alpha}_{\mathbf{Z}, 0}(\tau), \sqrt{\log \left(d_{n}\right) / n} \mathbf{b}_{1: s_{0}, 0}(\tau)\right\} \\
& -E\left[S_{\tau, j}^{A}(\boldsymbol{\alpha}, \mathbf{0})-S_{\tau, j}^{A}\left\{\boldsymbol{\alpha}_{\mathbf{Z}, 0}(\tau), \sqrt{\log \left(d_{n}\right) / n} \mathbf{b}_{1: s_{0}, 0}(\tau)\right\}\right] \mid=O_{p}\left\{n^{-1 / 4}(\log n)^{3 / 4}\right\} . \tag{S.18}
\end{align*}
$$

To derive the property of $S_{\tau, j}(\boldsymbol{\alpha})=S_{\tau, j}^{A}(\boldsymbol{\alpha}, \mathbf{0})$, we first obtain

$$
\begin{align*}
& E\left\{S_{\tau, j}^{A}(\boldsymbol{\alpha}, \mathbf{0}) \mid \mathbb{Z}, \mathbb{X}\right\} \times\left\{\tau(1-\tau)\left\|\mathbb{X}_{\cdot j, \tau}^{*}\right\|^{2} / n\right\}^{1 / 2} \\
= & n^{-1 / 2} \sum_{i=1}^{n} X_{i, j, \tau}^{*}\left\{\tau-P\left(Y_{i}<\mathbf{Z}_{i .}^{\top} \boldsymbol{\alpha}\right)\right\} \\
= & n^{-1 / 2} \sum_{i=1}^{n} X_{i, j, \tau}^{*}\left[P\left\{Y_{i}<\mathbf{Z}_{i \cdot}^{\top} \boldsymbol{\alpha}_{\mathbf{Z}, 0}(\tau)+\sqrt{\log \left(d_{n}\right) / n} \mathbf{X}_{i \cdot}^{\top} \mathbf{b}_{0}(\tau)\right\}-P\left(Y_{i}<\mathbf{Z}_{i \cdot}^{\top} \boldsymbol{\alpha}\right)\right] \\
= & n^{-1 / 2} \sum_{i=1}^{n} X_{i, j, \tau}^{*}\left(f_{i, \tau}(0)\left[\mathbf{Z}_{i \cdot}^{\top}\left\{\boldsymbol{\alpha}_{\mathbf{Z}, 0}(\tau)-\boldsymbol{\alpha}\right\}+\sqrt{\log \left(d_{n}\right) / n} \mathbf{X}_{i \cdot}^{\top} \mathbf{b}_{0}(\tau)\right]\right. \\
& \quad+f_{i, \tau}^{\prime}(0)\left[\mathbf{Z}_{i \cdot}^{\top}\left\{\boldsymbol{\alpha}_{\mathbf{Z}, 0}(\tau)-\boldsymbol{\alpha}\right\}+\sqrt{\log \left(d_{n}\right) / n} \mathbf{X}_{i \cdot}^{\top} \mathbf{b}_{0}(\tau)\right]^{2} \\
& \left.\quad+O\left[\mathbf{Z}_{i .}^{\top}\left\{\boldsymbol{\alpha}_{\mathbf{Z}, 0}(\tau)-\boldsymbol{\alpha}\right\}+\sqrt{\log \left(d_{n}\right) / n} \mathbf{X}_{i \cdot}^{\top} \cdot \mathbf{b}_{0}(\tau)\right]^{2}\right) \\
= & n^{-1 / 2} \sum_{i=1}^{n} X_{i, j, \tau}^{*}\left(f_{i, \tau}(0)\left[\mathbf{Z}_{i \cdot}^{\top}\left\{\boldsymbol{\alpha}_{\mathbf{Z}, 0}(\tau)-\boldsymbol{\alpha}\right\}+\sqrt{\log \left(d_{n}\right) / n} \mathbf{X}_{i \cdot}^{\top} \mathbf{b}_{0}(\tau)\right]\right)+O_{p}\left\{\log \left(d_{n}\right) / \sqrt{n}\right\} \\
= & \frac{1}{n} \sqrt{\log \left(d_{n}\right)} \sum_{i=1}^{n} X_{i, j, \tau}^{*} f_{i, \tau}(0) \sum_{l=1}^{s_{0}} X_{i, l} b_{l, 0}(\tau)+O_{p}\left\{\log \left(d_{n}\right) / \sqrt{n}\right\} \\
= & \sqrt{\log \left(d_{n}\right)} \sum_{l=1}^{s_{0}} b_{l, 0}(\tau) \frac{1}{n} \sum_{i=1}^{n} f_{i, \tau}(0) X_{i, j, \tau}^{*} X_{i, l}+O_{p}\left\{\log \left(d_{n}\right) / \sqrt{n}\right\} \\
= & \sqrt{\log \left(d_{n}\right)} \sum_{l=1}^{s_{0}} b_{l, 0}(\tau) \omega_{j, l, \tau}^{*}\left\{\tau(1-\tau)\left\|\mathbb{X}_{\cdot j, \tau}^{*}\right\|^{2} / n\right\}^{1 / 2}+O_{p}\left\{\log \left(d_{n}\right) / \sqrt{n}\right\}, \tag{S.19}
\end{align*}
$$

where the last but third equality is because $\sum_{i=1}^{n} X_{i, j, \tau}^{*} f_{i, \tau}(0) \mathbf{Z}_{i}=\mathbf{0}$, and the last equality is because the projection matrix $\mathbf{P}_{\mathbf{Z}, \mathbf{f}}=\mathbf{f}_{\tau} \mathbb{Z}\left(\mathbb{Z}^{\top} \mathbf{f}_{\tau}^{2} \mathbb{Z}\right)^{-1} \mathbb{Z}^{\top} \mathbf{f}_{\tau}$ is idempotent, so that $\omega_{j, l, \tau}^{*}=E\left\{f_{i, \tau}(0) X_{i, j, \tau}^{*} X_{i, l, \tau}^{*}\right\} /\left\{\tau(1-\tau) E\left(X_{i, j, \tau}^{* 2}\right)\right\}^{1 / 2}=$ $E\left\{f_{i, \tau}(0) X_{i, j, \tau}^{*} X_{i, l}\right\} /\left\{\tau(1-\tau) E\left(X_{i, j, \tau}^{* 2}\right)\right\}^{1 / 2}$ and $\left\|\mathbb{X}_{\cdot j, \tau}^{*}\right\|^{2} / n=E\left(X_{i, j, \tau}^{* 2}\right)\{1+$ $\left.O_{p}\left(n^{-1 / 2}\right)\right\}$.

We then obtain

$$
\begin{align*}
& E\left[S_{\tau, j}^{A}\left\{\boldsymbol{\alpha}_{\mathbf{Z}, 0}(\tau), \sqrt{\log \left(d_{n}\right) / n} \mathbf{b}_{1: s_{0}, 0}(\tau)\right\}\right]=0 \\
& S_{\tau, j}^{A}\left\{\boldsymbol{\alpha}_{\mathbf{Z}, 0}(\tau), \sqrt{\log \left(d_{n}\right) / n} \mathbf{b}_{1: s_{0}, 0}(\tau)\right\}=O_{p}(1) \tag{S.20}
\end{align*}
$$

which is straightforward under the local model.
Combining (S.18), (S.19) and (S.20), we have

$$
\sup _{\boldsymbol{\alpha} \in \boldsymbol{\Theta}_{n}}\left|\frac{S_{\tau, j}(\boldsymbol{\alpha})}{\sqrt{\log \left(d_{n}\right)}}-\frac{\sum_{l=1}^{s_{0}} b_{l, 0}(\tau) \omega_{j, l, \tau}^{*}\left\{E\left(X_{i, j, \tau}^{* 2}\right)\right\}^{1 / 2}}{\left(\left\|\mathbb{X}_{\cdot j, \tau}^{*}\right\|^{2} / n\right)^{1 / 2}}\right|=O_{p}\left\{\frac{1}{\sqrt{\log \left(d_{n}\right)}}\right\}
$$

Therefore,

$$
P\left[\sup _{\boldsymbol{\alpha} \in \boldsymbol{\Theta}_{n}}\left|\frac{S_{\tau, j}(\boldsymbol{\alpha})}{\sqrt{\log \left(d_{n}\right)}}-\frac{\sum_{l=1}^{s_{0}} b_{l, 0}(\tau) \omega_{j, l, \tau}^{*}\left\{E\left(X_{i, j, \tau}^{* 2}\right)\right\}^{1 / 2}}{\left(\left\|\mathbb{X}_{\cdot j, \tau}^{*}\right\|^{2} / n\right)^{1 / 2}}\right| \leq \epsilon / 4\right] \rightarrow 1
$$

Under the local model (2.6), with s_{0} being fixed, we can show that $\widehat{\boldsymbol{\alpha}}_{\mathbf{Z}}(\tau) \in \boldsymbol{\Theta}_{n}$ with probability approach 1 . Therefore,
$P\left[\left|\frac{S_{\tau, j}\left\{\widehat{\boldsymbol{\alpha}}_{\mathbf{Z}}(\tau)\right\}}{\sqrt{\log \left(d_{n}\right)}}-\sum_{l=1}^{s_{0}} b_{l, 0}(\tau) \omega_{j, l, \tau}^{*}\left\{E\left(X_{i, j, \tau}^{* 2}\right)\right\}^{1 / 2} /\left(\left\|\mathbb{X}_{\cdot j, \tau}^{*}\right\|^{2} / n\right)^{1 / 2}\right| \leq \epsilon / 4\right] \rightarrow 1$.
Since $\max _{1 \leq j \leq d_{n}}\left|\sum_{l=1}^{s_{0}} b_{l, 0}(\tau) \omega_{j, l, \tau}^{*}\right|>\sqrt{2}+\epsilon$, we have

$$
\max _{1 \leq j \leq d_{n}}\left|\sum_{l=1}^{s_{0}} b_{l, 0}(\tau) \omega_{j, l, \tau}^{*}\right|\left\{E\left(X_{i, j, \tau}^{* 2}\right)\right\}^{1 / 2} /\left(\left\|\mathbb{X}_{\cdot j, \tau}^{*}\right\|^{2} / n\right)^{1 / 2} \geq \sqrt{2}+\epsilon / 2
$$

Therefore,

$$
P\left[\max _{1 \leq j \leq d_{n}}\left|\frac{S_{\tau, j}\left\{\widehat{\boldsymbol{\alpha}}_{\mathbf{Z}}(\tau)\right\}}{\sqrt{\log \left(d_{n}\right)}}\right| \geq \sqrt{2}+\epsilon / 4\right] \rightarrow 1
$$

which leads to

$$
\begin{aligned}
& P\left(\text { reject } H_{0} \mid H_{a}\right) \\
= & P\left[T_{n, 1}(\tau)-2 \log \left(d_{n}\right)+\log \left\{\log \left(d_{n}\right)\right\} \geq q_{\gamma} \mid H_{a}\right] \\
= & P\left[\left.\max _{1 \leq j \leq d_{n}} \frac{S_{\tau, j}^{2}\left\{\widehat{\boldsymbol{\alpha}}_{\mathbf{Z}}(\tau)\right\}}{\log \left(d_{n}\right)} \geq 2-\log \left\{\log \left(d_{n}\right)\right\} / \log \left(d_{n}\right)+q_{\gamma} / \log \left(d_{n}\right) \right\rvert\, H_{a}\right] \rightarrow 1 .
\end{aligned}
$$

S3.4 Proof of Theorem 3

From the proof of Theorem 1, we find that the plug-in of $\widehat{\mathbf{f}}_{\tau}$ doesn't affect the proof, thus here we use f_{τ} for notational ease.

Recall that

$$
T_{n, 1}(\tau)^{*}=\max _{1 \leq j \leq d_{n}}\left\{n^{-1 / 2} \sum_{i=1}^{n} w_{i} X_{i, j, \tau}^{*} \psi\left(e_{i}\right)\right\}^{2} /\left\{\tau(1-\tau)\left\|\mathbb{X}_{\cdot j, \tau}^{*}\right\|^{2} / n\right\}
$$

where e_{i} i.i.d. $\sim N\left(-\Phi^{-1}(\tau), 1\right), w_{i}$ i.i.d. $\sim P(w=1)=P(w=-1)=1 / 2$.
It is easy to verify that $\left\{n^{-1 / 2} \sum_{i=1}^{n} w_{i} X_{i, j, \tau}^{*} \psi\left(e_{i}\right)\right\}^{2} /\left\{\tau(1-\tau)\left\|\mathbb{X}_{\cdot j, \tau}^{*}\right\|^{2} / n\right\} \sim \chi_{1}^{2}$.
For dependence across j, we have

$$
\begin{aligned}
& \operatorname{corr}\left[\frac{\sum_{i=1}^{n} w_{i} X_{i, j, \tau}^{*} \psi\left(e_{i}\right)}{\left\{\tau(1-\tau)\left\|\mathbb{X}_{\cdot j, \tau}^{*}\right\|^{2}\right\}^{1 / 2}}, \left.\frac{\sum_{i^{\prime}=1}^{n} w_{i^{\prime}} X_{i^{\prime}, j^{\prime}, \tau}^{*} \psi\left(e_{i^{\prime}}\right)}{\left\{\tau(1-\tau)\left\|\mathbb{X}_{\cdot j^{\prime}, \tau}^{*}\right\|^{2}\right\}^{1 / 2}} \right\rvert\, \mathbb{Z}, \mathbb{X}\right] \\
= & \sum_{i=1}^{n} E\left(w_{i}^{2}\right) E\left\{\psi\left(e_{i}\right)^{2}\right\} X_{i, j, \tau}^{*} X_{i, j^{\prime}, \tau} /\left\{\tau(1-\tau)\left\|\mathbb{X}_{\cdot j, \tau}^{*}\right\|\left\|\mathbb{X}_{\cdot j^{\prime}, \tau}^{*}\right\|\right\} \\
= & \sum_{i=1}^{n} X_{i, j, \tau}^{*} X_{i, j^{\prime}, \tau} /\left(\left\|\mathbb{X}_{\cdot j, \tau}^{*}\right\|\left\|\mathbb{X}_{\cdot j^{\prime}, \tau}^{*}\right\|\right)=r_{j, j^{\prime}}+O_{p}\left(n^{-1 / 2}\right),
\end{aligned}
$$

which is asymptotically equivalent to the correlation of $S_{\tau, j}\left\{\boldsymbol{\alpha}_{\mathbf{Z}, 0}(\tau)\right\}$ and $S_{\tau, j^{\prime}}\left\{\boldsymbol{\alpha}_{\mathbf{Z}, 0}(\tau)\right\}$ given \mathbb{Z} and \mathbb{X}. The proof follows similar steps as the proof of Theorem 1.

Bibliography

Belloni, A. and Chernozhukov, V. (2011). l_{1}-penalized quantile regression in high-dimensional sparse models. The Annals of Statistics 39, pp. 82-130.

Belloni, A., Chernozhukov, V. and Kato, K. (2019). Valid post-selection inference in high-dimensional approximately sparse quantile regression models. Journal of American Statistical Association, 114, pp. 749-758.

Cai, T., Liu, W. and Xia, Y. (2014). Two-sample test of high dimensional means under dependence. Journal of the Royal Statistical Society, Series B 76, pp. 349-372.

Guo, B. and Chen, S. (2016). Tests for high dimensional generalized linear models. Journal of the Royal Statistical Society, Series B 78, pp. 1079-1102.

Liu, Y. and Xie, J. (2019). Cauchy combination test: a powerful test with analytic p-value calculation under arbitrary dependency structures. Journal of the American Statistical Association, 115, pp. 393-402.

Park, S. and He, X. (2017). Hypothesis testing for regional quantiles. Journal of Statistical Planning and Inference 191, pp. 13-24.

Tang, Y., Wang, H. and Barut, E. (2018). Testing the presence of significant covariates through conditional marginal regression. Biometrika 105, pp. 5771.

Wang, H. and He, X. (2007). Detecting differential expressions in GeneChip microarray studies-a quantile approach. Journal of American Statistical Association 102, pp. 104-112.

Wang, H., McKeague, I. and Qian, M. (2018). Testing for marginal effect in quantile regression. Journal of the Royal Statistical Society, Series B 80, pp. 433-452.

Zaïtsev, A. Yu. (1987). On the Gaussian approximation of convolutions under multidimensional analogues of S.N. Bernstein's inequality conditions. Probability Theory and Related Fields 74, pp. 535-566.

Key Laboratory of Advanced Theory and Application in Statistics and Data Science - MOE, School of Statistics, East China Normal University, Shanghai, 200062, China

E-mail: yltang@fem.ecnu.edu.cn
Interdisciplinary Research Institute of Data Science, School of Statistics and Mathematics, Shanghai Lixin University of Accounting and Finance, Shanghai,

201209, China
E-mail: dairy-2006@163.com
Department of Statistics, George Washington University, Washington D.C., 20052, USA

E-mail: judywang@gwu.edu
Department of Statistics, George Washington University, Washington D.C., 20052, USA

E-mail: qpan@gwu.edu

