OPTIMAL MODEL AVERAGING BASED ON GENERALIZED METHOD OF MOMENTS

Supplementary Material

Xinyu Zhang

The following two lemmas will be used in the proofs of Proposition 1 and Theorem 1, respectively.

Lemma 1 Stein, 1981) Let $a \sim \operatorname{Normal}(0,1)$ and $g(a): \mathcal{R} \rightarrow \mathcal{R}$ be an indefinite integral of the Lebesgue measurable function $\dot{g}(a)$. Thus, $\dot{g}(a)$ is the derivative of $g(a)$. Suppose that $E|\dot{g}(a)|<\infty$. Then we have $E\{\dot{g}(a)\}=$ $E\{a g(a)\}$.

Lemma 2 Zhang, 2010; Gao et al., 2019) Let

$$
\widetilde{\mathbf{w}}=\operatorname{argmin}_{\mathbf{w} \in \mathcal{W}}\left\{L(w)+a_{n}(w)+b_{n}\right\},
$$

where $a_{n}(\mathbf{w})$ is a term related to \mathbf{w} and b_{n} is a term unrelated to \mathbf{w}. If

$$
\sup _{\mathbf{w} \in \mathcal{W}}\left|a_{n}(\mathbf{w})\right| / L^{*}(\mathbf{w})=o_{p}(1), \quad \sup _{\mathbf{w} \in \mathcal{W}}\left|L(\mathbf{w})-L^{*}(\mathbf{w})\right| / L^{*}(\mathbf{w})=o_{p}(1)
$$

and there exists a positive constant c and a positive integer N such that when
$n \geq N, \inf _{\mathbf{w} \in \mathcal{W}} L^{*}(\mathbf{w}) \geq c>0$ almost surely, then $L(\widetilde{\mathbf{w}}) / \inf _{\mathbf{w} \in \mathcal{W}} L(\mathbf{w}) \rightarrow 1$ in probability.

S. 1 Proof of Proposition 1

Let $f(\cdot)$ be a function with $f\left[\sqrt{n}\left\{\widehat{\boldsymbol{\mu}}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)\right\}\right]=\sqrt{n} \boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\sqrt{n} \widehat{\boldsymbol{\mu}}$.
It is seen that

$$
\begin{align*}
& R(\mathbf{w}) \tag{S.1}\\
= & E\left(\left[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)\right]^{\mathrm{T}} \boldsymbol{\Omega}\left[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)\right]\right) \\
= & E\left(\left[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\widehat{\boldsymbol{\mu}}+\widehat{\boldsymbol{\mu}}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)\right]^{\mathrm{T}} \boldsymbol{\Omega}\left[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\widehat{\boldsymbol{\mu}}+\widehat{\boldsymbol{\mu}}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)\right]\right) \\
= & E\left([\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\widehat{\boldsymbol{\mu}}]^{\mathrm{T}} \boldsymbol{\Omega}[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\widehat{\boldsymbol{\mu}}]\right)+E\left[\left\{\widehat{\boldsymbol{\mu}}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)\right\}^{\mathrm{T}} \boldsymbol{\Omega}\left\{\widehat{\boldsymbol{\mu}}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)\right\}\right] \\
& +2 E\left([\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\widehat{\boldsymbol{\mu}}]^{\mathrm{T}} \boldsymbol{\Omega}\left\{\widehat{\boldsymbol{\mu}}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)\right\}\right) \tag{S.2}
\end{align*}
$$

and

$$
\begin{aligned}
& E\left([\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\widehat{\boldsymbol{\mu}}]^{\mathrm{T}} \boldsymbol{\Omega}\left\{\widehat{\boldsymbol{\mu}}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)\right\}\right) \\
= & n^{-1} E\left([\sqrt{n} \boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\sqrt{n} \widehat{\boldsymbol{\mu}}]^{\mathrm{T}} \boldsymbol{\Omega} \sqrt{n}\left\{\widehat{\boldsymbol{\mu}}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)\right\}\right) \\
= & n^{-1} E\left(f\left[\sqrt{n}\left\{\widehat{\boldsymbol{\mu}}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)\right\}\right] \boldsymbol{\Omega} \sqrt{n}\left\{\widehat{\boldsymbol{\mu}}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)\right\}\right) \\
= & n^{-1}\left[E\left\{f(\boldsymbol{\pi})^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\pi}\right\}+o(1)\right] \\
= & n^{-1}\left[E\left(\operatorname{trace}\left\{\frac{\partial f(\boldsymbol{\pi})}{\partial \boldsymbol{\pi}^{\mathrm{T}}} \boldsymbol{\Omega} \mathbf{V}\right\}\right)+o(1)\right] \\
= & n^{-1}\left[E \left(\operatorname { t r a c e } \left[\frac{\partial(\sqrt{n} \boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\sqrt{n} \widehat{\boldsymbol{\mu}})}{\left.\left.\left.\partial \sqrt{n}\left\{\widehat{\boldsymbol{\mu}}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)\right\}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{V}\right]\right)+o(1)\right]}\right.\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& =n^{-1} E\left(\operatorname{trace}\left[\frac{\partial \boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}}{\partial \widehat{\boldsymbol{\mu}}^{\mathrm{T}}} \boldsymbol{\Omega} \boldsymbol{V}\right]\right)-n^{-1} \operatorname{trace}(\boldsymbol{\Omega} \boldsymbol{V})+o\left(n^{-1}\right) \\
& =n^{-1} E\left(\operatorname{trace}\left[\sum_{m=1}^{M} w_{m} \frac{\partial \boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}}{\partial \widehat{\boldsymbol{\theta}}(\mathbf{w})^{\mathrm{T}}} \boldsymbol{\Pi}_{m}^{\mathrm{T}} \frac{\partial \widehat{\boldsymbol{\theta}}_{m}}{\partial \widehat{\boldsymbol{\mu}}^{\mathrm{T}}} \boldsymbol{\Omega} \boldsymbol{V}\right]\right)-n^{-1} \operatorname{trace}(\boldsymbol{\Omega} \boldsymbol{V})+o\left(n^{-1}\right),
\end{aligned}
$$

where the third, fourth and fifth steps are from Lemma 1 and Conditions (C.1) (C.2). The above two formulas imply (3.6). This completes the proof.

S. 2 Proof of Proposition 2

It is implied by (2.5) that

$$
\begin{equation*}
\frac{\partial\left\{\widehat{\boldsymbol{\mu}}-\boldsymbol{\mu}\left(\boldsymbol{\Pi}_{m}^{\mathrm{T}} \widehat{\boldsymbol{\theta}}_{m}\right)\right\}^{\mathrm{T}} \boldsymbol{\Omega}\left\{\widehat{\boldsymbol{\mu}}-\boldsymbol{\mu}\left(\boldsymbol{\Pi}_{m}^{\mathrm{T}} \widehat{\boldsymbol{\theta}}_{m}\right)\right\}}{\partial \widehat{\boldsymbol{\theta}}_{m}}=\mathbf{0}, \tag{S.3}
\end{equation*}
$$

which is

$$
\begin{equation*}
\boldsymbol{A}\left(\widehat{\boldsymbol{\theta}}_{m}\right) \boldsymbol{\Omega}\left\{\widehat{\boldsymbol{\mu}}-\boldsymbol{\mu}\left(\boldsymbol{\Pi}_{m}^{\mathrm{T}} \widehat{\boldsymbol{\theta}}_{m}\right)\right\}=\mathbf{0} \tag{S.4}
\end{equation*}
$$

Taking derivative of the both sides of (S.4) with respect to $\widehat{\boldsymbol{\mu}}^{\mathrm{T}}$, we have

$$
\begin{align*}
& \sum_{\tau=1}^{d_{m}} \boldsymbol{A}_{\tau}\left(\widehat{\boldsymbol{\theta}}_{m}\right) \boldsymbol{\Omega}\left\{\widehat{\boldsymbol{\mu}}-\boldsymbol{\mu}\left(\boldsymbol{\Pi}_{m}^{\mathrm{T}} \widehat{\boldsymbol{\theta}}_{m}\right)\right\} \frac{\partial \widehat{\boldsymbol{\theta}}_{m, \tau}}{\partial \widehat{\boldsymbol{\mu}}^{\mathrm{T}}}+\boldsymbol{A}\left(\widehat{\boldsymbol{\theta}}_{m}\right) \boldsymbol{\Omega} \tag{S.5}\\
&-\sum_{\tau=1}^{d_{m}} \boldsymbol{A}\left(\widehat{\boldsymbol{\theta}}_{m}\right) \boldsymbol{\Omega} \frac{\partial \boldsymbol{\mu}\left(\boldsymbol{\Pi}_{m}^{\mathrm{T}} \widehat{\boldsymbol{\theta}}_{m}\right)}{\partial \widehat{\theta}_{m, \tau}} \frac{\partial \widehat{\theta}_{m, \tau}}{\partial \widehat{\boldsymbol{\mu}}^{\mathrm{T}}}=\mathbf{0} \tag{S.6}
\end{align*}
$$

From the definitions of \boldsymbol{D}_{m} and \boldsymbol{B}_{m} in (3.11) and (3.12), Equation (S.5) is simplified to

$$
\boldsymbol{D}_{m} \frac{\partial \widehat{\boldsymbol{\theta}}_{m}}{\partial \widehat{\boldsymbol{\mu}}^{\mathrm{T}}}+\boldsymbol{A}\left(\widehat{\boldsymbol{\theta}}_{m}\right) \boldsymbol{\Omega}-\boldsymbol{B}_{m} \frac{\partial \widehat{\boldsymbol{\theta}}_{m}}{\partial \widehat{\boldsymbol{\mu}}^{\mathrm{T}}}=\mathbf{0}
$$

which implies

$$
\left(\boldsymbol{D}_{m}-\boldsymbol{B}_{m}\right)^{\mathrm{T}}\left(\boldsymbol{D}_{m}-\boldsymbol{B}_{m}\right) \frac{\partial \widehat{\boldsymbol{\theta}}_{m}}{\partial \widehat{\boldsymbol{\mu}}^{\mathrm{T}}}=-\left(\boldsymbol{D}_{m}-\boldsymbol{B}_{m}\right)^{\mathrm{T}} \boldsymbol{A}\left(\widehat{\boldsymbol{\theta}}_{m}\right) \boldsymbol{\Omega}
$$

which, along with the condition that $\left(\boldsymbol{D}_{m}-\boldsymbol{B}_{m}\right)^{\mathrm{T}}\left(\boldsymbol{D}_{m}-\boldsymbol{B}_{m}\right)$ is invertible, implies (3.13). This completes the proof.
S. 3 Proofs of (3.16), (3.17), (3.20) and (3.21)

Let $\widehat{\mathbf{B}}_{m}=\boldsymbol{A}\left(\widehat{\boldsymbol{\theta}}_{m}\right) \boldsymbol{\Omega} \boldsymbol{A}^{\mathrm{T}}\left(\widehat{\boldsymbol{\theta}}_{m}\right)$. Then, we have

$$
\begin{align*}
& \operatorname{trace}\left[\sum_{m=1}^{M} w_{m} \frac{\partial \boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}}{\partial \widehat{\boldsymbol{\theta}}(\mathbf{w})^{\mathrm{T}}} \boldsymbol{\Pi}_{m}^{\mathrm{T}} \frac{\partial \widehat{\boldsymbol{\theta}}_{m}}{\partial \widehat{\boldsymbol{\mu}}^{\mathrm{T}}} \boldsymbol{\Omega} \widehat{\boldsymbol{V}}\right] \\
= & \operatorname{trace}\left\{\sum_{m=1}^{M} w_{m} \frac{\mathbf{X}^{\mathrm{T}} \mathbf{X}}{n} \boldsymbol{\Pi}_{m}^{\mathrm{T}}\left(\widehat{\mathbf{B}}_{m}^{\mathrm{T}} \widehat{\mathbf{B}}_{m}\right)^{-1} \widehat{\mathbf{B}}_{m}^{\mathrm{T}} \boldsymbol{A}\left(\widehat{\boldsymbol{\theta}}_{m}\right) \boldsymbol{\Omega} \boldsymbol{\Omega} \widehat{\mathbf{V}}\right\} \\
= & \widehat{\sigma}^{2} \operatorname{trace}\left\{\sum_{m=1}^{M} w_{m} \boldsymbol{A}\left(\widehat{\boldsymbol{\theta}}_{m}\right)^{\mathrm{T}}\left(\widehat{\mathbf{B}}_{m}^{\mathrm{T}} \widehat{\mathbf{B}}_{m}\right)^{-1} \widehat{\mathbf{B}}_{m}^{\mathrm{T}} \boldsymbol{A}\left(\widehat{\boldsymbol{\theta}}_{m}\right) \boldsymbol{\Omega}\right\} \\
= & \widehat{\sigma}^{2} \operatorname{trace}\left\{\sum_{m=1}^{M} w_{m} \boldsymbol{A}\left(\widehat{\boldsymbol{\theta}}_{m}\right) \boldsymbol{\Omega} \boldsymbol{A}\left(\widehat{\boldsymbol{\theta}}_{m}\right)^{\mathrm{T}}\left(\widehat{\mathbf{B}}_{m}^{\mathrm{T}} \widehat{\mathbf{B}}_{m}\right)^{-1} \widehat{\mathbf{B}}_{m}^{\mathrm{T}}\right\} \\
= & \widehat{\sigma}^{2} \operatorname{trace}\left\{\sum_{m=1}^{M} w_{m} \widehat{\mathbf{B}}_{m}\left(\widehat{\mathbf{B}}_{m}^{\mathrm{T}} \widehat{\mathbf{B}}_{m}\right)^{-1} \widehat{\mathbf{B}}_{m}^{\mathrm{T}}\right\} \\
= & \widehat{\sigma}^{2} \sum_{m=1}^{M} w_{m} d_{m}, \tag{S.7}
\end{align*}
$$

where the first step is from (3.13)-(3.15) and the second step is from (3.14)(3.15). Hence, (3.16) is proved.

From (3.14) and (3.16), we have

$$
\begin{aligned}
= & {[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\widehat{\boldsymbol{\mu}}]^{\mathrm{T}} \boldsymbol{\Omega}[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\widehat{\boldsymbol{\mu}}] } \\
& +2 n^{-1} \operatorname{trace}\left[\sum_{m=1}^{M} w_{m} \frac{\partial \boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}}{\partial \widehat{\boldsymbol{\theta}}(\mathbf{w})^{\mathrm{T}}} \boldsymbol{\Pi}_{m}^{\mathrm{T}} \frac{\partial \widehat{\boldsymbol{\theta}}_{m}}{\left.\partial \widehat{\boldsymbol{\mu}}^{\mathrm{T}} \boldsymbol{\Omega} \widehat{\boldsymbol{V}}\right]}\right. \\
= & {[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\widehat{\boldsymbol{\mu}}]^{\mathrm{T}} \boldsymbol{\Omega}[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\widehat{\boldsymbol{\mu}}]+2 n^{-1} \widehat{\sigma}^{2} \sum_{m=1}^{M} w_{m} d_{m} } \\
= & n^{-1}\left\{\mathbf{X}^{\mathrm{T}} \mathbf{X} \widehat{\boldsymbol{\theta}}(\mathbf{w})-\mathbf{X}^{\mathrm{T}} \mathbf{y}\right\}^{\mathrm{T}}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1}\left\{\mathbf{X}^{\mathrm{T}} \mathbf{X} \widehat{\boldsymbol{\theta}}(\mathbf{w})-\mathbf{X}^{\mathrm{T}} \mathbf{y}\right\}+2 n^{-1} \widehat{\sigma}^{2} \sum_{m=1}^{M} w_{m} d_{m} \\
= & n^{-1}\left\{\boldsymbol{\theta}(\mathbf{w})^{\mathrm{T}} \mathbf{X}^{\mathrm{T}} \mathbf{X} \widehat{\boldsymbol{\theta}}(\mathbf{w})+\mathbf{y}^{\mathrm{T}} \mathbf{X}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{y}-2 \mathbf{y}^{\mathrm{T}} \mathbf{X} \widehat{\boldsymbol{\theta}}(\mathbf{w})\right\}+2 n^{-1} \widehat{\sigma}^{2} \sum_{m=1}^{M} w_{m} d_{m} \\
= & n^{-1}\|\mathbf{X} \widehat{\boldsymbol{\theta}}(\mathbf{w})-\mathbf{y}\|^{2}+2 n^{-1} \widehat{\sigma}^{2} \sum_{m=1}^{M} w_{m} d_{m}-\mathbf{y}^{\mathrm{T}}\left\{\mathbf{I}_{n}-\mathbf{X}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}}\right\} \mathbf{y},
\end{aligned}
$$

which is (3.17).
The proof of (3.20) is exactly the same as that of (3.16). For (3.21),

$$
\begin{aligned}
& C(\mathbf{w}) \\
= & {[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\widehat{\boldsymbol{\mu}}]^{\mathrm{T}} \boldsymbol{\Omega}[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\widehat{\boldsymbol{\mu}}] } \\
& +2 n^{-1} \operatorname{trace}\left[\sum_{m=1}^{M} w_{m} \frac{\partial \boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}}{\partial \widehat{\boldsymbol{\theta}}(\mathbf{w})^{\mathrm{T}}} \boldsymbol{\Pi}_{m}^{\mathrm{T}} \frac{\partial \widehat{\boldsymbol{\theta}}_{m}}{\partial \widehat{\boldsymbol{\mu}}^{\mathrm{T}}} \boldsymbol{\Omega} \widehat{\boldsymbol{V}}\right] \\
= & {[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\widehat{\boldsymbol{\mu}}]^{\mathrm{T}} \boldsymbol{\Omega}[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\widehat{\boldsymbol{\mu}}]+2 n^{-1} \widehat{\sigma}^{2} \sum_{m=1}^{M} w_{m} d_{m} } \\
= & n^{-1}\left\{\mathbf{Z}^{\mathrm{T}} \mathbf{X} \widehat{\boldsymbol{\theta}}(\mathbf{w})-\mathbf{Z}^{\mathrm{T}} \mathbf{y}\right\}^{\mathrm{T}}\left(\mathbf{Z}^{\mathrm{T}} \mathbf{Z}\right)^{-1}\left\{\mathbf{Z}^{\mathrm{T}} \mathbf{X} \widehat{\boldsymbol{\theta}}(\mathbf{w})-\mathbf{Z}^{\mathrm{T}} \mathbf{y}\right\}+2 n^{-1} \widehat{\sigma}^{2} \sum_{m=1}^{M} w_{m} d_{m} \\
= & n^{-1}\left\{\widehat{\boldsymbol{\theta}}(\mathbf{w})^{\mathrm{T}} \mathbf{X}^{\mathrm{T}} \mathbf{P}_{\mathbf{Z}} \mathbf{X} \widehat{\boldsymbol{\theta}}(\mathbf{w})+\mathbf{y}^{\mathrm{T}} \mathbf{P}_{\mathbf{z}} \mathbf{y}-2 \mathbf{y}^{\mathrm{T}} \mathbf{P}_{\mathbf{Z}} \mathbf{X} \widehat{\boldsymbol{\theta}}(\mathbf{w})\right\}+2 n^{-1} \widehat{\sigma}^{2} \sum_{m=1}^{M} w_{m} d_{m} \\
= & n^{-1}\|\mathbf{P} \mathbf{Z} \mathbf{X} \widehat{\boldsymbol{\theta}}(\mathbf{w})-\mathbf{y}\|^{2}+2 n^{-1} \widehat{\sigma}^{2} \sum_{m=1}^{M} w_{m} d_{m}-\mathbf{y}^{\mathrm{T}}\left(\mathbf{I}_{n}-\mathbf{P}_{\mathbf{z}}\right) \mathbf{y} .
\end{aligned}
$$

Hence, (3.21) is proved.
S. 4 Examples where Conditions (C.3) (C.5) and (C.7) are satisfied
S. 4 Examples where Conditions (C.3) (C.5) and (C.7) are satisfied

We first consider the example with the linear regression candidate models, which are described in Remark 1 detailedly. In this example, $\mathbf{V}=$

$$
\begin{aligned}
& \sigma^{2} E\left(\mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}}\right), \widehat{\mathbf{V}}=\widehat{\sigma}^{2} \mathbf{X}^{\mathrm{T}} \mathbf{X} / n, \partial \boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\} /\left.\partial \widehat{\boldsymbol{\theta}}(\mathbf{w})^{\mathrm{T}}\right|_{\widehat{\boldsymbol{\theta}}(\mathbf{w})=\tilde{\boldsymbol{\theta}}_{\mathbf{w}}}=\mathbf{X}^{\mathrm{T}} \mathbf{X} / n, \text { and } \\
& \widetilde{\boldsymbol{\theta}}_{m} \\
&=\left(\boldsymbol{\Pi}_{m} \mathbf{X}^{\mathrm{T}} \mathbf{X} \boldsymbol{\Pi}_{m}^{\mathrm{T}}\right)^{-1} \boldsymbol{\Pi}_{m} \mathbf{X}^{\mathrm{T}} \mathbf{y} \\
&=\left(\boldsymbol{\Pi}_{m} \mathbf{X}^{\mathrm{T}} \mathbf{X} \boldsymbol{\Pi}_{m}^{\mathrm{T}}\right)^{-1} \boldsymbol{\Pi}_{m} \mathbf{X}^{\mathrm{T}}(\mathbf{X} \boldsymbol{\theta}+\boldsymbol{\epsilon}) \\
&=\left(\boldsymbol{\Pi}_{m} \mathbf{X}^{\mathrm{T}} \mathbf{X} \boldsymbol{\Pi}_{m}^{\mathrm{T}}\right)^{-1} \boldsymbol{\Pi}_{m} \mathbf{X}^{\mathrm{T}} \mathbf{X} \boldsymbol{\theta}+\left(\boldsymbol{\Pi}_{m} \mathbf{X}^{\mathrm{T}} \mathbf{X} \boldsymbol{\Pi}_{m}^{\mathrm{T}}\right)^{-1} \boldsymbol{\Pi}_{m} \mathbf{X}^{\mathrm{T}} \boldsymbol{\epsilon} .
\end{aligned}
$$

Therefore, when $\mathbf{X}^{\mathrm{T}} \mathbf{X} / n$ converges to a positive definite matrix, $\mathbf{X}^{\mathrm{T}} \boldsymbol{\epsilon} / n=$ $o_{p}(1)$ and $\widehat{\sigma}^{2}-\sigma^{2}=o_{p}(1)$, Conditions (C.3) (C.5) and (C.7) are satisfied in this example.

Second, we consider the example with linear regression models with instrumental variables, which are described in Remark 2 detailedly. In this example, $\boldsymbol{\Omega}=\left(\mathbf{Z}^{\mathrm{T}} \mathbf{Z} / n\right)^{-1}, \mathbf{V}=\sigma^{2} E\left(\mathbf{Z}_{i} \mathbf{Z}_{i}^{\mathrm{T}}\right)$ with $\mathbf{Z}_{i}^{\mathrm{T}}$ being the $i^{\text {th }}$ row of \mathbf{Z},

$$
\begin{aligned}
\widehat{\mathbf{V}}= & \widehat{\sigma}^{2} \mathbf{Z}^{\mathrm{T}} \mathbf{Z} / n, \partial \boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\} /\left.\partial \widehat{\boldsymbol{\theta}}(\mathbf{w})^{\mathrm{T}}\right|_{\widehat{\boldsymbol{\theta}}(\mathbf{w})=\tilde{\boldsymbol{\theta}}_{\mathbf{w}}}=\mathbf{Z}^{\mathrm{T}} \mathbf{X} / n, \text { and } \\
\widetilde{\boldsymbol{\theta}}_{m} & =\left(\boldsymbol{\Pi}_{m} \mathbf{X}^{\mathrm{T}} \mathbf{P}_{\mathbf{Z}} \mathbf{X} \boldsymbol{\Pi}_{m}^{\mathrm{T}}\right)^{-1} \boldsymbol{\Pi}_{m} \mathbf{X}^{\mathrm{T}} \mathbf{P}_{\mathbf{Z}} \mathbf{y} \\
& =\left(\boldsymbol{\Pi}_{m} \mathbf{X}^{\mathrm{T}} \mathbf{P}_{\mathbf{Z}} \mathbf{X} \boldsymbol{\Pi}_{m}^{\mathrm{T}}\right)^{-1} \boldsymbol{\Pi}_{m} \mathbf{X}^{\mathrm{T}} \mathbf{P}_{\mathbf{Z}}(\mathbf{X} \boldsymbol{\theta}+\boldsymbol{\epsilon}) \\
& =\left(\boldsymbol{\Pi}_{m} \mathbf{X}^{\mathrm{T}} \mathbf{P}_{\mathbf{Z}} \mathbf{X} \boldsymbol{\Pi}_{m}^{\mathrm{T}}\right)^{-1} \boldsymbol{\Pi}_{m} \mathbf{X}^{\mathrm{T}} \mathbf{P}_{\mathbf{Z}} \mathbf{X} \boldsymbol{\theta}+\left(\boldsymbol{\Pi}_{m} \mathbf{X}^{\mathrm{T}} \mathbf{P}_{\mathbf{Z}} \mathbf{X} \boldsymbol{\Pi}_{m}^{\mathrm{T}}\right)^{-1} \boldsymbol{\Pi}_{m} \mathbf{X}^{\mathrm{T}} \mathbf{P}_{\mathbf{Z}} \boldsymbol{\epsilon} .
\end{aligned}
$$

Therefore, when $\mathbf{Z}^{\mathrm{T}} \mathbf{Z} / n$ converges to a positive definite matrices, $\mathbf{Z}^{\mathrm{T}} \mathbf{X} / n$
converges to a matrix with full column rank, $\mathbf{Z}^{\mathrm{T}} \boldsymbol{\epsilon} / n=o_{p}(1)$ and $\widehat{\sigma}^{2}-\sigma^{2}=$ $o_{p}(1)$, Conditions (C.3) (C.5) and (C.7) are satisfied in this example.

S. 5 Proof of Theorem 1

It is well-known that the following equalities are satisfied for any matrices
\mathbf{B}_{1} and \mathbf{B}_{2} with identical dimensions (see, for example, Li (1987)):
$\lambda_{\max }\left(\mathbf{B}_{1}+\mathbf{B}_{2}\right) \leq \lambda_{\max }\left(\mathbf{B}_{1}\right)+\lambda_{\max }\left(\mathbf{B}_{2}\right)$ and $\lambda_{\max }\left(\mathbf{B}_{1} \mathbf{B}_{2}\right) \leq \lambda_{\max }\left(\mathbf{B}_{1}\right) \lambda_{\max }\left(\mathbf{B}_{2}\right)(\mathrm{S} .8)$
where the definition of $\lambda_{\max }(\cdot)$ is in Condition (C.5).
Now, we prove that uniformly for any $m \in\{1, \ldots, M\}$,

$$
\begin{equation*}
\lambda_{\max }\left(\frac{\partial \widehat{\boldsymbol{\theta}}_{m}}{\partial \widehat{\boldsymbol{\mu}}^{\mathrm{T}}}\right)=O_{p}(1) . \tag{S.9}
\end{equation*}
$$

Let $\mathbf{P}_{\mathbf{B D}}=\left(\boldsymbol{D}_{m}-\boldsymbol{B}_{m}\right)\left\{\left(\boldsymbol{D}_{m}-\boldsymbol{B}_{m}\right)^{\mathrm{T}}\left(\boldsymbol{D}_{m}-\boldsymbol{B}_{m}\right)\right\}^{-1}\left(\boldsymbol{D}_{m}-\boldsymbol{B}_{m}\right)^{\mathrm{T}}$. By (3.13), S.8), the assumption that $\left(\boldsymbol{D}_{m}-\boldsymbol{B}_{m}\right)^{\mathrm{T}}\left(\boldsymbol{D}_{m}-\boldsymbol{B}_{m}\right)$ is invertible, and the truth that Ω is a positive definite matrix, we have that uniformly for $m \in\{1, \ldots, M\}$,

$$
\begin{aligned}
& \lambda_{\max }\left(\frac{\partial \widehat{\boldsymbol{\theta}}_{m}}{\partial \widehat{\boldsymbol{\mu}}^{\mathrm{T}}}\right) \\
= & \lambda_{\max }^{1 / 2}\left(\frac{\partial \widehat{\boldsymbol{\theta}}_{m}^{\mathrm{T}}}{\partial \widehat{\boldsymbol{\mu}}} \frac{\partial \widehat{\boldsymbol{\theta}}_{m}}{\partial \widehat{\boldsymbol{\mu}}^{\mathrm{T}}}\right) \\
= & \lambda_{\max }^{1 / 2}\left(\boldsymbol{\Omega}^{\mathrm{T}} \boldsymbol{A}\left(\widehat{\boldsymbol{\theta}}_{m}\right)^{\mathrm{T}}\left(\boldsymbol{D}_{m}-\boldsymbol{B}_{m}\right)\left\{\left(\boldsymbol{D}_{m}-\boldsymbol{B}_{m}\right)^{\mathrm{T}}\left(\boldsymbol{D}_{m}-\boldsymbol{B}_{m}\right)\right\}^{-2}\left(\boldsymbol{D}_{m}-\boldsymbol{B}_{m}\right)^{\mathrm{T}} \boldsymbol{A}\left(\widehat{\boldsymbol{\theta}}_{m}\right) \boldsymbol{\Omega}\right) \\
\leq & \lambda_{\max }^{1 / 2}\left(\left\{\left(\boldsymbol{D}_{m}-\boldsymbol{B}_{m}\right)^{\mathrm{T}}\left(\boldsymbol{D}_{m}-\boldsymbol{B}_{m}\right)\right\}^{-1}\right) \lambda_{\max }^{1 / 2}\left(\boldsymbol{\Omega}^{\mathrm{T}} \boldsymbol{A}\left(\widehat{\boldsymbol{\theta}}_{m}\right)^{\mathrm{T}} \mathbf{P}_{\mathrm{BD}} \boldsymbol{A}\left(\widehat{\boldsymbol{\theta}}_{m}\right) \boldsymbol{\Omega}\right)
\end{aligned}
$$

$$
\begin{align*}
& \leq \lambda_{\max }^{1 / 2}\left(\left\{\left(\boldsymbol{D}_{m}-\boldsymbol{B}_{m}\right)^{\mathrm{T}}\left(\boldsymbol{D}_{m}-\boldsymbol{B}_{m}\right)\right\}^{-1}\right) \lambda_{\max }^{1 / 2}\left(\mathbf{P}_{\mathbf{B D}}\right) \lambda_{\max }\left(\boldsymbol{A}\left(\widehat{\boldsymbol{\theta}}_{m}\right)\right) \lambda_{\max }(\boldsymbol{\Omega}) \\
& =O(1) \tag{S.10}
\end{align*}
$$

hence, (S.9) is proved.
Let

$$
\boldsymbol{H}_{m}=2 n^{-1} \frac{\partial \boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}}{\partial \widehat{\boldsymbol{\theta}}(\mathbf{w})^{\mathrm{T}}} \boldsymbol{\Pi}_{m}^{\mathrm{T}} \frac{\partial \widehat{\boldsymbol{\theta}}_{m}}{\partial \widehat{\boldsymbol{\mu}}^{\mathrm{T}}} \boldsymbol{\Omega} \widehat{\boldsymbol{V}} \quad \text { and } \quad \boldsymbol{H}(\mathbf{w})=\sum_{m=1}^{M} w_{m} \boldsymbol{H}_{m}
$$

It is seen that

$$
\begin{align*}
& C(\mathbf{w}) \\
= & {\left.[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\widehat{\boldsymbol{\mu}}]^{\mathrm{T}} \boldsymbol{\Omega}[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\widehat{\boldsymbol{\mu}})\right]+\operatorname{trace}\{\boldsymbol{H}(\mathbf{w})\} } \\
= & {\left[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)+\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)-\widehat{\boldsymbol{\mu}}\right]^{\mathrm{T}} \boldsymbol{\Omega}\left[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)+\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)-\widehat{\boldsymbol{\mu}}\right] } \\
& +\operatorname{trace}\{\boldsymbol{H}(\mathbf{w})\} \\
= & L(\mathbf{w})+2\left[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)\right]^{\mathrm{T}} \boldsymbol{\Omega}\left\{\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)-\widehat{\boldsymbol{\mu}}\right\}+\left\{\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)-\widehat{\boldsymbol{\mu}}\right\}^{\mathrm{T}} \boldsymbol{\Omega}\left\{\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)-\widehat{\boldsymbol{\mu}}\right\} \\
& +\operatorname{trace}\{\boldsymbol{H}(\mathbf{w})\} \\
= & L(\mathbf{w})+2\left[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\boldsymbol{\mu}\left\{\boldsymbol{\theta}^{*}(\mathbf{w})\right\}\right]^{\mathrm{T}} \boldsymbol{\Omega}\left\{\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)-\widehat{\boldsymbol{\mu}}\right) \\
& +2\left[\boldsymbol{\mu}\left\{\boldsymbol{\theta}^{*}(\mathbf{w})\right\}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)\right]^{\mathrm{T}} \boldsymbol{\Omega}\left\{\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)-\widehat{\boldsymbol{\mu}}\right\} \\
& +\left\{\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)-\widehat{\boldsymbol{\mu}}\right)^{\mathrm{T}} \boldsymbol{\Omega}\left\{\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)-\widehat{\boldsymbol{\mu}}\right\}+\operatorname{trace}\{\boldsymbol{H}(\mathbf{w})\}, \tag{S.11}
\end{align*}
$$

where the term $\left\{\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)-\widehat{\boldsymbol{\mu}}\right)^{\mathrm{T}} \widehat{\boldsymbol{\Omega}}\left\{\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)-\widehat{\boldsymbol{\mu}}\right\}$ is unrelated to \mathbf{w}, and

$$
L(\mathbf{w})
$$

$$
\begin{align*}
= & {\left[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)\right]^{\mathrm{T}} \boldsymbol{\Omega}\left[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)\right] } \\
= & {\left[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\boldsymbol{\mu}\left\{\boldsymbol{\theta}^{*}(\mathbf{w})\right\}+\boldsymbol{\mu}\left\{\boldsymbol{\theta}^{*}(\mathbf{w})\right\}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)\right]^{\mathrm{T}} \boldsymbol{\Omega} } \\
& \times\left[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\boldsymbol{\mu}\left\{\boldsymbol{\theta}^{*}(\mathbf{w})\right\}+\boldsymbol{\mu}\left\{\boldsymbol{\theta}^{*}(\mathbf{w})\right\}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)\right] \\
= & L^{*}(\mathbf{w})+\left[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\boldsymbol{\mu}\left\{\boldsymbol{\theta}^{*}(\mathbf{w})\right\}\right]^{\mathrm{T}} \boldsymbol{\Omega}\left[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\boldsymbol{\mu}\left\{\boldsymbol{\theta}^{*}(\mathbf{w})\right\}\right] \\
& +2\left[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\boldsymbol{\mu}\left\{\boldsymbol{\theta}^{*}(\mathbf{w})\right\}\right]^{\mathrm{T}} \boldsymbol{\Omega}\left[\boldsymbol{\mu}\left\{\boldsymbol{\theta}^{*}(\mathbf{w})\right\}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)\right] . \tag{S.12}
\end{align*}
$$

In addition, from Condition (C.6), we know that there exists a positive constant c and a positive integer N such that when $n \geq N, \inf _{\mathbf{w} \in \mathcal{W}} L^{*}(\mathbf{w}) \geq$ $c>0$ almost surely. Hence, by Lemma 2, to prove (4.2) it is sufficient to verify that

$$
\begin{align*}
& \sup _{\mathbf{w} \in \mathcal{W}}\left|L^{*}(\mathbf{w})^{-1}\left[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\boldsymbol{\mu}\left\{\boldsymbol{\theta}^{*}(\mathbf{w})\right\}\right]^{\mathrm{T}} \boldsymbol{\Omega}\left[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\boldsymbol{\mu}\left\{\boldsymbol{\theta}^{*}(\mathbf{w})\right\}\right]\right|=o_{p}(1(\tag{1}\\
& \sup _{\mathbf{w} \in \mathcal{W}}\left|L^{*}(\mathbf{w})^{-1}\left[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\boldsymbol{\mu}\left\{\boldsymbol{\theta}^{*}(\mathbf{w})\right\}\right]^{\mathrm{T}} \boldsymbol{\Omega}\left[\boldsymbol{\mu}\left\{\boldsymbol{\theta}^{*}(\mathbf{w})\right\}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)\right]\right|=o_{p}\left(10 \mathcal{S}^{\prime},\right. \tag{1}\\
& \sup _{\mathbf{w} \in \mathcal{W}}\left|L^{*}(\mathbf{w})^{-1}\left[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\boldsymbol{\mu}\left\{\boldsymbol{\theta}^{*}(\mathbf{w})\right\}\right]^{\mathrm{T}} \boldsymbol{\Omega}\left\{\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)-\widehat{\boldsymbol{\mu}}\right\}\right|=o_{p}(1),(\mathrm{S} .15) \tag{S.15}\\
& \underset{\mathbf{w} \in \mathcal{W}}{ }\left|L^{*}(\mathbf{w})^{-1}\left[\boldsymbol{\mu}\left\{\boldsymbol{\theta}^{*}(\mathbf{w})\right\}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)\right]^{\mathrm{T}} \boldsymbol{\Omega}\left\{\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)-\widehat{\boldsymbol{\mu}}\right\}\right|=o_{p}(1),(\mathrm{S} .16) \tag{S.16}
\end{align*}
$$

and

$$
\begin{equation*}
\sup _{\mathbf{w} \in \mathcal{W}}\left|n^{-1} L^{*}(\mathbf{w})^{-1} \operatorname{trace}\{\boldsymbol{H}(\mathbf{w})\}\right|=o_{p}(1) . \tag{S.17}
\end{equation*}
$$

By Taylor's expansion, we obtain that

$$
\begin{align*}
& \left\|\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\boldsymbol{\mu}\left\{\boldsymbol{\theta}^{*}(\mathbf{w})\right\}\right\|^{2} \\
= & \left\|\left.\frac{\partial \boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}}{\partial \widehat{\boldsymbol{\theta}}(\mathbf{w})^{\mathrm{T}}}\right|_{\widehat{\boldsymbol{\theta}}(\mathbf{w})=\widetilde{\boldsymbol{\theta}}_{\mathbf{w}}}\left\{\widehat{\boldsymbol{\theta}}(\mathbf{w})-\boldsymbol{\theta}^{*}(\mathbf{w})\right\}\right\|^{2} \\
\leq & \lambda_{\max }\left[\left.\left.\frac{\partial \boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}}{\partial \widehat{\boldsymbol{\theta}}(\mathbf{w})^{\mathrm{T}}}\right|_{\widehat{\boldsymbol{\theta}}(\mathbf{w})=\widetilde{\boldsymbol{\theta}}_{\mathbf{w}}^{*}} \frac{\partial \boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}^{\mathrm{T}}}{\partial \widehat{\boldsymbol{\theta}}(\mathbf{w})}\right|_{\widehat{\boldsymbol{\theta}}(\mathbf{w})=\widetilde{\boldsymbol{\theta}}_{\mathbf{w}}^{*}}\right]\left\|\widehat{\boldsymbol{\theta}}(\mathbf{w})-\boldsymbol{\theta}^{*}(\mathbf{w})\right\|^{2} \\
\leq & \lambda_{\max }^{2}\left[\left.\frac{\partial \boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}}{\partial \widehat{\boldsymbol{\theta}}(\mathbf{w})^{\mathrm{T}}}\right|_{\widehat{\boldsymbol{\theta}}(\mathbf{w})=\widetilde{\boldsymbol{\theta}}_{\mathbf{w}}^{*}}\right]\left\|\widehat{\boldsymbol{\theta}}(\mathbf{w})-\boldsymbol{\theta}^{*}(\mathbf{w})\right\|^{2} \\
= & O_{p}\left(n^{-1} M p\right) \tag{S.18}
\end{align*}
$$

where $\widetilde{\boldsymbol{\theta}}_{\mathbf{w}}^{*}$ is a vector between $\widehat{\boldsymbol{\theta}}(\mathbf{w})$ and $\boldsymbol{\theta}^{*}(\mathbf{w})$ and can be related to \mathbf{w}, the third step is from (S.8), and the last step is from Conditions (C.4) and (C.5),

From (S.18) and Condition (C.6), we can obtain (S.13)-(S.14). From (S.18) and Conditions (C.1), (C.3) and (C.6), we can obtain S.15). From Conditions (C.1), (C.3) and (C.6), we can obtain (S.16).

It is seen that

$$
\begin{aligned}
& \operatorname{trace}\{\boldsymbol{H}(\mathbf{w})\} \\
\leq & \max _{1 \leq m \leq M} \operatorname{trace}\left(\boldsymbol{H}_{m}\right) \\
= & 2^{-1} \max _{1 \leq m \leq M} \operatorname{trace}\left(\boldsymbol{H}_{m}+\boldsymbol{H}_{m}^{\mathrm{T}}\right) \\
\leq & 2^{-1} \max _{1 \leq m \leq M} \operatorname{rank}\left(\boldsymbol{H}_{m}+\boldsymbol{H}_{m}^{\mathrm{T}}\right) \lambda_{\max }\left(\boldsymbol{H}_{m}+\boldsymbol{H}_{m}^{\mathrm{T}}\right) \\
\leq & 2 \max _{1 \leq m \leq M} \operatorname{rank}\left(\boldsymbol{H}_{m}\right) \lambda_{\max }\left(\boldsymbol{H}_{m}\right)
\end{aligned}
$$

$$
\begin{align*}
\leq & 2 \max _{1 \leq m \leq M} \operatorname{rank}\left(\boldsymbol{H}_{m}\right) 2 n^{-1} \max _{1 \leq m \leq M} \lambda_{\max }\left[\frac{\partial \boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}}{\partial \widehat{\boldsymbol{\theta}}(\mathbf{w})^{\mathrm{T}}} \boldsymbol{\Pi}_{m}^{\mathrm{T}} \frac{\partial \widehat{\boldsymbol{\theta}}_{m}}{\partial \widehat{\boldsymbol{\mu}}^{\mathrm{T}}} \boldsymbol{\Omega} \widehat{\boldsymbol{V}}\right] \\
\leq & 4 n^{-1} p_{1 \leq m \leq M} \max _{\max }\left[\frac{\partial \boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}}{\partial \widehat{\boldsymbol{\theta}}(\mathbf{w})^{\mathrm{T}}}\right] \lambda_{\max }\left(\boldsymbol{\Pi}_{m}^{\mathrm{T}}\right) \lambda_{\max }\left(\frac{\partial \widehat{\boldsymbol{\theta}}_{m}}{\partial \widehat{\boldsymbol{\mu}}^{\mathrm{T}}}\right) \\
& \times \lambda_{\max }(\boldsymbol{\Omega}) \lambda_{\max }(\widehat{\boldsymbol{V}}) \\
= & O_{p}(p / n), \tag{S.19}
\end{align*}
$$

where the fourth and sixth steps use (S.8) and the last step uses (S.9) and Conditions (C.3) and (C.5). Now, by S.19) and Condition (C.6), we can obtain (S.17). As stated in above (S.13), the optimality (4.2) is implied by (S.13)-(S.17) This completes the proof.

S. 6 Proof of Theorem 2

Let

$$
\boldsymbol{G}(\mathbf{w})=\left.\left.\frac{\partial \boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}^{\mathrm{T}}}{\partial \widehat{\boldsymbol{\theta}}(\mathbf{w})}\right|_{\widehat{\boldsymbol{\theta}}(\mathbf{w})=\widetilde{\boldsymbol{\theta}}_{\mathbf{w}}^{*}} \boldsymbol{\Omega} \frac{\partial \boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}}{\partial \widehat{\boldsymbol{\theta}}(\mathbf{w})^{\mathrm{T}}}\right|_{\widehat{\boldsymbol{\theta}}(\mathbf{w})=\widetilde{\boldsymbol{\theta}}_{\mathbf{w}}^{*}}
$$

and

$$
\boldsymbol{g}(\mathbf{w})=\left.\frac{\partial \boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}^{\mathrm{T}}}{\partial \widehat{\boldsymbol{\theta}}(\mathbf{w})}\right|_{\widehat{\boldsymbol{\theta}}(\mathbf{w})=\widetilde{\boldsymbol{\theta}}_{\mathbf{w}}^{*}} \boldsymbol{\Omega}\left\{\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)-\widehat{\boldsymbol{\mu}}\right\}
$$

where $\widetilde{\boldsymbol{\theta}}_{\mathrm{w}}^{*}$ is defined following (S.18). It is seen that

$$
\begin{aligned}
& C(\mathbf{w}) \\
= & {\left[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)+\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)-\widehat{\boldsymbol{\mu}}\right\}^{\mathrm{T}} \boldsymbol{\Omega}\left[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)+\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)-\widehat{\boldsymbol{\mu}}\right\} } \\
& +\operatorname{trace}\{\boldsymbol{H}(\mathbf{w})\}
\end{aligned}
$$

$$
\begin{align*}
= & {\left[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)\right]^{\mathrm{T}} \boldsymbol{\Omega}\left[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)\right] } \\
& +2\left[\boldsymbol{\mu}\{\widehat{\boldsymbol{\theta}}(\mathbf{w})\}-\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)\right]^{\mathrm{T}} \boldsymbol{\Omega}\left\{\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)-\widehat{\boldsymbol{\mu}}\right\} \\
& +\operatorname{trace}\{\boldsymbol{H}(\mathbf{w})\}+\left\{\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)-\widehat{\boldsymbol{\mu}}\right\}^{\mathrm{T}} \boldsymbol{\Omega}\left\{\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)-\widehat{\boldsymbol{\mu}}\right\} \\
= & \left\{\widehat{\boldsymbol{\theta}}(\mathbf{w})-\boldsymbol{\theta}_{0}\right\}^{\mathrm{T}} \boldsymbol{G}(\mathbf{w})\left\{\widehat{\boldsymbol{\theta}}(\mathbf{w})-\boldsymbol{\theta}_{0}\right\}+2\left\{\widehat{\boldsymbol{\theta}}(\mathbf{w})-\boldsymbol{\theta}_{0}\right\}^{\mathrm{T}} \boldsymbol{g}(\mathbf{w})+\operatorname{trace}\{\boldsymbol{H}(\mathbf{w})\} \\
& +\left\{\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)-\widehat{\boldsymbol{\mu}}\right\}^{\mathrm{T}} \boldsymbol{\Omega}\left\{\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)-\widehat{\boldsymbol{\mu}}\right\}, \tag{S.20}
\end{align*}
$$

where the first step is from the second step of (S.11) and the last step is from Taylor's expansion. Recall that $\mathbf{w}_{\widetilde{m}}$ is a weight vector in which the $\widetilde{m}^{\text {th }}$ component is one and the other are zeros. From (4.1), (S.19), Conditions (C.1) and (C.3), and the second step of (S.20), we have
$C\left(\mathbf{w}_{\tilde{m}}\right)=\left\{\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)-\widehat{\boldsymbol{\mu}}\right\}^{\mathrm{T}} \boldsymbol{\Omega}\left\{\boldsymbol{\mu}_{\text {true }}\left(\boldsymbol{\theta}_{0}\right)-\widehat{\boldsymbol{\mu}}\right\}+O_{p}\left(n^{-1} p\right)=O_{p}\left(n^{-1} p(\mathbb{S} .21)\right.$

From (S.19), Condition (C.1) and the third step of (S.20), we have
$C(\widehat{\mathbf{w}})=\left\{\widehat{\boldsymbol{\theta}}(\widehat{\mathbf{w}})-\boldsymbol{\theta}_{0}\right\}^{\mathrm{T}} \boldsymbol{G}(\widehat{\mathbf{w}})\left\{\widehat{\boldsymbol{\theta}}(\widehat{\mathbf{w}})-\boldsymbol{\theta}_{0}\right\}+2\left\{\widehat{\boldsymbol{\theta}}(\widehat{\mathbf{w}})-\boldsymbol{\theta}_{0}\right\}^{\mathrm{T}} \boldsymbol{g}(\widehat{\mathbf{w}})+O_{p}\left(n^{-1} p\right)$.

Combining the above equations and $C(\widehat{\mathbf{w}}) \leq C\left(\mathbf{w}_{\tilde{m}}\right)$, we have
$\left\{\widehat{\boldsymbol{\theta}}(\widehat{\mathbf{w}})-\boldsymbol{\theta}_{0}\right\}^{\mathrm{T}} \boldsymbol{G}(\widehat{\mathbf{w}})\left\{\widehat{\boldsymbol{\theta}}(\widehat{\mathbf{w}})-\boldsymbol{\theta}_{0}\right\}+2\left\{\widehat{\boldsymbol{\theta}}(\widehat{\mathbf{w}})-\boldsymbol{\theta}_{0}\right\}^{\mathrm{T}} \boldsymbol{g}(\widehat{\mathbf{w}})+O_{p}\left(n^{-1} p\right) \leq O_{p}\left(n^{-1} p\right)$,
from which and Condition (C.7), we further have

$$
\begin{align*}
\kappa_{2}\left\|\widehat{\boldsymbol{\theta}}(\widehat{\mathbf{w}})-\boldsymbol{\theta}_{0}\right\|^{2} & \leq-2\left\{\widehat{\boldsymbol{\theta}}(\widehat{\mathbf{w}})-\boldsymbol{\theta}_{0}\right\}^{\mathrm{T}} \boldsymbol{g}(\widehat{\mathbf{w}})-O_{p}\left(n^{-1} p\right)+O_{p}\left(n^{-1} p\right) \\
& \leq 2\left\|\widehat{\boldsymbol{\theta}}(\widehat{\mathbf{w}})-\boldsymbol{\theta}_{0}\right\|\|\boldsymbol{g}(\widehat{\mathbf{w}})\|+O_{p}\left(n^{-1} p\right), \tag{S.22}
\end{align*}
$$

by which, we further have

$$
\begin{equation*}
\left\{\left\|\widehat{\boldsymbol{\theta}}(\widehat{\mathbf{w}})-\boldsymbol{\theta}_{0}\right\|-\kappa_{2}^{-1}\|\boldsymbol{g}(\widehat{\mathbf{w}})\|\right\}^{2} \leq \kappa_{2}^{-2}\|\boldsymbol{g}(\widehat{\mathbf{w}})\|^{2}+O_{p}\left(n^{-1} p\right) \tag{S.23}
\end{equation*}
$$

From Conditions (C.1), (C.3) and (C.5), it is easily to obtain $\|\boldsymbol{g}(\widehat{\mathbf{w}})\|=$ $O_{p}\left(n^{-1 / 2} p^{1 / 2}\right)$, which along with $\mathrm{S.23}$, implies 4.3 . This completes the proof.

Figure S.1: MSE in simulation Design I, with $\widetilde{R}^{2}=0.5$.

Figure S.2: MSE in simulation Design I, with $\widetilde{R}^{2}=0.8$.

Figure S.3: Loss in simulation Design II, with $\widetilde{R}^{2}=0.5$.

Figure S.4: Loss in simulation Design II, with $\widetilde{R}^{2}=0.8$.

References

Gao, Y., Zhang, X., Wang, S., Chong, T. T.-L. \& Zou, G. (2019).
Frequentist model averaging for threshold models. Annals of the Institute of Statistical Mathematics 71, 275-306.

Li, K.-C. (1987). Asymptotic optimality for C_{p}, C_{l}, cross-validation and generalized cross-validation: Discrete index set. The Annals of Statistics 15, 958-975.

Stein, C. M. (1981). Estimation of the mean of a multivariate normal distribution. The Annals of Statistics 153, 1135-1151.

Zhang, X. (2010). Model averaging and its applications. Ph.D. Thesis , Academy of Mathematics and Systems Science, Chinese Academy of Sciences.

