# A spline-based nonparametric analysis for 

 interval-censored bivariate survival dataYuan Wu<br>Duke University Medical Center, Durham, NC 27705

Ying Zhang

University of Nebraska Medical Center, Omaha, NE 68198

Junyi Zhou

Indiana University Fairbanks School of Public Health, Indianapolis, IN 46202

## Supplementary Material

THIS SUPPLEMENTARY MATERIAL CONTAINS TECHNICAL DETAILS INCLUDING LEMMAS AND THEIR PROOFS NECESSARY FOR THE MAIN PAPER.

## S1. Derivation of the log likelihood function

The $\log$ likelihood of the model parameter $\boldsymbol{\theta}$ based on the $n$ observations can be written as

$$
\begin{aligned}
& l_{n}(\boldsymbol{\theta} ; \text { data }) \\
& \qquad \begin{aligned}
= & \sum_{k=1}^{n}\left\{\delta_{1, k}^{(1)} \delta_{2, k}^{(1)} \log \operatorname{Pr}\left(T_{1} \leq u_{1, k}, T_{2} \leq u_{2, k}\right)\right. \\
& +\delta_{1, k}^{(1)} \delta_{2, k}^{(2)} \log \operatorname{Pr}\left(T_{1} \leq u_{1, k}, u_{2, k}<T_{2} \leq v_{2, k}\right) \\
& +\delta_{1, k}^{(1)} \delta_{2, k}^{(3)} \log \operatorname{Pr}\left(T_{1} \leq u_{1, k}, T_{2}>v_{2, k}\right) \\
& +\delta_{1, k}^{(2)} \delta_{2, k}^{(1)} \log \operatorname{Pr}\left(u_{1, k}<T_{1} \leq v_{1, k}, T_{2} \leq u_{2, k}\right) \\
& +\delta_{1, k}^{(2)} \delta_{2, k}^{(2)} \log \operatorname{Pr}\left(u_{1, k}<T_{1} \leq v_{1, k}, u_{2, k}<T_{2} \leq v_{2, k}\right) \\
& +\delta_{1, k}^{(2)} \delta_{2, k}^{(3)} \log \operatorname{Pr}\left(u_{1, k}<T_{1} \leq v_{1, k}, T_{2}>v_{2, k}\right) \\
& +\delta_{1, k}^{(3)} \delta_{2, k}^{(1)} \log \operatorname{Pr}\left(T_{1}>v_{1, k}, T_{2} \leq u_{2, k}\right) \\
& +\delta_{1, k}^{(3)} \delta_{2, k}^{(2)} \log \operatorname{Pr}\left(T_{1}>v_{1, k}, u_{2, k}<T_{2} \leq v_{2, k}\right) \\
& \left.+\delta_{1, k}^{(3)} \delta_{2, k}^{(3)} \log \operatorname{Pr}\left(T_{1}>v_{1, k}, T_{2}>v_{2, k}\right)\right\} .
\end{aligned}
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& l_{n}(\boldsymbol{\theta} ; \text { data }) \\
&= \sum_{k=1}^{n}\left\{\delta_{1, k}^{(1)} \delta_{2, k}^{(1)} \log F_{0}\left(u_{1, k}, u_{2, k}\right)\right. \\
&+\delta_{1, k}^{(1)} \delta_{2, k}^{(2)} \log \left[F_{0}\left(u_{1, k}, v_{2, k}\right)-F_{0}\left(u_{1, k}, u_{2, k}\right)\right] \\
&+\delta_{1, k}^{(1)} \delta_{2, k}^{(3)} \log \left[F_{1}\left(u_{1, k}\right)-F_{0}\left(u_{1, k}, v_{2, k}\right)\right] \\
&+\delta_{1, k}^{(2)} \delta_{2, k}^{(1)} \log \left[F_{0}\left(v_{1, k}, u_{2, k}\right)-F_{0}\left(u_{1, k}, u_{2, k}\right)\right] \\
&+\delta_{1, k}^{(2)} \delta_{2, k}^{(2)} \log \left[F_{0}\left(v_{1, k}, v_{2, k}\right)-F_{0}\left(u_{1, k}, v_{2, k}\right)-F_{0}\left(v_{1, k}, u_{2, k}\right)+F_{0}\left(u_{1, k}, u_{2, k}\right)\right] \\
&+\delta_{1, k}^{(2)} \delta_{2, k}^{(3)} \log \left[F_{1}\left(v_{1, k}\right)-F_{0}\left(v_{1, k}, v_{2, k}\right)-F_{1}\left(u_{1, k}\right)+F_{0}\left(u_{1, k}, v_{2, k}\right)\right] \\
&+\delta_{1, k}^{(3)} \delta_{2, k}^{(1)} \log \left[F_{2}\left(u_{2, k}\right)-F_{0}\left(v_{1, k}, u_{2, k}\right)\right] \\
&+\delta_{1, k}^{(3)} \delta_{2, k}^{(2)} \log \left[F_{2}\left(v_{2, k}\right)-F_{2}\left(u_{2, k}\right)-F_{0}\left(v_{1, k}, v_{2, k}\right)+F_{0}\left(v_{1, k}, u_{2, k}\right)\right] \\
&\left.+\delta_{1, k}^{(3)} \delta_{2, k}^{(3)} \log \left[1-F_{1}\left(v_{1, k}\right)-F_{2}\left(v_{2, k}\right)+F_{0}\left(v_{1, k}, v_{2, k}\right)\right]\right\} . "
\end{aligned}
$$

## S2. Theorem Proofs

Proof of the consistency for Theorem 1

The key point for the proof is to find $\Theta_{n}$ as described in Theorem 1.
First, for any element $\boldsymbol{\theta}_{n} \in \Theta_{n}$, with a small positive number $c_{k n o t}$ two knot
sequences are selected as
$\left\{\left(\xi_{i}\right)_{i=1}^{p_{n}+l}:\left(\xi_{i}\right)_{i=1}^{p_{n}+l} \in \boldsymbol{\xi}\right.$, for $\boldsymbol{\xi}$ defined by (2.2) in the main paper,

$$
\begin{equation*}
\left.\frac{\min _{i: l \leq i \leq p_{n}}\left(\xi_{i+1}-\xi_{i}\right)}{\max _{i: l \leq i \leq p_{n}}\left(\xi_{i+1}-\xi_{i}\right)}>c_{k n o t}\right\} \tag{S2.1}
\end{equation*}
$$

and
$\left\{\left(\eta_{j}\right)_{j=1}^{q_{n}+l}:\left(\eta_{j}\right)_{j=1}^{q_{n}+l} \in \boldsymbol{\eta}\right.$, for $\boldsymbol{\eta}$ defined by (2.3) in the main paper,

$$
\begin{equation*}
\left.\frac{\min _{j: l \leq j \leq q_{n}}\left(\eta_{j+1}-\eta_{j}\right)}{\max _{j: l \leq j \leq q_{n}}\left(\eta_{j+1}-\eta_{j}\right)}>c_{k n o t}\right\} . \tag{S2.2}
\end{equation*}
$$

Second, for any $\boldsymbol{\theta}_{n} \in \Theta_{n}$ we make conditions in (2.8) in the main paper a little stronger by introducing a small $c^{*}>0$ and updating those conditions to the following

$$
\begin{align*}
& c_{*} \leq F_{n, 0}\left(u_{1}, u_{2}\right), \\
& F_{n, 0}\left(u_{1}, u_{2}\right)+c_{*} \leq F_{n, 0}\left(v_{1}, u_{2}\right), \\
& F_{n, 0}\left(u_{1}, u_{2}\right)+c_{*} \leq F_{n, 0}\left(u_{1}, v_{2}\right), \\
& \left\{F_{n, 0}\left(v_{1}, v_{2}\right)-F_{n, 0}\left(u_{1}, v_{2}\right)\right\}-\left\{F_{n, 0}\left(v_{1}, u_{2}\right)-F_{n, 0}\left(u_{1}, u_{2}\right)\right\} \geq c_{*}, \\
& F_{n, 1}\left(u_{1}\right)-F_{n, 0}\left(u_{1}, v_{2}\right) \geq c_{*},  \tag{S2.3}\\
& F_{n, 2}\left(u_{2}\right)-F_{n, 0}\left(v_{1}, u_{2}\right) \geq c_{*}, \\
& \left\{F_{n, 1}\left(v_{1}\right)-F_{n, 1}\left(u_{1}\right)\right\}-\left\{F_{n, 0}\left(v_{1}, v_{2}\right)-F_{n, 0}\left(u_{1}, v_{2}\right)\right\} \geq c_{*}, \\
& \left\{F_{n, 2}\left(v_{2}\right)-F_{n, 2}\left(u_{2}\right)\right\}-\left\{F_{n, 0}\left(v_{1}, v_{2}\right)-F_{n, 0}\left(v_{1}, u_{2}\right)\right\} \geq c_{*}, \\
& \left\{1-F_{n, 1}\left(v_{1}\right)\right\}-\left\{F_{n, 2}\left(v_{2}\right)-F_{n, 0}\left(v_{1}, v_{2}\right)\right\} \geq c_{*} .
\end{align*}
$$

That is, for

$$
\begin{align*}
\mathcal{D}=\{ & \left(u_{1}, v_{1}, u_{2}, v_{2}\right): u_{1} \in\left[\tau_{1, l}, \tau_{1, h}\right], v_{1} \in\left[\tau_{1, l}, \tau_{1, h}\right],  \tag{S2.4}\\
& \left.u_{2} \in\left[\tau_{2, l}, \tau_{2, h}\right], v_{2} \in\left[\tau_{2, l}, \tau_{2, h}\right], u_{1}+\tau_{d} \leq v_{1}, u_{2}+\tau_{d} \leq v_{2}\right\}
\end{align*}
$$

we define

$$
\Theta_{n}=\left\{\boldsymbol{\theta}_{n}: S 2.3 \text { holds for }\left(u_{1}, v_{1}, u_{2}, v_{2}\right) \in \mathcal{D} \text { for } \mathcal{D} \text { defined by } \mathrm{S} 2.4\right. \text {, }
$$

knot sequences for $\boldsymbol{\theta}_{n}$ by (S2.1) and (S2.2)\},
where Then it is clear that $\Theta_{n} \subset \Psi_{n}$. In what follows, we will show that the above defined $\Theta_{n}$ guarantees the consistency in Theorem 1.

We apply Theorem 5.7 in van der Vaart (1998) to show the consistency. By the proof of Theorem 5.7 in van der Vaart (1998), we need to find a class containing both $\boldsymbol{\theta}_{0}$ and $\hat{\boldsymbol{\theta}}_{n}$. For this purpose, $\Theta$ is constructed as

$$
\Theta=\left\{\theta=\left(F_{0}, F_{1}, F_{2}\right): \text { S2.3) holds for }\left(u_{1}, v_{1}, u_{2}, v_{2}\right) \in \mathcal{D}\right.
$$

with $c_{*}$ replaced by $\tilde{c}_{*}$ for $0<\tilde{c}_{*}<c_{*}$ in S2.3) $\}$.

Then it is easy to see $\Theta_{n} \subset \Theta$. If $\tilde{c}_{*}$ is a sufficiently small positive number, Condition C3 implies $\boldsymbol{\theta}_{0} \in \Theta$. Then by adjusting $\tilde{c}_{*}$, we have $\Theta$ contains both $\Theta_{n}$ and $\boldsymbol{\theta}_{0}$ and hence $\Theta$ contains both $\hat{\boldsymbol{\theta}}_{n}$ and $\boldsymbol{\theta}_{0}$.

For variable $\boldsymbol{\theta} \in \Theta,(\underline{S 2.3)}$ guarantees the $\log$ likelihood function $l(\boldsymbol{\theta} ; \boldsymbol{X})$ is uniformly bounded. We denote $\mathbb{M}(\boldsymbol{\theta})=P l(\boldsymbol{\theta} ; \boldsymbol{X})$ and $\mathbb{M}_{n}(\boldsymbol{\theta})=\mathbb{P}_{n} l(\boldsymbol{\theta} ; \boldsymbol{X})$
with $\mathbb{P}_{n} f(X)=\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)$. First, we verify $\sup _{\boldsymbol{\theta} \in \Theta}\left|\mathbb{M}_{n}(\boldsymbol{\theta})-\mathbb{M}(\boldsymbol{\theta})\right| \rightarrow_{p}$
0 . Denote $\mathcal{L}=\{l(\boldsymbol{\theta} ; \boldsymbol{x}): \boldsymbol{\theta} \in \Theta\}$, then

$$
\sup _{\boldsymbol{\theta} \in \Theta}\left|\mathbb{M}_{n}(\boldsymbol{\theta})-\mathbb{M}(\boldsymbol{\theta})\right|=\sup _{l(\boldsymbol{\theta} ; \boldsymbol{x}) \in \mathcal{L}}\left|\left(\mathbb{P}_{n}-P\right) l(\boldsymbol{\theta} ; \boldsymbol{X})\right| .
$$

Hence, it suffices to show $\mathcal{L}$ is a $P$-Glivenko-Cantelli. Let
$A=\left\{\frac{\log \left[F_{0}\left(v_{1}, v_{2}\right)-F_{0}\left(v_{1}, u_{2}\right)-F_{0}\left(u_{1}, v_{2}\right)+F_{0}\left(u_{1}, u_{2}\right)\right]}{\log \tilde{c}^{*}}:\right.$
$\boldsymbol{\theta}=\left(F_{0}, F_{1}, F_{2}\right) \in \Theta$, for $\left(u_{1}, v_{1}, u_{2}, v_{2}\right) \in \mathcal{D}$ with $\mathcal{D}$ defined by S2.4) $\}$,
where $F_{0}\left(v_{1}, v_{2}\right)-F_{0}\left(v_{1}, u_{2}\right)-F_{0}\left(u_{1}, v_{2}\right)+F_{0}\left(u_{1}, u_{2}\right) \geq \tilde{c}^{*}$ in $\mathcal{D}$ with $\tilde{c}^{*}<c^{*}$ for $c^{*}$ given in (S2.3), as discussed in the construction of $\Theta$. For $\left(u_{1}, u_{2}, v_{1}, v_{2}\right) \in$ $\mathcal{D}$ with $\mathcal{D}$ given by (S2.4), define two classes of indicator functions

$$
\mathcal{G}_{1}=\left\{1_{\left[\tau_{1, l}, u_{1}\right] \times\left[\tau_{1, l}, v_{1}\right] \times\left[\tau_{2, l}, u_{2}\right] \times\left[\tau_{2, l}, v_{2}\right]}\right\}
$$

and

$$
\mathcal{G}_{2}=\left\{1_{\left[\tau_{1, l}, u_{1}\right] \times\left[\tau_{1, l}, \tau_{1, h}\right] \times\left[\tau_{2, l}, u_{2}\right] \times\left[\tau_{2, l,}, \tau_{2, h}\right]}\right\} .
$$

(S2.3) implies that each element in $A$ is increasing in $v_{1}$ and $v_{2}$ but decreasing in $u_{1}$ and $u_{2}$, then we have

$$
\begin{equation*}
A \subseteq \overline{\operatorname{sconv}}\left(\mathcal{G}_{2}-\mathcal{G}_{1}\right) \tag{S2.7}
\end{equation*}
$$

where $\overline{\operatorname{sconv}}(\cdot)$ is the closure of symmetric convex hull van der Vaart and Wellner, 1996). For $\mathcal{G}_{1}$ and $\mathcal{G}_{2}$, it is easily shown that they have $V C$-index
values (van der Vaart and Wellner, 1996) $V\left(\mathcal{G}_{1}\right)=5$ and $V\left(\mathcal{G}_{2}\right)=3$.
Therefore, Theorem 2.6.7 in van der Vaart and Wellner (1996) implies

$$
\begin{equation*}
N\left(\epsilon, \mathcal{G}_{1}, L_{2}\left(Q_{U_{1}, U_{2}, V_{1}, V_{2}}\right)\right) \leq c\left(\frac{1}{\epsilon}\right)^{8} \tag{S2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
N\left(\epsilon, \mathcal{G}_{2}, L_{2}\left(Q_{U_{1}, U_{2}, V_{1}, V_{2}}\right)\right) \leq c\left(\frac{1}{\epsilon}\right)^{4} \tag{S2.9}
\end{equation*}
$$

for any probability measure $Q_{U_{1}, U_{2}, V_{1}, V_{2}}$ of $\left(U_{1}, U_{2}, V_{1}, V_{2}\right)$. Since the envelop functions of $\mathcal{G}_{1}$ and $\mathcal{G}_{2}$ are both 1 , then by (S2.8), S2.9) and Theorem 2.6.9 in van der Vaart and Wellner (1996) it follows that

$$
\log N\left(\epsilon, \overline{\operatorname{sconv}}\left(\mathcal{G}_{1}\right), L_{2}\left(\left(Q_{U_{1}, U_{2}, V_{1}, V_{2}}\right)\right)\right) \leq c\left(\frac{1}{\epsilon}\right)^{8 / 5}
$$

and

$$
\log N\left(\epsilon, \overline{\operatorname{sconv}}\left(\mathcal{G}_{2}\right), L_{2}\left(\left(Q_{U_{1}, U_{2}, V_{1}, V_{2}}\right)\right)\right) \leq c\left(\frac{1}{\epsilon}\right)^{4 / 3}
$$

for any $Q_{U_{1}, U_{2}, V_{1}, V_{2}}$. Hence for any $Q_{U_{1}, U_{2}, V_{1}, V_{2}}$,

$$
\begin{aligned}
\log N\left(\epsilon, \overline{\operatorname{sconv}}\left(\mathcal{G}_{2}\right)-\overline{\operatorname{sconv}}\left(\mathcal{G}_{1}\right), L_{2}\left(\left(Q_{U_{1}, U_{2}, V_{1}, V_{2}}\right)\right)\right) & \leq c\left\{\left(\frac{1}{\epsilon}\right)^{8 / 5}+\left(\frac{1}{\epsilon}\right)^{4 / 3}\right\} \\
& =c\left(\frac{1}{\epsilon}\right)^{8 / 5}
\end{aligned}
$$

By (S2.7), we have $A \subseteq \overline{\operatorname{sconv}}\left(\mathcal{G}_{2}\right)-\overline{\operatorname{sconv}}\left(\mathcal{G}_{1}\right)$, then

$$
\begin{equation*}
\log N\left(\epsilon, A, L_{2}\left(\left(Q_{U_{1}, U_{2}, V_{1}, V_{2}}\right)\right)\right)=c\left(\frac{1}{\epsilon}\right)^{8 / 5} . \tag{S2.10}
\end{equation*}
$$

Now let

$$
\begin{aligned}
A^{\prime}= & \left\{\delta_{1}^{(2)} \delta_{2}^{(2)} \log \left[F_{0}\left(v_{1}, v_{2}\right)-F_{0}\left(v_{1}, u_{2}\right)-F_{0}\left(u_{1}, v_{2}\right)+F_{0}\left(u_{1}, u_{2}\right)\right]\right. \\
& \left.: \boldsymbol{\theta}=\left(F_{0}, F_{1}, F_{2}\right) \in \Theta,\left(u_{1}, v_{1}, u_{2}, v_{2}\right) \in \mathcal{D} \text { for } \mathcal{D} \text { defined by (S2.4) }\right\} .
\end{aligned}
$$

We can find a positive number $c_{0}$ as the envelop function for $A^{\prime}$. Based on (S2.10), using the same arguments as those given on on page 1626-1627 of Wu and Zhang (2012) leads to

$$
\int_{0}^{1} \sup _{Q} \sqrt{\log N\left(\epsilon c_{0}, A^{\prime}, L_{2}(Q)\right)} d \epsilon \leq c \int_{0}^{1}\left(\frac{1}{\epsilon}\right)^{4 / 5} d \epsilon<\infty
$$

where $Q$ can be any probability measure for $\boldsymbol{X}$. Hence, by Theorem 2.5.2 in van der Vaart and Wellner $(1996), A^{\prime}$ is a $P$-Donsker. Similarly, we can show all other items in $\mathcal{L}$ are $P$-Donskers. Therefore $\mathcal{L}$ is a $P$-Donsker as well by the fact that a finite sum of Donskers is a Donkser. Since $P$-Donsker is also $P$-Glivenko-Cantelli, then $\sup _{l(\boldsymbol{\theta} ; \boldsymbol{x}) \in \mathcal{L}}\left\|\left(\mathbb{P}_{n}-P\right) l(\boldsymbol{\theta} ; \boldsymbol{X})\right\| \rightarrow_{p} 0$.

Second, we verify $\mathbb{M}\left(\boldsymbol{\theta}_{0}\right)-\mathbb{M}(\boldsymbol{\theta}) \geq c d^{2}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}\right)$ for any $\boldsymbol{\theta} \in \Theta$, which is completed by Lemma 1 .

Finally, we verify $\mathbb{M}_{n}\left(\hat{\boldsymbol{\theta}}_{n}\right)-\mathbb{M}_{n}\left(\boldsymbol{\theta}_{0}\right) \geq o_{P}(1)$.
It follows by C1 and C2, Lemma 0.2 in Wu and Zhang (2012) and Jackson's Theorem on page 149 in De Boor (2001) that there exists $\boldsymbol{\theta}_{n}=$ $\left(F_{n, 0}, F_{n, 1}, F_{n, 2}\right)$ such that $\left\|F_{n, 0}-F_{0,0}\right\|_{\infty} \leq c\left(n^{-(p+r) \kappa}\right),\left\|F_{n, 1}-F_{0,1}\right\|_{\infty} \leq$ $c\left(n^{-(p+r) \kappa}\right)$ and $\left\|F_{n, 2}-F_{0,2}\right\|_{\infty} \leq c\left(n^{-(p+r) \kappa}\right)$. Then we know that for large
$n$, this $\boldsymbol{\theta}_{n}$ can be chosen from $\Theta_{n}$ define by S2.5). Since $\hat{\boldsymbol{\theta}}_{n}$ maximizes $\mathbb{M}_{n}\left(\boldsymbol{\theta}_{n}\right)$ over $\Theta_{n}, \mathbb{M}_{n}\left(\hat{\boldsymbol{\theta}}_{n}\right)-\mathbb{M}_{n}\left(\boldsymbol{\theta}_{n}\right)>0$. Hence,

$$
\begin{aligned}
\mathbb{M}_{n}\left(\hat{\boldsymbol{\theta}}_{n}\right)-\mathbb{M}_{n}\left(\boldsymbol{\theta}_{0}\right)= & \mathbb{M}_{n}\left(\hat{\boldsymbol{\theta}}_{n}\right)-\mathbb{M}_{n}\left(\boldsymbol{\theta}_{n}\right)+\mathbb{M}_{n}\left(\boldsymbol{\theta}_{n}\right)-\mathbb{M}_{n}\left(\boldsymbol{\theta}_{0}\right) \\
\geq & \mathbb{M}_{n}\left(\boldsymbol{\theta}_{n}\right)-\mathbb{M}_{n}\left(\boldsymbol{\theta}_{0}\right)=\mathbb{P}_{n}\left\{l\left(\boldsymbol{\theta}_{n} ; \boldsymbol{X}\right)\right\}-\mathbb{P}_{n}\left\{l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)\right\} \\
= & \left(\mathbb{P}_{n}-P\right)\left\{l\left(\boldsymbol{\theta}_{n} ; \boldsymbol{X}\right)-l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)\right\} \\
& +P\left\{l\left(\boldsymbol{\theta}_{n} ; \boldsymbol{X}\right)-l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)\right\} .
\end{aligned}
$$

Define
$\mathcal{L}_{n}=\left\{l\left(\boldsymbol{\theta}_{n} ; \boldsymbol{x}\right): \boldsymbol{\theta}_{n}=\left(F_{n, 0}, F_{n, 1}, F_{n, 2}\right) \in \Theta_{n},\left\|F_{n, 0}-F_{0,0}\right\|_{\infty} \leq c\left(n^{-(p+r) \kappa}\right)\right.$,

$$
\left.\left\|F_{n, 1}-F_{0,1}\right\|_{\infty} \leq c\left(n^{-(p+r) \kappa}\right),\left\|F_{n, 1}-F_{0,1}\right\|_{\infty} \leq c\left(n^{-(p+r) \kappa}\right)\right\}
$$

For $\Delta_{1}^{(1)} \Delta_{2}^{(1)} \log \frac{F_{n, 0}\left(U_{1}, U_{2}\right)}{F_{0,0}\left(U_{1}, U_{2}\right)}\left(\right.$ the first term in $\left.l\left(\boldsymbol{\theta}_{n} ; \boldsymbol{X}\right)-l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)\right)$, we have $1 / 2 \leq \frac{F_{n, 0}\left(U_{1}, U_{2}\right)}{F_{0,0}\left(U_{1}, U_{2}\right)}<2$ for large $n$ by $\left\|F_{n, 0}-F_{0,0}\right\|_{\infty} \leq c\left(n^{-(p+r) \kappa}\right)$. Then $\left|\log \frac{F_{n, 0}\left(U_{1}, U_{2}\right)}{F_{0,0}\left(U_{1}, U_{2}\right)}\right| \leq c\left|\frac{F_{n, 0}\left(U_{1}, U_{2}\right)}{F_{0,0}\left(U_{1}, U_{2}\right)}-1\right|$. Hence,

$$
\begin{aligned}
P\left\{\Delta_{1}^{(1)} \Delta_{2}^{(1)} \log \frac{F_{n, 0}\left(U_{1}, U_{2}\right)}{F_{0,0}\left(U_{1}, U_{2}\right)}\right\}^{2} & \leq P_{U_{1}, U_{2}}\left\{\log \frac{F_{n, 0}\left(U_{1}, U_{2}\right)}{F_{0,0}\left(U_{1}, U_{2}\right)}\right\}^{2} \\
& \leq c P_{U_{1}, U_{2}}\left\{\frac{F_{n, 0}\left(U_{1}, U_{2}\right)}{F_{0,0}\left(U_{1}, U_{2}\right)}-1\right\}^{2} \\
& \leq c P_{U_{1}, U_{2}}\left\{F_{n, 0}\left(U_{1}, U_{2}\right)-F_{0,0}\left(U_{1}, U_{2}\right)\right\}^{2} \rightarrow 0
\end{aligned}
$$

And we can show the similar results for other terms in $l\left(\boldsymbol{\theta}_{n} ; \boldsymbol{X}\right)-l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)$. Then, by $\left(\sum_{i=1}^{9} a_{i}\right)^{2} \leq 9 \sum_{i=1}^{9} a_{i}^{2}$, we have $P\left\{l\left(\boldsymbol{\theta}_{n} ; \boldsymbol{X}\right)-l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)\right\}^{2} \rightarrow 0$ as
$n \rightarrow \infty$. Therefore,

$$
\left[\operatorname{var}\left\{l\left(\boldsymbol{\theta}_{n} ; \boldsymbol{X}\right)-l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)\right\}\right]^{1 / 2} \leq\left[P\left\{l\left(\boldsymbol{\theta}_{n} ; \boldsymbol{X}\right)-l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)\right\}^{2}\right]^{1 / 2} \rightarrow 0
$$

Since we already showed $\mathcal{L}$ is a $P$-Donsker, by the fact that both $l\left(\boldsymbol{\theta}_{n} ; \boldsymbol{x}\right)$ and $l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{x}\right)$ are in $\mathcal{L}$, Corollary 2.3.12 of van der Vaart and Wellner (1996) results in that

$$
\begin{equation*}
\left(\mathbb{P}_{n}-P\right)\left\{l\left(\boldsymbol{\theta}_{n} ; \boldsymbol{X}\right)-l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)\right\}=o_{P}\left(n^{-1 / 2}\right) \tag{S2.11}
\end{equation*}
$$

In addition, By Cauchy-Schwartz inequality,

$$
\begin{aligned}
\left|P\left\{l\left(\boldsymbol{\theta}_{n} ; \boldsymbol{X}\right)-l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)\right\}\right| & \leq P\left|l\left(\boldsymbol{\theta}_{n} ; \boldsymbol{X}\right)-l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)\right| \\
& \leq c\left[P\left\{l\left(\boldsymbol{\theta}_{n} ; \boldsymbol{X}\right)-l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)\right\}^{2}\right]^{1 / 2} \rightarrow 0
\end{aligned}
$$

Then $P\left\{l\left(\boldsymbol{\theta}_{n} ; \boldsymbol{X}\right)-l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)\right\} \geq-o(1)$. Hence,

$$
\mathbb{M}_{n}\left(\hat{\boldsymbol{\theta}}_{n}\right)-\mathbb{M}_{n}\left(\boldsymbol{\theta}_{0}\right) \geq o_{P}\left(n^{-1 / 2}\right)-o(1) \geq-o_{P}(1)
$$

The consistency is proved.

Proof of the rate of convergence for Theorem 1

We derive the rate of convergence by verifying the conditions of Theorem 3.4.1 of van der Vaart and Wellner (1996).

Let $\boldsymbol{\theta}_{n} \in \Theta_{n}$ with $\boldsymbol{\theta}_{n}$ satisfying $d\left(\boldsymbol{\theta}_{n}, \boldsymbol{\theta}_{0}\right) \leq c\left(n^{-(p+r) \kappa}\right)$. We verify that for every $n$ and any $\delta>\delta_{n}=n^{-(p+r) \kappa}$,

$$
\sup _{\delta / 2<d\left(\boldsymbol{\theta}, \boldsymbol{\theta}_{n}\right)<\delta, \boldsymbol{\theta} \in \Theta_{n}}\left\{\mathbb{M}(\boldsymbol{\theta})-\mathbb{M}\left(\boldsymbol{\theta}_{n}\right)\right\} \leq-c \delta^{2}
$$

For $x \geq M_{l}>0$, we can show that there exists $c_{M_{l}}>0$ such that $x \log (x)-$ $x+1 \leq c_{M_{l}}(x-1)^{2}$. With the similar arguments as in the proof of Lemma 1. we can show that

$$
\mathbb{M}\left(\boldsymbol{\theta}_{0}\right)-\mathbb{M}\left(\boldsymbol{\theta}_{n}\right) \leq c d^{2}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{n}\right) \leq c n^{-2(p+r) \kappa}
$$

Then by the result of Lemma 1, it follows that
$\mathbb{M}(\boldsymbol{\theta})-\mathbb{M}\left(\boldsymbol{\theta}_{n}\right)=\mathbb{M}(\boldsymbol{\theta})-\mathbb{M}\left(\boldsymbol{\theta}_{0}\right)+\mathbb{M}\left(\boldsymbol{\theta}_{0}\right)-\mathbb{M}\left(\boldsymbol{\theta}_{n}\right) \leq-c \delta^{2}+c n^{-2(p+r) \kappa}=-c \delta^{2}$.

Next, we need to find a function $\psi(\cdot)$, for $\mathbb{G}_{n}=\sqrt{n}\left(\mathbb{P}_{n}-P\right)$ such that

$$
E_{P} \sup _{\delta / 2<d\left(\boldsymbol{\theta}, \boldsymbol{\theta}_{n}\right) \leq \delta, \boldsymbol{\theta} \in \Theta_{n}}\left[\mathbb{G}_{n}\left\{l(\boldsymbol{\theta} ; \boldsymbol{X})-l\left(\boldsymbol{\theta}_{n} ; \boldsymbol{X}\right)\right\}\right]_{+} \leq c \psi(\delta)
$$

and $\psi(\delta) / \delta^{\alpha}$ is decreasing in $\delta$, for some $\alpha<2$, and for $\gamma_{n} \leq \delta_{n}^{-1}$, it satisfies

$$
\gamma_{n}^{2} \psi\left(1 / \gamma_{n}\right) \leq c \sqrt{n} \text { for every } n
$$

Let $\mathcal{L}_{n, \delta}=\left\{l(\boldsymbol{\theta} ; \boldsymbol{x})-l\left(\boldsymbol{\theta}_{n} ; \boldsymbol{x}\right): \boldsymbol{\theta}=\left(F_{0}, F_{1}, F_{2}\right) \in \Theta_{n}\right.$ and $\left.\delta / 2<d\left(\boldsymbol{\theta}, \boldsymbol{\theta}_{n}\right) \leq \delta\right\}$.
C4 implies the density of the probability measure $P$ has a positive lower bound. Then $d\left(\boldsymbol{\theta}, \boldsymbol{\theta}_{n}\right) \leq \delta$ implies

$$
\begin{gathered}
\left\{\int_{\left[\tau_{1, l}, \tau_{1, h}\right] \times\left[\tau_{2, l}, \tau_{2, h}\right]}\left(F_{0}\left(t_{1}, t_{2}\right)-F_{n, 0}\left(t_{1}, t_{2}\right)\right)^{2} d t_{2} d t_{1}\right\}^{1 / 2} \leq c \delta, \\
\left\{\int_{\left[\tau_{1, l}, \tau_{1, h}\right]}\left(F_{1}\left(t_{1}\right)-F_{n, 1}\left(t_{1}\right)\right)^{2} d t_{1}\right\}^{1 / 2} \leq c \delta
\end{gathered}
$$

and

$$
\left\{\int_{\left[\tau_{2, l}, \tau_{2, h}\right]}\left(F_{2}\left(t_{2}\right)-F_{n, 2}\left(t_{2}\right)\right)^{2} d t_{2}\right\}^{1 / 2} \leq c \delta
$$

Hence, we can use Lemma 2 and Lemma 3 with some algebra to show that

$$
N_{[]}\left(\epsilon, \mathcal{L}_{n, \delta},\|\cdot\|_{\infty}\right) \leq(\delta / \epsilon)^{c p_{n} q_{n}} .
$$

Then obviously,

$$
\begin{equation*}
N_{[]}\left\{\epsilon, \mathcal{L}_{n, \delta}, L_{2}(P)\right\} \leq(\delta / \epsilon)^{c p_{n} q_{n}} . \tag{S2.12}
\end{equation*}
$$

Next, for any $l(\boldsymbol{\theta} ; \boldsymbol{x})-l\left(\boldsymbol{\theta}_{n} ; \boldsymbol{x}\right) \in \mathcal{L}_{n, \delta}$, since $d\left(\boldsymbol{\theta}, \boldsymbol{\theta}_{n}\right) \leq \delta$. Lemma 4 and Lemma 7.1 in Wellner and Zhang (2007) with Condition C1-C4, imply that for small $\delta$ and sufficiently large $n, \boldsymbol{\theta}$ and $\boldsymbol{\theta}_{n}$ are both very close to $\boldsymbol{\theta}_{0}$ in terms of $\|\cdot\|_{\infty}$ in the domain of censoring times, $\mathcal{D}$ as defined by (S2.4). Hence, for any $l(\boldsymbol{\theta} ; \boldsymbol{x})-l\left(\boldsymbol{\theta}_{n} ; \boldsymbol{x}\right) \in \mathcal{L}_{n, \delta}$, it can be shown that $P\left\{l(\boldsymbol{\theta} ; \boldsymbol{x})-l\left(\boldsymbol{\theta}_{n} ; \boldsymbol{x}\right)\right\}^{2} \leq c \delta^{2}$. Also by $\mathcal{L}_{n, \delta}$ being a uniformly bounded class, Lemma 3.4.2 of van der Vaart and Wellner (1996) indicates that

$$
E_{P}\left\|\mathbb{G}_{n}\right\|_{\mathcal{L}_{n, \delta}} \leq c \tilde{J}_{[]}\left\{\delta, \mathcal{L}_{n, \delta}, L_{2}(P)\right\}\left[1+\frac{\tilde{J}_{[]}\left\{\delta, \mathcal{L}_{n, \delta}, L_{2}(P)\right\}}{\delta^{2} \sqrt{n}}\right]
$$

where $\tilde{J}_{[]}\left\{\delta, \mathcal{L}_{n, \delta}, L_{2}(P)\right\}=\int_{0}^{\delta} \sqrt{1+\log N_{[]}\left\{\epsilon, \mathcal{L}_{n, \delta}, L_{2}(P)\right\}} d \epsilon \leq c\left(p_{n} q_{n}\right)^{1 / 2} \delta$, by (S2.12). Then $E_{P} \sup _{\delta / 2<d\left(\boldsymbol{\theta}, \boldsymbol{\theta}_{n}\right) \leq \delta, \boldsymbol{\theta} \in \Theta_{n}}\left[\mathbb{G}_{n}\left\{l(\boldsymbol{\theta} ; \boldsymbol{X})-l\left(\boldsymbol{\theta}_{n} ; \boldsymbol{X}\right)\right\}\right]_{+} \leq E_{P}\left\|\mathbb{G}_{n}\right\|_{\mathcal{L}_{n, \delta}}$ indicates that

$$
\psi(\delta)=\left(p_{n} q_{n}\right)^{1 / 2} \delta+\left(p_{n} q_{n}\right) / n^{1 / 2} .
$$

It is easy to see that $\psi(\delta) / \delta$ is a decreasing function of $\delta$. Then $p_{n}=q_{n}=n^{\kappa}$ implies that if $r_{n}=n^{\min \{(p+r) \kappa,(1-2 \kappa) / 2\}}, r_{n} \leq \delta_{n}^{-1}$ and $r_{n}^{2} \psi\left(1 / r_{n}\right) \leq c n^{1 / 2}$.

Since $\mathbb{M}_{n}\left(\hat{\boldsymbol{\theta}}_{n}\right)-\mathbb{M}_{n}\left(\boldsymbol{\theta}_{n}\right) \geq 0$ and $d\left(\hat{\boldsymbol{\theta}}_{n}, \boldsymbol{\theta}_{n}\right) \leq d\left(\hat{\boldsymbol{\theta}}_{n}, \boldsymbol{\theta}_{0}\right)+d\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{n}\right) \rightarrow$ 0 in probability. Therefore, it follows by Theorem 3.4.1 in van der Vaart and Wellner (1996) that $r_{n} d\left(\hat{\boldsymbol{\theta}}_{n}, \boldsymbol{\theta}_{n}\right)=O_{P}(1)$. Hence, by $d\left(\boldsymbol{\theta}_{n}, \boldsymbol{\theta}_{0}\right) \leq c n^{-(p+r) \kappa}$ $r_{n} d\left(\hat{\boldsymbol{\theta}}_{n}, \boldsymbol{\theta}_{0}\right) \leq r_{n} d\left(\hat{\boldsymbol{\theta}}_{n}, \boldsymbol{\theta}_{n}\right)+r_{n} d\left(\boldsymbol{\theta}_{n}, \boldsymbol{\theta}_{0}\right) \leq O_{P}(1)+r_{n} c n^{-(p+r) \kappa}=O_{P}(1)$

This establishes the convergence rate.

## Proof of Theorem 2

First, we use Riesz representation theorem for Hilbert space (Halmos, 1982) to show some intermediate results for the proof.

By the regularity condition C4 and Cauchy-Schwarz inequality, it can be shown that $\left|\frac{d \rho\left(\boldsymbol{\theta}_{0}\right)}{d \boldsymbol{\theta}}[\boldsymbol{w}]\right| \leq c d(0, \boldsymbol{w})$, where $d(\cdot, \cdot)$ is defined by (3.1) in the main paper. By C3 and C4 we can also show that $d(0, \boldsymbol{w}) \leq c\|\boldsymbol{w}\|$ with $\|\cdot\|$ being the Fisher information norm defined by (3.4) in the main paper. Hence we have $\left|\frac{d \rho\left(\boldsymbol{\theta}_{0}\right)}{d \boldsymbol{\theta}}[\boldsymbol{w}]\right| \leq c\|\boldsymbol{w}\|$, which results in

$$
\begin{equation*}
\left\|\frac{d \rho\left(\boldsymbol{\theta}_{0}\right)}{d \boldsymbol{\theta}}\right\|_{*, \infty}=\sup _{w \in \mathfrak{W},\|\boldsymbol{w}\|>0} \frac{\left|\frac{d \rho\left(\boldsymbol{\theta}_{0}\right)}{d \boldsymbol{\theta}}[\boldsymbol{w}]\right|}{\|\boldsymbol{w}\|}<\infty . \tag{S2.13}
\end{equation*}
$$

By (3.6) in the main paper we know that $\frac{d \rho\left(\boldsymbol{\theta}_{0}\right)}{d \boldsymbol{\theta}}[\boldsymbol{w}]$ defined by (3.5) in the main paper is linear in $\boldsymbol{w}$, by Riesz representation theorem there exists $\boldsymbol{w}^{*}=\left(w_{0}^{*}, w_{1}^{*}, w_{2}^{*}\right)^{\prime} \in \overline{\mathfrak{W}}$ with $\overline{\mathfrak{W}}$ being the completion of $\mathfrak{W J}$, such that for
any $\boldsymbol{w} \in \overline{\mathfrak{W}}$

$$
\begin{equation*}
\left\langle\boldsymbol{w}^{*}, \boldsymbol{w}\right\rangle=\frac{d \rho\left(\boldsymbol{\theta}_{0}\right)}{d \boldsymbol{\theta}}[\boldsymbol{w}] . \tag{S2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\boldsymbol{w}^{*}\right\|=\sup _{w \in \overline{\mathfrak{M} 5},\|\boldsymbol{w}\|>0} \frac{\left|\frac{d \rho\left(\boldsymbol{\theta}_{0}\right)}{d \boldsymbol{\theta}}[\boldsymbol{w}]\right|}{\|\boldsymbol{w}\|}=\left\|\frac{d \rho\left(\boldsymbol{\theta}_{0}\right)}{d \boldsymbol{\theta}}\right\|_{*, \infty} \tag{S2.15}
\end{equation*}
$$

due to the fact that

$$
\sup _{w \in \overline{\mathfrak{W},}\|\boldsymbol{w}\|>0} \frac{\left|\frac{d \rho\left(\boldsymbol{\theta}_{0}\right)}{d \boldsymbol{\theta}}[\boldsymbol{w}]\right|}{\|\boldsymbol{w}\|}=\sup _{w \in \mathfrak{\mathfrak { W } , \| \boldsymbol { w } \| > 0}} \frac{\left|\frac{d \rho\left(\boldsymbol{\theta}_{0}\right)}{d \boldsymbol{\theta}}[\boldsymbol{w}]\right|}{\|\boldsymbol{w}\|} .
$$

Therefore, $\left\|\boldsymbol{w}^{*}\right\|$ is bounded by (S2.13).
In what follows we establish the asymptotic normality using (S2.14) and S2.15).

We define $r\left[\boldsymbol{\theta}, \boldsymbol{\theta}_{0} ; \boldsymbol{x}\right] \equiv l(\boldsymbol{\theta} ; \boldsymbol{x})-l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{x}\right)-\frac{l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{x}\right)}{d \boldsymbol{\theta}}\left[\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right]$. Lemma 5 shows that we can find small $\epsilon_{n}$ and the spline function vector $\boldsymbol{w}_{n}^{*}$ (the approximation for $\boldsymbol{w}^{*}$ ), such that

$$
\begin{gather*}
P\left(r\left[\hat{\boldsymbol{\theta}}_{n}, \boldsymbol{\theta}_{0} ; \boldsymbol{X}\right]-r\left[\hat{\boldsymbol{\theta}}_{n} \pm \epsilon_{n} \boldsymbol{w}_{n}^{*}, \boldsymbol{\theta}_{0} ; \boldsymbol{X}\right]\right)  \tag{S2.16}\\
= \pm \epsilon_{n}\left\langle\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}, \boldsymbol{w}^{*}\right\rangle+\epsilon_{n} o_{P}\left(n^{-1 / 2}\right), \\
\frac{1}{n} \sum_{i=1}^{n} \frac{d l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{x}_{i}\right)}{d \boldsymbol{\theta}}\left[\boldsymbol{w}_{n}^{*}\right]=\left(\mathbb{P}_{n}-P\right)\left\{\frac{d l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{x}_{i}\right)}{d \boldsymbol{\theta}}\left[\boldsymbol{w}^{*}\right]\right\}+o_{P}\left(n^{-1 / 2}\right), \tag{S2.17}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(\mathbb{P}_{n}-P\right)\left(r\left[\hat{\boldsymbol{\theta}}_{n}, \boldsymbol{\theta}_{0} ; \boldsymbol{X}\right]-r\left[\hat{\boldsymbol{\theta}}_{n} \pm \epsilon_{n} \boldsymbol{w}_{n}^{*}, \boldsymbol{\theta}_{0} ; \boldsymbol{X}\right]\right)= \pm \epsilon_{n} o_{P}\left(n^{-1 / 2}\right) \tag{S2.18}
\end{equation*}
$$

For $\hat{\boldsymbol{\theta}}_{n}$ being the vector of sieve NPMLEs, we have

$$
\frac{1}{n} \sum_{i=1}^{n}\left\{l\left(\hat{\boldsymbol{\theta}}_{n} ; \boldsymbol{x}_{i}\right)-l\left(\hat{\boldsymbol{\theta}}_{n} \pm \epsilon_{n} \boldsymbol{w}_{n}^{*} ; \boldsymbol{x}_{i}\right)\right\} \geq 0
$$

It immediately follows that

$$
\begin{align*}
& \mp \epsilon_{n} \frac{1}{n} \sum_{i=1}^{n} \frac{d l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{x}_{i}\right)}{d \boldsymbol{\theta}}\left[\boldsymbol{w}_{n}^{*}\right] \\
& +\left(\mathbb{P}_{n}-P\right)\left(r\left[\hat{\boldsymbol{\theta}}_{n}, \boldsymbol{\theta}_{0} ; \boldsymbol{X}\right]-r\left[\hat{\boldsymbol{\theta}}_{n} \pm \epsilon_{n} \boldsymbol{w}_{n}^{*}, \boldsymbol{\theta}_{0} ; \boldsymbol{X}\right]\right)  \tag{S2.19}\\
& +P\left(r\left[\hat{\boldsymbol{\theta}}_{n}, \boldsymbol{\theta}_{0} ; \boldsymbol{X}\right]-r\left[\hat{\boldsymbol{\theta}}_{n} \pm \epsilon_{n} \boldsymbol{w}_{n}^{*}, \boldsymbol{\theta}_{0} ; \boldsymbol{X}\right]\right) \geq 0 .
\end{align*}
$$

Hence by (S2.17), (S2.18), (S2.16) and (S2.19),

$$
\pm \epsilon_{n}\left(\mathbb{P}_{n}-P\right)\left\{\frac{d l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)}{d \boldsymbol{\theta}}\left[\boldsymbol{w}^{*}\right]\right\} \pm \epsilon_{n}\left\langle\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}, \boldsymbol{w}^{*}\right\rangle+\epsilon_{n} o_{P}\left(n^{-1 / 2}\right) \geq 0
$$

This leads to the conclusion that

$$
\left|\sqrt{n}\left\langle\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}, \boldsymbol{w}^{*}\right\rangle-\sqrt{n}\left(\mathbb{P}_{n}-P\right)\left\{\frac{d l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)}{d \boldsymbol{\theta}}\left[\boldsymbol{w}^{*}\right]\right\}\right| \leq o_{P}(1)
$$

and hence

$$
\sqrt{n}\left\langle\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}, \boldsymbol{w}^{*}\right\rangle=\sqrt{n}\left(\mathbb{P}_{n}-P\right)\left\{\frac{d l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)}{d \boldsymbol{\theta}}\left[\boldsymbol{w}^{*}\right]\right\}+o_{P}(1) .
$$

Then by $P\left\{\frac{d l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)}{d \boldsymbol{\theta}}\left[\boldsymbol{w}^{*}\right]\right\}=0$ and central limit theorem, we have

$$
\begin{equation*}
\sqrt{n}\left\langle\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}, \boldsymbol{w}^{*}\right\rangle \rightarrow_{d} N\left(0,\left\|\boldsymbol{w}^{*}\right\|^{2}\right) \tag{S2.20}
\end{equation*}
$$

By (3.6) in the main paper, we can easily get

$$
\begin{aligned}
& \left|\rho\left(\hat{\boldsymbol{\theta}}_{n}\right)-\rho\left(\boldsymbol{\theta}_{0}\right)-\frac{d \rho\left(\boldsymbol{\theta}_{0}\right)}{d \boldsymbol{\theta}}\left[\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right]\right| \\
& = \\
& \quad\left|\int_{\tau_{1, l}}^{\tau_{1, h}}\left\{\hat{F}_{n, 1}\left(t_{1}\right)-F_{0,1}\left(t_{1}\right)\right\} d t_{1} \int_{\tau_{2, l}}^{\tau_{2, h}}\left\{\hat{F}_{n, 2}\left(t_{2}\right)-F_{0,2}\left(t_{2}\right)\right\} d t_{2}\right| \\
& \leq c\left[\int_{\tau_{1, l}}^{\tau_{1, h}}\left\{\hat{F}_{n, 1}\left(t_{1}\right)-F_{0,1}\left(t_{1}\right)\right\}^{2} d t_{1}\right]^{1 / 2} \\
& \cdot\left[\int_{\tau_{2, l}}^{\tau_{2, h}}\left\{\hat{F}_{n, 2}\left(t_{2}\right)-F_{0,2}\left(t_{2}\right)\right\}^{2} d t_{2}\right]^{1 / 2} \\
& \leq
\end{aligned}
$$

where the last inequality holds by C2 and C4. Hence by Theorem 1 and $p+r>3$ we have

$$
\left|\rho\left(\hat{\boldsymbol{\theta}}_{n}\right)-\rho\left(\boldsymbol{\theta}_{0}\right)-\frac{d \rho\left(\boldsymbol{\theta}_{0}\right)}{d \boldsymbol{\theta}}\left[\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right]\right| \leq O_{P}\left(n^{-\frac{2(p+r)}{2(p+r)+2}}\right)=o_{P}\left(n^{-1 / 2}\right) .
$$

It is easy to see that $\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0} \in \mathfrak{W}$. Then by S2.14, we have

$$
\begin{equation*}
\left|\rho\left(\hat{\boldsymbol{\theta}}_{n}\right)-\rho\left(\boldsymbol{\theta}_{0}\right)-\left\langle\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}, \boldsymbol{w}^{*}\right\rangle\right|=o_{P}\left(n^{-1 / 2}\right) . \tag{S2.21}
\end{equation*}
$$

Finally, by S 2.15 , (S2.20) and (S2.21), we obtain

$$
\sqrt{n}\left\{\rho\left(\hat{\boldsymbol{\theta}}_{n}\right)-\rho\left(\boldsymbol{\theta}_{0}\right)\right\} \rightarrow_{d} N\left(0,\left\|\frac{d \rho\left(\boldsymbol{\theta}_{0}\right)}{d \boldsymbol{\theta}}\right\|_{*, \infty}^{2}\right) .
$$

Proof of Theorem 3
For the first part, we prove that the proposed plug-in estimator $\rho\left(\hat{\boldsymbol{\theta}}_{n}\right)$ is a path-wise regular estimator for $\rho\left(\boldsymbol{\theta}_{0}\right)$.

By (S2.21) in the proof of Theorem 2, we have

$$
\begin{aligned}
\sqrt{n}\left\{\rho\left(\hat{\boldsymbol{\theta}}_{n}\right)-\rho\left(\boldsymbol{\theta}_{n, h}\right)\right\} & =\sqrt{n}\left\{\rho\left(\hat{\boldsymbol{\theta}}_{n}\right)-\rho\left(\boldsymbol{\theta}_{0}\right)\right\}-\sqrt{n}\left\{\rho\left(\boldsymbol{\theta}_{n, h}\right)-\rho\left(\boldsymbol{\theta}_{0}\right)\right\} \\
& =\sqrt{n}\left\langle\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}, \boldsymbol{w}^{*}\right\rangle-\sqrt{n}\left\langle\frac{s_{n} h}{\sqrt{n}} \boldsymbol{w}, \boldsymbol{w}^{*}\right\rangle+o_{P}(1) \\
& =\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{d l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{x}_{i}\right)}{d \boldsymbol{\theta}}\left[\boldsymbol{w}^{*}\right]-s_{n} h\left\langle\boldsymbol{w}, \boldsymbol{w}^{*}\right\rangle+o_{P}(1)
\end{aligned}
$$

On the other hand, for the directional derivatives $\frac{d l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)}{d \boldsymbol{\theta}}[\boldsymbol{w}]$ and $\frac{d^{2} l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)}{d \boldsymbol{\theta}^{2}}[\boldsymbol{w}][\tilde{\boldsymbol{w}}]$ defined, respectively, by (3.2) and (3.3) in the main paper, we can easily derive the following local asymptotic normality (LAN):

$$
\begin{align*}
\log \prod_{i=1}^{n} \frac{d P_{\boldsymbol{\theta}_{n, h}}}{d P_{\boldsymbol{\theta}_{0}}}(\boldsymbol{X})= & \frac{s_{n} h}{\sqrt{n}} \sum_{i=1}^{n} \frac{d l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{x}_{i}\right)}{d \boldsymbol{\theta}}[\boldsymbol{w}]+\frac{s_{n}^{2} h^{2}}{2 n} \sum_{i=1}^{n} \frac{d^{2} l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{x}_{i}\right)}{d \boldsymbol{\theta}^{2}}[\boldsymbol{w}][\boldsymbol{w}] \\
& +\operatorname{Rem}_{n} \\
= & \frac{s_{n} h}{\sqrt{n}} \sum_{i=1}^{n} \frac{d l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{x}_{i}\right)}{d \boldsymbol{\theta}}[\boldsymbol{w}]-\frac{s_{n}^{2} h^{2}}{2}\|\boldsymbol{w}\|^{2}+o_{P}(1) \tag{S2.22}
\end{align*}
$$

Then by multivariate central limit theorem, Slutsky's Theorem and the fact that $s_{n} \rightarrow 1$, we have

$$
\left.\left[\begin{array}{c}
{\left[\begin{array}{c}
\sqrt{n}\left\{\rho\left(\hat{\boldsymbol{\theta}}_{n}\right)-\rho\left(\boldsymbol{\theta}_{n, h}\right)\right\} \\
\log \prod_{i=1}^{n} \frac{d P_{\boldsymbol{\theta}_{n, h}}}{d P_{\boldsymbol{\theta}_{0}}}(\boldsymbol{X})
\end{array}\right]}
\end{array}\right] \rightarrow_{d} .\left\{\begin{array}{c}
-h\left\langle\boldsymbol{w}, \boldsymbol{w}^{*}\right\rangle \\
-\frac{h^{2}}{2}\|\boldsymbol{w}\|^{2}
\end{array}\right),\left(\begin{array}{cc}
\left\|\boldsymbol{w}^{*}\right\|^{2} & h\left\langle\boldsymbol{w}, \boldsymbol{w}^{*}\right\rangle \\
h\left\langle\boldsymbol{w}, \boldsymbol{w}^{*}\right\rangle & h^{2}\|\boldsymbol{w}\|^{2}
\end{array}\right)\right\} .
$$

Now Example 6.7 (Le Cam's third lemma) in van der Vaart (1998) implies
that

$$
\sqrt{n}\left\{\rho\left(\hat{\boldsymbol{\theta}}_{n}\right)-\rho\left(\boldsymbol{\theta}_{n, h}\right)\right\}{\xrightarrow{P_{\boldsymbol{\theta}_{n, h}}}}_{d} N\left(0,\left\|\boldsymbol{w}^{*}\right\|^{2}\right),
$$

where $\xrightarrow{P_{\boldsymbol{\theta}_{n, h}}}$ means converging in distribution under the measure $P_{\boldsymbol{\theta}_{n, h}}$. By the same argument, we also have

$$
\sqrt{n}\left\{\rho\left(\hat{\boldsymbol{\theta}}_{n}\right)-\rho\left(\boldsymbol{\theta}_{n,-h}\right)\right\}{\xrightarrow{P_{\boldsymbol{\theta}_{n,-h}}}}_{d} N\left(0,\left\|\boldsymbol{w}^{*}\right\|^{2}\right) .
$$

Hence,
$\limsup \operatorname{Pr}_{\boldsymbol{\theta}_{n, h}}\left\{\rho\left(\hat{\boldsymbol{\theta}}_{n}\right)<\rho\left(\boldsymbol{\theta}_{n, h}\right)\right\} \leq \liminf \operatorname{Pr}_{\boldsymbol{\theta}_{n,-h}}\left\{\rho\left(\hat{\boldsymbol{\theta}}_{n}\right)<\rho\left(\boldsymbol{\theta}_{n,-h}\right)\right\}$,
which means that $\rho\left(\hat{\boldsymbol{\theta}}_{n}\right)$ is a path-wise regular estimator for $\rho\left(\boldsymbol{\theta}_{0}\right)$.
For the second part, we prove that the lower bound of the asymptotic variances for all path-wise regular estimators for $\rho\left(\boldsymbol{\theta}_{0}\right)$ equals to $\sup _{\boldsymbol{w} \in \mathfrak{W},\|\boldsymbol{w}\|>0}\left|\frac{d \rho\left(\boldsymbol{\theta}_{0}\right)}{d \boldsymbol{\theta}}[\boldsymbol{w}]\right|^{2} /\|\boldsymbol{w}\|^{2}$.

It is equivalent to show the following result about concentration probabilities as
$\lim \sup \operatorname{Pr}\left\{\sqrt{n}\left|T_{n}-\rho\left(\boldsymbol{\theta}_{0}\right)\right|<h\right\} \leq \operatorname{Pr}\left[\left|N\left\{0, \sup _{\boldsymbol{w} \in \mathfrak{W},\|\boldsymbol{w}\|>0} \frac{\left.\frac{d \rho\left(\boldsymbol{\theta}_{0}\right)}{d \boldsymbol{\theta}}[\boldsymbol{w}]\right|^{2}}{\|\boldsymbol{w}\|^{2}}\right\}\right|<h\right]$,
for any $h>0$. It is also equivalent to show that for any $\boldsymbol{w} \in \mathfrak{W}$ with $\|\boldsymbol{w}\|>0$ and $h>0$

$$
\begin{equation*}
\lim \sup \operatorname{Pr}\left\{\sqrt{n}\left|T_{n}-\rho\left(\boldsymbol{\theta}_{0}\right)\right|<h\right\} \leq \operatorname{Pr}\left[\left|N\left\{0, \frac{\left.\frac{d \rho\left(\boldsymbol{\theta}_{0}\right)}{d \boldsymbol{\theta}}[\boldsymbol{w}]\right|^{2}}{\|\boldsymbol{w}\|^{2}}\right\}\right|<h\right] \tag{S2.23}
\end{equation*}
$$

If $\frac{d \rho\left(\boldsymbol{\theta}_{0}\right)}{d \boldsymbol{\theta}}[\boldsymbol{w}]=0$ then it is obvious that S2.23 holds, since the right hand side equals to 1 . In what follows we show that for any $\boldsymbol{w} \in \mathfrak{W}$ with $\|\boldsymbol{w}\|>0$ and $\frac{d \rho\left(\boldsymbol{\theta}_{0}\right)}{d \boldsymbol{\theta}}[\boldsymbol{w}] \neq 0$ S2.23 also holds.
(a) For any fixed $\boldsymbol{w} \in \mathfrak{W}$ with $\|\boldsymbol{w}\|>0$ and $\frac{d \rho\left(\boldsymbol{\theta}_{0}\right)}{d \boldsymbol{\theta}}[\boldsymbol{w}] \neq 0$, it is true that $\boldsymbol{\theta}=\boldsymbol{\theta}_{0}+s \boldsymbol{w}$ and $s$ are one-to-one locally. Then we re-parameterize $P_{\boldsymbol{\theta}}$ by $s$ and denote $P_{s}=P_{\boldsymbol{\theta}}$. Let $s_{n, h}=s_{0}+\frac{s_{n} h}{\sqrt{n}}$ for $s_{0}=0, s_{n} \rightarrow 1$ and any $h>0$. Then $P_{s_{0}}=P_{\boldsymbol{\theta}_{0}}$ and $P_{s_{n, h}}=P_{\boldsymbol{\theta}_{n, h}}$. Hence by LAN S2.22, we have LAN

$$
\log \prod_{i=1}^{n} \frac{d P_{s_{n, h}}}{d P_{s_{0}}}(\boldsymbol{X})=\frac{s_{n} h}{\sqrt{n}} \sum_{i=1}^{n} \frac{d l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{x}_{i}\right)}{d \boldsymbol{\theta}}[\boldsymbol{w}]-\frac{s_{n}^{2} h^{2}}{2}\|\boldsymbol{w}\|^{2}+o_{P}(1)
$$

(b) By the regularity conditions C1-C3 and the construction of $\mathfrak{W}$, for each $\boldsymbol{w}$ there exists a small neighborhood of $s_{0}\left(s_{0}=0\right)$, denoted as $\delta_{s_{0}}$, such that for each $s \in \delta_{s_{0}}, \boldsymbol{\theta}_{0}+s \boldsymbol{w}$ corresponds to a joint distribution and $l\left(\boldsymbol{\theta}_{0}+s \boldsymbol{w} ; \boldsymbol{X}\right)$ is bounded. We denote $\lambda_{\boldsymbol{w}}(s) \equiv \rho\left(\boldsymbol{\theta}_{0}+s \boldsymbol{w}\right)$. It is easy to see that $\lambda_{\boldsymbol{w}}^{\prime}(s)=\frac{d \rho\left(\boldsymbol{\theta}_{0}+s \boldsymbol{w}\right)}{d \boldsymbol{\theta}}[\boldsymbol{w}]$ is continuous function of $s$ by (3.6) in the main paper, for each $s \in \delta_{s_{0}}$. In addition, $\lambda_{\boldsymbol{w}}^{\prime}\left(s_{0}\right)=\frac{d \rho\left(\boldsymbol{\theta}_{0}\right)}{d \boldsymbol{\theta}}[\boldsymbol{w}] \neq 0$.
(c) Since $T_{n}$ is the path-wise regular estimator for $\rho\left(\boldsymbol{\theta}_{0}\right)$. Then for any fixed $\boldsymbol{w} \in \mathfrak{W}$ with $\|\boldsymbol{w}\|>0$ and $\frac{d \rho\left(\boldsymbol{\theta}_{0}\right)}{d \boldsymbol{\theta}}[\boldsymbol{w}] \neq 0, T_{n}$ is also the regular estimator of $\lambda_{\boldsymbol{w}}\left(s_{0}\right)$ Wong, 1992). That is,

$$
\limsup \operatorname{Pr}_{\boldsymbol{\theta}_{n, h}}\left\{T_{n}<\lambda_{\boldsymbol{w}}\left(s_{n, h}\right)\right\} \leq \liminf \operatorname{Pr}_{\boldsymbol{\theta}_{n,-h}}\left\{T_{n}<\lambda_{\boldsymbol{w}}\left(s_{n,-h}\right)\right\}
$$

The preceding arguments (a), (b) and (c) justify the conditions for Proposition 14 in Wong (1992). Hence, by Proposition 14 in Wong (1992) we have that

$$
\lim \sup \operatorname{Pr}\left\{\sqrt{n}\left|T_{n}-\lambda_{\boldsymbol{w}}\left(s_{0}\right)\right|<h\right\} \leq \operatorname{Pr}\left[\left|N\left\{0, \frac{\lambda_{\boldsymbol{w}}^{\prime}\left(s_{0}\right)^{2}}{\|\boldsymbol{w}\|^{2}}\right\}\right|<h\right] .
$$

It implies that for any fixed $\boldsymbol{w} \in \mathfrak{W}$ with $\|\boldsymbol{w}\|>0$ and $\frac{d \rho\left(\boldsymbol{\theta}_{0}\right)}{d \boldsymbol{\theta}}[\boldsymbol{w}] \neq 0$ and all $h>0$, S2.23 holds. This completes the second part of the proof.

By the first and the second parts of the proved result. We conclude that the asymptotic variance for $\rho\left(\hat{\boldsymbol{\theta}}_{n}\right)$ reaches the lower bound for all path-wise regular estimators for $\rho\left(\boldsymbol{\theta}_{0}\right)$.

## S3. Technical lemmas and proofs

Lemma 1. Let $\mathbb{M}(\theta)=\operatorname{Pl}(\boldsymbol{\theta} ; \boldsymbol{X})$ and $\Theta$ defined by S2.6) contains $\boldsymbol{\theta}_{0}$.
Then we have

$$
\mathbb{M}\left(\boldsymbol{\theta}_{0}\right)-\mathbb{M}(\boldsymbol{\theta}) \geq c d^{2}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}\right)
$$

for any $\boldsymbol{\theta} \in \Theta$,

Proof of Lemma 1

Note that

$$
\begin{aligned}
& \mathbb{M}\left(\boldsymbol{\theta}_{0}\right)-\mathbb{M}(\boldsymbol{\theta}) \\
&= P\left\{l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)-l(\boldsymbol{\theta} ; \boldsymbol{X})\right\} \\
&= P\left\{\Delta_{1}^{(1)} \Delta_{2}^{(1)} \log \frac{F_{0,0}\left(U_{1}, U_{2}\right)}{F_{0}\left(U_{1}, U_{2}\right)}+\Delta_{1}^{(1)} \Delta_{2}^{(2)} \log \frac{F_{0,0}\left(U_{1}, V_{2}\right)-F_{0,0}\left(U_{1}, U_{2}\right)}{F_{0}\left(U_{1}, V_{2}\right)-F_{0}\left(U_{1}, U_{2}\right)}\right. \\
&+\Delta_{1}^{(1)} \Delta_{2}^{(3)} \log \frac{F_{0,1}\left(U_{1}\right)-F_{0,1}\left(U_{1}, V_{2}\right)}{F_{1}\left(U_{1}\right)-F_{0}\left(U_{1}, V_{2}\right)} \\
&+\Delta_{1}^{(2)} \Delta_{2}^{(1)} \log \frac{F_{0,0}\left(V_{1}, U_{2}\right)-F_{0,0}\left(U_{1}, U_{2}\right)}{F_{0}\left(V_{1}, U_{2}\right)-F_{0}\left(U_{1}, U_{2}\right)} \\
&+\Delta_{1}^{(2)} \Delta_{2}^{(2)} \log \frac{F_{0,0}\left(V_{1}, V_{2}\right)-F_{0,0}\left(V_{1}, U_{2}\right)-F_{0,0}\left(U_{1}, V_{2}\right)+F_{0,0}\left(U_{1}, U_{2}\right)}{F_{0}\left(V_{1}, V_{2}\right)-F_{0}\left(V_{1}, U_{2}\right)-F_{0}\left(U_{1}, V_{2}\right)+F_{0}\left(U_{1}, U_{2}\right)} \\
&+\Delta_{1}^{(2)} \Delta_{2}^{(3)} \log \frac{F_{0,1}\left(V_{1}\right)-F_{0,0}\left(V_{1}, V_{2}\right)-F_{0,1}\left(U_{1}\right)+F_{0,0}\left(U_{1}, V_{2}\right)}{F_{1}\left(V_{1}\right)-F_{0}\left(V_{1}, V_{2}\right)-F_{1}\left(U_{1}\right)+F_{0}\left(U_{1}, V_{2}\right)} \\
&+\Delta_{1}^{(3)} \Delta_{2}^{(1)} \log \frac{F_{0,2}\left(U_{2}\right)-F_{0,0}\left(V_{1}, U_{2}\right)}{F_{2}\left(U_{2}\right)-F_{0}\left(V_{1}, U_{2}\right)} \\
&+\Delta_{1}^{(3)} \Delta_{2}^{(2)} \log \frac{F_{0,2}\left(V_{2}\right)-F_{0,2}\left(U_{2}\right)-F_{0,0}\left(V_{1}, V_{2}\right)+F_{0,0}\left(V_{1}, U_{2}\right)}{F_{2}\left(V_{2}\right)-F_{2}\left(U_{2}\right)-F_{0}\left(V_{1}, V_{2}\right)+F_{0}\left(V_{1}, U_{2}\right)} \\
&\left.+\Delta_{1}^{(3)} \Delta_{2}^{(3)} \log \frac{1-F_{0,2}\left(V_{2}\right)-F_{0,1}\left(V_{1}\right)+F_{0,0}\left(V_{1}, V_{2}\right)}{1-F_{2}\left(V_{2}\right)-F_{1}\left(V_{1}\right)+F_{0}\left(V_{1}, V_{2}\right)}\right\} .
\end{aligned}
$$

Then by the independence between $\left(U_{1}, U_{2}, V_{1}, V_{2}\right)$ and $\left(T_{1}, T_{2}\right)$, we have

$$
\begin{align*}
\mathbb{M}\left(\boldsymbol{\theta}_{0}\right)- & \mathbb{M}(\boldsymbol{\theta}) \\
= & P_{U_{1}, U_{2}, V_{1}, V_{2}}\left[F_{0}\left(U_{1}, U_{2}\right) m\left\{\frac{F_{0,0}\left(U_{1}, U_{2}\right)}{F_{0}\left(U_{1}, U_{2}\right)}\right\}\right. \\
+ & \left\{F_{0}\left(U_{1}, V_{2}\right)-F_{0}\left(U_{1}, U_{2}\right)\right\} m\left\{\frac{F_{0,0}\left(U_{1}, V_{2}\right)-F_{0,0}\left(U_{1}, U_{2}\right)}{F_{0}\left(U_{1}, V_{2}\right)-F_{0}\left(U_{1}, U_{2}\right)}\right\} \\
+ & \left\{F_{1}\left(U_{1}\right)-F_{0}\left(U_{1}, V_{2}\right)\right\} m\left\{\frac{F_{0,1}\left(U_{1}\right)-F_{0,1}\left(U_{1}, V_{2}\right)}{F_{1}\left(U_{1}\right)-F_{0}\left(U_{1}, V_{2}\right)}\right\} \\
+ & \left\{F_{0}\left(V_{1}, U_{2}\right)-F_{0}\left(U_{1}, U_{2}\right)\right\} m\left\{\frac{F_{0,0}\left(V_{1}, U_{2}\right)-F_{0,0}\left(U_{1}, U_{2}\right)}{F_{0}\left(V_{1}, U_{2}\right)-F_{0}\left(U_{1}, U_{2}\right)}\right\} \\
+ & \left\{F_{0}\left(V_{1}, V_{2}\right)-F_{0}\left(V_{1}, U_{2}\right)-F_{0}\left(U_{1}, V_{2}\right)+F_{0}\left(U_{1}, U_{2}\right)\right\} \\
& \cdot m\left\{\frac{F_{0,0}\left(V_{1}, V_{2}\right)-F_{0,0}\left(V_{1}, U_{2}\right)-F_{0,0}\left(U_{1}, V_{2}\right)+F_{0,0}\left(U_{1}, U_{2}\right)}{F_{0}\left(V_{1}, V_{2}\right)-F_{0}\left(V_{1}, U_{2}\right)-F_{0}\left(U_{1}, V_{2}\right)+F_{0}\left(U_{1}, U_{2}\right)}\right\} \\
+ & \left\{F_{1}\left(V_{1}\right)-F_{0}\left(V_{1}, V_{2}\right)-F_{1}\left(U_{1}\right)+F_{0}\left(U_{1}, V_{2}\right)\right\} \\
& \cdot m\left\{\frac{F_{0,1}\left(V_{1}\right)-F_{0,0}\left(V_{1}, V_{2}\right)-F_{0,1}\left(U_{1}\right)+F_{0,0}\left(U_{1}, V_{2}\right)}{F_{1}\left(V_{1}\right)-F_{0}\left(V_{1}, V_{2}\right)-F_{1}\left(U_{1}\right)+F_{0}\left(U_{1}, V_{2}\right)}\right\} \\
+ & \left\{F_{2}\left(U_{2}\right)-F_{0}\left(V_{1}, U_{2}\right)\right\} m\left\{\frac{F_{0,2}\left(U_{2}\right)-F_{0,0}\left(V_{1}, U_{2}\right)}{F_{2}\left(U_{2}\right)-F_{0}\left(V_{1}, U_{2}\right)}\right\} \\
+ & \left\{F_{2}\left(V_{2}\right)-F_{2}\left(U_{2}\right)-F_{0}\left(V_{1}, V_{2}\right)+F_{0}\left(V_{1}, U_{2}\right)\right\} \\
& \cdot m\left\{\frac{F_{0,2}\left(V_{2}\right)-F_{0,2}\left(U_{2}\right)-F_{0,0}\left(V_{1}, V_{2}\right)+F_{0,0}\left(V_{1}, U_{2}\right)}{F_{2}\left(V_{2}\right)-F_{2}\left(U_{2}\right)-F_{0}\left(V_{1}, V_{2}\right)+F_{0}\left(V_{1}, U_{2}\right)}\right\} \\
+ & \left\{1-F_{2}\left(V_{2}\right)-F_{1}\left(V_{1}\right)+F_{0}\left(V_{1}, V_{2}\right)\right\} \\
& \left.\cdot m\left\{\frac{1-F_{0,2}\left(V_{2}\right)-F_{0,1}\left(V_{1}\right)+F_{0,0}\left(V_{1}, V_{2}\right)}{1-F_{2}\left(V_{2}\right)-F_{1}\left(V_{1}\right)+F_{0}\left(V_{1}, V_{2}\right)}\right\}\right] \tag{S3.24}
\end{align*}
$$

where $m(x)=x \log (x)-x+1$. For $0<x \leq M_{h}$, we can show that there exists $c_{M_{h}}>0$ such that $m(x) \geq c_{M_{h}}(x-1)^{2}$. Then by the fact that the
distribution functions are bounded and (S2.3), we have

$$
\begin{aligned}
P_{U_{1}, U_{2}, V_{1}, V_{2}} & {\left[F_{0}\left(U_{1}, U_{2}\right) m\left\{\frac{F_{0,0}\left(U_{1}, U_{2}\right)}{F_{0}\left(U_{1}, U_{2}\right)}\right\}\right] } \\
& \geq c P_{U_{1}, U_{2}, V_{1}, V_{2}}\left[F_{0}\left(U_{1}, U_{2}\right)\left\{\frac{F_{0,0}\left(U_{1}, U_{2}\right)}{F_{0}\left(U_{1}, U_{2}\right)}-1\right\}^{2}\right] \\
& \geq c P_{U_{1}, U_{2}, V_{1}, V_{2}}\left\{F_{0,0}\left(U_{1}, U_{2}\right)-F_{0}\left(U_{1}, U_{2}\right)\right\}^{2} .
\end{aligned}
$$

We can show the similar results as above for other terms of the right hand
side in S3.24. Hence,

$$
\begin{align*}
& \mathbb{M}\left(\boldsymbol{\theta}_{0}\right)-\mathbb{M}(\boldsymbol{\theta}) \\
& \geq c P_{U_{1}, U_{2}, V_{1}, V_{2}}\left[F_{0,0}\left(U_{1}, U_{2}\right)-F_{0}\left(U_{1}, U_{2}\right)\right]^{2} \\
& +c P_{U_{1}, U_{2}, V_{1}, V_{2}}\left[\left\{F_{0,0}\left(U_{1}, V_{2}\right)-F_{0}\left(U_{1}, V_{2}\right)\right\}-\left\{F_{0,0}\left(U_{1}, U_{2}\right)-F_{0}\left(U_{1}, U_{2}\right)\right\}\right]^{2} \\
& +c P_{U_{1}, U_{2}, V_{1}, V_{2}}\left[\left\{F_{0,1}\left(U_{1}\right)-F_{1}\left(U_{1}\right)\right\}-\left\{F_{0,0}\left(U_{1}, V_{2}\right)-F_{0}\left(U_{1}, V_{2}\right)\right\}\right]^{2} \\
& +c P_{U_{1}, U_{2}, V_{1}, V_{2}}\left[\left\{F_{0,0}\left(V_{1}, U_{2}\right)-F_{0}\left(V_{1}, U_{2}\right)\right\}-\left\{F_{0,0}\left(U_{1}, U_{2}\right)-F_{0}\left(U_{1}, U_{2}\right)\right\}\right]^{2} \\
& +c P_{U_{1}, U_{2}, V_{1}, V_{2}}\left[\left\{F_{0,0}\left(V_{1}, V_{2}\right)-F_{0}\left(V_{1}, V_{2}\right)\right\}-\left\{F_{0,0}\left(V_{1}, U_{2}\right)-F_{0}\left(V_{1}, U_{2}\right)\right\}\right. \\
& \left.-\left\{F_{0,0}\left(U_{1}, V_{2}\right)-F_{0}\left(U_{1}, V_{2}\right)\right\}+\left\{F_{0,0}\left(U_{1}, U_{2}\right)-F_{0}\left(U_{1}, V_{2}\right)\right\}\right]^{2} \\
& +c P_{U_{1}, U_{2}, V_{1}, V_{2}}\left[\left\{F_{0,1}\left(V_{1}\right)-F_{1}\left(V_{1}\right)\right\}-\left\{F_{0,0}\left(V_{1}, V_{2}\right)-F_{0}\left(V_{1}, V_{2}\right)\right\}\right. \\
& \left.-\left\{F_{0,1}\left(U_{1}\right)-F_{1}\left(U_{1}\right)\right\}+\left\{F_{0,0}\left(U_{1}, V_{2}\right)-F_{0}\left(U_{1}, V_{2}\right)\right\}\right]^{2} \\
& +c P_{U_{1}, U_{2}, V_{1}, V_{2}}\left[\left\{F_{0,2}\left(U_{2}\right)-F_{2}\left(U_{2}\right)\right\}-\left\{F_{0,0}\left(V_{1}, U_{2}\right)-F_{0}\left(V_{1}, U_{2}\right)\right\}\right]^{2} \\
& +c P_{U_{1}, U_{2}, V_{1}, V_{2}}\left[\left\{F_{0,2}\left(V_{2}\right)-F_{2}\left(V_{2}\right)\right\}-\left\{F_{0,2}\left(U_{2}\right)-F_{2}\left(U_{2}\right)\right\}\right. \\
& \left.-\left\{F_{0,0}\left(V_{1}, V_{2}\right)-F_{0}\left(V_{1}, V_{2}\right)\right\}+\left\{F_{0,0}\left(V_{1}, U_{2}\right)-F_{0}\left(V_{1}, U_{2}\right)\right\}\right]^{2} \\
& +c P_{U_{1}, U_{2}, V_{1}, V_{2}}\left[-\left\{F_{0,2}\left(V_{2}\right)-F_{2}\left(V_{2}\right)\right\}-\left\{F_{0,1}\left(V_{1}\right)-F_{1}\left(V_{1}\right)\right\}\right. \\
& \left.+\left\{F_{0,0}\left(V_{1}, V_{2}\right)-F_{0}\left(V_{1}, V_{2}\right)\right\}\right]^{2} \tag{S3.25}
\end{align*}
$$

By $a^{2}+b^{2} \geq(a+b)^{2} / 2$ we have

$$
\begin{aligned}
\mathbb{M}\left(\boldsymbol{\theta}_{0}\right) & -\mathbb{M}(\boldsymbol{\theta}) \\
\geq & c P_{U_{1}, U_{2}, V_{1}, V_{2}}\left\{F_{0,0}\left(U_{1}, U_{2}\right)-F_{0}\left(U_{1}, U_{2}\right)\right\}^{2} \\
& +c P_{U_{1}, U_{2}, V_{1}, V_{2}}\left[\left\{F_{0,0}\left(U_{1}, V_{2}\right)-F_{0}\left(U_{1}, V_{2}\right)\right\}-\left\{F_{0,0}\left(U_{1}, U_{2}\right)-F_{0}\left(U_{1}, U_{2}\right)\right\}\right]^{2} \\
\geq & c P_{U_{1}, U_{2}, V_{1}, V_{2}}\left\{F_{0,0}\left(U_{1}, V_{2}\right)-F_{0}\left(U_{1}, V_{2}\right)\right\}^{2}=c\left\|F_{0,0}-F_{0}\right\|_{L_{2}\left(P_{U_{1}, V_{2}}\right)}^{2} .
\end{aligned}
$$

By $a^{2}+b^{2}+c^{2} \geq(a+b+c)^{2} / 3$ we have

$$
\begin{aligned}
\mathbb{M}\left(\boldsymbol{\theta}_{0}\right) & -\mathbb{M}(\boldsymbol{\theta}) \\
\geq & c P_{U_{1}, U_{2}, V_{1}, V_{2}}\left\{F_{0,0}\left(U_{1}, U_{2}\right)-F_{0}\left(U_{1}, U_{2}\right)\right\}^{2} \\
& +c P_{U_{1}, U_{2}, V_{1}, V_{2}}\left[\left\{F_{0,0}\left(U_{1}, V_{2}\right)-F_{0}\left(U_{1}, V_{2}\right)\right\}-\left\{F_{0,0}\left(U_{1}, U_{2}\right)-F_{0}\left(U_{1}, U_{2}\right)\right\}\right]^{2} \\
& +c P_{U_{1}, U_{2}, V_{1}, V_{2}}\left[\left\{F_{0,1}\left(U_{1}\right)-F_{1}\left(U_{1}\right)\right\}-\left\{F_{0,0}\left(U_{1}, V_{2}\right)-F_{0}\left(U_{1}, V_{2}\right)\right\}\right]^{2} \\
\geq & c P_{U_{1}, U_{2}, V_{1}, V_{2}}\left\{F_{0,1}\left(U_{1}\right)-F_{1}\left(U_{1}\right)\right\}^{2}=c\left\|F_{0,1}-F_{1}\right\|_{L_{2}\left(P_{U_{1}}\right)}^{2} .
\end{aligned}
$$

By general relationship $\sum_{i=1}^{j} a_{i}^{2} \geq\left(\sum_{i=1}^{j} a_{i}\right)^{2} / j$ and using similar arguments as above for $(S 3.25)$, we can show that $\mathbb{M}\left(\boldsymbol{\theta}_{0}\right)-\mathbb{M}(\boldsymbol{\theta})$ is greater than the product of a positive constant and each of the terms in $d^{2}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}\right)$ defined
by (3.1) in the main paper. This results in

$$
\begin{aligned}
& \mathbb{M}\left(\boldsymbol{\theta}_{0}\right)-\mathbb{M}(\boldsymbol{\theta}) \\
& \geq c\left\|F_{0,0}-F_{0}\right\|_{L_{2}\left(P_{U_{1}, U_{2}}\right)}^{2}+c\left\|F_{0,0}-F_{0}\right\|_{L_{2}\left(P_{U_{1}, V_{2}}\right)}^{2} \\
& \quad+c\left\|F_{0,0}-F_{0}\right\|_{L_{2}\left(P_{\left.V_{1}, U_{2}\right)}\right.}^{2}+c\left\|F_{0,0}-F_{0}\right\|_{L_{2}\left(P_{V_{1}, V_{2}}\right)}^{2} \\
& \quad+c\left\|F_{0,1}-F_{1}\right\|_{L_{2}\left(P_{U_{1}}\right)}^{2}+c\left\|F_{0,1}-F_{1}\right\|_{L_{2}\left(P_{V_{1}}\right)}^{2} \\
& \quad+c\left\|F_{0,2}-F_{2}\right\|_{L_{2}\left(P_{U_{2}}\right)}^{2}+c\left\|F_{0,2}-F_{2}\right\|_{L_{2}\left(P_{V_{2}}\right)}^{2} \\
& \geq \\
& \geq d^{2}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}\right) .
\end{aligned}
$$

Lemma 2. Let $\left\{B_{i}^{(1), l}\right\}_{i=1}^{p}$ and $\left\{B_{i}^{(2), l}\right\}_{j=1}^{q}$ be the two sets of $B$-spline basis functions with the knot sequences $\boldsymbol{\xi}=\left(\xi_{i}\right)_{i=1}^{p+1}$ and $\boldsymbol{\eta}=\left(\eta_{j}\right)_{j=1}^{q+1}$ satisfying $0=$ $\xi_{1}=\cdots=\xi_{l}<\xi_{l+1}<\cdots<\xi_{p}<\xi_{p+1}=\xi_{p+l}=\tau_{1}$ with $\frac{\min _{i: l \leq i \leq p}\left(\xi_{i+1}-\xi_{i}\right)}{\max _{i: l \leq i \leq p}\left(\xi_{i+1}-\xi_{i}\right)}>$ $c_{\text {knot }}$ and $0=\eta_{1}=\cdots=\eta_{l}<\eta_{l+1}<\cdots<\eta_{q}<\eta_{q+1}=\eta_{q+l}=\tau_{2}$ with $\frac{\min _{j: l \leq j \leq q}\left(\eta_{j+1}-\eta_{j}\right)}{\max _{j: l \leq j \leq q}\left(\eta_{j+1}-\eta_{j}\right)}>c_{k n o t}$, respectively, for a small positive $c_{k n o t}$. Define

$$
\begin{gathered}
\Phi_{\delta}=\left\{\phi: \phi(s, t)=\sum_{i=1}^{p} \sum_{j=1}^{q} \alpha_{i, j} B_{i}^{(1), l}(s) B_{j}^{(2), l}(t)\right. \\
\quad 0<\tau_{1, l} \leq s \leq \tau_{1, h}<\tau_{1}, 0<\tau_{2, l} \leq t \leq \tau_{2, h}<\tau_{2} \\
\left.\int_{\left[\tau_{1, l}, \tau_{1, h}\right] \times\left[\tau_{2, l}, \tau_{2, h}\right]} \phi^{2}(s, t) d t d s \leq \delta^{2}\right\}
\end{gathered}
$$

Then for $\epsilon<\delta$, we have

$$
\log N_{[\jmath}\left(\epsilon, \Phi_{\delta},\|\cdot\|_{\infty}\right) \leq c p q \log (\delta / \epsilon)
$$

Proof of Lemma 2.

Denote $\langle f, g\rangle=\int_{\left[\tau_{1, l}, \tau_{1, h}\right] \times\left[\tau_{2, l}, \tau_{2, h}\right]} f(s, t) g(s, t) d t d s$. The Gram-Schmidt process based on $\langle f, g\rangle$ leads to the set of orthogonal basis functions $\left\{O_{k}(\cdot, \cdot)\right\}_{k=1}^{K}$ for $\Phi_{\delta}$, with $K \leq p q$ and equal to the number of elements of $\left\{B_{i}^{(1), l} B_{j}^{(2), l}\right\}_{(i, j) \in \mathcal{I}}$, where for each member $(i, j) \in \mathcal{I}, B_{i}^{(1), l} B_{j}^{(2), l}$ has a support on $\left[\tau_{1, l}, \tau_{1, h}\right] \times$ $\left[\tau_{2, l}, \tau_{2, h}\right]$. So any $\phi \in \Phi_{\delta}$ can be written as $\phi(s, t)=\sum_{k=1}^{K} \omega_{k} O_{k}(s, t)$, where $\left\langle O_{k}, O_{k^{\prime}}\right\rangle \geq c\left(\frac{1}{K}\right)$ for $k=k^{\prime}$ because the construction of knot sequences $\boldsymbol{\xi}$ and $\boldsymbol{\eta}$ implies that the support for every basis $B_{i}^{(1), l} B_{j}^{(2), l}$ has an area greater than $c\left(\frac{1}{K}\right)$ and $\left\langle O_{k}, O_{k^{\prime}}\right\rangle=0$ for $k \neq k^{\prime}$. Then

$$
\sum_{k=1}^{K} \omega_{k}^{2} c\left(\frac{1}{K}\right) \leq \sum_{k=1}^{K} \omega_{k}^{2}\left\langle O_{k}, O_{k}\right\rangle=\langle\phi, \phi\rangle \leq \delta^{2}
$$

Hence,

$$
\begin{equation*}
\sum_{k=1}^{K} \omega_{k}^{2} \leq c K \delta^{2} \leq c p q \delta^{2} \tag{S3.26}
\end{equation*}
$$

Let

$$
S=\left\{\boldsymbol{\omega}=\left(\omega_{1}, \cdots, \omega_{K}\right)^{\prime}: \sum_{k=1}^{K} \omega_{k}^{2} \leq c p q \delta^{2}\right\}
$$

Lemma 0.4 of Wu and Zhang (2012) indicates that there exist $\epsilon$-balls $B_{1}, B_{2}, \cdots, B_{\left[(\delta / \epsilon)^{c p q}\right]}$ centered at $\boldsymbol{\omega}^{(1)}=\left(\omega_{1}^{(1)}, \cdots, \omega_{K}^{(1)}\right)^{\prime}, \boldsymbol{\omega}^{(2)}=\left(\omega_{1}^{(2)}, \cdots, \omega_{K}^{(2)}\right)^{\prime}$, $\cdots$, $\boldsymbol{\omega}^{\left(\left[(\delta / \epsilon)^{c p q}\right]\right)}=\left(\omega_{1}^{\left(\left[(\delta / \epsilon)^{c p q}\right]\right)}, \cdots, \omega_{K}^{\left[\left[(\delta / \epsilon)^{c p q}\right]\right)}\right)^{\prime}$, respectively, which cover $S$. For $m=1, \cdots,\left[(\delta / \epsilon)^{c p q}\right]$, define

$$
\psi^{(m)}(s, t)=\sum_{k=1}^{K} \omega_{k}^{(m)} O_{k}(s, t)
$$

On the other hand, we consider any $\phi(s, t)=\sum_{k=1}^{K} \omega_{k} O_{k}(s, t) \in \Phi_{\delta}$ with its coefficients $\boldsymbol{\omega}=\left(\omega_{1}, \cdots, \omega_{K}\right)^{\prime} \in S$ defined by (S3.26). Since $\epsilon$-balls $B_{1}, B_{2}, \cdots, B_{\left[(\delta / \epsilon)^{c p q}\right]}$ cover $S$, there exists a $d$ with $1 \leq d \leq\left[(\delta / \epsilon)^{c p q}\right]$, such that

$$
\left\|\boldsymbol{\omega}-\boldsymbol{\omega}^{(d)}\right\|_{\infty}=\max _{k: 1 \leq k \leq K}\left|\omega_{k}-\omega_{k}^{(d)}\right| \leq \epsilon .
$$

Then, for any $(s, t) \in\left[\tau_{1, l}, \tau_{1, h}\right] \times\left[\tau_{2, l}, \tau_{2, h}\right]$,

$$
\begin{aligned}
\left|\phi(s, t)-\psi^{(d)}(s, t)\right| & =\left|\sum_{k=1}^{K}\left(\omega_{k}-\omega_{k}^{(d)}\right) O_{k}(s, t)\right| \\
& \leq \max _{k: 1 \leq k \leq K}\left|\omega_{k}-\omega_{k}^{(d)}\right| \sum_{k=1}^{K}\left|O_{k}(s, t)\right| \\
& \leq c \max _{k: 1 \leq k \leq K}\left|\omega_{k}-\omega_{k}^{(d)}\right|\left\{c \sum_{i=1}^{p} \sum_{j=1}^{q} B_{i}^{(1), l}(s) B_{j}^{(2), l}(t)\right\} \\
& \leq c \max _{k: 1 \leq k \leq K}\left|\omega_{k}-\omega_{k}^{(d)}\right| \leq c \epsilon
\end{aligned}
$$

where we use the fact that $\sum_{k=1}^{K}\left|O_{k}(s, t)\right| \leq c \sum_{i=1}^{p} \sum_{j=1}^{q} B_{i}^{(1), l}(s) B_{j}^{(2), l}(t)$ with $c$ not related to $p$ and $q$ due to the structure of $O_{k}$ by the GramSchmidt process and the fact that each B-spline basis function only has support on $l$ sub-intervals. It implies that

$$
\left\|\phi-\psi^{(d)}\right\|_{\infty} \leq c \epsilon
$$

For $d=1, \cdots,\left[(\delta / \epsilon)^{c p q}\right]$, let $\Psi_{\epsilon}^{(d)}=\left\{\psi:\left\|\psi-\psi^{(d)}\right\|_{\infty} \leq c \epsilon, \psi \in \Psi\right\}$, where

$$
\begin{aligned}
\Psi=\{ & \psi: \psi(s, t)=\sum_{k=1}^{K} \omega_{k} O_{k}(s, t) \\
& \left.0<\tau_{1, l} \leq s \leq \tau_{1, h}<\tau_{1}, 0<\tau_{2, l} \leq t \leq \tau_{2, h}<\tau_{2},\right\}
\end{aligned}
$$

Then, $\phi \in \Psi_{\epsilon}^{(d)}$ for some $1 \leq d \leq\left[(\delta / \epsilon)^{c p q}\right]$. Hence, $\left\{\Psi_{\epsilon}^{(d)}\right\}_{d=1}^{\left[(\delta / \epsilon)^{c p q}\right]}$ cover $\Phi_{\delta}$. Therefore, $\epsilon$-covering number of $\Phi_{\delta}$ is bounded by $\left[(\delta / \epsilon)^{c p q}\right]$. By the fact $N_{[]}\left(2 \epsilon, \Phi_{\delta},\|\cdot\|_{\infty}\right) \leq N\left(\epsilon, \Phi_{\delta},\|\cdot\|_{\infty}\right)$, it is true that

$$
\log N_{[]}\left(\epsilon, \Phi_{\delta},\|\cdot\|_{\infty}\right) \leq c p q \log (\delta / \epsilon)
$$

Lemma 3. Let $\left\{B_{i}^{(1), l}\right\}_{i=1}^{p}$ be a set of $B$-spline basis functions with the knot sequence $\boldsymbol{\xi}$ satisfying $0=\xi_{1}=\cdots=\xi_{l}<\xi_{l+1}<\cdots<\xi_{p}<\xi_{p+1}=\xi_{p+l}=\tau_{1}$ with $\frac{\min _{i: l \leq i \leq p}\left(\xi_{i+1}-\xi_{i}\right)}{\max _{i: l \leq i \leq p}\left(\xi_{i+1}-\xi_{i}\right)}>c_{k n o t}$ for a small positive number $c_{k n o t}$. Define

$$
\begin{aligned}
\Phi_{\delta}=\{\phi: \phi(s) & =\sum_{i=1}^{p} \beta_{i} B_{i}^{(1), l}(s), \\
0<\tau_{1, l} & \left.\leq s \leq \tau_{1, h}<\tau_{1}, \int_{\left[\tau_{1, l}, \tau_{1, h}\right]} \phi^{2}(s) d s \leq \delta^{2}\right\} .
\end{aligned}
$$

Then for $\epsilon<\delta$, we have

$$
\log N_{[]}\left(\epsilon, \Phi_{\delta},\|\cdot\|_{\infty}\right) \leq c p \log (\delta / \epsilon)
$$

Proof of Lemma 3 .

The proof follows exactly the same lines as those for Lemma 2, so it is not presented here.

Lemma 4. Suppose $\Lambda_{0}(s, t)$ and $\Lambda(s, t)$ are both nondecreasing in $s$ and in $t$ in the domain $\left[\tau_{1, l}, \tau_{1, h}\right] \times\left[\tau_{2, l}, \tau_{2, h}\right]$ satisfying $\left\|\Lambda-\Lambda_{0}\right\|_{L^{2}(\mu)} \leq \eta$. Then

$$
\sup _{(s, t) \in\left[\tau_{1, l}, \tau_{1}, h\right] \times\left[\tau_{2, l}, \tau_{2, h}\right]}\left|\Lambda(s, t)-\Lambda_{0}(s, t)\right| \leq c \eta^{2 / 3}
$$

if
(1) $\Lambda_{0}(s, t)$ has mixed derivative $\frac{\partial^{2} \Lambda_{0}(s, t)}{\partial_{s} \partial t}$ and there exits a constant $0<$ $f_{0}<\infty$ such that $1 / f_{0} \leq \frac{\partial^{2} \Lambda_{0}(s, t)}{\partial s \partial t} \leq f_{0}$ on $\left[\tau_{1, l}, \tau_{1, h}\right] \times\left[\tau_{2, l}, \tau_{2, h}\right]$.
(2) The probability measure $\mu$ is absolute continuous with respect to Lebesgue measure with mixed derivative $\frac{\partial^{2} \mu(s, t)}{\partial s \partial t}$ satisfying $\frac{\partial^{2} \mu(s, t)}{\partial s \partial t} \geq c_{0}$, for some positive $c_{0}$.

Proof of Lemma 4
Suppose that $\left(s^{\prime}, t^{\prime}\right) \in\left[\tau_{1, l}, \tau_{1, h}\right] \times\left[\tau_{2, l}, \tau_{2, h}\right]$ satisfies

$$
\left|\Lambda\left(s^{\prime}, t^{\prime}\right)-\Lambda_{0}\left(s^{\prime}, t^{\prime}\right)\right| \geq(1 / 2) \sup _{(s, t) \in\left[\tau_{1, l}, \tau_{1}, h\right] \times\left[\tau_{2, l}, \tau_{2, h}\right]}\left|\Lambda(s, t)-\Lambda_{0}(s, t)\right| \equiv \xi / 2 .
$$

Then either $\Lambda\left(s^{\prime}, t^{\prime}\right) \geq \Lambda_{0}\left(s^{\prime}, t^{\prime}\right)+\xi / 2$ or $\Lambda_{0}\left(s^{\prime}, t^{\prime}\right) \geq \Lambda\left(s^{\prime}, t^{\prime}\right)+\xi / 2$. In the following, we only show the inequality for the first case, $\Lambda\left(s^{\prime}, t^{\prime}\right) \geq$ $\Lambda_{0}\left(s^{\prime}, t^{\prime}\right)+\xi / 2$, as the arguments are parallel for the second case.

There exists $\left(s^{\prime \prime}, t^{\prime \prime}\right)$ with $s^{\prime \prime} \geq s^{\prime}, t^{\prime \prime} \geq t^{\prime}$, such that $\Lambda_{0}\left(s^{\prime \prime}, t^{\prime \prime}\right)=\Lambda_{0}\left(s^{\prime}, t^{\prime}\right)+$ $\xi / 2$ by Condition (1).

Then

$$
\begin{aligned}
\eta^{2} & \geq \int\left\{\Lambda(s, t)-\Lambda_{0}(s, t)\right\}^{2} d \mu(s, t) \\
& \geq \int_{s^{\prime}}^{s^{\prime \prime}} \int_{t^{\prime}}^{t^{\prime \prime}}\left\{\Lambda(s, t)-\Lambda_{0}(s, t)\right\}^{2} \frac{\partial^{2} \mu(s, t)}{\partial s \partial t} d s d t \\
& \geq \int_{s^{\prime}}^{s^{\prime \prime}} \int_{t^{\prime}}^{t^{\prime \prime}}\left\{\Lambda_{0}\left(s^{\prime \prime}, t^{\prime \prime}\right)-\Lambda_{0}(s, t)\right\}^{2} \frac{\partial^{2} \mu(s, t)}{\partial s \partial t} d s d t \\
& \geq c_{0} \int_{s^{\prime}}^{s^{\prime \prime}} \int_{t^{\prime}}^{t^{\prime \prime}}\left\{\Lambda_{0}\left(s^{\prime \prime}, t^{\prime \prime}\right)-\Lambda_{0}(s, t)\right\}^{2} d s d t,
\end{aligned}
$$

where

$$
\Lambda_{0}\left(s^{\prime \prime}, t^{\prime \prime}\right)-\Lambda_{0}(s, t)=\int_{s}^{s^{\prime \prime}} \int_{t}^{t^{\prime \prime}} \frac{\partial^{2} \Lambda_{0}(x, y)}{\partial x \partial y} d x d y \geq\left(1 / f_{0}\right)\left(s^{\prime \prime}-s\right)\left(t^{\prime \prime}-t\right)
$$

Hence

$$
\begin{aligned}
\eta^{2} & \geq c \int_{s^{\prime}}^{s^{\prime \prime}} \int_{t^{\prime}}^{t^{\prime \prime}}\left(s^{\prime \prime}-s\right)^{2}\left(t^{\prime \prime}-t\right)^{2} d s d t \geq c\left(s^{\prime \prime}-s^{\prime}\right)^{3}\left(t^{\prime \prime}-t^{\prime}\right)^{3} \\
& =c\left\{\int_{s^{\prime}}^{s^{\prime \prime}} \int_{t^{\prime}}^{t^{\prime \prime}} d s d t\right\}^{3} \geq\left(c / f_{0}^{3}\right)\left\{\int_{s^{\prime}}^{s^{\prime \prime}} \int_{t^{\prime}}^{t^{\prime \prime}} \frac{\partial^{2} \Lambda_{0}(s, t)}{\partial s \partial t} d s d t\right\}^{3} \\
& \geq c\left\{\Lambda_{0}\left(s^{\prime \prime}, t^{\prime \prime}\right)-\Lambda_{0}\left(s^{\prime}, t^{\prime}\right)\right\}^{3}=c \xi^{3} .
\end{aligned}
$$

Lemma 5. Given that C1-C4 hold and $p+r>3$ in C1 and C2. There exist $\epsilon_{n}$ and spline function vector $\boldsymbol{w}_{n}^{*}$, such that S2.16), (S2.17), and (S2.18) given in the proof of Theorem 2 hold.

Proof of Lemma 5

Before proving the three main results given in the proof of Theorem 2, we show some intermediate results that are imperative to the proof of the lemma.

Since for any $\boldsymbol{w} \in \mathfrak{W},\left\langle\boldsymbol{w}^{*}, \boldsymbol{w}\right\rangle=\frac{d \rho\left(\boldsymbol{\theta}_{0}\right)}{d \boldsymbol{\theta}}[\boldsymbol{w}]$, with $\left\langle\boldsymbol{w}^{*}, \boldsymbol{w}\right\rangle$ given by the Fisher information inner product and $\frac{d \rho\left(\boldsymbol{\theta}_{0}\right)}{d \boldsymbol{\theta}}[\boldsymbol{w}]$ given by (3.6) in the main paper. Using the regularity conditions C1-C4, it can be shown that $\boldsymbol{w}^{*}=$ $\left(w_{0}^{*}, w_{1}^{*}, w_{2}^{*}\right)^{\prime}$ is a vector of piecewise continuous functions with bounded derivatives $\partial w_{0}^{*}\left(t_{1}, t_{2}\right) / \partial t_{1}, \partial w_{0}^{*}\left(t_{1}, t_{2}\right) / \partial t_{2}, d w_{1}^{*}\left(t_{1}\right) / d t_{1}$ and $d w_{2}^{*}\left(t_{2}\right) / d t_{2}$. Then by Jackson's Theorem in De Boor (2001) with Lemma 0.2 in Wu and Zhang (2012), there exist spline functions $w_{n, 0}^{*}(\cdot, \cdot), w_{n, 1}^{*}(\cdot), w_{n, 2}^{*}(\cdot)$, such that for $\boldsymbol{w}_{n}^{*}=\left(w_{n, 0}^{*}, w_{n, 1}^{*}, w_{n, 2}^{*}\right)^{\prime}$, we have

$$
\begin{equation*}
\left\|\boldsymbol{w}_{n}^{*}-\boldsymbol{w}^{*}\right\| \leq c n^{-\kappa_{n}}=o\left(n^{-\frac{1}{2(p+r)+2}}\right) \tag{S3.27}
\end{equation*}
$$

by choosing $\kappa_{n}>\frac{1}{2(p+r)+2}$, where $n^{\kappa_{n}}$ is the number of uniformly distributed interior knots and we use the fact that Fisher information norm (3.4) in the main paper is bounded by the infinity norm $\|\cdot\|_{\infty}$.

In what follows, we establish that for $\tilde{\boldsymbol{\theta}}=\left\{\tilde{F}_{n, 0}(\cdot, \cdot), \tilde{F}_{n, 1}(\cdot), \tilde{F}_{n, 2}(\cdot)\right\}^{\prime}$
between $\boldsymbol{\theta}_{0}$ and $\hat{\boldsymbol{\theta}}_{n}$,

$$
\begin{array}{r}
\left|P\left\{\frac{d^{2} l(\tilde{\boldsymbol{\theta}} ; \boldsymbol{X})}{d \boldsymbol{\theta}^{2}}\left[\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right]\left[\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right]-\frac{d^{2} l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)}{d \boldsymbol{\theta}^{2}}\left[\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right]\left[\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right]\right\}\right| \\
=o_{P}\left(n^{-1-\kappa^{*}}\right) \tag{S3.28}
\end{array}
$$

for some small $\kappa^{*}>0$. Taking the absolute value of the first term in $\frac{d^{2} l(\tilde{\boldsymbol{\theta}} \boldsymbol{X})}{d \boldsymbol{\theta}^{2}}\left[\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right]\left[\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right]-\frac{d^{2} l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)}{d \boldsymbol{\theta}^{2}}\left[\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right]\left[\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right]$, we have $T_{n, 1} \equiv \Delta_{1}^{(1)} \Delta_{2}^{(1)}\left|-\frac{1}{\tilde{F}_{n, 0}^{2}\left(U_{1}, U_{2}\right)}+\frac{1}{F_{0,0}^{2}\left(U_{1}, U_{2}\right)}\right|\left\{\hat{F}_{n, 0}\left(U_{1}, U_{2}\right)-F_{0,0}\left(U_{1}, U_{2}\right)\right\}^{2}$.

By Theorem 1, we have

$$
\left\{P_{U_{1}, U_{2}}\left(\hat{F}_{n, 0}-F_{0,0}\right)^{2}\right\}^{1 / 2}=O_{P}\left(n^{-\frac{p+r}{2(p+r)+2}}\right)
$$

Then for any small $\epsilon>0$, there exists an $M>0$ such that for all positive integer $n$,

$$
\operatorname{Pr}\left[\left\{P_{U_{1}, U_{2}}\left(\hat{F}_{n, 0}-F_{0,0}\right)^{2}\right\}^{1 / 2} \leq M n^{-\frac{p+r}{2(p+r)+2}}\right]>1-\epsilon
$$

Given $\left\{P_{U_{1}, U_{2}}\left(\hat{F}_{n, 0}-F_{0,0}\right)^{2}\right\}^{1 / 2} \leq M n^{-\frac{p+r}{2(p+r)+2}}$, using Lemma 4 and Conditions C3 and C4 together with the fact that $\tilde{\boldsymbol{\theta}}$ is between $\boldsymbol{\theta}_{0}$ and $\hat{\boldsymbol{\theta}}_{n}$ leads to

$$
T_{n, 1} \leq c_{M}\left|\hat{F}_{n, 0}\left(U_{1}, U_{2}\right)-F_{0,0}\left(U_{1}, U_{2}\right)\right|^{3}
$$

and by $p+r>3$,

$$
\begin{aligned}
P_{U_{1}, U_{2}} T_{n, 1} & \leq c_{M} P_{U_{1}, U_{2}}\left|\hat{F}_{n, 0}-F_{0,0}\right|^{3} \\
& \leq c_{M} P_{U_{1}, U_{2}}\left\{\hat{F}_{n, 0}-F_{0,0}\right\}^{2}\left\|\hat{F}_{n, 0}-F_{0,0}\right\|_{\infty} \\
& \leq c_{M}^{\prime} n^{-\frac{2(p+r)}{2(p+r)+2}} n^{-\frac{(2 / 3)(p+r)}{2(p+r)+2}}=c_{M}^{\prime} n^{-\frac{2(p+r)+(2 / 3)(p+r)}{2(p+r)+2}} \\
& =c_{M}^{\prime} n^{-\kappa_{0}^{*}} n^{-1-\kappa^{*}},
\end{aligned}
$$

for some $\kappa_{0}^{*}>0$ and $\kappa^{*}>0$. We also know for any small $\epsilon^{\prime}>0$, there exists an integer $N>0$ such that for $n>N$

$$
c_{M}^{\prime} n^{-\kappa_{0}^{*}}<\epsilon^{\prime} .
$$

In summary, for any $\epsilon>0$ and $\epsilon^{\prime}>0$, there exists an integer $N$, such that for $n>N$

$$
\begin{gathered}
\operatorname{Pr}\left\{P_{U_{1}, U_{2}}\left(\frac{T_{n, 1}}{n^{-1-\kappa^{*}}}\right)<\epsilon^{\prime}\right\} \geq \operatorname{Pr}\left\{P_{U_{1}, U_{2}}\left(\frac{T_{n, 1}}{n^{-1-\kappa^{*}}}\right) \leq c_{M}^{\prime} n^{-\kappa_{0}^{*}}\right\} \\
\geq \operatorname{Pr}\left[\left\{P_{U_{1}, U_{2}}\left(\hat{F}_{n, 0}-F_{0,0}\right)^{2}\right\}^{1 / 2} \leq M n^{-\frac{p+r}{2(p+r)+2}}\right] \geq 1-\epsilon,
\end{gathered}
$$

by the fact that the event $\left[\left\{P_{U_{1}, U_{2}}\left(\hat{F}_{n, 0}-F_{0,0}\right)^{2}\right\}^{1 / 2} \leq M n^{-\frac{p+r}{2(p+r)+2}}\right]$ is contained in the event $\left\{P_{U_{1}, U_{2}}\left(\frac{T_{n, 1}}{n^{-1-\kappa^{*}}}\right) \leq c_{M}^{\prime} n^{-\kappa_{0}^{*}}\right\}$. Hence $P_{U_{1}, U_{2}} T_{n, 1}=$ $o_{P}\left(n^{-1-\kappa^{*}}\right)$.

Proceeding in the same manner for all other terms in

$$
\frac{d^{2} l(\tilde{\boldsymbol{\theta}} ; \boldsymbol{X})}{d \boldsymbol{\theta}^{2}}\left[\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right]\left[\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right]-\frac{d^{2} l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)}{d \boldsymbol{\theta}^{2}}\left[\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right]\left[\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right]
$$

results S3.28.
Since $\boldsymbol{w}^{*}$ is piecewise continuous, it is bounded in a finite interval. Then for large $n, \boldsymbol{w}_{n}^{*}$ is uniformly bounded. Hence, by similar arguments we can show that for $\tilde{\boldsymbol{\theta}}$ between $\boldsymbol{\theta}_{0}$ and $\hat{\boldsymbol{\theta}}_{n} \pm \epsilon_{n, 0} \boldsymbol{w}_{n}^{*}$ for any $\epsilon_{n, 0}$ with $\epsilon_{n, 0}=o\left(n^{-1 / 2}\right)$

$$
\begin{aligned}
& \left\lvert\, P\left\{\frac { d ^ { 2 } l ( \tilde { \boldsymbol { \theta } } ; \boldsymbol { X } ) } { d \boldsymbol { \theta } ^ { 2 } } \left[\hat{\boldsymbol{\theta}}_{n}\right.\right.\right.\left. \pm \epsilon_{n, 0} \boldsymbol{w}_{n}^{*}-\boldsymbol{\theta}_{0}\right]\left[\hat{\boldsymbol{\theta}}_{n} \pm \epsilon_{n, 0} \boldsymbol{w}_{n}^{*}-\boldsymbol{\theta}_{0}\right] \\
&\left.\quad-\frac{d^{2} l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)}{d \boldsymbol{\theta}^{2}}\left[\hat{\boldsymbol{\theta}}_{n} \pm \epsilon_{n, 0} \boldsymbol{w}_{n}^{*}-\boldsymbol{\theta}_{0}\right]\left[\hat{\boldsymbol{\theta}}_{n} \pm \epsilon_{n, 0} \boldsymbol{w}_{n}^{*}-\boldsymbol{\theta}_{0}\right]\right\} \mid \\
&=o_{P}\left(n^{-1-\kappa^{*}}\right) .
\end{aligned}
$$

Now if we let $\epsilon_{n}=n^{-1 / 2-\kappa^{*}}$, then $\epsilon_{n}=o\left(n^{-1 / 2}\right)$ and $\epsilon_{n} o_{P}\left(n^{-1 / 2}\right)=$ $o_{P}\left(\epsilon_{n} n^{-1 / 2}\right)=o_{P}\left(n^{-1-\kappa^{*}}\right)$. Hence, we have

$$
\begin{array}{r}
\left|P\left\{\frac{d^{2} l(\tilde{\boldsymbol{\theta}} ; \boldsymbol{X})}{d \boldsymbol{\theta}^{2}}\left[\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right]\left[\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right]-\frac{d^{2} l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)}{d \boldsymbol{\theta}^{2}}\left[\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right]\left[\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right]\right\}\right| \\
=\epsilon_{n} o_{P}\left(n^{-1 / 2}\right) \tag{S3.29}
\end{array}
$$

and

$$
\begin{align*}
\left\lvert\, P\left\{\frac { d ^ { 2 } l ( \tilde { \boldsymbol { \theta } } ; \boldsymbol { X } ) } { d \boldsymbol { \theta } ^ { 2 } } \left[\hat{\boldsymbol{\theta}}_{n}\right.\right.\right. & \left. \pm \epsilon_{n} \boldsymbol{w}_{n}^{*}-\boldsymbol{\theta}_{0}\right]\left[\hat{\boldsymbol{\theta}}_{n} \pm \epsilon_{n} \boldsymbol{w}_{n}^{*}-\boldsymbol{\theta}_{0}\right] \\
& \left.\quad-\frac{d^{2} l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)}{d \boldsymbol{\theta}^{2}}\left[\hat{\boldsymbol{\theta}}_{n} \pm \epsilon_{n} \boldsymbol{w}_{n}^{*}-\boldsymbol{\theta}_{0}\right]\left[\hat{\boldsymbol{\theta}}_{n} \pm \epsilon_{n} \boldsymbol{w}_{n}^{*}-\boldsymbol{\theta}_{0}\right]\right\} \mid \\
= & \epsilon_{n} o_{P}\left(n^{-1 / 2}\right) . \tag{S3.30}
\end{align*}
$$

Next, we use Corollary 19.35 in van der Vaart (1998) to establish

$$
\begin{equation*}
\left(\mathbb{P}_{n}-P\right)\left\{\frac{d l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)}{d \boldsymbol{\theta}}\left[\boldsymbol{w}_{n}^{*}-\boldsymbol{w}^{*}\right]\right\}=o_{P}\left(n^{-1 / 2}\right) \tag{S3.31}
\end{equation*}
$$

The first term in $\frac{d l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)}{d \boldsymbol{\theta}}\left[\boldsymbol{w}_{n}^{*}-\boldsymbol{w}^{*}\right]$ is $\Delta_{1}^{(1)} \Delta_{2}^{(1)}\left(w_{n, 0}^{*}-w_{0}^{*}\right)\left(U_{1}, U_{2}\right) / F_{0,0}\left(U_{1}, U_{2}\right)$.
Let

$$
\mathcal{F}^{(1)}=\left\{\frac{\Delta_{1}^{(1)} \Delta_{2}^{(1)}\left(w_{n, 0}^{*}-w_{0}^{*}\right)\left(U_{1}, U_{2}\right)}{F_{0,0}\left(U_{1}, U_{2}\right)}\right\}
$$

be a single element set. Since there exists a positive constant $c_{w}$, such that

$$
\left|\frac{\Delta_{1}^{(1)} \Delta_{1}^{(1)}\left(w_{n, 0}^{*}-w_{0}^{*}\right)\left(U_{1}, U_{2}\right)}{F_{0,0}\left(U_{1}, U_{2}\right)}\right| \leq c_{w}\left|w_{n, 0}^{*}-w_{0}^{*}\right|
$$

by Conditions C3 and C4. Then $c_{w}\left|w_{n, 0}^{*}-w_{0}^{*}\right|$ is an envelope function for $\mathcal{F}^{(1)}$. As we mentioned previously, it can be shown by Conditions C3 and C 4 that Fisher information distance $\left\|\boldsymbol{\theta}_{1}-\boldsymbol{\theta}_{2}\right\|$ defined by (3.4) in the main paper can be bounded by the distance $d\left(\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}\right)$ defined by (3.1) in the main paper. Therefore, S3.27 implies $\left\{P_{U_{1}, U_{2}}\left(c_{w}\left|w_{n, 0}^{*}-w_{0}^{*}\right|\right)^{2}\right\}^{1 / 2} \leq$ $c n^{-\frac{1}{2(p+r)+2}}$. Then by Corollary 19.35 in van der Vaart (1998), we have

$$
\begin{aligned}
E_{P}\left\|\mathbb{G}_{n}\right\|_{\mathcal{F}^{(1)}} & \leq c J_{[]}\left\{c n^{-\frac{1}{2(p+r)+2}}, \mathcal{F}^{(1)}, L_{2}(P)\right\} \\
& =\int_{0}^{c n^{-\frac{1}{2(p+r)+2}}} \sqrt{1+\log N_{[]}\left\{\epsilon, \mathcal{F}^{(1)}, L_{2}(P)\right\}} d \epsilon \\
& =\int_{0}^{c n^{-\frac{1}{2(p+r)+2}}} \sqrt{1+\log 1} d \epsilon=c n^{-\frac{1}{2(p+r)+2}}
\end{aligned}
$$

using the fact that $\mathcal{F}^{(1)}$ is a single element set. Then it follows from

Markov's inequality that

$$
\left(\mathbb{P}_{n}-P\right)\left\{\frac{\Delta_{1}^{(1)} \Delta_{2}^{(1)}\left(w_{n, 0}^{*}-w_{0}^{*}\right)\left(U_{1}, U_{2}\right)}{F_{0,0}\left(U_{1}, U_{2}\right)}\right\}=o_{P}\left(n^{-1 / 2}\right)
$$

Proceeding in the same manner for all other terms in $\frac{d l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)}{d \boldsymbol{\theta}}\left[\boldsymbol{w}_{n}^{*}-\boldsymbol{w}^{*}\right]$ results in (S3.31).

Similarly, in what follows we use Corollary 19.35 in van der Vaart (1998)
to establish

$$
\begin{equation*}
\left(\mathbb{P}_{n}-P\right)\left\{\frac{d l(\tilde{\boldsymbol{\theta}} ; \boldsymbol{X})}{d \boldsymbol{\theta}}\left[\boldsymbol{w}_{n}^{*}\right]-\frac{d l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)}{d \boldsymbol{\theta}}\left[\boldsymbol{w}_{n}^{*}\right]\right\}=o_{P}\left(n^{-1 / 2}\right) \tag{S3.32}
\end{equation*}
$$

where $\tilde{\boldsymbol{\theta}}=\left(\tilde{F}_{n, 0}(\cdot, \cdot), \tilde{F}_{n, 1}(\cdot), \tilde{F}_{n, 2}(\cdot)\right)^{\prime}$ is a spline function vector between $\hat{\boldsymbol{\theta}}_{n}$ and $\hat{\boldsymbol{\theta}}_{n} \pm \epsilon_{n} \boldsymbol{w}_{n}^{*}$.

The first term in $\frac{d l\left(\tilde{\boldsymbol{\theta}}_{;} \boldsymbol{X}\right)}{d \boldsymbol{\theta}}\left[\boldsymbol{w}_{n}^{*}\right]-\frac{d l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)}{d \boldsymbol{\theta}}\left[\boldsymbol{w}_{n}^{*}\right]$ is $\Delta_{1}^{(1)} \Delta_{2}^{(1)} w_{n, 0}^{*}\left(U_{1}, U_{2}\right)\left\{\frac{1}{\frac{1}{F_{n, 0}\left(U_{1}, U_{2}\right)}}-\frac{1}{F_{0,0}\left(U_{1}, U_{2}\right)}\right\}$.
So we define

$$
f^{*}\left(F_{n, 0}\right) \equiv \Delta_{1}^{(1)} \Delta_{2}^{(1)} w_{n, 0}^{*}\left\{\frac{1}{F_{n, 0}}-\frac{1}{F_{0,0}}\right\}
$$

and let

$$
\mathcal{F}^{(2)}=\left[f^{*}\left(F_{n, 0}\right):\left\{P_{U_{1}, U_{2}}\left(F_{n, 0}-F_{0,0}\right)^{2}\right\}^{1 / 2} \leq c n^{-\frac{p+r}{2(p+r)+2}}\right],
$$

where $F_{n, 0}$ is between $F_{n, 0}^{(0)}$ and $F_{n, 0}^{(0)} \pm \epsilon_{n} w_{n, 0}^{*}$ with $\boldsymbol{\theta}_{n}=\left(F_{n, 0}^{(0)}, \cdot, \cdot\right) \in \Theta_{n}$ for $\Theta_{n}$ defined by S2.5. Lemma 4 and the fact that $\left\|\epsilon_{n} w_{n, 0}^{*}\right\|_{\infty} \leq c \epsilon_{n}\left(\boldsymbol{w}_{n}^{*}\right.$ is uniformly bounded) imply $\left\|F_{n, 0}-F_{0,0}\right\|_{\infty}=c n^{-\frac{2(p+r)}{6(p+r)+6}}$. Hence, we have

$$
F_{n, 0} \geq F_{0,0}-c n^{-\frac{2(p+r)}{6(p+r)+6}}
$$

It follows that

$$
\begin{gathered}
\left|\Delta_{1}^{(1)} \Delta_{2}^{(1)} w_{n, 0}^{*}\left(U_{1}, U_{2}\right)\left\{\frac{1}{F_{n, 0}\left(U_{1}, U_{2}\right)}-\frac{1}{F_{0,0}\left(U_{1}, U_{2}\right)}\right\}\right| \\
\leq\left|w_{n, 0}^{*}\right|\left\{\frac{1}{F_{0,0}-c n^{-\frac{2(p+r)}{6(p+r)+6}}}-\frac{1}{F_{0,0}}\right\} \\
\leq c n^{-\frac{2(p+r)}{6(p+r)+6}}\left|w_{n, 0}^{*}\right|
\end{gathered}
$$

by Conditions C3 and C4. Hence, $c n^{-\frac{2(p+r)}{6(p+r)+6}}\left|w_{n, 0}^{*}\right|$ is an envelope function for $\mathcal{F}^{(2)}$, with

$$
\left[P_{U_{1}, U_{2}}\left\{c n^{-\frac{2(p+r)}{6(p+r)+6}}\left|w_{n, 0}^{*}\right|\right\}^{2}\right]^{1 / 2} \leq c n^{-\frac{2(p+r)}{6(p+r)+6}}
$$

On the other hand, Lemma 2 implies that by choosing $p_{n}=q_{n}=n^{\kappa}$ and $\kappa=\frac{1}{2(p+r)+2}, \epsilon$-bracketing number with $\|\cdot\|_{\infty}$-norm for set

$$
\left[F_{n, 0}^{(0)}:\left\{P_{U_{1}, U_{2}}\left(F_{n, 0}^{(0)}-F_{0,0}\right)^{2}\right\}^{1 / 2} \leq c n^{-\frac{p+r}{2(p+r)+2}}\right]
$$

is equal to $\left\{c n^{-\frac{p+r}{2(p+r)+2}} / \epsilon\right\}^{c n^{\frac{2}{2(p+r)+2}}}$, where $F_{n, 0}^{(0)}$ satisfies $\boldsymbol{\theta}_{n}=\left(F_{n, 0}^{(0)}, \cdot, \cdot\right) \in$ $\Theta_{n}$ for $\Theta_{n}$ defined by S2.5). Then by Conditions C3 and C4 with some algebra we can show that

$$
\log N_{[]}\left\{\epsilon, \mathcal{F}^{(2)}, L_{2}(P)\right\}=c n^{\frac{2}{2(p+r)+2}} \log \left\{\frac{c n^{-\frac{p+r}{2(p+r)+2}}}{\epsilon}\right\}
$$

Now by Corollary 19.35 in van der Vaart (1998), we have

$$
\begin{align*}
E_{P}\left\|\mathbb{G}_{n}\right\|_{\mathcal{F}^{(2)}} & \leq c J_{[]}\left\{c n^{-\frac{2(p+r)}{6(p+r)+6}}, \mathcal{F}^{(2)}, L_{2}(P)\right\} \\
& =\int_{0}^{c n^{-\frac{2(p+r)}{6(p+r)+6}}} \sqrt{1+\log N_{[]}\left\{\epsilon, \mathcal{F}^{(2)}, L_{2}(P)\right\}} d \epsilon  \tag{S3.33}\\
& \leq \int_{0}^{c n^{-\frac{2(p+r)}{6(p+r)+6}}} c n^{\frac{3}{6(p+r)+6}} n^{-\frac{3 / 2(p+r)}{6(p+r)+6}} \epsilon^{-1 / 2} d \epsilon \\
& =c n^{\frac{3-5 / 2(p+r)}{6(p+r)+6}} .
\end{align*}
$$

Since $\left\|\epsilon_{n} w_{n, 0}^{*}\right\|_{\infty} \leq c \epsilon_{n}$ and $\epsilon_{n}=o\left(n^{-1 / 2}\right)$, Theorem 1 implies

$$
\left\{P_{U_{1}, U_{2}}\left(\tilde{F}_{n, 0}-F_{0,0}\right)^{2}\right\}^{1 / 2}=O_{P}\left(n^{-\frac{p+r}{2(p+r)+2}}\right)
$$

Then for any small $\epsilon_{0}>0$, there exists an $M>0$ such that for all positive integer $n$

$$
\begin{align*}
& \operatorname{Pr}\left[\left\{P_{U_{1}, U_{2}}\left(\tilde{F}_{n, 0}-F_{0,0}\right)^{2}\right\}^{1 / 2} \leq M n^{-\frac{p+r}{2(p+r)+2}}\right]>1-\epsilon_{0} .  \tag{S3.34}\\
& \text { If }\left\{P_{U_{1}, U_{2}}\left(\tilde{F}_{n, 0}-F_{0,0}\right)^{2}\right\}^{1 / 2} \leq M n^{-\frac{p+r}{2(p+r)+2}} \text {, then } f^{*}\left(\tilde{F}_{n, 0}\right) \in \mathcal{F}^{(2)} . \text { So }
\end{align*}
$$

we know that

$$
\begin{aligned}
E_{P}\left[\left|\mathbb{G}_{n}\left\{f^{*}\left(\tilde{F}_{n, 0}\right)\right\}\right| \mid\left\{P_{U_{1}, U_{2}}\left(\tilde{F}_{n, 0}-F_{0,0}\right)^{2}\right\}^{1 / 2}\right. & \left.\leq M n^{-\frac{p+r}{2(p+r)+2}}\right] \\
& \leq E_{P}\left\|\mathbb{G}_{n}\right\|_{\mathcal{F}^{(2)}}
\end{aligned}
$$

Hence, by (S3.33) we have

$$
\begin{array}{r}
E_{P}\left[\left|\mathbb{G}_{n}\left\{f^{*}\left(\tilde{F}_{n, 0}\right)\right\}\right| \left\lvert\,\left\{P_{U_{1}, U_{2}}\left(\tilde{F}_{n, 0}-F_{0,0}\right)^{2}\right\}^{1 / 2} \leq M n^{-\frac{p+r}{2(p+r)+2}}\right.\right] \\
\leq c_{M} n^{\frac{3-5 / 2(p+r)}{6(p+r)+6}}=o(1)
\end{array}
$$

since $p+r>3$. Then conditional Markov's inequality implies that, for any small $\epsilon_{1}$ and $\epsilon_{2}$ there exists an integer $N>0$ such that for $n>N$ we have

$$
\begin{array}{r}
\operatorname{Pr}\left[\left|\left(\mathbb{P}_{n}-P\right)\left\{\frac{f^{*}\left(\tilde{F}_{n, 0}\right)}{n^{-1 / 2}}\right\}\right|<\epsilon_{1} \left\lvert\,\left\{P_{U_{1}, U_{2}}\left(\tilde{F}_{n, 0}-F_{0,0}\right)^{2}\right\}^{1 / 2} \leq M n^{-\frac{p+r}{2(p+r)+2}}\right.\right] \\
>1-\epsilon_{2}
\end{array}
$$

Now by (S3.34) and the definition of conditional probability we have for $n>N$

$$
\operatorname{Pr}\left[\left|\left(\mathbb{P}_{n}-P\right)\left\{\frac{f^{*}\left(\tilde{F}_{n, 0}\right)}{n^{-1 / 2}}\right\}\right|<\epsilon_{1}\right]>\left(1-\epsilon_{2}\right)\left(1-\epsilon_{0}\right)>1-\epsilon_{2}-\epsilon_{0}
$$

Finally, for any small $\epsilon_{1}, \epsilon$, if we let $\epsilon_{0}=\epsilon_{2}=\epsilon / 2$, by the preceding display there exists an integer $N>0$, such that for $n>N$

$$
\operatorname{Pr}\left[\left|\left(\mathbb{P}_{n}-P\right)\left\{\frac{f^{*}\left(\tilde{F}_{n, 0}\right)}{n^{-1 / 2}}\right\}\right|<\epsilon_{1}\right]>1-\epsilon
$$

That is,

$$
\left(\mathbb{P}_{n}-P\right)\left\{f^{*}\left(\tilde{F}_{n, 0}\right)\right\}=o_{P}\left(n^{-1 / 2}\right) .
$$

Proceeding in the same manner for all other terms in $\frac{d l(\tilde{\boldsymbol{\theta}} ; \boldsymbol{X})}{d \boldsymbol{\theta}}\left[\boldsymbol{w}_{n}^{*}\right]-\frac{d l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)}{d \boldsymbol{\theta}}\left[\boldsymbol{w}_{n}^{*}\right]$ results in S3.32.

In what follows we establish the three main results for this lemma.
First, we verify (S2.16) given in the proof of Theorem 2 holds.

$$
\begin{aligned}
P\left(r\left[\hat{\boldsymbol{\theta}}_{n}, \boldsymbol{\theta}_{0} ; \boldsymbol{X}\right]\right)= & P\left\{l\left(\hat{\boldsymbol{\theta}}_{n} ; \boldsymbol{X}\right)-l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)-\frac{d l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)}{d \boldsymbol{\theta}}\left[\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right]\right\} \\
= & \frac{1}{2} P\left\{\frac{d^{2} l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)}{d \boldsymbol{\theta}^{2}}\left[\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right]\left[\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right]\right\} \\
+ & \frac{1}{2} P\left\{\frac{d^{2} l(\tilde{\boldsymbol{\theta}} ; \boldsymbol{X})}{d \boldsymbol{\theta}^{2}}\left[\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right]\left[\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right]\right. \\
& \left.-\frac{d^{2} l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)}{d \boldsymbol{\theta}^{2}}\left[\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right]\left[\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right]\right\},
\end{aligned}
$$

where $\tilde{\boldsymbol{\theta}}$ is between $\boldsymbol{\theta}_{0}$ and $\hat{\boldsymbol{\theta}}_{n}$. Then by the definition of Fisher information norm $\|\cdot\|$ and S3.29)

$$
\begin{equation*}
P\left(r\left[\hat{\boldsymbol{\theta}}_{n}, \boldsymbol{\theta}_{0} ; \boldsymbol{X}\right]\right)=-\frac{\left\|\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right\|^{2}}{2}+\epsilon_{n} o_{P}\left(n^{-1 / 2}\right) . \tag{S3.35}
\end{equation*}
$$

Similarly, by S3.30)

$$
\begin{equation*}
P\left(r\left[\hat{\boldsymbol{\theta}}_{n} \pm \epsilon_{n} \boldsymbol{w}_{n}^{*}, \boldsymbol{\theta}_{0} ; \boldsymbol{X}\right]\right)=-\frac{\left\|\hat{\boldsymbol{\theta}}_{n} \pm \epsilon_{n} \boldsymbol{w}_{n}^{*}-\boldsymbol{\theta}_{0}\right\|^{2}}{2}+\epsilon_{n} o_{P}\left(n^{-1 / 2}\right) \tag{S3.36}
\end{equation*}
$$

By (S3.35) and (S3.36), we have

$$
\begin{align*}
& P\left(r\left[\hat{\boldsymbol{\theta}}_{n}, \boldsymbol{\theta}_{0} ; \boldsymbol{X}\right]-r\left[\hat{\boldsymbol{\theta}}_{n} \pm \epsilon_{n} \boldsymbol{w}_{n}^{*}, \boldsymbol{\theta}_{0} ; \boldsymbol{X}\right]\right) \\
& =\frac{\left\|\hat{\boldsymbol{\theta}}_{n} \pm \epsilon_{n} \boldsymbol{w}_{n}^{*}-\boldsymbol{\theta}_{0}\right\|^{2}-\left\|\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right\|^{2}}{2}+\epsilon_{n} o_{P}\left(n^{-1 / 2}\right) \\
& = \pm \epsilon_{n}\left\langle\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}, \boldsymbol{w}_{n}^{*}\right\rangle+\frac{\left\|\epsilon_{n} \boldsymbol{w}_{n}^{*}\right\|^{2}}{2}+\epsilon_{n} o_{P}\left(n^{-1 / 2}\right) \\
& = \pm \epsilon_{n}\left\langle\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}, \boldsymbol{w}^{*}\right\rangle \pm \epsilon_{n}\left\langle\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}, \boldsymbol{w}_{n}^{*}-\boldsymbol{w}^{*}\right\rangle+\frac{\left\|\epsilon_{n} \boldsymbol{w}_{n}^{*}\right\|^{2}}{2}+\epsilon_{n} o_{P}\left(n^{-1 / 2}\right) . \tag{S3.37}
\end{align*}
$$

By Theorem 1 and S3.27) we have

$$
\begin{align*}
\left|\left\langle\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}, \boldsymbol{w}_{n}^{*}-\boldsymbol{w}^{*}\right\rangle\right| & \leq\left\|\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right\|\left\|\boldsymbol{w}_{n}^{*}-\boldsymbol{w}^{*}\right\| \\
& \leq O_{P}\left(n^{-\frac{p+r}{2(p+r)+2}}\right) o\left(n^{-\frac{1}{2(p+r)+2}}\right)=o_{P}\left(n^{-1 / 2}\right) . \tag{S3.38}
\end{align*}
$$

In addition, since $\boldsymbol{w}_{n}^{*}$ is uniformly bounded, we have

$$
\begin{equation*}
\frac{\left\|\epsilon_{n} \boldsymbol{w}_{n}^{*}\right\|^{2}}{2}=\epsilon_{n} O\left(n^{-1 / 2}\right) . \tag{S3.39}
\end{equation*}
$$

Then, (S3.37), (S3.38) and (S3.39) imply (S2.16),

$$
\begin{aligned}
P\left(r\left[\hat{\boldsymbol{\theta}}_{n}, \boldsymbol{\theta}_{0} ; \boldsymbol{X}\right]-\right. & \left.r\left[\hat{\boldsymbol{\theta}}_{n} \pm \epsilon_{n} \boldsymbol{w}_{n}^{*}, \boldsymbol{\theta}_{0} ; \boldsymbol{X}\right]\right) \\
& = \pm \epsilon_{n}\left\langle\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}, \boldsymbol{w}^{*}\right\rangle+\epsilon_{n} o_{P}\left(n^{-1 / 2}\right),
\end{aligned}
$$

Second, we verify S2.17 given in the proof of Theorem 2.
By S3.31 and $P\left\{\frac{d l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)}{d \boldsymbol{\theta}}\left[\boldsymbol{w}_{n}^{*}\right]\right\}=0$, it is clear that S2.17,

$$
\frac{1}{n} \sum_{i=1}^{n} \frac{d l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{x}_{i}\right)}{d \boldsymbol{\theta}}\left[\boldsymbol{w}_{n}^{*}\right]=\left(\mathbb{P}_{n}-P\right)\left\{\frac{d l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)}{d \boldsymbol{\theta}}\left[\boldsymbol{w}^{*}\right]\right\}+o_{P}\left(n^{-1 / 2}\right)
$$

holds.
Finally, we verify (S2.18) given in the proof of Theorem 2. Note that

$$
\begin{aligned}
\left(\mathbb{P}_{n}\right. & -P)\left(r\left[\hat{\boldsymbol{\theta}}_{n}, \boldsymbol{\theta}_{0} ; \boldsymbol{X}\right]-r\left[\hat{\boldsymbol{\theta}}_{n} \pm \epsilon_{n} \boldsymbol{w}_{n}^{*}, \boldsymbol{\theta}_{0} ; \boldsymbol{X}\right]\right) \\
& =\left(\mathbb{P}_{n}-P\right)\left\{l\left(\hat{\boldsymbol{\theta}}_{n} ; X\right)-l\left(\hat{\boldsymbol{\theta}}_{n} \pm \epsilon_{n} \boldsymbol{w}_{n}^{*} ; X\right)-\frac{d l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)}{d \boldsymbol{\theta}}\left[\mp \epsilon_{n} \boldsymbol{w}_{n}^{*}\right]\right\} \\
& =\mp \epsilon_{n}\left(\mathbb{P}_{n}-P\right)\left\{\frac{d l(\tilde{\boldsymbol{\theta}} ; \boldsymbol{X})}{d \boldsymbol{\theta}}\left[\boldsymbol{w}_{n}^{*}\right]-\frac{d l\left(\boldsymbol{\theta}_{0} ; \boldsymbol{X}\right)}{d \boldsymbol{\theta}}\left[\boldsymbol{w}_{n}^{*}\right]\right\}
\end{aligned}
$$

where $\tilde{\boldsymbol{\theta}}$ is between $\hat{\boldsymbol{\theta}}_{n}$ and $\hat{\boldsymbol{\theta}}_{n} \pm \epsilon_{n} \boldsymbol{w}_{n}^{*}$, then by S3.32 it immediately follows that (S2.18),

$$
\left(\mathbb{P}_{n}-P\right)\left(r\left[\hat{\boldsymbol{\theta}}_{n}, \boldsymbol{\theta}_{0} ; \boldsymbol{X}\right]-r\left[\hat{\boldsymbol{\theta}}_{n} \pm \epsilon_{n} \boldsymbol{w}_{n}^{*}, \boldsymbol{\theta}_{0} ; \boldsymbol{X}\right]\right)=\epsilon_{n} o_{P}\left(n^{-1 / 2}\right)
$$

holds. The proof is complete.

## Bibliography

De Boor, C. (2001). A Practical Guide to Splines, Revised Ed. New York: Springer.

Halmos, P. (1982). A Hilbert Space Problem Book. New York: Springer.
van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge: Cambridge University Press.
van der Vaart, A. W. and J. A. Wellner (1996). Weak Convergence and Empirical Processes. New York: Springer.

Wellner, J. A. and Y. Zhang (2007). Likelihood-based semiparametric estimation methods for panel count data with covariates. Annals of Statistics 35, 2106-2142.

Wong, W. H. (1992). On asymptotic efficiency in estimation theory. Statistical Science 2, 47-68.

Wu, Y. and Y. Zhang (2012). Partially monotone tensor spline estimation of the joint distribution function with bivariate current status data. Annals of Statistics 40, 1609-1636.

