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The following two lemmas will be used in the proofs of Proposition 1

and Theorem 1, respectively.

Lemma 1 (Stein, 1981) Let a ∼ Normal(0, 1) and g(a) : R → R be an

indefinite integral of the Lebesgue measurable function ġ(a). Thus, ġ(a) is

the derivative of g(a). Suppose that E|ġ(a)| <∞. Then we have E{ġ(a)} =

E{ag(a)}.

Lemma 2 (Zhang, 2010; Gao et al., 2019) Let

w̃ = argminw∈W {L(w) + an(w) + bn} ,

where an(w) is a term related to w and bn is a term unrelated to w. If

sup
w∈W
|an(w)|/L∗(w) = op(1), sup

w∈W
|L(w)− L∗(w)|/L∗(w) = op(1),

and there exists a positive constant c and a positive integer N such that when
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n ≥ N , infw∈W L
∗(w) ≥ c > 0 almost surely, then L(w̃)/infw∈W L(w)→ 1

in probability.

S.1 Proof of Proposition 1

Let f(·) be a function with f [
√
n{µ̂ − µtrue(θ0)}] =

√
nµ{θ̂(w)} −

√
nµ̂.

It is seen that

R(w) (S.1)

= E
(

[µ{θ̂(w)} − µtrue(θ0)]
TΩ[µ{θ̂(w)} − µtrue(θ0)]

)
= E

(
[µ{θ̂(w)} − µ̂+ µ̂− µtrue(θ0)]

TΩ[µ{θ̂(w)} − µ̂+ µ̂− µtrue(θ0)]
)

= E
(

[µ{θ̂(w)} − µ̂]TΩ[µ{θ̂(w)} − µ̂]
)

+ E
[
{µ̂− µtrue(θ0)}TΩ{µ̂− µtrue(θ0)}

]
+2E

(
[µ{θ̂(w)} − µ̂]TΩ{µ̂− µtrue(θ0)}

)
(S.2)

and

E
(

[µ{θ̂(w)} − µ̂]TΩ{µ̂− µtrue(θ0)}
)

= n−1E
(

[
√
nµ{θ̂(w)} −

√
nµ̂]TΩ

√
n{µ̂− µtrue(θ0)}

)
= n−1E

(
f [
√
n{µ̂− µtrue(θ0)}]Ω

√
n{µ̂− µtrue(θ0)}

)
= n−1

[
E
{
f(π)TΩπ

}
+ o(1)

]
= n−1

[
E

(
trace

{
∂f(π)

∂πT
ΩV

})
+ o(1)

]
= n−1

[
E

(
trace

[
∂(
√
nµ{θ̂(w)} −

√
nµ̂)

∂
√
n {µ̂− µtrue(θ0)}T

ΩV

])
+ o(1)

]
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= n−1E

(
trace

[
∂µ{θ̂(w)}

∂µ̂T
ΩV

])
− n−1trace(ΩV ) + o(n−1)

= n−1E

(
trace

[
M∑
m=1

wm
∂µ{θ̂(w)}
∂θ̂(w)T

ΠT
m

∂θ̂m
∂µ̂T

ΩV

])
− n−1trace(ΩV ) + o(n−1),

where the third, fourth and fifth steps are from Lemma 1 and Conditions

(C.1)-(C.2). The above two formulas imply (3.6). This completes the proof.

S.2 Proof of Proposition 2

It is implied by (2.5) that

∂{µ̂− µ(ΠT
mθ̂m)}TΩ{µ̂− µ(ΠT

mθ̂m)}
∂θ̂m

= 0, (S.3)

which is

A(θ̂m)Ω
{
µ̂− µ(ΠT

mθ̂m)
}

= 0. (S.4)

Taking derivative of the both sides of (S.4) with respect to µ̂T, we have

dm∑
τ=1

Aτ (θ̂m)Ω
{
µ̂− µ(ΠT

mθ̂m)
} ∂θ̂m,τ
∂µ̂T

+A(θ̂m)Ω (S.5)

−
dm∑
τ=1

A(θ̂m)Ω
∂µ(ΠT

mθ̂m)

∂θ̂m,τ

∂θ̂m,τ
∂µ̂T

= 0. (S.6)

From the definitions of Dm and Bm in (3.11) and (3.12), Equation (S.5) is

simplified to

Dm
∂θ̂m
∂µ̂T

+A(θ̂m)Ω−Bm
∂θ̂m
∂µ̂T

= 0,
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which implies

(Dm −Bm)T(Dm −Bm)
∂θ̂m
∂µ̂T

= −(Dm −Bm)TA(θ̂m)Ω,

which, along with the condition that (Dm−Bm)T(Dm−Bm) is invertible,

implies (3.13). This completes the proof.

S.3 Proofs of (3.16), (3.17), (3.20) and (3.21)

Let B̂m = A(θ̂m)ΩAT(θ̂m). Then, we have

trace

[
M∑
m=1

wm
∂µ{θ̂(w)}
∂θ̂(w)T

ΠT
m

∂θ̂m
∂µ̂T

ΩV̂

]

= trace

{
M∑
m=1

wm
XTX

n
ΠT
m(B̂T

mB̂m)−1B̂T
mA(θ̂m)ΩΩV̂

}

= σ̂2trace

{
M∑
m=1

wmA(θ̂m)T(B̂T
mB̂m)−1B̂T

mA(θ̂m)Ω

}

= σ̂2trace

{
M∑
m=1

wmA(θ̂m)ΩA(θ̂m)T(B̂T
mB̂m)−1B̂T

m

}

= σ̂2trace

{
M∑
m=1

wmB̂m(B̂T
mB̂m)−1B̂T

m

}

= σ̂2

M∑
m=1

wmdm, (S.7)

where the first step is from (3.13)-(3.15) and the second step is from (3.14)-

(3.15). Hence, (3.16) is proved.

From (3.14) and (3.16), we have

C(w)
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= [µ{θ̂(w)} − µ̂]TΩ[µ{θ̂(w)} − µ̂]

+2n−1trace

[
M∑
m=1

wm
∂µ{θ̂(w)}
∂θ̂(w)T

ΠT
m

∂θ̂m
∂µ̂T

ΩV̂

]

= [µ{θ̂(w)} − µ̂]TΩ[µ{θ̂(w)} − µ̂] + 2n−1σ̂2

M∑
m=1

wmdm

= n−1{XTXθ̂(w)−XTy}T(XTX)−1{XTXθ̂(w)−XTy}+ 2n−1σ̂2

M∑
m=1

wmdm

= n−1
{
θ(w)TXTXθ̂(w) + yTX(XTX)−1XTy − 2yTXθ̂(w)

}
+ 2n−1σ̂2

M∑
m=1

wmdm

= n−1‖Xθ̂(w)− y‖2 + 2n−1σ̂2

M∑
m=1

wmdm − yT
{
In −X(XTX)−1XT

}
y,

which is (3.17).

The proof of (3.20) is exactly the same as that of (3.16). For (3.21),

C(w)

= [µ{θ̂(w)} − µ̂]TΩ[µ{θ̂(w)} − µ̂]

+2n−1trace

[
M∑
m=1

wm
∂µ{θ̂(w)}
∂θ̂(w)T

ΠT
m

∂θ̂m
∂µ̂T

ΩV̂

]

= [µ{θ̂(w)} − µ̂]TΩ[µ{θ̂(w)} − µ̂] + 2n−1σ̂2

M∑
m=1

wmdm

= n−1{ZTXθ̂(w)− ZTy}T(ZTZ)−1{ZTXθ̂(w)− ZTy}+ 2n−1σ̂2

M∑
m=1

wmdm

= n−1
{
θ̂(w)TXTPZXθ̂(w) + yTPZy − 2yTPZXθ̂(w)

}
+ 2n−1σ̂2

M∑
m=1

wmdm

= n−1‖PZXθ̂(w)− y‖2 + 2n−1σ̂2

M∑
m=1

wmdm − yT(In −PZ)y.

Hence, (3.21) is proved.
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S.4 Examples where Conditions (C.3)-(C.5) and (C.7) are sat-

isfied

We first consider the example with the linear regression candidate mod-

els, which are described in Remark 1 detailedly. In this example, V =

σ2E(XiX
T
i ), V̂ = σ̂2XTX/n, ∂µ{θ̂(w)}/∂θ̂(w)

T
|θ̂(w)=θ̃w

= XTX/n, and

θ̃m = (ΠmXTXΠT
m)−1ΠmXTy

= (ΠmXTXΠT
m)−1ΠmXT(Xθ + ε)

= (ΠmXTXΠT
m)−1ΠmXTXθ + (ΠmXTXΠT

m)−1ΠmXTε.

Therefore, when XTX/n converges to a positive definite matrix, XTε/n =

op(1) and σ̂2−σ2 = op(1), Conditions (C.3)-(C.5) and (C.7) are satisfied in

this example.

Second, we consider the example with linear regression models with

instrumental variables, which are described in Remark 2 detailedly. In this

example, Ω = (ZTZ/n)−1, V = σ2E(ZiZ
T
i ) with ZT

i being the ith row of Z,

V̂ = σ̂2ZTZ/n, ∂µ{θ̂(w)}/∂θ̂(w)
T
|θ̂(w)=θ̃w

= ZTX/n, and

θ̃m = (ΠmXTPZXΠT
m)−1ΠmXTPZy

= (ΠmXTPZXΠT
m)−1ΠmXTPZ(Xθ + ε)

= (ΠmXTPZXΠT
m)−1ΠmXTPZXθ + (ΠmXTPZXΠT

m)−1ΠmXTPZε.

Therefore, when ZTZ/n converges to a positive definite matrices, ZTX/n
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converges to a matrix with full column rank, ZTε/n = op(1) and σ̂2− σ2 =

op(1), Conditions (C.3)-(C.5) and (C.7) are satisfied in this example.

S.5 Proof of Theorem 1

It is well-known that the following equalities are satisfied for any matrices

B1 and B2 with identical dimensions (see, for example, Li (1987)):

λmax(B1 + B2) ≤ λmax(B1) + λmax(B2) and λmax(B1B2) ≤ λmax(B1)λmax(B2),(S.8)

where the definition of λmax(·) is in Condition (C.5).

Now, we prove that uniformly for any m ∈ {1, . . . ,M},

λmax

(
∂θ̂m
∂µ̂T

)
= Op(1). (S.9)

Let PBD = (Dm − Bm)
{

(Dm −Bm)T(Dm −Bm)
}−1

(Dm − Bm)T. By

(3.13), (S.8), the assumption that (Dm − Bm)T(Dm − Bm) is invertible,

and the truth that Ω is a positive definite matrix, we have that uniformly

for m ∈ {1, . . . ,M},

λmax

(
∂θ̂m
∂µ̂T

)

= λ1/2max

(
∂θ̂Tm
∂µ̂

∂θ̂m
∂µ̂T

)
= λ1/2max

(
ΩTA(θ̂m)T(Dm −Bm)

{
(Dm −Bm)T(Dm −Bm)

}−2
(Dm −Bm)TA(θ̂m)Ω

)
≤ λ1/2max

({
(Dm −Bm)T(Dm −Bm)

}−1)
λ1/2max

(
ΩTA(θ̂m)TPBDA(θ̂m)Ω

)
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≤ λ1/2max

({
(Dm −Bm)T(Dm −Bm)

}−1)
λ1/2max (PBD)λmax

(
A(θ̂m)

)
λmax(Ω)

= O(1), (S.10)

hence, (S.9) is proved.

Let

Hm = 2n−1
∂µ{θ̂(w)}
∂θ̂(w)T

ΠT
m

∂θ̂m
∂µ̂T

ΩV̂ and H(w) =
M∑
m=1

wmHm.

It is seen that

C(w)

= [µ{θ̂(w)} − µ̂]TΩ[µ{θ̂(w)} − µ̂)] + trace{H(w)}

=
[
µ{θ̂(w)} − µtrue(θ0) + µtrue(θ0)− µ̂

]T
Ω
[
µ{θ̂(w)} − µtrue(θ0) + µtrue(θ0)− µ̂

]
+trace{H(w)}

= L(w) + 2
[
µ{θ̂(w)} − µtrue(θ0)

]T
Ω{µtrue(θ0)− µ̂}+ {µtrue(θ0)− µ̂}TΩ{µtrue(θ0)− µ̂}

+trace{H(w)}

= L(w) + 2
[
µ{θ̂(w)} − µ{θ∗(w)}

]T
Ω{µtrue(θ0)− µ̂)

+2 [µ{θ∗(w)} − µtrue(θ0)]
T Ω{µtrue(θ0)− µ̂}

+{µtrue(θ0)− µ̂)TΩ{µtrue(θ0)− µ̂}+ trace{H(w)}, (S.11)

where the term {µtrue(θ0)− µ̂)TΩ̂{µtrue(θ0)− µ̂} is unrelated to w, and

L(w)
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=
[
µ{θ̂(w)} − µtrue(θ0)

]T
Ω
[
µ{θ̂(w)} − µtrue(θ0)

]
=

[
µ{θ̂(w)} − µ{θ∗(w)}+ µ{θ∗(w)} − µtrue(θ0)

]T
Ω

×
[
µ{θ̂(w)} − µ{θ∗(w)}+ µ{θ∗(w)} − µtrue(θ0)

]
= L∗(w) +

[
µ{θ̂(w)} − µ{θ∗(w)}

]T
Ω
[
µ{θ̂(w)} − µ{θ∗(w)}

]
+2
[
µ{θ̂(w)} − µ{θ∗(w)}

]T
Ω [µ{θ∗(w)} − µtrue(θ0)] . (S.12)

In addition, from Condition (C.6), we know that there exists a positive

constant c and a positive integer N such that when n ≥ N , infw∈W L
∗(w) ≥

c > 0 almost surely. Hence, by Lemma 2, to prove (4.2) it is sufficient to

verify that

sup
w∈W
|L∗(w)−1

[
µ{θ̂(w)} − µ{θ∗(w)}

]T
Ω
[
µ{θ̂(w)} − µ{θ∗(w)}

]
| = op(1),(S.13)

sup
w∈W
|L∗(w)−1

[
µ{θ̂(w)} − µ{θ∗(w)}

]T
Ω [µ{θ∗(w)} − µtrue(θ0)] | = op(1),(S.14)

sup
w∈W
|L∗(w)−1

[
µ{θ̂(w)} − µ{θ∗(w)}

]T
Ω{µtrue(θ0)− µ̂}| = op(1),(S.15)

sup
w∈W
|L∗(w)−1 [µ{θ∗(w)} − µtrue(θ0)]

T Ω{µtrue(θ0)− µ̂}| = op(1), (S.16)

and

sup
w∈W
|n−1L∗(w)−1trace{H(w)}| = op(1). (S.17)
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By Taylor’s expansion, we obtain that∥∥∥µ{θ̂(w)} − µ{θ∗(w)}
∥∥∥2

=

∥∥∥∥∥∂µ{θ̂(w)}

∂θ̂(w)
T
|θ̂(w)=θ̃w

{θ̂(w)− θ∗(w)}

∥∥∥∥∥
2

≤ λmax

[
∂µ{θ̂(w)}

∂θ̂(w)
T
|θ̂(w)=θ̃∗

w

∂µ{θ̂(w)}
T

∂θ̂(w)
|θ̂(w)=θ̃∗

w

]∥∥∥θ̂(w)− θ∗(w)
∥∥∥2

≤ λ2max

[
∂µ{θ̂(w)}

∂θ̂(w)
T
|θ̂(w)=θ̃∗

w

]∥∥∥θ̂(w)− θ∗(w)
∥∥∥2

= Op(n
−1Mp), (S.18)

where θ̃∗w is a vector between θ̂(w) and θ∗(w) and can be related to w,

the third step is from (S.8), and the last step is from Conditions (C.4) and

(C.5).

From (S.18) and Condition (C.6), we can obtain (S.13)-(S.14). From

(S.18) and Conditions (C.1), (C.3) and (C.6), we can obtain (S.15). From

Conditions (C.1), (C.3) and (C.6), we can obtain (S.16).

It is seen that

trace{H(w)}

≤ max
1≤m≤M

trace(Hm)

= 2−1 max
1≤m≤M

trace(Hm +HT
m)

≤ 2−1 max
1≤m≤M

rank(Hm +HT
m)λmax(Hm +HT

m)

≤ 2 max
1≤m≤M

rank(Hm)λmax(Hm)
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≤ 2 max
1≤m≤M

rank(Hm)2n−1 max
1≤m≤M

λmax

[
∂µ{θ̂(w)}
∂θ̂(w)T

ΠT
m

∂θ̂m
∂µ̂T

ΩV̂

]

≤ 4n−1p max
1≤m≤M

λmax

[
∂µ{θ̂(w)}
∂θ̂(w)T

]
λmax

(
ΠT
m

)
λmax

(
∂θ̂m
∂µ̂T

)
×λmax (Ω)λmax

(
V̂
)

= Op(p/n), (S.19)

where the fourth and sixth steps use (S.8) and the last step uses (S.9) and

Conditions (C.3) and (C.5). Now, by (S.19) and Condition (C.6), we can

obtain (S.17). As stated in above (S.13), the optimality (4.2) is implied by

(S.13)-(S.17) This completes the proof.

S.6 Proof of Theorem 2

Let

G(w) =
∂µ{θ̂(w)}T

∂θ̂(w)
|θ̂(w)=θ̃∗

w
Ω
∂µ{θ̂(w)}

∂θ̂(w)
T
|θ̂(w)=θ̃∗

w

and

g(w) =
∂µ{θ̂(w)}T

∂θ̂(w)
|θ̂(w)=θ̃∗

w
Ω {µtrue(θ0)− µ̂} ,

where θ̃∗w is defined following (S.18). It is seen that

C(w)

=
[
µ{θ̂(w)} − µtrue(θ0) + µtrue(θ0)− µ̂

}T

Ω
[
µ{θ̂(w)} − µtrue(θ0) + µtrue(θ0)− µ̂

}
+trace{H(w)}
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=
[
µ{θ̂(w)} − µtrue(θ0)

]T
Ω
[
µ{θ̂(w)} − µtrue(θ0)

]
+2
[
µ{θ̂(w)} − µtrue(θ0)

]T
Ω {µtrue(θ0)− µ̂}

+trace{H(w)}+ {µtrue(θ0)− µ̂}T Ω {µtrue(θ0)− µ̂}

= {θ̂(w)− θ0}TG(w){θ̂(w)− θ0}+ 2{θ̂(w)− θ0}Tg(w) + trace{H(w)}

+ {µtrue(θ0)− µ̂}T Ω {µtrue(θ0)− µ̂} , (S.20)

where the first step is from the second step of (S.11) and the last step is

from Taylor’s expansion. Recall that wm̃ is a weight vector in which the m̃th

component is one and the other are zeros. From (4.1), (S.19), Conditions

(C.1) and (C.3), and the second step of (S.20), we have

C(wm̃) = {µtrue(θ0)− µ̂}T Ω {µtrue(θ0)− µ̂}+Op(n
−1p) = Op(n

−1p).(S.21)

From (S.19), Condition (C.1) and the third step of (S.20), we have

C(ŵ) = {θ̂(ŵ)− θ0}TG(ŵ){θ̂(ŵ)− θ0}+ 2{θ̂(ŵ)− θ0}Tg(ŵ) +Op(n
−1p).

Combining the above equations and C(ŵ) ≤ C(wm̃), we have

{θ̂(ŵ)− θ0}TG(ŵ){θ̂(ŵ)− θ0}+ 2{θ̂(ŵ)− θ0}Tg(ŵ) +Op(n
−1p) ≤ Op(n

−1p),

from which and Condition (C.7), we further have

κ2‖θ̂(ŵ)− θ0‖2 ≤ −2{θ̂(ŵ)− θ0}Tg(ŵ)−Op(n
−1p) +Op(n

−1p)

≤ 2‖θ̂(ŵ)− θ0‖‖g(ŵ)‖+Op(n
−1p), (S.22)
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by which, we further have

{
‖θ̂(ŵ)− θ0‖ − κ−12 ‖g(ŵ)‖

}2

≤ κ−22 ‖g(ŵ)‖2 +Op(n
−1p). (S.23)

From Conditions (C.1), (C.3) and (C.5), it is easily to obtain ‖g(ŵ)‖ =

Op(n
−1/2p1/2), which along with (S.23), implies (4.3). This completes the

proof.

Figure S.1: MSE in simulation Design I, with R̃2 = 0.5.
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Figure S.2: MSE in simulation Design I, with R̃2 = 0.8.
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Figure S.3: Loss in simulation Design II, with R̃2 = 0.5.
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Figure S.4: Loss in simulation Design II, with R̃2 = 0.8.
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