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We empirically investigate the sensitiveness of our method to the choice

of tuning parameters in Section S1. Section S2 provides every figure and ta-

ble for Sections 2 and 6 in the main paper. Technical details and additional

numerical results are gathered in Sections S3 and S4, respectively.

S1 Empirical analysis of tuning parameters

We empirically investigate the sensitiveness of our method to the choice

of tuning parameters. Throughout this subsection, we suppose the rows

of X ∈ R100×500 are i.i.d realizations from N(0,Σ) with Σj,k = 0.9|j−k|

(Toeplitz) or Σj,k = 0.8 (Equicorrelation) for j 6= k and Σjj = 1. Regression

coefficients βj’s are generated by either Case 1 with s0 = 10 or Case 2 with

s0 = 4 as described in Section 6. The errors are independently generated

from the standard normal distribution. The nominal level is 95% and results
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are based on 100 independent simulation runs.

We first explore the effect of C0 on the estimation of the surrogate set

and the impact of C1 and C2 on the coverage rate and interval width of

the BRP-based confidence interval. The results for βj generated from Case

2 with s0 = 4 and Toeplitz covariance Σ are summarized in Figure 1. As

seen from Panel A, the surrogate set A(τ) with τ = 2 correctly identifies the

large coefficients when C0 ≥ 2. Panels B-D provide the average coverage

rate, bias and length of the BRP-based confidence intervals for the active set

over a prespecified set of grid points for (C1, C2). The coverage probability

and interval width both tend to increase with the values of C1 and C2.

These results appear to suggest that fixing one parameter at a reasonably

large value while choosing the other parameter to balance the coverage

probability and interval width would generally deliver similar results as

simultaneously selecting the two parameters.

To confirm this intuition, we set C0 = 2, C1 = 8 and use the procedure

in Section 5 to select C2 over the following prespecified grid points

{
c2,j,(k)

}K
k=1

= {0.3, 0.6, · · · , 14.7, 15.0} . (S1.1)

We denote the corresponding procedures by “Fix-BRP” and “Fix-MBRP”

and compare their performance with the procedures that select all tuning

parameters automatically using the method in Section 5. Notice that fixing
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C0 and C1 would significantly ease the computational burden. Figure 2

presents the empirical coverage probabilities and lengths of the 95% confi-

dence intervals and the normalized overall bias as in (6.4). Fix-BRP and

Fix-MBRP perform equally well in terms of the coverage accuracy and bias

as compared to BRP and MBRP but with a much lower computational

cost. Indeed similar results are observed for the other simulation setups in

Section 6.1. For the rest of the paper, we shall adopt the above procedure

by fixing C0 and C1 to implement the proposed method.

Finally, we study the impact of B and τ . Figure 3 summarizes the per-

formance of the BRP and MBRP-based confidence intervals with different

values of B and τ . The results are not sensitive to the bootstrap sample

size B. We also observe that a larger τ tends to deliver higher coverage

for MBRP in the equicorrelation case. Unreported numerical studies show

that similar phenomenon can be observed for the other simulation setups.

In Section 6 below, we shall fix B = 200 and τ = 2.
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Figure 1: Panel A shows the barplots of the average cardinality of A(τ) against C0. Error

bars in the barplots represent the interval within one standard error of the average value.

Panel B (C or D) shows the heatmap of the average coverage rates (bias or length) by

the BRP estimator over a prespecified grid points for (C1, C2). The number represents

the average coverage probability (bias or length) of the 95% confidence intervals for the

active set.
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Figure 2: Panel A shows the barplots of the empirical coverage and Panels B-C display

the boxplots for the length and bias of the 95% confidence intervals of each method.

In Panel A, the horizontal line indicates the nominal level and error bars represent the

interval within one standard deviation of the empirical coverage. Panel D shows the

boxplots of the computation time (in seconds) for each method.
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Figure 3: Barplots for the empirical coverage and boxplots for the lengths and biases of

the 95% confidence intervals for both the active and inactive sets with different values

of B and τ . The horizontal line in the barplots indicates the nominal level. Error bars

in the barplots represent the interval within one standard deviation of the empirical

coverage. Data sets are independently generated from Case 1 with s0 = 10 and standard

normal error as in Section 6.
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S2 Appendices for Sections 2 and 6

S2.1 For Section 2

Figure 4: Boxplots of the absolute values of the normalized bias terms defined in (6.4)

by “With Decomposition” and “Without Decomposition.” The non-zero βj ’s are inde-

pendently generated from U(0, 4) with s0 = 10. All the simulation settings are the same

as the case with the Toeplitz covariance structure and standard normal error in Section

6. The results are based on 100 simulation runs.
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S2.2 For Section 6

Figure 5: Barplots for the empirical coverage and boxplots for the lengths and biases of

the 95% confidence intervals for Case 1 with s0 = 3, 5 and standard normal error. The

horizontal line in the barplots indicates the nominal level. Error bars in the barplots

represent the interval within one standard deviation of the empirical coverage.
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Figure 6: Barplots for the empirical coverage and boxplots for the lengths and biases of

the 95% confidence intervals for Case 1 with s0 = 10, 15 and standard normal error. The

horizontal line in the barplots indicates the nominal level. Error bars in the barplots

represent the interval within one standard deviation of the empirical coverage.
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Figure 7: Barplots for the empirical coverage and boxplots for the lengths and biases of

the 95% confidence intervals for Case 2 with s0 = 4, 8 and standard normal error. The

horizontal line in the barplots indicates the nominal level. Error bars in the barplots

represent the interval within one standard deviation of the empirical coverage.
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Figure 8: Barplots for the empirical coverage and boxplots for the lengths and biases of

the 95% confidence intervals for Case 2 with s0 = 12, 16 and standard normal error. The

horizontal line in the barplots indicates the nominal level. Error bars in the barplots

represent the interval within one standard deviation of the empirical coverage.
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Figure 9: Scatterplots of the bias and length of the BRP-based confidence interval for

the active set with s0 = 3 and Toeplitz covariance structure for X against the selected

C2. The point shapes and colors indicate whether the constructed confidence intervals

include the true parameter or not.

Figure 10: Scatterplots of the bias and length of the MBRP-based confidence interval

for the active set with s0 = 8 and equicorrelation covariance structure for X against the

selected C2. The point shapes and colors indicate whether the constructed confidence

intervals include the true parameter or not.
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Figure 11: Barplots for the empirical coverage and boxplots for the lengths and biases

of the 95% confidence intervals for different contrasts with standard normal error. The

horizontal line in the barplots indicates the nominal level. Error bars in the barplots

represent the interval within one standard deviation of the empirical coverage.
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Min Q1 Median Q3 Max

BRP 107.60 125.30 126.70 127.80 135.20

MBRP 89.65 104.34 105.21 106.35 109.03

DB 26.29 33.45 34.41 35.66 38.20

ZB 457.90 471.30 476.50 483.20 499.50

Table 1: Computation time (in seconds) of each method for constructing 500 confidence

intervals calculated by the R package microbenchmark. The five number summaries are

obtained based on 100 independent simulation runs.

S3 Technical Details

S3.1 Concentration Inequalities

We first define several quantities which will appear throughout the supple-

mentary material. Let θj = Xj −X−jb−j and

b−j = argmin
b̃∈Rp−1

E||Xj −X−j b̃||22 = Σ−1−j,−jΣ−j,j.

Define κ1 = 2κ2, κ2j = 2κ2
√

Λ−1minΣj,j and κ3j = 2κ2Λ−1minΣj,j.

The following lemmas shows the concentration inequalities for sub-

exponential and sub-gaussian random variables which are motivated by

Lemmas 5.5, 5.15 and Propositions 5.10, 5.16 in Vershynin (2010).

Lemma 1. Let X1, · · · , XN be i.i.d. mean-zero sub-exponential random

variables with ‖Xi‖ψ1 = K1. Then, for every a = (a1, · · · , aN)> ∈ RN×1
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and any t ≥ 0, we have

P

(∣∣∣∣∣
N∑
i=1

aiXi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

{
−min

(
t2

8e2‖a‖2K2
1

,
t

4eK1‖a‖∞

)}
.

Proof of Lemma 1. We first derive an upper bound of the moment gen-

erating function of Xi. By expanding the exponential function in the Taylor

series, we have

E[exp(λXi)] = E

[
1 + λXi +

∞∑
p=2

(λXi)
p

p!

]
= 1 +

∞∑
p=2

λpE[Xp
i ]

p!

≤ 1 +
∞∑
p=2

λp(K1p)
p

(p/e)p
= 1 +

∞∑
p=2

(eλK1)
p = 1 +

(eλK1)
2

1− (eλK1)

provided that |eλK1| < 1. The inequality follows by the definition of sub-

exponential norm

E[Xp
i ] ≤ (K1p)

p

and Stirling’s approximation p! ≥ (p/e)p. In addition, if |eλK1| < 0.5, the

quantity on the right hand side can be bounded above by

1 + 2(eλK1)
2 ≤ exp(2(eλK1)

2).

Thus, combining all of the above implies

E[exp(λXi)] ≤ exp(2(eλK1)
2) for |λ| < 1

2eK1

. (S3.1)
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Next, for λ > 0, we have

P

(
N∑
i=1

aiXi ≥ t

)
= P

(
exp

(
λ

N∑
i=1

aiXi

)
≥ exp(λt)

)

≤ exp(−λt)E

[
exp

(
λ

N∑
i=1

aiXi

)]
= exp(−λt)

N∏
i=1

E[exp(λaiXi)]

by the exponential Markov inequality for
∑N

i=1 aiXi. If λ is small enough

so that |λ| < (2eK1‖a‖∞)−1, (S3.1) gives

P

(
N∑
i=1

aiXi ≥ t

)
≤ exp(−λt)

N∏
i=1

exp(2(eλaiK1)
2) = exp(−λt+2e2λ2‖a‖2K2

1).

By choosing λ = min (t(4e2‖a‖2K2
1)−1, (2eK1‖a‖∞)−1), we obtain

P

(
N∑
i=1

aiXi ≥ t

)
≤ exp

{
−min

(
t2

8e2‖a‖2K2
1

,
t

4eK1‖a‖∞

)}
.

The second term in min can be obtained as follows. When λ = (2eK1‖a‖∞)−1,

we have

−λt+ 2e2λ2‖a‖2K2
1 = − t

2eK1‖a‖∞
+
‖a‖2

2‖a‖2∞
≤ − t

4eK1‖a‖∞

where the last inequality follows as

λ =
1

2eK1‖a‖∞
≤ t

(4e2‖a‖2K2
1)

which implies

‖a‖2

‖a‖∞
≤ t

2eK1

.

By repeating the same argument for −Xi, we get the same bound for

P(−
∑N

i=1 aiXi ≥ t), which completes the proof.
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Lemma 2. Let X1, · · · , XN be i.i.d. mean-zero sub-gaussian random vari-

ables with ‖Xi‖ψ2 = K2. Then, we have the following results.

1. For any |ω1| ≤ 1,

E

[
exp

(
ω2
1

X2
i

4eK2
2

)]
≤ exp(ω2

1). (S3.2)

2. For ω2 ∈ R,

E[exp(ω2Xi)] ≤ exp(8eK2
2ω

2
2). (S3.3)

3. For every a = (a1, · · · , aN) ∈ RN and any t ≥ 0,

P

(∣∣∣∣∣
N∑
i=1

aiXi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2

32eK2
2‖a‖2

)
. (S3.4)

Proof of Lemma 2. Let Yi = Xi/(2
√
eK2). We note that, for |ω2

1/2| < 1,

E[exp(ω2
1Y

2
i )] = 1 +

∞∑
k=1

ω2k
1 E[Y 2k

i ]

k!

≤ 1 +
∞∑
k=1

1

(4e)k
(2ω2

1k)k

(k/e)k
=
∞∑
k=0

(
ω2
1

2

)k
=

(
1− ω2

1

2

)−1
by the Taylor series expansion of the exponential function and Stirling’s

approximation. We can further bound

E[exp(ω2
1Y

2
i )] ≤ exp(ω2

1) for |ω1| ≤ 1

by using the inequality (1−x)−1 ≤ exp(2x) for 0 ≤ x ≤ 0.5, which completes

(S3.2).
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For (S3.3), we notice that

E[exp(ωYi)] ≤ E[ωYi + exp(ω2Y 2
i )] ≤ exp(ω2) (S3.5)

for |ω| ≤ 1 where the first inequality follows by ex ≤ x+ ex
2

for any x ∈ R

and the second one does by (S3.2). If |ω| ≥ 1, we have

E[exp(ωYi)] ≤ exp(ω2)E[exp(Y 2
i )] ≤ exp(ω2 + 1) ≤ exp(2ω2) (S3.6)

due to ωYi ≤ ω2 +Y 2
i for any ω, Yi and (S3.2). Thus, combining (S3.5) with

(S3.6) gives

E[exp(ωYi)] ≤ exp(2ω2).

for any ω ∈ R. Letting ω2 = ω/(2
√
eK2) completes (S3.3).

For (S3.4), notice that

E

[
exp(ω2

N∑
i=1

aiXi)

]
=

N∏
i=1

E [exp(ω2aiXi)]

≤
N∏
i=1

exp(8eK2
2ω

2
2a

2
i ) = exp(8eK2

2ω
2
2‖a‖2).

For ω2 ≥ 0, we have

P

(
N∑
i=1

aiXi ≥ t

)
= P

(
exp

(
ω2

N∑
i=1

aiXi

)
≥ exp(ω2t)

)

≤ exp(−ω2t)E

[
exp

(
ω2

N∑
i=1

aiXi

)]

≤ exp(−ω2t+ 8eω2
2K

2
2‖a‖2)

≤ exp

(
− t2

32eK2
2‖a‖2

)
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and the same bound can be obtained for P
(
−
∑N

i=1 aiXi ≥ t
)

. Thus, com-

bining those bounds gives (S3.4).

S3.2 Technical details in Section 3

Lemma 3. Under Assumption 5,

P

(
n−1‖θ>j X−j‖∞ ≥ ε0j

√
log p

n

)
≤ 2 exp

{(
1− 1

8e2
ε20j

(κ0j)2

)
log p

}

for 0 < ε0j ≤ κ0j
√
n(log p)−1.

Proof of Lemma 3. Let Z = (Z1 · · ·Zp−1) = n−1(X>j X−j−b>−jX−j>X−j).

Then we have

Z =
1

n

n∑
i=1

(Xi,j − b>−jXi,−j)X
>
i,−j

where Xi,j is the value of the jth predictor of the ith observation and

X>i,−j = (Xi,1 · · ·Xi,j−1, Xi,j+1 · · ·Xi,p).

Fix some k ∈ {1, 2, . . . , p}\{j} and let Z
(k)
i,j = (Xi,j− b>−jXi,−j)X

(k)
i,−j, where

X
(k)
i,−j denotes the kth element of Xi,−j. Then Zk = n−1

∑n
i=1 Z

(k)
ij , where

E[Z
(k)
i,j ] = 0 and Z

(k)
i,j ’s are independent across 1 ≤ i ≤ n.
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We derive an upper bound for ‖Z(k)
i,j ‖ψ1 . Notice that

‖Z(k)
i,j ‖ψ1 = ‖(Xi,j − b>−jXi,−j)X

(k)
i,−j‖ψ1 ≤ 2‖Xi,j − b>−jXi,−j‖ψ2‖X

(k)
i,−j‖ψ2

= 2‖X>i,·γ−j‖ψ2‖X
(k)
i,−j‖ψ2

≤ 2κ2‖γ−j‖2

≤ 2(1 +
√

Λ−1minΣj,j)κ
2,

where X>i,· = (Xi,j, X
>
i,−j) and γ>−j = (1,−b>−j). Here, the first inequality

holds from the fact that ‖XY ‖ψ1 ≤ 2‖X‖ψ2‖Y ‖ψ2 for any two random

variables X, Y ; the second inequality comes from

q−1/2(E|X>i,·γ−j|q)1/q = ‖γ−j‖q−1/2{E|X>i,·(γ−j/‖γ−j‖)|q}1/q ≤ ‖γ−j‖κ

and the third inequality follows from

‖γ−j‖2 =
√

1 + ‖b−j‖2 ≤ 1 + ‖b−j‖ ≤ 1 +
√
λmax(Σ

−1
−j,−j)Σj,j.

By Lemma 1, for any ε > 0, we have

P

(
1

n

∣∣∣∣∣
n∑
i=1

Z
(k)
i,j

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

{
−nmin

(
1

8e2

(
ε

κ0j

)2

,
1

4e

ε

κ0j

)}
.

Choosing ε = ε0j
√
n−1 log p and assuming that n ≥ ε20j(κ0j)

−2 log p, then

P

(
1

n

∣∣∣∣∣
n∑
i=1

Z
(k)
i,j

∣∣∣∣∣ ≥ ε0j

√
log p

n

)
≤ 2 exp

{
− 1

8e2
ε20j

(κ0j)2
log p

}
.

The result follows from the union bound over k ∈ {1, 2, . . . , p− 1}.

An implication of Lemma 3 is that

n−1‖θ>j X−j‖∞ ≤ ε0j

√
log p

n
(S3.1)
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with probability tending to 1 for a fixed ε0j such that ε20 > (κ0j)
28e2. We

introduce an additional result below for a later use.

Lemma 4. Under Assumption 5, we have

P

(∣∣∣∣∣ n

θ>j Xj

− 1

Σj\−j

∣∣∣∣∣ ≤ ε1j

)
≥ 1− 2 exp

− 1

8e2

(
Σ2
j\−jε1j

4κ1

)2

n


− 2 exp

− 1

8e2

(
Σ2
j\−jε1j

4κ2j

)2

n


for 0 < ε1j ≤ min{(Σj\−j)

−1, 4 min(κ1, κ2j)(Σj\−j)
−2} and

P
(∣∣∣∣‖θj‖2n

−Σj\−j

∣∣∣∣ ≤ ε2j

)
≥ 1− 2 exp

{
− 1

8e2

(
ε2j
3κ1

)2

n

}
− 2 exp

{
− 1

8e2

(
ε2j

6κ2j

)2

n

}

− 2 exp

{
− 1

8e2

(
ε2j

3κ3j

)2

n

}
for 0 < ε2j ≤ 3 min(κ1, 2κ2j, κ3j).

Proof of Lemma 4. We notice that

θ>j Xj = X>j Xj −
n∑
i=1

p−1∑
k=1

b−j,kX
(k)
i,−jXi,j,

where b−j,k is the kth element of b−j and X
(k)
i,−j is the kth element of X−j.

Then, we see that

θ>j Xj

n
−Σj\−j =

1

n

n∑
i=1

(X2
i,j−Σj,j)−

1

n

n∑
i=1

(
p−1∑
k=1

b−j,kX
(k)
i,−jXi,j −Σj,−jΣ

−1
−j,−jΣ−j,j

)
.

By Lemma 1,

P

(∣∣∣∣∣ 1n
n∑
i=1

(X2
i,j −Σj,j)

∣∣∣∣∣ ≤ δj

)
≥ 1− 2 exp

{
− 1

8e2

(
δj
κ1

)2

n

}

P

(∣∣∣∣∣ 1n
n∑
i=1

(
p−1∑
k=1

b−j,kX
(k)
i,−jXi,j −Σj,−jΣ

−1
−j,−jΣ−j,j

)∣∣∣∣∣ ≤ δj

)
≥ 1− 2 exp

{
− 1

8e2

(
δj
κ2j

)2

n

}
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for 0 < δj ≤ min(κ1, κ2j). Also, for ε1j ≤ (Σj\−j)
−1, we have{∣∣∣∣∣ n

θ>j Xj

− 1

Σj\−j

∣∣∣∣∣ ≥ ε1j

}

⊂
[{∣∣∣∣∣ 1n

n∑
i=1

(X2
i,j −Σj,j)

∣∣∣∣∣ ≥ Σ2
j\−j

4
ε1j

}
⋃{∣∣∣∣∣ 1n

n∑
i=1

(
p−1∑
k=1

b−j,kX
(k)
i,−jXi,j −Σj,−jΣ

−1
−j,−jΣ−j,j

)∣∣∣∣∣ ≥ Σ2
j\−j

4
ε1j

}]
.

Thus, for ε1j ≤ min{(Σj\−j)
−1, 4 min(κ1, κ2j)(Σj\−j)

−2}, we have

P

(∣∣∣∣∣ n

θ>j Xj

− 1

Σj\−j

∣∣∣∣∣ ≤ ε1j

)
≥ 1− 2 exp

− 1

8e2

(
Σ2
j\−jε1j

4κ1

)2

n


− 2 exp

− 1

8e2

(
Σ2
j\−jε1j

4κ2j

)2

n


which proves the first inequality. Next, we note that

‖θj‖2

n
−Σj\−j =

(
X>j Xj

n
−Σj,j

)
︸ ︷︷ ︸

(∗)

−2

(
X>j X−j

n
−Σj,−j

)
Σ−1−j,−jΣ−j,j︸ ︷︷ ︸

(∗∗)

+ Σj,−jΣ
−1
−j,−j

(
X−j

>X−j
n

−Σ−j,−j

)
Σ−1−j,−jΣ−j,j︸ ︷︷ ︸

(∗∗∗)

.

The concentration inequalities for (∗) and (∗∗) are given respectively as

P

(∣∣∣∣∣ 1n
n∑
i=1

(X2
i,j −Σj,j)

∣∣∣∣∣ ≤ ε2j
3

)
≥ 1− 2 exp

{
− 1

8e2

(
ε2j
3κ1

)2

n

}
, (S3.2)

and

P

(∣∣∣∣∣ 1n
n∑
i=1

(
p−1∑
k=1

b−j,kX
(k)
i,−jXi,j −Σj,−jΣ

−1
−j,−jΣ−j,j

)∣∣∣∣∣ ≤ ε2j
6

)

≥1− 2 exp

{
− 1

8e2

(
ε2j

6κ2j

)2

n

}
, (S3.3)
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for 0 < ε2j ≤ min(3κ1, 6κ2j). Also, we notice that

(∗ ∗ ∗) =
1

n

n∑
i=1

(
p−1∑
k=1

X
(k)
i,−jb−j,k

)2

−Σj,−jΣ
−1
−j,−jΣ−j,j.

Lemma 1 gives us

P

∣∣∣∣∣∣ 1n
n∑
i=1

(p−1∑
k=1

X
(k)
i,−jb−j,k

)2

−Σj,−jΣ
−1
−j,−jΣ−j,j

∣∣∣∣∣∣ ≤ ε2j
3


≥1− 2 exp

{
− 1

8e2

(
ε2j

3κ3j

)2

n

}
(S3.4)

for 0 < ε2j ≤ 3κ3j. Combining (S3.2), (S3.3) and (S3.4) finishes the proof.

The following result directly follows by Lemmas 3 and 4.

Corollary 1. Let v̆j = nθj/(θ
>
j Xj) and ŭj = n−1‖v̆>j X−j‖∞. Under As-

sumption 5, v̆j satisfies v̆>j Xj = n,

P

(
n−1‖v̆j‖2 ≤

(
1

Σj\−j
+ ε1j

)2

(Σj\−j + ε2j)

)

≥ 1− 2 exp

{
− 1

8e2

(
ε2j

3κ1j

)2

n

}
− 2 exp

{
− 1

8e2

(
ε2j

6κ2j

)2

n

}
− 2 exp

{
− 1

8e2

(
ε2j

3κ3j

)2

n

}

− 2 exp

− 1

8e2

(
Σ2
j\−jε1j

4κ1j

)2

n

− 2 exp

− 1

8e2

(
Σ2
j\−jε1j

4κ2j

)2

n

 ,
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and

P

(
ŭj ≤ ε0j

√
log p

n

(
1

Σj\−j
+ ε1j

))

≥ 1− 2 exp

{(
1− 1

8e2
ε20j

(κ0j)2

)
log p

}
− 2 exp

− 1

8e2

(
Σ2
j\−jε1j

4κ1

)2

n


− 2 exp

− 1

8e2

(
Σ2
j\−jε1j

4κ2j

)2

n

 ,

for ε0j, ε1j, ε2j given in Lemmas 3 and 4.

Lemma 5. Let Rl = n−1v̂>l X−l(β−l − β̂−l) where v̂l and ûl denote the

solution to (3.2). Then,

max
l
Rl = op(1).

Proof of Lemma 5. According to the definition of v̂l,

C2
n

log p
û2l + n−1‖v̂l‖2 ≤ C2

n

log p
ŭ2l + n−1‖v̆l‖2

where ûl = n−1‖v̂>l X−l‖∞, v̆l = nθl/θ
>
l Xl and ŭl = n−1‖v̆lX−l‖∞. Then,

we have √
C2

n

log p
ûl ≤ C2

n

log p
ŭ2l + n−1‖v̆l‖2

which implies√
C2

n

log p
max
l
n−1‖v̂>l X−l‖∞ ≤

(
max
l

(Σl\−l)
−1 + ε′1

)2 (
C2(ε

′
0)

2 + max
l

Σl\−l + ε′2

)
with probability tending to 1 by (S3.6). Therefore,

max
l
Rl ≤ max

l
n−1‖v̂>l X−l‖∞

√
n‖β̂ − β‖1 = op(1)
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by Assumptions 3 and 6.

The following inequalities are direct consequences of Lemmas 3-4 and

the definition of v̂l.

Corollary 2. Let v̂l be the solution to (3.2). Then, we have

P

(
max
l
n−1‖θ>l X−l‖∞ ≥ ε′0

√
log p

n

)
≤ 2 exp

{
− 1

8e2

(
min
l

1

κ20l

)
(ε′0)

2 log p+ 2 log p

}
,

P
(

max
l

n

|θ>l Xl|
≤ max

l
(Σl\−l)

−1 + ε′1

)
≥ 1− 2 exp

{
− 1

8e2

(
min
l

(Σl\−l)
4

(4κ1)2

)
(ε′1)

2n+ log p

}
− 2 exp

{
− 1

8e2

(
min
l

(Σl\−l)
4

(4κ2l)2

)
(ε′1)

2n+ log p

}
,

P
(

max
l

‖θl‖2

n
≤ max

l
Σl\−l + ε′2

)
≥ 1− 2 exp

{
− 1

8e2(3κ1)2
(ε′2)

2n+ log p

}
− 2 exp

{
− 1

8e2

(
min
l

1

(6κ2l)2

)
(ε′2)

2n+ log p

}
− 2 exp

{
− 1

8e2

(
min
l

1

(3κ3l)2

)
(ε′2)

2n+ log p

}
,

and

P
(

max
l
n−1‖v̂l‖2 ≤M ′

)
≥ 1− 2 exp

{
− 1

8e2

(
min
l

1

(κ0l)2

)
(ε′0)

2 log p+ 2 log p

}
− 2 exp

{
− 1

8e2

(
min
l

(Σl\−l)
4

(4κ1)2

)
(ε′1)

2n+ log p

}
− 2 exp

{
− 1

8e2

(
min
l

(Σl\−l)
4

(4κ2l)2

)
(ε′1)

2n+ log p

}
− 2 exp

{
− 1

8e2(3κ1)2
(ε′2)

2n+ log p

}
− 2 exp

{
− 1

8e2

(
min
l

1

(6κ2l)2

)
(ε′2)

2n+ log p

}
− 2 exp

{
− 1

8e2

(
min
l

1

(3κ3l)2

)
(ε′2)

2n+ log p

}
,
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where

M ′ = (max
l

(Σl\−l)
−1 + ε′1)

2(C2ε
′2
0 + max

l
Σl\−l + ε′2) (S3.5)

for 0 < ε′0 ≤ (minl κ0l)
√
n(log p)−1, 0 < ε′1 ≤ minl

{
min((Σl\−l)

−1, 4 min(κ1, κ2l)(Σl\−l)
−2)
}

and 0 < ε′2 ≤ minl(min(3κ1, 6κ2l, 3κ3l)).

Under Assumption 6, Corollary 2 implies that

max
l
n−1‖θ>l X−l‖∞ ≤ ε′0

√
log p

n
,

max
l

n

|θ>l Xl|
≤ max

l
(Σl\−l)

−1 + ε′1,

max
l
n−1‖θl‖2 ≤ max

l
Σl\−l + ε′2,

max
l
n−1‖v̂l‖2 ≤M ′,

(S3.6)

with probability tending to 1 for a fixed (ε′0)
2 minl(κ0l)

−2 > 16e2 and fixed

ε′1, ε
′
2 as in Corollary 2.

Proof of Proposition 1. Noting that (n−1/2‖v̂l‖)−1 ≤ ‖Xl‖/
√
n, we have

|Tl| =
σ

σ̂

∣∣∣∣∣
√
n(β̃l(v̂l)− βl)
σn−1/2‖v̂l‖

+

√
nβl

σn−1/2‖v̂l‖

∣∣∣∣∣
=
σ

σ̂

∣∣∣∣ 1

σn−1/2‖v̂l‖

(
1√
n
v̂>l ε+

√
nRl

)
+

√
nβl

σn−1/2‖v̂l‖

∣∣∣∣
≤ σ

σ̂

(
|Zl|+

∣∣∣∣ √
nRl

σn−1/2‖v̂l‖

∣∣∣∣+

∣∣∣∣ √
nβl

σn−1/2‖v̂l‖

∣∣∣∣)
≤ σ

σ̂

(
|Zl|+

‖Xl‖√
n

∣∣∣∣√nRl

σ

∣∣∣∣+
‖Xl‖√
n

∣∣∣∣√nβlσ

∣∣∣∣) ,
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and

|Tl| ≥
σ

σ̂

(∣∣∣∣ √
nβl

σn−1/2‖v̂l‖

∣∣∣∣− |Zl| − ∣∣∣∣ √
nRl

σn−1/2‖v̂l‖

∣∣∣∣)
≥ σ

σ̂

(∣∣∣∣ √
nβl

σn−1/2‖v̂l‖

∣∣∣∣− |Zl| − ‖Xl‖√
n

∣∣∣∣√nRl

σ

∣∣∣∣) ,
where Rl = n−1v̂>l X−l(β−l − β̂−l). We also observe that[{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≤ ε

}⋂{
max
l∈B(2)j

|Zl|+D′ max
l∈B(2)j

∣∣∣∣√nRl

σ

∣∣∣∣+D′ max
l∈B(2)j

∣∣∣∣√nβlσ

∣∣∣∣ ≤√τ log p

}
⋂{

max
l

‖Xl‖√
n
≤ D′

}]
⊂

{
max
l∈B(2)j

|Tl| ≤
√
τ log p

}
,

and[{
min
l∈B(1)j

∣∣∣∣ √
nβl

σn−1/2‖v̂l‖

∣∣∣∣− max
l∈B(1)j

|Zl| −D′ max
l∈B(1)j

∣∣∣∣√nRl

σ

∣∣∣∣ >√τ log p

}
⋂{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≤ ε

}⋂{
max
l

‖Xl‖√
n
≤ D′

}]
⊂

{
min
l∈B(1)j

|Tl| >
√
τ log p

}

and where D′ =
√

maxl Σl,l + ε′ for 0 < ε′ ≤ 2κ2. Note that

P
{

max
l

‖Xl‖√
n
≤ D′

}
≥ 1− 2 exp

{
− 1

8e2
(ε′)2

4κ4
n+ log p

}
. (S3.7)

We prove Proposition 1 in the following two steps.

1. Under Assumption 1, it suffices to show that

P

(
max
l∈B(2)j

|Zl|+
D′

σ
max
l∈B(2)j

|
√
nRl| ≤ c1

√
log p

)
→ 1,
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where c1 =
√
τ −D′

√
d0. We have, for ε′′ > 0,

P

(
max
l∈B(2)j

|Zl|+
D′

σ
max
l∈B(2)j

|
√
nRl| ≤ c1

√
log p

)

≥P

({
max
l∈B(2)j

|Zl| ≤ c1
√

log p− ε′′
}⋂{

D′

σ
max
k∈B(2)j

|
√
nRl| ≤ ε′′

})

≥P

(
max
l∈B(2)j

|Zl| ≤ c1
√

log p− ε′′
)

+ P

(
D′

σ
max
l∈B(2)j

|
√
nRl| ≤ ε′′

)
− 1

≥P

(
D′

σ
max
k∈B(2)j

|
√
nRk| ≤ ε′′

)
− 2p exp

{
−σ

2(c1
√

log p− ε′′)2

32eκ2ε

}
.

Here the last inequality follows by Lemma 2 under Assumption 2, i.e.,

P

(
max
l∈B(2)j

|Zl| ≥ c1
√

log p− ε′′
)

≤P

 ⋃
l∈B(2)j

{
|Zl| ≥ c1

√
log p− ε′′

}
≤|B(2)

j | × P

(∣∣∣∣∣ 1

σ‖v̂l‖

n∑
i=1

v̂liεi

∣∣∣∣∣ ≥ c1
√

log p− ε′′
)

≤|B(2)
j | × 2× exp

{
−σ

2(c1
√

log p− ε′′)2

32eκ2ε

}
(S3.8)

conditional on v̂l. By the assumption

σ2

32eκ2ε
(
√
τ −

√
d0 max

l
Σl,l)

2 > 1,

we have

σ2

32eκ2ε
c21 > 1

for small enough ε′. Together with (S3.7), Lemma 5 and Assumption
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4, we obtain

P

(
max
l∈B(2)j

|Tl| ≤
√
τ log p

)
→ 1.

2. We define c2 =
√
d1/M ′′ −

√
τ , where

M ′′ =
(

min
l

Σl\−l + ε′1

)2(2C2

8e2

(
min
l

1

(κ0l)2

)−1
+ max

l
Σl\−l + 2ε′2

)

by letting (ε′0)
2 = 2 ((8e2)−1 minl(κ0l)

−2)
−1

+ε′2 in (S3.5). We have, for

ε′′ > 0,

P

(
min
l∈B(1)j

∣∣∣∣ √
nβl

σn−1/2‖v̂l‖

∣∣∣∣− max
l∈B(1)j

|Zl| −D′ max
l∈B(1)j

∣∣∣∣√nRl

σ

∣∣∣∣ >√τ log p

)

≥P

({
min
l∈B(1)j

∣∣∣∣ √
nβl

σn−1/2‖v̂l‖

∣∣∣∣− max
l∈B(1)j

|Zl| >
√
τ log p+ ε′′

}⋂{
D′

σ
max
l∈B(1)j

∣∣√nRl

∣∣ ≤ ε′′

})

≥P

({
min
l∈B(1)j

∣∣∣∣ √nβlσ
√
M ′′

∣∣∣∣− max
l∈B(1)j

|Zl| >
√
τ log p+ ε′′

}⋂{
min
l∈B(1)j

1

n−1/2‖v̂l‖
≥ 1√

M ′′

})

+ P

(
D′

σ
max
l∈B(1)j

|
√
nRl| ≤ ε′′

)
− 1

≥P

(
min
l∈B(1)j

∣∣∣∣ √nβlσ
√
M ′′

∣∣∣∣− max
l∈B(1)j

|Zl| >
√
τ log p+ ε′′

)
+ P

(
max
l∈B(1)j

n−1‖v̂l‖2 ≤M ′′

)

+ P

(
D′

σ
max
l∈B(1)j

|
√
nRl| ≤ ε′′

)
− 2

≥P

(
max
l∈B(1)j

|Zl| < c2
√

log p− ε′′
)

+ P

(
max
l∈B(1)j

n−1‖v̂l‖2 ≤M ′′

)
+ P

(
D′

σ
max
l∈B(1)j

|
√
nRl| ≤ ε′′

)
− 2

≥1− 2
∣∣∣B(1)

j

∣∣∣ exp

{
− σ2

32eκ2ε
(b
√

log p− ε′′)2
}

+ P

(
max
k∈B(1)j

n−1‖v̌k‖2 ≤M ′′

)

+ P

(
D′

σ
max
k∈B(1)j

|
√
nRk| ≤ ε′′

)
− 2
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where the last inequality follows from (S3.8). By the assumption√
d1/M −

√
τ > 0, we have c2 =

√
d1/M ′′ −

√
τ > 0 for small enough

ε′1, ε
′
2. Since

∣∣∣B(1)
j

∣∣∣ ≤ s0 � p, by (S3.6), (S3.7), Lemma 5 and Assump-

tion 4, we get P
(

min
l∈B(1)j

|Tl| >
√
τ log p

)
→ 1.

Proof of Theorem 1. The argument below is conditional on the event

{A(k)
j (τ) = B(k)

j for k = 1, 2} which occurs almost surely by Proposition 1.

Let ŭj1 = max
k∈A(1)

j (τ)
n−1|v̆>j Xk| and ŭj1 = max

k∈A(2)
j (τ)

n−1|v̆>j Xk| where

v̆j is as in Corollary 1. Then, (ŭj1, ŭj1, v̆j) is a feasible point to problem

(2.8). By the definition of ṽj,

C1
n

log p
ũ2j1 + C2

n

log p
ũ2j2 + n−1‖ṽj‖2 ≤ C1

n

log p
ŭ2j1 + C2

n

log p
ŭ2j2 + n−1‖v̆j‖2,

where ũj1 = max
k∈A(1)

j
n−1|ṽ>j Xk| and ũj2 = max

k∈A(2)
j
n−1|ṽ>j Xk|. Then,

for i = 1, 2, we must have

√
Ci

n

log p
ũji ≤ max{C1, C2}ε20j

(
1

Σj\−j
+ ε1j

)2

+

(
1

Σj\−j
+ ε1j

)2

(Σj\−j + ε2j),

with probability tending to 1 by Corollary 1. Then, by Assumptions 3 and

6,

|
√
nR(ṽj, β−j)| =n−1/2|ṽ>j X−j(β−j − β̂−j)| ≤ n−1 max

k 6=j
|ṽ>j Xk|

√
n‖β̂−j − β−j‖1 = op(1).
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Hence, we obtain

√
n(β̃j(ṽj)− βj) =

1√
n
ṽ>j ε+ op(1). (S3.9)

Note that ∑n
i=1E[(ṽj,iεi)

2+δ|ṽj]
σ2+δ‖ṽj‖2+δ

=
Eε2+δ1

σ2+δ

‖ṽj‖2+δ2+δ

‖ṽj‖2+δ
= oa.s.(1).

Conditional on the event that {‖ṽj‖2+δ/‖ṽj‖ → 0}, the Lyapunov condition

is satisfied and thus ṽ>j ε/{σ‖ṽj‖} converges to N(0, 1). If ε ∼ N(0, σ2I),

ṽ>j ε/{σ‖ṽj‖} ∼ N(0, 1) conditional on ṽj. The conclusion thus follows from

(S3.9) and Assumption 4 by the Slutsky’s theorem.

Proof of Proposition 2. All the arguments below are conditional on the

event {A(2)
j = B(2)

j } which occurs almost surely by Proposition 1. With the

projection direction v̄j from (3.8) and the refitted least square estimator β̌,

the bias (2.6) reduces to

√
nR(v̄j, β−j) =

1√
n

∑
k 6=j

v̄>j Xk(βk − β̌k)

=
1√
n

∑
k∈B(1)j

v̄>j Xk(βk − β̌k) +
1√
n

∑
k∈B(2)j

v̄>j Xk(βk − β̌k)

=
1√
n

∑
k∈A(1)

j

v̄>j Xk(βk − β̌k) +
1√
n

∑
k∈A(2)

j

v̄>j Xk(βk − β̌k)

=
1√
n

∑
k∈A(2)

j

v̄>j Xkβk,
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where we have used the fact that v̄>j Xk = 0 for k ∈ A(1)
j from (3.8) and

β̌A(2)
j

= 0 by (3.9). Thus, we have

|
√
nR(v̄j, β−j)| ≤ ‖n−1v̄>j X−j‖∞

√
n‖βA(2)

j
‖1

≤ ‖n−1v̄>j X−j‖∞σ
√
d0 log p‖βB(2)j

‖0

≤ Op

(√
log p

n

)
σ
√
d0 log p‖βB(2)j

‖0

where the second inequality holds by Assumption 1 under the event {A(2)
j =

B(2)
j }. The last inequality follows from the fact that ‖n−1v̄>j X−j‖∞ =

Op(
√

log p/n), which can be verified by using similar arguments as in the

proof of Corollary 1 together with the definition of v̄j under Assumption 5.

The last statement follows immediately from condition (3.12).

S3.3 Technical details in Section 4

We first state the following results which are parallel to Lemma 3 and the

first inequality in Corollary 2. As the proof is similar to the one in Lemma

3, we omit the details.

Corollary 3. Let θl = Xl −X−Sbl with bl = argminb̃E‖Xl −X−S b̃‖2 for

l ∈ S. Under Assumption 5,

P

(
n−1‖θ>l X−S‖∞ ≥ ξ0l

√
log p

sn

)
≤ 2 exp

{(
1− cl,S

δ20l
s(ξ0l)2

)
log p

}
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for 0 < ξ0l ≤ κ0l
√
sn(log p)−1 where cl,S > 0 is an absolute constant and

κ0l = 2

(
1 +

√
Λ−1minΣl,l

)
κ2. As a consequence, we have

P

(
max
l∈S

n−1‖θ>l X−S‖∞ ≥ ξ′0

√
log p

sn

)
≤ 2 exp

{
−
(

min
l

cl,S
s(κ0l)2

)
(ξ′0)

2 log p+ 2 log p

}
.

for 0 < ξ′0 ≤ minl κ0l
√
sn(log p)−1.

The following results are introduced for the proof of Theorem 2 which

follows from a direct application of Proposition 2.1 in Vershynin (2012).

Lemma 6. For every δ > 0, we have

P
(
‖n−1X>SXS −ΣS,S‖ ≤

√
4

Cκ

s

n
log

2

δ

)
≥ 1− δ,

where Cκ > 0 is an absolute constant which only depends on δ and κ.

We next introduce the following lemma which provides an upper bound

for the operator norm of a matrix.

Lemma 7. Let B be a m×m matrix and Nε be an ε-net of the unit sphere

Sm−1 for some ε ∈ (0, 1/2). Then

‖B‖ ≤ (1− 2ε)−1 sup
c,d∈Nε

∣∣c>Bd
∣∣ .

Proof of Lemma 7. For any c, d ∈ Sm−1, we can choose cN , dN ∈ Nε

such that max{‖c− cN‖, ‖d− dN‖} ≤ ε. Some algebra gives us

c>Bd = c>NBdN + (c− cN )>Bd+ c>NB(d− dN ),
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which implies that

∣∣c>Bd
∣∣ ≤ 2ε‖B‖+ sup

cN ,dN∈Nε

∣∣c>NBdN
∣∣ .

Taking supremum over all c, d ∈ Sm−1 and rearranging terms give us the

desired result.

Lemma 8. For every δ > 0, we have

P
(
‖(n−1X>SX−S −ΣS,−S)Σ−1−S,−SΣ−S,S‖ ≤ 3

√
8

Cκ′
log

2

δ

s

n

)
≥ 1− δ

where Cκ′ > 0 denotes an absolute constant which only depends on κ′ =

2κ2
√

Λ−1minD
2.

Proof of Lemma 8. We prove the result in several steps. First, we bound

the operator norm by using the so-called ε-net argument. Then we apply the

concentration inequality for sub-exponential random variables and finally

use the union bound to finish the proof. For two vectors a, b ∈ Rq×1, write

〈a, b〉 = a>b. By Lemma 7 and Lemma 5.2 in Vershynin (2012), we have

‖(n−1X>SX−S −ΣS,−S)Σ−1−S,−SΣ−S,S‖

= sup
c,d∈Ss−1

∣∣∣∣∣ 1n
n∑
i=1

(
〈Xi,S, c〉〈ΣS,−SΣ−1−S,−SXi,−S, d〉 − c>ΣS,−SΣ−1−S,−SΣ−S,Sd

)∣∣∣∣∣
≤3 sup

c,d∈N1/3

∣∣∣∣∣ 1n
n∑
i=1

(
〈Xi,S, c〉〈ΣS,−SΣ−1−S,−SXi,−S, d〉 − c>ΣS,−SΣ−1−S,−SΣ−S,Sd

)∣∣∣∣∣
where N1/3 denotes a 1/3-net of Ss−1 with the covering number |N1/3| ≤ 7s.
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Let us fix c, d ∈ N1/3. Because each row of XS and X−S is independent

sub-gaussian random vector, we can apply the concentration inequality in

Corollary 5.17 of Vershynin (2010). Specifically, we have

P

(∣∣∣∣∣ 1n
n∑
i=1

(
〈Xi,S, c〉〈ΣS,−SΣ−1−S,−SXi,−S, d〉 − c>ΣS,−SΣ−1−S,−SΣ−S,Sd

)∣∣∣∣∣ ≥ ε

)

≤2 exp

(
−cn ε2

(κ′)2

)
provided that ε2 ≤ (κ′)2, where ‖〈Xi,S, c〉〈ΣS,−SΣ−1−S,−SXi,−S, d〉‖ψ1 ≤ κ′

and c > 0 is an absolute constant. Applying the union bound over c, d ∈

N1/3, we have

sup
c,d∈N1/3

∣∣∣∣∣ 1n
n∑
i=1

(
〈Xi,S, c〉〈ΣS,−SΣ−1−S,−SXi,−S, d〉 − c>(ΣS,−SΣ−1−S,−SΣ−S,S)d

)∣∣∣∣∣ ≥ ε

with probabiliity at most 2|N1/3|2 exp [−cnε2/(κ′)2], which implies

P
(
‖(n−1X>SX−S −ΣS,−S)Σ−1−S,−SΣ−S,S‖ < 3ε

)
≥ 1− 2|N1/3|2 exp

[
−cn

( ε
κ′

)2]
≥ 1− 2 exp

[
4s− nε2Cκ′

]
where Cκ′ = c/(κ′)2. Then by letting ε2 = (8/Cκ′) log(2/δ)(s/n), we have

P
(
‖(n−1X>SX−S −ΣS,−S)Σ−1−S,−SΣ−S,S‖ ≤ 3

√
8

Cκ′
log

2

δ

s

n

)
≥ 1− δ

which completes the proof.

Lemma 9. Let Â = n−1X>SΘ and A = ΣS,S −ΣS,−SΣ−1−S,−SΣ−S,S. Under

the assumption that s/n = o(1) and ‖A−1‖ ≤ B for some constant B > 0,

we have ‖w‖ = Op(‖aS‖).
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Proof of Lemma 9. Note that

‖w‖ = ‖(n−1X>SΘ)−1aS‖ ≤ ‖Â−1‖‖aS‖.

We want to bound ‖Â−1‖. Using the properties of operator norm, we have

‖Â−1‖ ≤ ‖Â−1 −A−1‖+ ‖A−1‖ ≤ ‖Â−1‖‖A−1‖‖A− Â‖+ ‖A−1‖.

Rearranging the terms, we obtain

‖Â−1‖(1− ‖A−1‖‖A− Â‖) ≤ ‖A−1‖.

With the assumption ‖A−1‖ ≤ B, we have

1− ‖A−1‖‖A− Â‖ ≥ 1−B‖A− Â‖.

Under the assumption s/n = o(1), by Lemmas 6 and 8, we have ‖A−Â‖ =

op(1). Thus 1−‖A−1‖‖A−Â‖ is bounded from below by a positive constant

with probability tending to one. Thus

‖Â−1‖ ≤ (1− ‖A−1‖‖A− Â‖)−1‖A−1‖ ≤ (1−B‖A− Â‖)−1‖A−1‖

which implies that ‖Â−1‖ = Op(1). The conclusion follows directly.

Lemma 10. Let Θ ∈ Rn×s where the l-th column vector is θl for l ∈ S

as in Corollary 3 and v̆a = Θw where w = (n−1X>SΘ)−1aS. Then, under

Assumption 5 and ‖aS‖ = O(1), we have n−1‖v̆a‖2 = Op(1).
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Proof of Lemma 10. We note that

‖Θw‖2 ≤ ‖XS −X−SΣ−1−S,−SΣ−S,S‖2‖w‖22 ≤ 2 {‖XS‖2 + ‖X−SΣ−1−S,−SΣ−S,S‖2}︸ ︷︷ ︸
I

‖w‖22.

We shall control I below. Lemma 5.3 in Vershynin (2012) gives us

‖XS‖2 ≤ 4 max
c∈N1/2

c>X′SXSc,

‖X−SΣ−1−S,−SΣ−S,S‖2 ≤ 4 max
d∈N1/2

d>ΣS,−SΣ−1−S,−SX′−SX−SΣ−1−S,−SΣ−S,Sd.

Let Q = ΣS,−SΣ−1−S,−S
(
n−1X>−SX−S −Σ−S,−S

)
Σ−1−S,−SΣ−S,S. Since the el-

ements of the terms inside the maximization can be expressed as a sum

of independent sub-exponential random variables, we can use similar argu-

ments as in the proof of Lemma 3 to show that for every δ > 0,

P
(
‖Q‖ ≤

√
4

Cκ′

s

n
log

2

δ

)
≤ 1− δ

where Cκ′ > 0 is an absolute constant which only depends on κ′ = 2κ2
√

Λ−1minD
2.

Together with Lemma 6, we have

n−1{‖XS‖2 + ‖X−SΣ−1−S,−SΣ−S,S‖2} ≤C0

{
op(1) + λmax(ΣS,S) + λmax(ΣS,−SΣ−1−S,−SΣ−S,S)

}
≤C0 {op(1) + 2λmax(ΣS,S)} ,

for some constant C0. Therefore, we have

n−1‖Θw‖22 ≤ 2C0(op(1) + 2Λ−2min)Op(‖aS‖2) = Op(1).
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Proof of Theorem 2. The arguments below are conditional on the sets

A(1)
S and A(2)

S which have nonrandom limits by Proposition 1. Let ŭa1 =

max
k∈A(1)

j
n−1|v̆>a Xk| and ŭa2 = max

k∈A(2)
j
n−1|v̆>a Xk|, where v̆a is as in

Lemma 10. Then, (ŭa1, ŭa2, v̆a) is a feasible point to problem (4.2). By

the definition of ṽa,

C1
n

log p
ũ2a1 + C2

n

log p
ũ2a2 + n−1‖ṽa‖2 ≤ C1

n

log p
ŭ2a1 + C2

n

log p
ŭ2a2 + n−1‖v̆a‖2.

Then, for i = 1, 2, we must have

√
Ci

n

log p
ũai ≤ max{C1, C2}

n

log p
max
k/∈S

n−1|w>Θ>Xk|+ n−1‖v̆a‖2

≤ max{C1, C2}‖w‖(ξ′0)2 +Ma

with probability tending to 1 for 0 < ξ′0 ≤ minl κ0l
√
sn(log p)−1 and some

constant Ma according to Corollary 3 and Lemma 10. Then, by Assump-

tions 3 and 6,

|
√
nR(ṽa, β−S)| =n−1/2|ṽ>a X−S(β−S − β̂−S)| ≤ n−1 max

k/∈S
|ṽ>a Xk|

√
n‖β̂−S − β−S‖1 = op(1).

Hence, we obtain

√
n(β̃S(ṽa)− a>SβS) =

1√
n
ṽ>a ε+ op(1). (S1)

Finally we can apply the central limit theorem as in the proof of Theorem

1, which completes the proof.
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S4 Additional numerical results

Figure 12: Barplots for the empirical coverage and boxplots for the lengths and biases

of the 95% confidence intervals for Case 1 with s0 = 3, 5 and t-distributed error. The

horizontal line in the barplots indicates the nominal level. Error bars in the barplots

represent the interval within one standard deviation of the empirical coverage.
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Figure 13: Barplots for the empirical coverage and boxplots for the lengths and biases

of the 95% confidence intervals for Case 1 with s0 = 10, 15 and t-distributed error. The

horizontal line in the barplots indicates the nominal level. Error bars in the barplots

represent the interval within one standard deviation of the empirical coverage.
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Figure 14: Barplots for the empirical coverage and boxplots for the lengths and biases

of the 95% confidence intervals for Case 2 with s0 = 4, 8 and t-distributed error. The

horizontal line in the barplots indicates the nominal level. Error bars in the barplots

represent the interval within one standard deviation of the empirical coverage.
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Figure 15: Barplots for the empirical coverage and boxplots for the lengths and biases

of the 95% confidence intervals for Case 2 with s0 = 12, 16 and t-distributed error. The

horizontal line in the barplots indicates the nominal level. Error bars in the barplots

represent the interval within one standard deviation of the empirical coverage.
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Figure 16: Barplots for the empirical coverage and boxplots for the lengths and biases

of the 95% confidence intervals for Case 1 with s0 = 3, 5 and Gamma-distributed error.

The horizontal line in the barplots indicates the nominal level. Error bars in the barplots

represent the interval within one standard deviation of the empirical coverage.
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Figure 17: Barplots for the empirical coverage and boxplots for the lengths and biases of

the 95% confidence intervals for Case 1 with s0 = 10, 15 and Gamma-distributed error.

The horizontal line in the barplots indicates the nominal level. Error bars in the barplots

represent the interval within one standard deviation of the empirical coverage.
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Figure 18: Barplots for the empirical coverage and boxplots for the lengths and biases

of the 95% confidence intervals for Case 2 with s0 = 4, 8 and Gamma-distributed error.

The horizontal line in the barplots indicates the nominal level. Error bars in the barplots

represent the interval within one standard deviation of the empirical coverage.
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Figure 19: Barplots for the empirical coverage and boxplots for the lengths and biases of

the 95% confidence intervals for Case 2 with s0 = 12, 16 and Gamma-distributed error.

The horizontal line in the barplots indicates the nominal level. Error bars in the barplots

represent the interval within one standard deviation of the empirical coverage.
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Figure 20: Barplots for the empirical coverage and boxplots for the lengths and biases

of the 95% confidence intervals for different contrasts with t-distributed error. The

horizontal line in the barplots indicates the nominal level. Error bars in the barplots

represent the interval within one standard deviation of the empirical coverage.
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Figure 21: Barplots for the empirical coverage and boxplots for the lengths and biases of

the 95% confidence intervals for different contrasts with Gamma-distributed error. The

horizontal line in the barplots indicates the nominal level. Error bars in the barplots

represent the interval within one standard deviation of the empirical coverage.
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Figure 22: Boxplots of the two different error variance estimators. Data sets are gener-

ated by Case 1 with s0 = 3, 5, 10 and 15. “1st” denotes the estimator ‖Y −Xβ̂‖2/n and

“2nd” denotes the estimator ‖Y −Xβ̂‖2/(n−‖β̂‖0). The number on the top of each panel

denotes the number of non-zero coefficients. The horizontal dashed line corresponds to

the true error variance.
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