JOINT BAYESIAN VARIABLE AND DAG SELECTION CONSISTENCY FOR HIGH-DIMENSIONAL REGRESSION MODELS WITH NETWORK-STRUCTURED COVARIATES

University of Cincinnati and Inha University

Supplementary Material

S1 Proofs

In this section, we provide proofs for Lemma 1, Theorems 1 to 5, and Corollary 1.

Proof of Lemma 1. It follows from the hierarchical models in (3.1) to (3.6), we have

$$
\begin{aligned}
& \pi(\gamma, \mathscr{D} \mid Y, X) \\
= & \int \pi\left(Y \mid \gamma, \beta_{\gamma}\right) \prod_{i=1}^{n} \pi\left(X_{i} \mid(L, D)\right) \pi_{U, \mathscr{Q}(\mathscr{D})}^{\Theta_{\mathscr{D}}}((L, D)) \\
& \times \pi\left(\beta_{\gamma} \mid \gamma\right) \pi(\gamma) \pi(\mathscr{D}) d \beta_{\gamma} d(L, D) \\
= & \pi(\gamma) \pi(\mathscr{D}) \int \pi\left(Y \mid \gamma, \beta_{\gamma}\right) \pi\left(\beta_{\gamma} \mid \gamma\right) d \beta_{\gamma}
\end{aligned}
$$

$$
\begin{equation*}
\times \int \prod_{i=1}^{n} \pi\left(X_{i} \mid(L, D)\right) \pi_{U, \alpha(\mathscr{D})}^{\Theta_{\mathscr{D}}}((L, D)) d(L, D) \tag{S1.1}
\end{equation*}
$$

First, note that by the conjugacy of the DAG-Wishart distribution, we have

$$
\begin{aligned}
& \int \prod_{i=1}^{n} \pi\left(X_{i} \mid(L, D)\right) \pi_{U, \alpha(\mathscr{D})}^{\Theta_{\mathscr{D}}}((L, D)) d(L, D) \\
= & \frac{z_{\mathscr{D}}\left(U+X^{T} X, n+\alpha(\mathscr{D})\right)}{z_{\mathscr{D}}(U, \alpha(\mathscr{D}))}
\end{aligned}
$$

where $z_{\mathscr{D}}(.,$.$) is the normalized constant for the DAG-Wishart distribution.$
Next, note that

$$
\begin{aligned}
& \int \pi\left(Y \mid \gamma, \beta_{\gamma}\right) \pi\left(\beta_{\gamma} \mid \gamma\right) d \beta_{\gamma} \\
& \propto \int\left(\sigma^{2}\right)^{-\frac{n}{2}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(Y-X_{\gamma} \beta_{\gamma}\right)^{T}\left(Y-X_{\gamma} \beta_{\gamma}\right)\right\} \\
& \times\left(\tau^{2} \sigma^{2}\right)^{-\frac{1}{2}|\gamma|} \exp \left\{-\frac{1}{2 \tau^{2} \sigma^{2}} \beta_{\gamma}^{T} \beta_{\gamma}\right\} d \beta_{\gamma} \\
& \propto\left(\tau^{2}\right)^{-\frac{1}{2}|\gamma|}\left(\sigma^{2}\right)^{-\frac{n+|\gamma|}{2}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(\beta_{\gamma}^{T}\left(X_{\gamma}^{T} X_{\gamma}+\frac{1}{\tau^{2}} I\right) \beta_{\gamma}-2 \beta_{\gamma}^{T} X_{\gamma}^{T} Y\right)\right\} d \beta_{\gamma} \\
& \times \exp \left\{-\frac{1}{2 \sigma^{2}} Y^{T} Y\right\} \\
& \propto\left(\tau^{2}\right)^{-\frac{1}{2}|\gamma|}\left(\sigma^{2}\right)^{-\frac{n+|\gamma|}{2}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(Y^{T} Y-Y^{T} X_{\gamma}\left(X_{\gamma}^{T} X_{\gamma}+\frac{1}{\tau^{2}} I\right)^{-1} X_{\gamma}^{T} Y\right)\right\} \\
& \times \int \exp \left\{-\frac{1}{2 \sigma^{2}}\left(\beta_{\gamma}-\left(X_{\gamma}^{T} X_{\gamma}+\frac{1}{\tau^{2}} I\right)^{-1} X_{\gamma}^{T} Y\right)^{T}\left(X_{\gamma}^{T} X_{\gamma}+\frac{1}{\tau^{2}} I\right)\right. \\
&\left.\times\left(\beta_{\gamma}-\left(X_{\gamma}^{T} X_{\gamma}+\frac{1}{\tau^{2}} I\right)^{-1} X_{\gamma}^{T} Y\right)\right\} d \beta_{\gamma}
\end{aligned}
$$

$$
\begin{equation*}
\propto\left(\sigma^{2}\right)^{-\frac{n}{2}} \operatorname{det}\left(\tau^{2} X_{\gamma}^{T} X_{\gamma}+I\right)^{-\frac{1}{2}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(Y^{T}\left(I_{n}+\tau^{2} X_{\gamma} X_{\gamma}^{T}\right)^{-1} Y\right)\right\}, \tag{S1.2}
\end{equation*}
$$

where the last term follows from the Woodbury matrix identity. Therefore, by (S1.1), under the proposed hierarchical model and known σ^{2}, we have

$$
\begin{align*}
& \pi(\gamma, \mathscr{D} \mid Y, X) \\
& \propto \pi(\gamma \mid \mathscr{D}) \pi(\mathscr{D}) \frac{z_{\mathscr{D}}\left(U+X^{T} X, n+\alpha(\mathscr{D})\right)}{z_{\mathscr{D}}(U, \alpha(\mathscr{D}))} \\
& \quad \times \operatorname{det}\left(\tau^{2} X_{\gamma}^{T} X_{\gamma}+I_{|\gamma|}\right)^{-\frac{1}{2}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(Y^{T}\left(I_{n}+\tau^{2} X_{\gamma} X_{\gamma}^{T}\right)^{-1} Y\right)\right\} \tag{S1.3}
\end{align*}
$$

where $z_{\mathscr{D}}(\cdot, \cdot)$ is the normalized constant in the DAG-Wishart distribution.

Proof of Theorem 1. It follows from Assumption 2, Assumption 3 and model (3.6) that, for large enough $n>N$,

$$
\begin{align*}
\frac{\pi\left(\gamma_{0} \mid \mathscr{D}\right)}{\pi\left(\gamma_{0} \mid \mathscr{D}_{0}\right)} & =\exp \left(b \gamma_{0}^{T}\left(G-G_{0}\right) \gamma_{0}\right) \\
& \leq \exp \left(b\left|\gamma_{0}\right|^{2}\right) \leq \exp \left(o\left(\log p / d^{4}\right)\right) \tag{S1.4}
\end{align*}
$$

Let $S=\frac{1}{n} X^{T} X$ denote the sample covariance matrix of X. It follows from (3.7), (S1.4), and Lemma 5.1 in Cao et al. (2019b) that

$$
\frac{\pi\left(\gamma_{0}, \mathscr{D} \mid Y, X\right)}{\pi\left(\gamma_{0}, \mathscr{D}_{0} \mid Y, X\right)}
$$

$$
\begin{align*}
& \leq \prod_{i=1}^{p} M \exp \left(o\left(\log p / d^{4}\right)\right)\left(\frac{\delta_{2}}{\delta_{1}}\right)^{\frac{d}{2}} n^{2 c}\left(\sqrt{\frac{\delta_{2}}{n}} \frac{q}{1-q}\right)^{\nu_{i}(\mathscr{O})-\nu_{i}\left(\mathscr{O}_{0}\right)} \frac{\left|\tilde{S}_{\mathscr{\mathscr { D }}_{0} \geq}\right|^{\frac{1}{2}}}{\frac{\left.\left(\tilde{S}_{i \mid p a_{i}\left(\mathscr{D}_{0}\right)}\right)^{\frac{n+c_{i}(\mathscr{\mathscr { D }})-3}{2}}\right|^{\frac{1}{2}}}{\left(\tilde{S}_{i \mid p a_{i}(\mathscr{D})}\right)^{\frac{n+c_{i}(\mathscr{D})-3}{2}}}} \\
& \triangleq \prod_{i=1}^{q} P R_{i}\left(\mathscr{D}, \mathscr{D}_{0}\right), \tag{S1.5}
\end{align*}
$$

where $c_{i}(\mathscr{D})=\alpha_{i}(\mathscr{D})-\nu_{i}(\mathscr{D}), c_{i}\left(\mathscr{D}_{0}\right)=\alpha_{i}\left(\mathscr{D}_{0}\right)-\nu_{i}\left(\mathscr{D}_{0}\right), \tilde{S}=S+\frac{U}{n}$, $\tilde{S}_{i \mid p a_{i}(\mathscr{D})}=\tilde{S}_{i i}-\left(\tilde{S}_{\mathscr{D} \cdot i}^{>}\right)^{T}\left(\tilde{S}_{\mathscr{D}}^{>i}\right)^{-1} \tilde{S}_{\mathscr{D} \cdot i}^{>}$, and M is some large enough constant.

Define the event E_{n} as

$$
\begin{equation*}
E_{n}=\left\{\left\|S-\Sigma_{0}\right\|_{\max } \geq c^{\prime} \sqrt{\frac{\log p}{n}}\right\} \tag{S1.6}
\end{equation*}
$$

It follows from Lemma A. 3 of Bickel and Levina (2008), Hanson-Wright inequality from Rudelson and Vershynin (2013) and the union-sum inequality, there exists constants c^{\prime}, m_{1}, m_{2}, such that

$$
\begin{equation*}
\bar{P}\left(\left\|\tilde{S}-\Sigma_{0}\right\|_{\max } \geq c^{\prime} \sqrt{\frac{\log p}{n}}\right) \leq m_{1} p^{2-m_{2}\left(c^{\prime}\right)^{2} / 4} \rightarrow 0 \tag{S1.7}
\end{equation*}
$$

For all the following analyses, we will restrict ourselves to the event E_{n}^{c}.
We now analyze the behavior of $P R_{i}\left(\mathscr{D}, \mathscr{D}_{0}\right)$ under different scenarios in a sequence of three lemmas (Lemmas 1-3). Recall that our goal is to find an upper bound (independent of \mathscr{D} and i) for $P R_{i}\left(\mathscr{D}, \mathscr{D}_{0}\right)$, such that the upper bound converges to 0 as $n \rightarrow \infty$.

Lemma 1. If $p a_{i}(\mathscr{D}) \supset p a_{i}\left(\mathscr{D}_{0}\right)$, then there exists N_{1} (not depending on i or $\mathscr{D})$ such that for $n \geq N_{1}$ we have $P R_{i}\left(\mathscr{D}, \mathscr{D}_{0}\right) \leq(2 p)^{-\frac{\alpha_{1}}{\kappa}\left(\nu_{i}(\mathscr{D})-\nu_{i}\left(\mathscr{D}_{0}\right)\right)}$,

$$
\text { for any constant } \kappa>1 \text {. }
$$

Proof of Lemma 1. Since $p a_{i}(\mathscr{D}) \supset p a_{i}\left(\mathscr{D}_{0}\right)$, we can write $\left|\tilde{S}_{\mathscr{D}}^{\geq i}\right|=\left|\tilde{S}_{\mathscr{D} 0}^{\geq i}\right| \mid R_{\tilde{S}_{\mathscr{D}_{0}}{ }_{-i} \mid .}$.
Here $R_{\tilde{S}_{\mathscr{D}_{0}}}$ is the Schur complement of $\tilde{S}_{\mathscr{\mathscr { D }}_{0}}^{\geq i}$, defined by $R_{\tilde{S}_{\mathscr{D}_{0}}}=D-B^{T}\left(\tilde{S}_{\mathscr{\mathscr { D }}_{0}}^{\geq i}\right)^{-1} B$, for appropriate sub matrices B and D of $\tilde{S}_{\mathscr{D}}^{\geq i}$. Since $\tilde{S}_{\mathscr{D}}^{\geq i} \geq\left(\frac{U}{n}\right)_{\mathscr{D}}^{\geq i} 1$ and $R_{\tilde{S}_{\mathscr{D}_{0}}^{\geq i}}^{-1}$ is a principal submatrix of $\left(\tilde{S}_{\tilde{\mathscr{D}}}^{\geq i}\right)^{-1}$, the largest eigenvalue of $R_{\tilde{S}_{\mathscr{\mathscr { D }}}^{0}}^{-1}$ is bounded above by $\frac{n}{\delta_{2}}$. Therefore,

$$
\begin{equation*}
\left(\frac{\left|\tilde{S}_{\mathscr{D}_{0}}^{\geq i}\right|}{\left|\tilde{S}_{\mathscr{D}}^{\geq j}\right|}\right)^{\frac{1}{2}}=\left|R_{\tilde{S}_{\tilde{\mathscr{D}}_{0}^{j}}^{-1}}^{-1}\right|^{1 / 2} \leq\left(\sqrt{\frac{n}{\delta_{2}}}\right)^{\nu_{i}(\mathscr{D})-\nu_{i}\left(\mathscr{D}_{0}\right)} . \tag{S1.8}
\end{equation*}
$$

Denote $S_{j \mid \mathscr{D}_{j}}=S_{j j}-\left(S_{\mathscr{D} \cdot j}^{>}\right)^{T}\left(S_{\mathscr{D}}^{>j}\right)^{-1} S_{\mathscr{D} \cdot j}^{>}$. It immediately follows that

$$
\begin{equation*}
\tilde{S}_{i \mid p a_{i}(\mathscr{O})} \geq S_{i \mid p a_{i}(\mathscr{O})} . \tag{S1.9}
\end{equation*}
$$

Since we are restricting ourselves to the event E_{n}^{c}, it follows from (S1.6) that

$$
\left\|S_{\mathscr{D}_{0}}^{\geq i}-\left(\Sigma_{0}\right)_{\mathscr{\mathscr { D }}_{0}}^{\geq i}\right\|_{(2,2)} \leq\left(\nu_{i}\left(\mathscr{D}_{0}\right)+1\right) c^{\prime} \sqrt{\frac{\log p}{n}}
$$

Therefore,

$$
\begin{align*}
& \left\|\left(S_{\mathscr{\mathscr { O }}_{0}}^{\geq i}\right)^{-1}-\left(\left(\Sigma_{0}\right)_{\mathscr{\mathscr { O }}_{0}}^{\frac{\geq i}{}}\right)^{-1}\right\|_{(2,2)} \\
= & \left\|\left(S_{\grave{\mathscr{O}}_{0}}^{\geq i}\right)^{-1}\right\|_{(2,2)}\left\|S_{\mathscr{\mathscr { D }}_{0}}^{\geq i}-\left(\Sigma_{0}\right)_{\mathscr{\mathscr { O }}_{0}}^{\geq i}\right\|_{(2,2)}\left\|\left(\left(\Sigma_{0}\right)_{\mathscr{\mathscr { O }}_{0}}^{\geq i}\right)^{-1}\right\|_{(2,2)} \\
\leq & \left(\left\|\left(S_{\mathscr{D}_{0}}^{\geq i}\right)^{-1}-\left(\left(\Sigma_{0}\right) \frac{\geq i}{\mathscr{\mathscr { O }}_{0}}\right)^{-1}\right\|_{(2,2)}+\frac{1}{\epsilon_{0}}\right)\left(\nu_{i}\left(\mathscr{D}_{0}\right)+1\right) c^{\prime} \sqrt{\frac{\log p}{n}} . \tag{S1.10}
\end{align*}
$$

[^0]Recall $d=\max _{1 \leq i \leq p-1} \nu_{i}\left(\mathscr{D}_{0}\right)$. By the assumption that $d \sqrt{\frac{\log p}{n}} \rightarrow 0$ and (S1.10), for large enough n, we have

$$
\begin{equation*}
\left\|\left(S_{\mathscr{\mathscr { D }}_{0}}^{\geq i}\right)^{-1}-\left(\left(\Sigma_{0}\right)_{\mathscr{\mathscr { D }}_{0}}^{\geq i}\right)^{-1}\right\|_{(2,2)} \leq \frac{4 c l}{\epsilon_{0}} d \sqrt{\frac{\log p}{n}}=o(1) \tag{S1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{S_{i \mid p a_{i}\left(\mathscr{D}_{0}\right)}}=\left[\left(S_{\mathscr{D}_{0}}^{\geq i}\right)^{-1}\right]_{i i} \geq \frac{\epsilon_{0}}{2} . \tag{S1.12}
\end{equation*}
$$

Note that for any $\mathscr{D},\left\|\tilde{S}_{\mathscr{D}}^{\geq i}-S_{\mathscr{D}}^{\geq i}\right\|_{\max } \leq \frac{\delta_{2}}{n}$ gives us $\left\|\tilde{S}_{\mathscr{D}}^{\geq i}-S_{\mathscr{D}_{0}}^{\geq i}\right\|_{(2,2)} \leq$ $\left(\nu_{i}\left(\mathscr{D}_{0}\right)+1\right) \frac{\delta_{2}}{n}$. Therefore,

$$
\begin{align*}
& \left\|\left(\tilde{S}_{\mathscr{\mathscr { D }}_{0}}^{\geq i}\right)^{-1}-\left(S_{\mathscr{\mathscr { D }}_{0}}^{\geq i}\right)^{-1}\right\|_{(2,2)} \\
= & \left\|\left(\tilde{S}_{\mathscr{\mathscr { O }}_{0}}^{\geq i}\right)^{-1}\right\|_{(2,2)}\left\|\tilde{S}_{\mathscr{\mathscr { D }}_{0}}^{\geq i}-S_{\mathscr{\mathscr { D }}_{0}}^{\geq i}\right\|_{(2,2)}\left\|\left(S_{\mathscr{\mathscr { O }}_{0}}^{\geq i}\right)^{-1}\right\|_{(2,2)} \\
\leq & \left(\left\|\left(\tilde{S}_{\mathscr{\mathscr { O }}_{0}}^{\geq i}\right)^{-1}-\left(S_{\mathscr{\mathscr { D }}_{0}}^{\geq i}\right)^{-1}\right\|_{(2,2)}+\left\|\left(S_{\mathscr{\mathscr { O }}_{0}}^{\geq i}\right)^{-1}-\left(\left(\Sigma_{0}\right)_{\mathscr{O}_{0}}^{\geq i}\right)^{-1}\right\|_{(2,2)}+\frac{1}{\epsilon_{0}}\right) \times\left(\frac{1}{\epsilon_{0}}+o(1)\right) \\
& \times\left(p a_{i}\left(\mathscr{D}_{0}\right)+1\right) \frac{\delta_{2}}{n} . \tag{S1.13}
\end{align*}
$$

Following from (S1.11), (S1.12), and $\frac{d}{n} \rightarrow 0$, for large enough n, (S1.13) yields

$$
\begin{equation*}
\left\|\left(\tilde{S}_{\mathscr{D}_{0}}^{>i}\right)^{-1}-\left(S_{\mathscr{D}_{0}}^{>i}\right)^{-1}\right\|_{(2,2)} \leq \frac{8 \delta_{2}}{\epsilon_{0}^{2}} \frac{d}{n} \text { and } \frac{1}{\tilde{S}_{i \mid p a_{i}(\mathscr{D})}}=\left[\left(\tilde{S}_{\mathscr{D}}^{>i}\right)^{-1}\right]_{i i} \geq \frac{\epsilon_{0}}{4} . \tag{S1.14}
\end{equation*}
$$

Hence, it follow from (S1.14) and (S1.12) that,

$$
\begin{equation*}
\left|\frac{1}{S_{i \mid p a_{i}\left(\mathscr{O}_{0}\right)}}-\frac{1}{\tilde{S}_{i \mid p a_{i}\left(\mathscr{O}_{0}\right)}}\right| \leq \frac{8 \delta_{2}}{\epsilon_{0}^{2}} \frac{d}{n} \tag{S1.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|S_{i \mid p a_{i}\left(\mathscr{O}_{0}\right)}-\tilde{S}_{i \mid p a_{i}\left(\mathscr{D}_{0}\right)}\right| \leq c_{1} \frac{d}{n}, \tag{S1.16}
\end{equation*}
$$

where $c_{1}=64 \delta_{2} / \epsilon_{0}^{4}$ is a constant.
Further note that when $p a_{i}\left(\mathscr{D}_{0}\right) \subset p a_{i}(\mathscr{D}), n\left(D_{0}\right)_{i i}^{-1} S_{i \mid p a_{i}(\mathscr{D})} \sim \chi_{n-\nu_{i}(\mathscr{D})}^{2}$ and $n\left(D_{0}\right)_{i i}^{-1} S_{i \mid p a_{i}\left(\mathscr{O}_{0}\right)} \stackrel{d}{=} n\left(D_{0}\right)_{i i}^{-1} S_{i \mid p a_{i}(\mathscr{D})} \oplus \chi_{\nu_{i}(\mathscr{D})-\nu_{i}\left(\mathscr{O}_{0}\right)}^{2}$ under the true model. By Lemma 4.1 in (Cao et al., 2019a), we get

$$
\begin{equation*}
P\left[\left|n\left(D_{0}\right)_{i i}^{-1} S_{i \mid p a_{i}(\mathscr{D})}-\left(n-\nu_{i}(\mathscr{D})\right)\right|>\sqrt{\left(n-\nu_{i}(\mathscr{D})\right) \log p}\right] \leq 2 p^{-\frac{1}{8}} \rightarrow 0 \tag{S1.17}
\end{equation*}
$$

and

$$
\begin{align*}
& P\left[\left|n\left(D_{0}\right)_{i i}^{-1} S_{j \mid p a_{i}\left(\mathscr{D}_{0}\right)}-n\left(D_{0}\right)_{i i}^{-1} S_{i \mid p a_{i}(\mathscr{D})}-\left(\nu_{i}(\mathscr{D})-\nu_{i}\left(\mathscr{D}_{0}\right)\right)\right|\right. \\
& \left.\quad>\sqrt{\left(\nu_{i}(\mathscr{D})-\nu_{i}\left(\mathscr{D}_{0}\right)\right) \log p}\right] \\
& \quad \leq 2 p^{-\frac{1}{8}} \rightarrow 0 \tag{S1.18}
\end{align*}
$$

Following from (S1.8), (S1.9), (S1.14), (S1.16), (S1.17), (S1.18), and Assumption 4, for larger enough $n>N_{1}$ and some constant M^{\prime}, we have

$$
\begin{aligned}
& P R_{i}\left(\mathscr{D}, \mathscr{D}_{0}\right) \\
& \leq M^{\prime} \exp \left(o\left(\log p / d^{4}\right)\right)\left(\frac{\delta_{2}}{\delta_{1}}\right)^{\frac{d}{2}} n^{2 c}\left(2 p^{-\alpha_{1}}\right)^{\nu_{i}(\mathscr{D})-\nu_{i}\left(\mathscr{D}_{0}\right)} \\
& \times\left(1+\frac{n\left(D_{0}\right)_{i i}^{-1} S_{j \mid p a_{i}(\mathscr{D})}-n\left(D_{0}\right)_{i i}^{-1} S_{i \mid p a_{i}\left(\mathscr{O}_{0}\right)}+c_{1} \frac{d}{\left(D_{0}\right)_{i i}}}{n\left(D_{0}\right)_{i i}^{-1} S_{i \mid p a_{i}(\mathscr{D})}^{\frac{n+c-3}{2}}}\right. \\
& \leq M^{\prime} \exp \left(o\left(\log p / d^{4}\right)\right)\left(\frac{\delta_{2}}{\delta_{1}}\right)^{\frac{d}{2}} n^{2 c}\left(2 p^{\left.-\alpha_{1}\right)^{\nu_{i}(\mathscr{D})-\nu_{i}\left(\mathscr{D}_{0}\right)}}\right. \\
& \quad \times \exp \left\{\frac{\left.\nu_{i}(\mathscr{D})-\nu_{i}\left(\mathscr{D}_{0}\right)+\sqrt{\nu_{i}(\mathscr{D})-\nu_{i}\left(\mathscr{D}_{0}\right) \log p}+c_{1} \frac{d}{\left(D_{0}\right)_{i i}} \frac{n+c-3}{2-\nu_{i}(\mathscr{D})-\sqrt{\left(n-\nu_{i}(\mathscr{D})\right) \log p}}\right\}}{} \quad \begin{array}{l}
n
\end{array}\right)
\end{aligned}
$$

$$
\begin{equation*}
\leq(2 p)^{-\frac{\alpha_{1}}{\kappa}\left(\nu_{i}(\mathscr{O})-\nu_{i}\left(\mathscr{O}_{0}\right)\right)}, \text { for any constant } \kappa>1 \tag{S1.19}
\end{equation*}
$$

The second inequality follows from $\frac{d}{\log p} \rightarrow 0$ and $\frac{\nu_{i}(\mathscr{D})}{n} \rightarrow 0$, as $n \rightarrow \infty$ and $\frac{\epsilon_{0}}{2} \leq\left(D_{0}\right)_{i i} \leq \frac{2}{\epsilon_{0}}$.

Lemma 2. If $p a_{i}(\mathscr{D}) \subset p a_{i}\left(\mathscr{D}_{0}\right)$, then there exists N_{2} (not depending on i or $\mathscr{D})$ such that for $n \geq N_{1}$ we have $P R_{i}\left(\mathscr{D}, \mathscr{D}_{0}\right) \leq p^{-\frac{2 \alpha_{1}}{\kappa} d}$.

Proof of Lemma 2. Now we move to discuss the scenario when $p a_{i}(\mathscr{D})$ is a subset of $p a_{i}\left(\mathscr{D}_{0}\right)$, i.e., $p a_{i}(\mathscr{D}) \subset p a_{i}\left(\mathscr{D}_{0}\right)$. Since $p a_{i}\left(\mathscr{D}_{0}\right) \supset p a_{i}(\mathscr{D})$, we can write $\left|\tilde{S}_{\mathscr{D}_{0}}^{\geq i}\right|=\left|\tilde{S}_{\mathscr{D}}^{\geq i}\right|\left|R_{\tilde{S}_{\mathscr{D}}^{\geq i}}\right|$, where $R_{\tilde{S}_{\mathscr{\mathscr { D }}}^{\geq i}}$ denotes the Schur complement of $\tilde{S}_{\mathscr{D}}^{\geq i}$, defined by $R_{\tilde{S}_{\mathscr{D}} \geq i}=\tilde{D}-\tilde{B}^{T}\left(\tilde{S}_{\mathscr{D}}^{\geq i}\right)^{-1} \tilde{B}$ for appropriate sub matrices \tilde{B} and \tilde{D} of $\tilde{S}_{\mathscr{D}_{0}}^{\geq i}$.

It follows by $(\mathrm{S} 1.10)$ that if restrict to E_{n}^{c}, we have $\left\|\left(\tilde{S}_{\mathscr{\mathscr { D }}_{0}}^{>i}\right)^{-1}-\left(\left(\Sigma_{0}\right)_{\mathscr{\mathscr { O }}_{0}}^{\geq i}\right)^{-1}\right\|_{(2,2)} \leq$ $\frac{4 c^{\prime}}{\epsilon_{0}} d \sqrt{\frac{\log p}{n}}$ and $\left\|R_{\tilde{S} \geq i}^{-1}-R_{\left.\left(\Sigma_{0}\right)\right)_{\mathscr{\mathscr { D }}}^{\geq \frac{\geq}{2}}}^{-1}\right\|_{(2,2)} \leq \frac{4 c^{\prime}}{\epsilon_{0}} d \sqrt{\frac{\log p}{n}}$, for $n>N_{2}^{\prime}$, where $R_{\left(\Sigma_{0}\right) \frac{\geq i}{\mathscr{D}}}$ represents the Schur complement of $\left(\Sigma_{0}\right)_{\mathscr{\mathscr { D }}}^{\geq i}$ defined by $R_{\left(\Sigma_{0}\right)_{\mathscr{\mathscr { D }}}^{\geq i}}=\bar{D}-$ $\bar{B}^{T}\left(\left(\Sigma_{0}\right)_{\mathscr{D}}^{\geq i}\right)^{-1} \bar{B}$ for appropriate sub matrices \bar{B} and \bar{D} of $\left(\Sigma_{0}\right)_{\mathscr{\mathscr { D }}_{0}}^{\geq i}$. Hence, there exists $N_{2}^{\prime \prime}$ such that

$$
\begin{align*}
\left(\frac{\left|\tilde{S}_{\bar{D}_{0}}^{\geq i}\right|}{\left|\tilde{S}_{\overrightarrow{\mathscr{D}}}^{\geq i}\right|}\right)^{\frac{1}{2}}=\frac{1}{\left|R_{\tilde{S}_{\overrightarrow{\mathscr{D}}}^{\geq i}}^{-1}\right|^{1 / 2}} & \leq \frac{1}{\left(\lambda_{\min }\left(R_{\left(\Sigma_{0}\right) \geq_{\mathscr{D}}}^{-1}\right)-K \frac{d}{\epsilon_{0}^{3}} \sqrt{\frac{\log p}{n}}\right)^{\frac{\nu_{i}\left(\mathscr{D}_{0}\right)-\nu_{i}(\mathscr{D})}{2}}} \\
& \leq\left(\frac{1}{\epsilon_{0} / 2}\right)^{\frac{\nu_{i}\left(\mathscr{D}_{0}\right)-\nu_{i}(\mathscr{D})}{2}} \text { for } n>N_{2}^{\prime} . \tag{S1.20}
\end{align*}
$$

Since $p a_{i}(\mathscr{D}) \subset p a_{i}\left(\mathscr{D}_{0}\right)$, we get $\tilde{S}_{i \mid p a_{i}\left(\mathscr{O}_{0}\right)} \leq \tilde{S}_{i \mid p a_{i}(\mathscr{D})}$.
Let $K_{1}=4 c^{\prime} / \epsilon_{0}^{3}$. By (S1.5) and $2<c_{i}(\mathscr{D}), c_{i}\left(\mathscr{D}_{0}\right)<c$, it follows that there exists $N_{2}^{\prime \prime \prime}$ such that for $n \geq N_{2}^{\prime \prime \prime}$, we get

$$
\begin{align*}
& P R_{i}\left(\mathscr{D}, \mathscr{D}_{0}\right) \\
\leq & M^{\prime} \exp \left(o\left(\log p / d^{4}\right)\right)\left(\frac{\delta_{2}}{\delta_{1}}\right)^{\frac{d}{2}} n^{2 c}\left(\sqrt{\frac{2 n}{\delta_{2} \epsilon_{0}}} q^{-1}\right)^{\nu_{i}\left(\mathscr{D}_{0}\right)-\nu_{i}(\mathscr{D})}\left(\frac{\frac{1}{\left(\Sigma_{0}\right)_{i \mid p a_{i}(\mathscr{D})}}+K_{1} d \sqrt{\frac{\log p}{n}}}{\frac{1}{\left(\Sigma_{0}\right)_{i \mid p a_{i}\left(\mathscr{D}_{0}\right)}}-K_{1} d \sqrt{\frac{\log p}{n}}}\right)^{\frac{n+2-3}{2}} \\
\leq & \left(\exp \left\{\frac{2 \log M^{\prime}+o\left(\log p / d^{4}\right)+d \log \left(\frac{2 \delta_{2}}{\epsilon_{0} \delta_{1}}\right)+4 c \log n}{n-1}+\frac{2 \log \left(q^{-1} \sqrt{n}\right)\left(\nu_{i}\left(\mathscr{D}_{0}\right)-\nu_{i}(\mathscr{D})\right)}{n-1}\right\}\right)^{\frac{n-1}{2}} \\
& \times\left(1+\frac{\left(\frac{1}{\left(\Sigma_{0}\right)_{i \mid p p_{i}\left(\mathscr{D}_{0}\right)}}-\frac{1}{\left(\Sigma_{0}\right)_{i \mid p a_{i}(\mathscr{P})}}\right)-2 K_{1} d \sqrt{\frac{\log p}{n}}}{\frac{1}{\left(\Sigma_{0}\right)_{i \mid p a_{i}(\mathscr{D})}^{n}}+K_{1} d \sqrt{\frac{\log p}{n}}}\right)^{-\frac{n-1}{2}} \tag{S1.21}\\
& (\mathrm{~S} 1.21)
\end{align*}
$$

It then follows from Proposition 5.2 in Cao et al. (2019b) that,

$$
\begin{align*}
& P R_{i}\left(\mathscr{D}, \mathscr{D}_{0}\right) \\
\leq & \left(\exp \left\{\frac{2 \log M^{\prime}+o\left(\log p / d^{4}\right)+d \log \left(\frac{2 \delta_{2}}{\epsilon_{0} \delta_{1}}\right)+4 c \log n}{n-1}+\frac{2 \log \left(p^{\alpha_{1}} \sqrt{n}\right)\left(\nu_{i}\left(\mathscr{D}_{0}\right)-\nu_{i}(\mathscr{D})\right)}{n-1}\right\}\right)^{\frac{n-1}{2}} \\
& \times\left(1+\frac{\epsilon_{0} s_{n}^{2}\left(\nu_{i}\left(\mathscr{D}_{0}\right)-\nu_{i}(\mathscr{D})\right)-2 K_{1} d \sqrt{\frac{\log p}{n}}}{2 / \epsilon_{0}}\right)^{-\frac{n-1}{2}} \tag{S1.22}
\end{align*}
$$

Note that $\frac{d \log p+d \log n}{n s_{n}^{2}} \rightarrow 0$ and $\frac{d \sqrt{\frac{\log p}{n}}}{s_{n}^{2}} \rightarrow 0$ as $n \rightarrow \infty$. Since $e^{x} \leq 1+2 x$ for $x<\frac{1}{2}$, there exists $N_{2}^{\prime \prime \prime \prime}$ such that for $n \geq N_{2}^{\prime \prime \prime \prime}$,

$$
\frac{\epsilon_{0} s_{n}^{2}\left(\nu_{i}\left(\mathscr{D}_{0}\right)-\nu_{i}(\mathscr{D})\right)-2 K_{1} d \sqrt{\frac{\log p}{n}}}{2 / \epsilon_{0}} \geq \frac{\epsilon_{0} s_{n}^{2}}{2}
$$

and

$$
\begin{aligned}
& \exp \left\{\frac{2 \log M^{\prime}+o\left(\log p / d^{4}\right)+d \log \left(\frac{2 \delta_{2}}{\epsilon_{0} \delta_{1}}\right)+4 c \log n}{n-1}+\frac{2 \log \left(p^{\alpha_{1}} \sqrt{n}\right)\left(\nu_{i}\left(\mathscr{D}_{0}\right)-\nu_{i}(\mathscr{D})\right)}{n-1}\right\} \\
& \leq 1+\frac{\epsilon_{0}^{2} s_{n}^{2}}{8}
\end{aligned}
$$

It follows by (S1.21) and the above arguments that

$$
P R_{i}\left(\mathscr{D}, \mathscr{D}_{0}\right) \leq\left(\frac{1+\frac{\epsilon_{0}^{2}}{8} s_{n}^{2}}{1+\frac{\epsilon_{0}^{2}}{4} s_{n}^{2}}\right)^{\frac{n-1}{2}}
$$

for $n \geq \max \left(N_{2}^{\prime}, N_{2}^{\prime \prime}, N_{2}^{\prime \prime \prime}, N_{2}^{\prime \prime \prime \prime}\right)$. Since there exist a $\left(L_{0}\right)_{j i}$ such that $s_{n}^{2} \leq$ $\left(L_{0}\right)_{j i}^{2} \leq \frac{1}{\epsilon_{0}}\left(\frac{\left[\left(L_{0}\right)_{j i}\right]^{2}}{\left(D_{0}\right)_{i i}}\right) \leq \frac{\left(\Omega_{0}\right)_{j j}}{\epsilon_{0}} \leq \frac{1}{\epsilon_{0}^{2}}$ and $\epsilon_{0}^{2} s_{n}^{2} \leq 1$, it follows that there exists $N_{2}=\max \left(N_{2}^{\prime}, N_{2}^{\prime \prime}, N_{2}^{\prime \prime \prime}, N_{2}^{\prime \prime \prime \prime}\right)$ such that for $n \geq N_{2}$, such that

$$
\left.\begin{array}{rl}
P R_{i}\left(\mathscr{D}, \mathscr{D}_{0}\right) \leq\left(1-\frac{\epsilon_{0}^{2}}{8} s_{n}^{2}\right. \\
1+\frac{\epsilon_{0}^{2}}{4} s_{n}^{2} \tag{S1.23}
\end{array}\right)^{\frac{n-1}{2}} \quad \leq \exp \left\{-\left(\frac{\frac{\epsilon_{0}^{2}}{8} s_{n}^{2}}{1+\frac{\epsilon_{0}^{2}}{4} s_{n}^{2}}\right)\left(\frac{n-1}{2}\right)\right\},
$$

The last inequality follows from $\frac{d \log p}{n s_{n}^{2}} \rightarrow 0$, as $n \rightarrow \infty$.
Lemma 3. If $p a_{i}(\mathscr{D})$ is not necessarily a superset or a subset of $p a_{i}\left(\mathscr{D}_{0}\right)$,
i.e. $p a_{i}\left(\mathscr{D}_{0}\right) \neq p a_{i}(\mathscr{D}), p a_{i}\left(\mathscr{D}_{0}\right) \nsubseteq p a_{i}(\mathscr{D})$, and $p a_{i}\left(\mathscr{D}_{0}\right) \nsupseteq p a_{i}(\mathscr{D})$, then there exists N_{3} (not depending on i or \mathscr{D}) such that for $n \geq N_{3}$ we have $P R_{i}\left(\mathscr{D}, \mathscr{D}_{0}\right) \leq(2 p)^{-\frac{\alpha_{1}}{\kappa} \nu_{i}(\mathscr{D})}$.

Proof of Lemma 3. Next consider the scenario when $p a_{i}(\mathscr{D})$ is not necessarily a superset or a subset of $p a_{i}\left(\mathscr{D}_{0}\right)$, i.e. $p a_{i}\left(\mathscr{D}_{0}\right) \neq p a_{i}(\mathscr{D}), p a_{i}\left(\mathscr{D}_{0}\right) \nsubseteq$
$p a_{i}(\mathscr{D})$, and $p a_{i}\left(\mathscr{D}_{0}\right) \nsupseteq p a_{i}(\mathscr{D})$. Let \mathscr{D}^{*} be an arbitrary DAG with $p a_{i}\left(\mathscr{D}^{*}\right)=$ $p a_{i}(\mathscr{D}) \cap p a_{i}\left(\mathscr{D}_{0}\right)$. Immediately we get $p a_{i}\left(\mathscr{D}^{*}\right) \subset p a_{i}\left(\mathscr{D}_{0}\right)$ and $p a_{i}\left(\mathscr{D}^{*}\right) \subset$ $p a_{i}(\mathscr{D})$. It follows from (S1.5) that

$$
\begin{align*}
& P R_{i}\left(\mathscr{D}, \mathscr{D}_{0}\right) \\
\leq & M \exp \left(o\left(\log p / d^{4}\right)\right)\left(\frac{\delta_{2}}{\delta_{1}}\right)^{\frac{d}{2}} n^{2 c}\left(\sqrt{\frac{\delta_{2}}{n}} \frac{q}{1-q}\right)^{\nu_{i}(\mathscr{D})-\nu_{i}\left(\mathscr{D}^{*}\right)} \frac{\left|\tilde{S}_{\mathscr{\mathscr { D }}^{*}}^{\geq i}\right|^{\frac{1}{2}}}{\left|\tilde{S}_{\mathscr{D}}^{\geq i}\right|^{\frac{1}{2}}} \frac{\left(\tilde{S}_{i \mid p a_{i}\left(\mathscr{D}^{*}\right)}\right)^{\frac{n+c_{i}\left(\mathscr{D}^{*}\right)-3}{2}}}{\left(\tilde{S}_{i \mid p a_{i}(\mathscr{O})}\right)^{\frac{n+c_{i}(\mathscr{D})-3}{2}}} \\
& \times\left(\frac{\delta_{2}}{\delta_{1}}\right)^{\frac{d}{2}} n^{2 c}\left(\sqrt{\frac{\delta_{2}}{n}} \frac{q}{1-q}\right)^{\nu_{i}\left(\mathscr{D}^{*}\right)-\nu_{i}\left(\mathscr{D}_{0}\right)} \frac{\left|\tilde{S}_{\mathscr{D}^{\geq i}}^{\geq i}\right|^{\frac{1}{2}}}{\left|\tilde{S}_{\mathscr{D}^{*}}^{\geq i}\right|^{\frac{1}{2}}} \frac{\left(\tilde{S}_{\left.i \mid p a_{i}\left(\mathscr{D}_{0}\right)\right)^{\frac{n+c_{i}\left(\mathscr{D}_{0}\right)-3}{2}}}^{\left(\tilde{S}_{i \mid p a_{i}\left(\mathscr{D}^{*}\right)}\right)^{\frac{n+c_{i}\left(\mathscr{D}^{*}\right)-3}{2}}}\right.}{\leq} \\
\leq & P R_{i}\left(\mathscr{D}, \mathscr{D}^{*}\right) \times P R_{i}\left(\mathscr{D}^{*}, \mathscr{D}_{0}\right) . \tag{S1.24}
\end{align*}
$$

Note that $p a_{i}\left(\mathscr{D}^{*}\right) \subset p a_{i}(\mathscr{D})$. It follows from (S1.19) that

$$
\begin{equation*}
P R_{i}\left(\mathscr{D}, \mathscr{D}^{*}\right) \leq(2 p)^{-\frac{\alpha_{1}}{\hbar}\left(\nu_{i}(\mathscr{D})-\nu_{i}\left(\mathscr{D}^{*}\right)\right)}, \text { for any constant } \kappa>1 \text { and } n \geq N_{1} \tag{S1.25}
\end{equation*}
$$

Following from (S1.23) and the fact that $p a_{i}\left(\mathscr{D}^{*}\right) \subset p a_{i}\left(\mathscr{D}_{0}\right)$, we have

$$
\begin{equation*}
P R_{i}\left(\mathscr{D}, \mathscr{D}^{*}\right) \leq p^{-\frac{2 \alpha_{1}}{\kappa} d}, \text { for } n \geq N_{2} . \tag{S1.26}
\end{equation*}
$$

By (S1.24) and $\nu_{i}\left(\mathscr{D}^{*}\right)<d$, we get

$$
\begin{align*}
P R_{i}\left(\mathscr{D}, \mathscr{D}^{*}\right) & \leq(2 p)^{-\frac{\alpha_{1}}{\kappa}\left(\nu_{i}(\mathscr{D})-\nu_{i}\left(\mathscr{D}^{*}\right)\right)} p^{-\frac{2 \alpha_{1}}{\kappa} d} \\
& <(2 p)^{-\frac{\alpha_{1}}{\kappa} \nu_{i}(\mathscr{\mathscr { }})}, \text { for } n>N_{3}=\max \left\{N_{1}, N_{2}\right\} . \tag{S1.27}
\end{align*}
$$

The proof of Theorem 1 immediately follows after these three lemmas. For any $\mathscr{D} \neq \mathscr{D}_{0}$, there exists at least one $1 \leq i \leq p-1$, such that $p a_{i}(\mathscr{D}) \neq p a_{i}\left(\mathscr{D}_{0}\right)$. It follows from Lemmas 1-3 that, for large enough $n>N_{3}$, under the true variable indicator γ_{0},

$$
\begin{equation*}
\max _{\mathscr{D} \neq \mathscr{D}_{0}} \frac{\pi\left(\gamma_{0}, \mathscr{D} \mid Y, X\right)}{\pi\left(\gamma_{0}, \mathscr{D}_{0} \mid Y, X\right)} \xrightarrow{\bar{P}} 0, \text { as } n \rightarrow \infty . \tag{S1.28}
\end{equation*}
$$

Proof of Theorem 2. Now for the fixed \mathscr{D} case, it follows from Lemma 1 and model (3.6) that

$$
\begin{align*}
& \frac{\pi(\gamma, \mathscr{D} \mid Y, X)}{\pi\left(\gamma_{0}, \mathscr{D} \mid Y, X\right)} \\
= & \frac{\exp \left(-a 1^{T} \gamma+b \gamma^{T} G \gamma\right)}{\exp \left(-a 1^{T} \gamma_{0}+b \gamma_{0}^{T} G \gamma_{0}\right)} \frac{\operatorname{det}\left(\tau^{2} X_{\gamma}^{T} X_{\gamma}+I_{|\gamma|}\right)^{-\frac{1}{2}}}{\operatorname{det}\left(\tau^{2} X_{\gamma_{0}}^{T} X_{\gamma_{0}}+I_{\left|\gamma_{0}\right|}\right)^{-\frac{1}{2}}} \\
& \times \frac{\exp \left\{-\frac{1}{2 \sigma^{2}}\left(Y^{T}\left(I+\tau^{2} X_{\gamma} X_{\gamma}^{T}\right)^{-1} Y\right)\right\}}{\exp \left\{-\frac{1}{2 \sigma^{2}}\left(Y^{T}\left(I+\tau^{2} X_{\gamma_{0}} X_{\gamma_{0}}^{T}\right)^{-1} Y\right)\right\}} . \tag{S1.29}
\end{align*}
$$

For any model γ presenting the variable space, denote $Q_{\gamma}=\operatorname{det}\left(\tau^{2} X_{\gamma}^{T} X_{\gamma}+I_{|\gamma|}\right)^{-\frac{1}{2}}$, $P_{\gamma}=X_{\gamma}\left(X_{\gamma}^{T} X_{\gamma}\right)^{-1} X_{\gamma}^{T}$,

$$
R_{\gamma}^{*}=Y^{T}\left(I_{n}+\tau^{2} X_{\gamma} X_{\gamma}^{T}\right)^{-1} Y \text { and } R_{\gamma}=Y^{T}\left(I_{n}-P_{\gamma}\right) Y
$$

Our method of proving variable selection consistency involves utilizing properties of R_{γ} and approximating R_{γ}^{*} and $R_{\gamma_{0}}^{*}$ with R_{γ} and $R_{\gamma_{0}}$ respectively.

Using the Woodbury matrix identity, we have

$$
R_{\gamma_{0}}^{*}=Y^{T}\left(I_{n}+\tau^{2} X_{\gamma_{0}} X_{\gamma_{0}}^{T}\right)^{-1} Y=Y^{T}\left(I_{n}-X_{\gamma_{0}}\left(I_{n} / \tau^{2}+X_{\gamma_{0}}^{T} X_{\gamma_{0}}\right)^{-1} X_{\gamma_{0}}^{T}\right) Y
$$

Note that for $1 \leq i \leq p$,

$$
R_{\gamma_{0}}^{*}=Y^{T}\left(I_{n}+\tau^{2} X_{\gamma_{0}} X_{\gamma_{0}}^{T}\right)^{-1} Y=Y^{T}\left(I_{n}-X_{\gamma_{0}}\left(I_{n} / \tau^{2}+X_{\gamma_{0}}^{T} X_{\gamma_{0}}\right)^{-1} X_{\gamma_{0}}^{T}\right) Y
$$

and $R_{\gamma_{0}}=Y^{T}\left(I_{n}-X_{\gamma}\left(X_{\gamma}^{T} X_{\gamma}\right)^{-1} X_{\gamma}^{T}\right) Y$. It follows that

$$
\begin{equation*}
R_{\gamma_{0}}^{*}-R_{\gamma_{0}} \geq 0 \tag{S1.30}
\end{equation*}
$$

and

$$
\begin{align*}
& R_{\gamma_{0}}^{*}-R_{\gamma_{0}} \\
= & Y^{T} X_{\gamma_{0}}\left(X_{\gamma_{0}}^{T} X_{\gamma_{0}}\right)^{-\frac{1}{2}}\left(I_{n}-\left(I_{n}+\left(X_{\gamma_{0}}^{T} X_{\gamma_{0}}\right)^{-1} / \tau^{2}\right)^{-1}\right)\left(X_{\gamma_{0}}^{T} X_{\gamma_{0}}\right)^{-\frac{1}{2}} X_{\gamma_{0}}^{T} Y \\
\leq & \frac{1}{1+n \epsilon_{0} \tau^{2} / 2} Y^{T} P_{\gamma_{0}} Y . \tag{S1.31}
\end{align*}
$$

Note that $\frac{R_{\gamma_{0}}}{\sigma^{2}} \sim \chi_{n-\left|\gamma_{0}\right|}^{2}$ and $\frac{Y^{T} P_{\gamma_{0}} Y}{\sigma^{2}} \sim \chi_{\left|\gamma_{0}\right|}^{2}\left(\frac{\beta_{0}^{T} X_{\gamma_{0}}^{T} X_{\gamma_{0}} \beta_{0}}{\sigma^{2}}\right)$. Here we denote χ_{m}^{2} as the centered chi-squared distribution with degrees of freedom $m>$ 0 and $\chi_{m}^{2}(\lambda)$ as the noncentral chi-squared distribution with noncentral parameter λ. It follows from Lemmas 4.1 and 4.2 in Cao et al. (2019a), and Assumption 2 that

$$
\begin{equation*}
P\left[\left|\frac{R_{\gamma_{0}}}{\sigma^{2}}-\left(n-\left|\gamma_{0}\right|\right)\right|>\sqrt{\left(n-\left|\gamma_{0}\right|\right) \log p}\right] \leq 2 p^{-\frac{1}{8}} \rightarrow 0, \quad \text { as } n \rightarrow \infty \tag{S1.32}
\end{equation*}
$$

and

$$
\begin{align*}
& P\left[\frac{Y^{T} P_{\gamma_{0}} Y}{\sigma^{2}}-\left(\left|\gamma_{0}\right|+\frac{\beta_{0}^{T} X_{\gamma_{0}}^{T} X_{\gamma_{0}} \beta_{0}}{\sigma^{2}}\right)>n \log p-\left|\gamma_{0}\right|-\frac{\beta_{0}^{T} X_{\gamma_{0}}^{T} X_{\gamma_{0}} \beta_{0}}{\sigma^{2}}\right] \\
\leq & \exp \left\{-\frac{\left|\gamma_{0}\right|}{2}\left\{\frac{n \log p}{\frac{\beta_{0}^{T} X_{\gamma_{0}}^{T} X_{\gamma_{0}} \beta_{0}}{\sigma^{2}}}-\log \left(1+\frac{n \log p}{\frac{\beta_{0}^{T} X_{\gamma_{0}}^{T} X_{\gamma_{0}} \beta_{0}}{\sigma^{2}}}\right)\right\}\right\} \\
\leq & \exp \left\{-\frac{\left|\gamma_{0}\right|}{4}\left\{\frac{\log p}{1+\frac{\epsilon_{0}}{2 \sigma^{2}} \beta_{0}^{T} \beta_{0}}\right\}\right\} \preceq \exp \left\{-c^{\prime} \sqrt{\log p}\right\} \rightarrow 0, \quad \text { as } n \rightarrow \infty . \tag{S1.33}
\end{align*}
$$

Further note that,

$$
\begin{align*}
R_{\gamma}^{*}-R_{\gamma} & =Y^{T} X_{\gamma}\left(X_{\gamma}^{T} X_{\gamma}\right)^{-\frac{1}{2}}\left(I_{n}-\left(I_{n}+\left(X_{\gamma}^{T} X_{\gamma}\right)^{-1} / \tau^{2}\right)^{-1}\right)\left(X_{\gamma}^{T} X_{\gamma}\right)^{-\frac{1}{2}} X_{\gamma}^{T} Y \\
& \geq \frac{\epsilon_{0}}{\epsilon_{0}+2 n \tau^{2}} Y^{T} P_{\gamma} Y . \tag{S1.34}
\end{align*}
$$

In the case when all the active elements of the true model γ_{0} are contained in model γ, it follows that $\frac{R_{\gamma_{0}}-R_{\gamma}}{\sigma^{2}} \sim \chi_{|\gamma|-\left|\gamma_{0}\right|}^{2}$. Again, by Lemma 4.1 in Cao et al. (2019a), it follows that

$$
\begin{align*}
& P\left[\left|\frac{Y^{T}\left(P_{\gamma}-P_{\gamma_{0}}\right) Y}{\sigma^{2}}-\left(|\gamma|-\left|\gamma_{0}\right|\right)\right|>\sqrt{\left(|\gamma|-\left|\gamma_{0}\right|\right) \log p}\right] \\
\leq & 2 p^{-\frac{1}{8}} \rightarrow 0 \tag{S1.35}
\end{align*}
$$

and

$$
\begin{align*}
& P\left[\left|\frac{R_{\gamma_{0}}-R_{\gamma}}{\sigma^{2}}-\left(|\gamma|-\left|\gamma_{0}\right|\right)\right|>\sqrt{\left(|\gamma|-\left|\gamma_{0}\right|\right) \log p}\right] \\
\leq & 2 p^{-\frac{1}{8}} \rightarrow 0 \tag{S1.36}
\end{align*}
$$

as $n \rightarrow \infty$. Hence, by (S1.29), (S1.31), (S1.33), (S1.36) and $R_{\gamma}^{*}-R_{\gamma} \geq 0$,
we have

$$
\begin{align*}
& \frac{\exp \left\{-\frac{1}{2 \sigma^{2}}\left(Y^{T}\left(I+\tau^{2} X_{\gamma} X_{\gamma}^{T}\right)^{-1} Y\right)\right\}}{} \quad \exp \left\{-\frac{1}{2 \sigma^{2}}\left(Y^{T}\left(I+\tau^{2} X_{\gamma_{0}} X_{\gamma_{0}}^{T}\right)^{-1} Y\right)\right\} \\
= & \exp \left\{\frac{1}{2 \sigma^{2}}\left(R_{\gamma_{0}}^{*}-R_{\gamma}^{*}\right)\right\} \\
\leq & \exp \left\{\frac{1}{2 \sigma^{2}}\left(\left(R_{\gamma_{0}}+\frac{1}{1+n \epsilon_{0} \tau^{2} / 2} Y^{T} P_{\gamma_{0}} Y\right)-R_{\gamma}\right)\right\} \\
\leq & \exp \left\{\frac{1}{2 \sigma^{2}}\left(|\gamma|-\left|\gamma_{0}\right|+\sqrt{\left(|\gamma|-\left|\gamma_{0}\right|\right) \log p}+\frac{1}{1+n \epsilon_{0} \tau^{2} / 2} n \log p\right)\right\} .
\end{align*}
$$

Next, note that it follows from $\gamma \supset \gamma_{0}$, Assumption 2 and the arguments leading up to (S1.8) that for large enough n (not depending on γ, \mathscr{D}), $\frac{Q_{\gamma}}{Q_{\gamma_{0}}} \leq n^{-\frac{|\gamma|-\left|\gamma_{0}\right|}{2}}\left(n \tau^{2}\right)^{\frac{|\gamma|-\left|\gamma_{0}\right|}{2}}$.

Therefore, it follows from Assumption 3, $\gamma \supset \gamma_{0},(\mathrm{~S} 1.29)$ and (S1.37) that, for large enough $n \geq N_{4}$,

$$
\begin{align*}
& \frac{\pi(\gamma, \mathscr{D} \mid Y, X)}{\pi\left(\gamma_{0}, \mathscr{D} \mid Y, X\right)} \\
= & \frac{\exp \left(-a 1^{T} \gamma+b \gamma^{T} G \gamma\right)}{\exp \left(-a 1^{T} \gamma_{0}+b \gamma_{0}^{T} G \gamma_{0}\right)} \frac{Q_{\gamma}}{Q_{\gamma_{0}}} \frac{\exp \left\{-\frac{1}{2 \sigma^{2}}\left(Y^{T}\left(I+\tau^{2} X_{\gamma} X_{\gamma}^{T}\right)^{-1} Y\right)\right\}}{\exp \left\{-\frac{1}{2 \sigma^{2}}\left(Y^{T}\left(I+\tau^{2} X_{\gamma_{0}} X_{\gamma_{0}}^{T}\right)^{-1} Y\right)\right\}} \\
\leq & \exp \left\{-a\left(|\gamma|-\left|\gamma_{0}\right|\right)+b R_{n}^{2}\right\}\left(\tau^{2}\right)^{\frac{|\gamma|-\left|\gamma_{0}\right|}{2}} \\
& \times \exp \left\{\frac{1}{2 \sigma^{2}}\left(|\gamma|-\left|\gamma_{0}\right|+\sqrt{\left(|\gamma|-\left|\gamma_{0}\right|\right) \log p}+\frac{1}{1+n \epsilon_{0} \tau^{2} / 2} n \log p\right)\right\} \\
\leq & \exp \left\{-\frac{\alpha_{1}}{\kappa}\left(|\gamma|-\left|\gamma_{0}\right|\right) \log p\right\} . \tag{S1.38}
\end{align*}
$$

Next, when $\gamma \subset \gamma_{0}$, Let Z be a standard normal distribution. When $\gamma \subset \gamma_{0}$, it follows from Lemma L. 1 in Cao et al. (2019a), Assumption 2 and the relation between noncentral chi-squared and normal distribution that,

$$
\begin{align*}
& P\left(\frac{R_{\gamma}-R_{\gamma_{0}}}{\sigma^{2}}<4\left|\gamma_{0}\right| \log n \log p\right) \\
< & P\left((Z-\sqrt{\lambda})^{2}<4\left|\gamma_{0}\right| \log n \log p\right) \\
< & e^{-\frac{n \epsilon_{0}\left|\gamma_{0}\right| \rho_{1}^{2}}{4 \sigma^{2}}} \rightarrow 0, \text { as } n \rightarrow \infty . \tag{S1.39}
\end{align*}
$$

where $\rho_{1}=\min _{j \in \gamma_{0}}\left|\beta_{0 j}\right|$ and $\lambda=\frac{\beta_{0}^{T}\left(X_{\gamma_{0}}^{T} P_{\gamma_{0}} X_{\gamma_{0}}\right) \beta_{0}}{\sigma^{2}}>\frac{n \epsilon_{0}\left|\gamma_{0}\right| \rho_{1}^{2}}{\sigma^{2}}$. it again follows from (S1.29), (S1.31), (S1.39) and $R_{\gamma}^{*}-R_{\gamma} \geq 0$, with probability tending to 1 , we have

$$
\begin{align*}
& \frac{\exp \left\{-\frac{1}{2 \sigma^{2}}\left(Y^{T}\left(I+\tau^{2} X_{\gamma} X_{\gamma}^{T}\right)^{-1} Y\right)\right\}}{} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(Y^{T}\left(I+\tau^{2} X_{\gamma_{0}} X_{\gamma_{0}}^{T}\right)^{-1} Y\right)\right\} \\
= & \exp \left\{-\frac{1}{2 \sigma^{2}}\left(R_{\gamma}^{*}-R_{\gamma_{0}}^{*}\right)\right\} \\
\leq & \exp \left\{-\frac{1}{\sigma^{2}}\left(R_{\gamma}-\left(R_{\gamma_{0}}+\frac{1}{1+n \epsilon_{0} \tau^{2} / 2} Y^{T} P_{\gamma_{0}} Y\right)\right)\right\} \\
\leq & \exp \left\{-4\left|\gamma_{0}\right| \log n \log p+\frac{1}{1+n \epsilon_{0} \tau^{2} / 2} n \log p\right\} .
\end{align*}
$$

Next, note that it follows from $\gamma \subset \gamma_{0}$, Assumption 2 and the arguments leading up to (S1.20) that for large enough n (not depending on γ, \mathscr{D}), $\frac{Q_{\gamma}}{Q_{\gamma_{0}}} \leq n^{-\frac{|\gamma|-\left|\gamma_{0}\right|}{2}}\left(\frac{1}{\epsilon_{0} / 2}\right)^{\frac{\left|\gamma_{0}\right|-|\gamma|}{2}}$. Therefore, it follows from $\tau^{2} \sim \sqrt{\log p}, a \sim$ $\log p, \gamma \subset \gamma_{0}$, (S1.29) and (S1.40) that, for large enough $n \geq N_{5}$, with
probability tending to 1 ,

$$
\begin{align*}
& \frac{\pi(\gamma, \mathscr{D} \mid Y, X)}{\pi\left(\gamma_{0}, \mathscr{D} \mid Y, X\right)} \\
= & \frac{\exp \left(-a 1^{T} \gamma+b \gamma^{T} G \gamma\right)}{\exp \left(-a 1^{T} \gamma_{0}+b \gamma_{0}^{T} G \gamma_{0}\right)} \frac{Q_{\gamma}}{Q_{\gamma_{0}}} \frac{\exp \left\{-\frac{1}{2 \sigma^{2}}\left(Y^{T}\left(I+\tau^{2} X_{\gamma} X_{\gamma}^{T}\right)^{-1} Y\right)\right\}}{\exp \left\{-\frac{1}{2 \sigma^{2}}\left(Y^{T}\left(I+\tau^{2} X_{\gamma_{0}} X_{\gamma_{0}}^{T}\right)^{-1} Y\right)\right\}} \\
\leq & \exp \left\{a\left|\gamma_{0}\right|\right\} n^{\frac{\left|\gamma_{0}\right|}{2}}\left(\frac{1}{\epsilon_{0} / 2}\right)^{\frac{\left|\gamma_{0}\right|-|\gamma|}{2}} \\
& \times \exp \left\{-4\left|\gamma_{0}\right| \log n \log p+\frac{1}{1+n \epsilon_{0} \tau^{2} / 2} n \log p\right\} \\
\leq & \exp \left\{-2\left|\gamma_{0}\right| \log p\right\} . \tag{S1.41}
\end{align*}
$$

Next, consider the scenario when $\gamma \nsubseteq \gamma_{0}$ and $\gamma \nsupseteq \gamma_{0}$. Denote $\gamma^{\prime}=\gamma \cap \gamma_{0}$.
It follows from (S1.29) that

$$
\begin{align*}
& \frac{\pi(\gamma, \mathscr{D} \mid Y, X)}{\pi\left(\gamma_{0}, \mathscr{D} \mid Y, X\right)} \\
= & \frac{\pi(\gamma, \mathscr{D} \mid Y, X)}{\pi\left(\gamma^{\prime}, \mathscr{D} \mid Y, X\right)} \frac{\pi\left(\gamma^{\prime}, \mathscr{D} \mid Y, X\right)}{\pi\left(\gamma_{0}, \mathscr{D} \mid Y, X\right)} \\
= & \frac{\pi(\gamma \mid \mathscr{D})}{\pi\left(\gamma^{\prime} \mid \mathscr{D}\right)} \frac{Q_{\gamma}}{Q_{\gamma^{\prime}}} \frac{\exp \left\{-\frac{1}{2 \sigma^{2}}\left(Y^{T}\left(I+\tau^{2} X_{\gamma} X_{\gamma}^{T}\right)^{-1} Y\right)\right\}}{\exp \left\{-\frac{1}{2 \sigma^{2}}\left(Y^{T}\left(I+\tau^{2} X_{\gamma^{\prime}} X_{\gamma^{\prime}}^{T}\right)^{-1} Y\right)\right\}} \\
& \times \frac{\pi\left(\gamma^{\prime} \mid \mathscr{D}\right)}{\pi\left(\gamma_{0} \mid \mathscr{D}\right)} \frac{Q_{\gamma^{\prime}}}{Q_{\gamma_{0}}} \frac{\exp \left\{-\frac{1}{2 \sigma^{2}}\left(Y^{T}\left(I+\tau^{2} X_{\gamma^{\prime}} X_{\gamma^{\prime}}^{T}\right)^{-1} Y\right)\right\}}{\exp \left\{-\frac{1}{2 \sigma^{2}}\left(Y^{T}\left(I+\tau^{2} X_{\gamma_{0}} X_{\gamma_{0}}^{T}\right)^{-1} Y\right)\right\}} . \tag{S1.42}
\end{align*}
$$

Since $\gamma^{\prime} \subset \gamma$ and $\gamma^{\prime} \subset \gamma_{0}$, following the same arguments leading up to (S1.38) and (S1.41), we have for large enough $n>\max \left\{N_{4}, N_{5}\right\}$, with probability tending to 1 ,

$$
\frac{\pi(\gamma, \mathscr{D} \mid Y, X)}{\pi\left(\gamma_{0}, \mathscr{D} \mid Y, X\right)}
$$

$$
\begin{align*}
& \leq \exp \left\{-\frac{\alpha_{1}}{\kappa}\left(|\gamma|-\left|\gamma^{\prime}\right|\right) \log p\right\} \exp \left\{-2\left|\gamma_{0}\right| \log p\right\} \\
& \leq \exp \left\{-\frac{\alpha_{1}}{\kappa}\left(|\gamma|-\left|\gamma^{\prime}\right|\right) \log p-2\left|\gamma_{0}\right| \log p\right\} \tag{S1.43}
\end{align*}
$$

Theorem 2 immediately follows after (S1.38), (S1.41) and (S1.43). For any $\gamma \neq \gamma_{0}$, for large enough $n>\max \left\{N_{4}, N_{5}\right\}$, we have

$$
\begin{equation*}
\max _{(\gamma, \mathscr{D}) \neq\left(\gamma_{0}, \mathscr{O}_{0}\right)} \frac{\pi(\gamma, \mathscr{D} \mid Y, X)}{\pi\left(\gamma_{0}, \mathscr{D} \mid Y, X\right)} \xrightarrow{\bar{P}} 0, \text { as } n \rightarrow \infty . \tag{S1.44}
\end{equation*}
$$

Proof of Theorem 4. We have

$$
\begin{align*}
& \frac{1-\pi(\gamma, \mathscr{D} \mid Y, X)}{\pi\left(\gamma_{0}, \mathscr{D} \mid Y, X\right)} \\
= & \sum_{(\gamma, \mathscr{D}) \neq\left(\gamma_{0}, \mathscr{O}_{0}\right)} \frac{\pi(\gamma, \mathscr{D} \mid Y, X)}{\pi\left(\gamma_{0}, \mathscr{D}_{0} \mid Y, X\right)} \\
= & \sum_{\gamma \neq \gamma_{0}} \frac{\pi\left(\gamma, \mathscr{D}_{0} \mid Y, X\right)}{\pi\left(\gamma_{0}, \mathscr{D}_{0} \mid Y, X\right)}+\sum_{\mathscr{D} \neq \mathscr{D}_{0}} \frac{\pi\left(\gamma_{0}, \mathscr{D} \mid Y, X\right)}{\pi\left(\gamma_{0}, \mathscr{D} \mid Y, X\right)}+\sum_{\gamma \neq \gamma_{0}, \mathscr{D} \neq \mathscr{D}_{0}} \frac{\pi(\gamma, \mathscr{D} \mid Y, X)}{\pi\left(\gamma_{0}, \mathscr{D}_{0} \mid Y, X\right)} . \tag{S1.45}
\end{align*}
$$

Note that it follows from the proof of Theorem 2 that for large enough constant $N>\max \left\{N_{4}, N_{5}\right\}$,

$$
\begin{aligned}
& \sum_{\gamma \neq \gamma_{0}} \frac{\pi\left(\gamma, \mathscr{D}_{0} \mid Y, X\right)}{\pi\left(\gamma_{0}, \mathscr{D}_{0} \mid Y, X\right)} \\
\leq & \sum_{\gamma \subset \gamma_{0}} \frac{\pi\left(\gamma, \mathscr{D}_{0} \mid Y, X\right)}{\pi\left(\gamma_{0}, \mathscr{D}_{0} \mid Y, X\right)}+\sum_{\gamma \supset \gamma_{0}} \frac{\pi\left(\gamma, \mathscr{D}_{0} \mid Y, X\right)}{\pi\left(\gamma_{0}, \mathscr{D}_{0} \mid Y, X\right)}+\sum_{\gamma \nsubseteq \gamma_{0}, \gamma \nsupseteq \gamma_{0}} \frac{\pi\left(\gamma, \mathscr{D}_{0} \mid Y, X\right)}{\pi\left(\gamma_{0}, \mathscr{D}_{0} \mid Y, X\right)} \\
\leq & \sum_{|\gamma|=1}^{|\gamma 0|}\binom{\left|\gamma_{0}\right|}{|\gamma|} \exp \left\{-\frac{\alpha_{1}}{\kappa}\left|\gamma_{0}\right| \log p\right\}+\sum_{|\gamma|=\left|\gamma_{0}\right|+1}^{R_{n}}\binom{p-\left|\gamma_{0}\right|}{|\gamma|-\left|\gamma_{0}\right|} \exp \left\{-2\left(|\gamma|-\left|\gamma_{0}\right|\right) \log p\right\}
\end{aligned}
$$

$$
+\sum_{|\gamma|=1}^{R_{n}}\binom{p}{|\gamma|} \exp \left\{-\frac{\alpha_{1}}{\kappa}\left(|\gamma|-\left|\gamma^{\prime}\right|\right) \log p-2\left|\gamma_{0}\right| \log p\right\}
$$

Further note that the upper bound of the binomial coefficient satisfies $\binom{p}{k} \leq$ p^{k}, for any $1 \leq k \leq p$. It follows that when $\alpha_{1}>2 \kappa$ for some $\kappa>1$,

$$
\begin{equation*}
\sum_{\gamma \neq \gamma_{0}} \frac{\pi\left(\gamma, \mathscr{D}_{0} \mid Y, X\right)}{\pi\left(\gamma_{0}, \mathscr{D}_{0} \mid Y, X\right)} \rightarrow 0, \quad \text { as } n \rightarrow \infty \tag{S1.46}
\end{equation*}
$$

Next, it follows from Lemmas 1-3 that if we restrict to E_{n}^{c}, then for large enough constant $N>N_{3}$, we have

$$
\begin{align*}
& \sum_{\mathscr{D} \neq \mathscr{D}_{0}} \frac{\pi\left(\gamma_{0}, \mathscr{D} \mid Y, X\right)}{\pi\left(\gamma_{0}, \mathscr{D}_{0} \mid Y, X\right)} \\
& \leq \sum_{j=1}^{p-1} \sum_{p a_{j}(\mathscr{D}) \neq p a_{j}\left(\mathscr{D}_{0}\right)} \frac{\pi\left(\gamma_{0}, \mathscr{D} \mid Y, X\right)}{\pi\left(\gamma_{0}, \mathscr{D}_{0} \mid Y, X\right)} \\
& \leq \sum_{j=1}^{p-1}\left(\sum_{p a_{j}(\mathscr{D}) \subset p a_{j}\left(\mathscr{D}_{0}\right)} \frac{\pi\left(\gamma_{0}, \mathscr{D} \mid Y, X\right)}{\pi\left(\gamma_{0}, \mathscr{D}_{0} \mid Y, X\right)}+\sum_{p a_{j}(\mathscr{D}) \supset p a_{j}\left(\mathscr{D}_{0}\right)} \frac{\pi\left(\gamma_{0}, \mathscr{D} \mid Y, X\right)}{\pi\left(\gamma_{0}, \mathscr{D}_{0} \mid Y, X\right)}\right. \\
&\left.\quad+\sum_{p a_{j}(\mathscr{D}) \notin, \not \not p a_{j}\left(\mathscr{D}_{0}\right)} \frac{\pi\left(\gamma_{0}, \mathscr{D} \mid Y, X\right)}{\pi\left(\gamma_{0}, \mathscr{D}_{0} \mid Y, X\right)}\right) \\
& \leq \sum_{j=1}^{p-1}\left(\sum_{\nu_{j}(\mathscr{D})=1}^{\nu_{j}\left(\mathscr{D}_{0}\right)-1}\binom{\nu_{j}\left(\mathscr{D}_{0}\right)}{\left|Z_{j}\right|} p^{-\frac{2 \alpha_{1}}{\kappa} d}+\sum_{\nu_{j}(\mathscr{D})=\nu_{j}\left(\mathscr{D}_{0}\right)+1}^{R_{n}}\binom{p-\nu_{j}\left(\mathscr{D}_{0}\right)}{\nu_{j}(\mathscr{D})-\nu_{j}\left(\mathscr{D}_{0}\right)}(2 p)^{-\frac{\alpha_{1}}{\hbar}\left(\nu_{i}(\mathscr{O})-\nu_{i}\left(\mathscr{D}_{0}\right)\right)}\right. \\
&\left.\quad+\sum_{\nu_{i}(\mathscr{D})=1}^{R_{n}}\binom{p}{\nu_{i}(\mathscr{D})}(2 p)^{-\frac{\alpha_{1}}{\kappa} \nu_{i}(\mathscr{O})}\right) . \tag{S1.47}
\end{align*}
$$

Again it follows from $\binom{p}{k} \leq p^{k}$, for any $1 \leq k \leq p$ that when $\alpha_{1}>2 \kappa$ for some $\kappa>1$,

$$
\begin{equation*}
\sum_{\mathscr{D} \neq \mathscr{D}_{0}} \frac{\pi\left(\gamma_{0}, \mathscr{D} \mid Y, X\right)}{\pi\left(\gamma_{0}, \mathscr{D}_{0} \mid Y, X\right)} \rightarrow 0, \quad \text { as } n \rightarrow \infty \tag{S1.48}
\end{equation*}
$$

Finally, by (S1.46) and (S1.48), note that

$$
\begin{align*}
\sum_{\gamma \neq \gamma_{0}, \mathscr{D} \neq \mathscr{D}_{0}} \frac{\pi(\gamma, \mathscr{D} \mid Y, X)}{\pi\left(\gamma_{0}, \mathscr{D}_{0} \mid Y, X\right)} & \leq \sum_{\gamma \neq \gamma_{0}} \frac{\pi(\gamma, \mathscr{D} \mid Y, X)}{\pi\left(\gamma_{0}, \mathscr{D} \mid Y, X\right)} \sum_{\mathscr{D} \neq \mathscr{D}_{0}} \frac{\pi\left(\gamma_{0}, \mathscr{D} \mid Y, X\right)}{\pi\left(\gamma_{0}, \mathscr{D} \mid Y, X\right)} \\
& \rightarrow 0, \quad \text { as } n \rightarrow \infty . \tag{S1.49}
\end{align*}
$$

Therefore, following from (S1.45), (S1.46), (S1.48) and (S1.49), we have $\pi\left(\gamma_{0}, \mathscr{D}_{0} \mid Y\right) \rightarrow 1$, as $n \rightarrow \infty$, which completes our proof of the strong model selection result in Theorem 4.

Proof of Corollary 1. Note that with the extra layer of inverse gamma distribution on σ^{2}, by integrating out σ^{2} in the proof of Lemma 1 , the (marginal) joint posterior distribution is given by

$$
\begin{align*}
& \pi(\gamma, \mathscr{D} \mid Y, X) \\
= & \int \pi\left(Y \mid \gamma, \beta_{\gamma}\right) \prod_{i=1}^{n} \pi\left(X_{i} \mid(L, D)\right) \pi_{U, \mathscr{Q}(\mathscr{D})}^{\Theta}(L, D) \\
& \times \pi\left(\beta_{\gamma} \mid \gamma\right) \pi(\gamma) \pi(\mathscr{D}) \pi\left(\sigma^{2}\right) d \beta_{\gamma} d(L, D) d\left(\sigma^{2}\right) \\
\propto & \pi(\gamma \mid \mathscr{D}) \pi(\mathscr{D}) \frac{z_{\mathscr{D}}\left(U+X^{T} X, n+\alpha(\mathscr{D})\right)}{z_{\mathscr{D}}(U, \alpha(\mathscr{D}))} Q_{\gamma} \\
& \times\left(\frac{1}{2}\left(Y^{T}\left(I+\tau^{2} X_{\gamma} X_{\gamma}^{T}\right)^{-1} Y\right)+b_{0}\right)^{-\left(\frac{n}{2}+a_{0}\right)}, \tag{S1.50}
\end{align*}
$$

where $Q_{\gamma}=\operatorname{det}\left(\tau^{2} X_{\gamma}^{T} X_{\gamma}+I_{|\gamma|}\right)^{-\frac{1}{2}}$. The proofs for Lemmas 1-3 will go through with the new posterior. For the variable selection consistency, it
follows from (S1.50) that,

$$
\begin{align*}
& \frac{\pi(\gamma, \mathscr{D} \mid Y, X)}{\pi\left(\gamma_{0}, \mathscr{D} \mid Y, X\right)} \\
= & \frac{\exp \left(-a 1^{T} \gamma+b \gamma^{T} G \gamma\right)}{\exp \left(-a 1^{T} \gamma_{0}+b \gamma_{0}^{T} G \gamma_{0}\right)} \frac{Q_{\gamma}}{Q_{\gamma_{0}}} \\
& \times \frac{\left(\frac{1}{2}\left(Y^{T}\left(I+\tau^{2} X_{\gamma} X_{\gamma}^{T}\right)^{-1} Y\right)+b_{0}\right)^{-\left(\frac{n}{2}+a_{0}\right)}}{\left(\frac{1}{2}\left(Y^{T}\left(I+\tau^{2} X_{\gamma_{0}} X_{\gamma_{0}}^{T}\right)^{-1} Y\right)+b_{0}\right)^{-\left(\frac{n}{2}+a_{0}\right)}} \\
= & \frac{\exp \left(-a 1^{T} \gamma+b \gamma^{T} G \gamma\right)}{\exp \left(-a 1^{T} \gamma_{0}+b \gamma_{0}^{T} G \gamma_{0}\right)} \frac{Q_{\gamma}}{Q_{\gamma_{0}}}\left(\frac{R_{\gamma}^{*}+2 b_{0}}{R_{\gamma_{0}}^{*}+2 b_{0}}\right)^{-\left(\frac{n}{2}+a_{0}\right)} . \tag{S1.51}
\end{align*}
$$

It follows from the arguments leading up to (S1.41) and $1+x \leq e^{x}$ that when $\gamma \supset \gamma_{0}$, we have

$$
\begin{align*}
& \frac{\pi(\gamma, \mathscr{D} \mid Y, X)}{\pi\left(\gamma_{0}, \mathscr{D} \mid Y, X\right)} \\
\leq & \exp \left\{-a\left(|\gamma|-\left|\gamma_{0}\right|\right)+b R_{n}^{2}\right\}\left(n \tau^{2} \epsilon_{0}\right)^{\frac{1}{2}\left|\gamma_{0}\right|} \times\left(1+\frac{R_{\gamma_{0}}^{*}-R_{\gamma}^{*}}{R_{\gamma}^{*}+2 a_{0}}\right)^{\frac{n}{2}+b_{0}} \\
\leq & \exp \left\{-a\left(|\gamma|-\left|\gamma_{0}\right|\right)+b R_{n}^{2}\right\}\left(\tau^{2}\right)^{\frac{|\gamma|-\left|\gamma_{0}\right|}{2}} \\
& \times \exp \left\{\frac{\left(\frac{n}{2}+a_{0}\right)\left(|\gamma|-\left|\gamma_{0}\right|+\sqrt{\left(|\gamma|-\left|\gamma_{0}\right|\right) \log p}+\frac{1}{1+n \epsilon_{0} \tau^{2} / 2} n \log p\right)}{n-|\gamma|-\sqrt{(n-|\gamma|) \log p}+2 b_{0}}\right\} \\
\leq & \exp \left\{-\frac{\alpha_{1}}{\kappa}\left(|\gamma|-\left|\gamma_{0}\right|\right) \log p\right\} . \tag{S1.52}
\end{align*}
$$

Next, when $\gamma \subset \gamma_{0}$, it follows by the arguments leading up to (S1.41) and $1-x \leq e^{-x}$ that,

$$
\begin{aligned}
& \frac{\pi(\gamma, \mathscr{D} \mid Y, X)}{\pi\left(\gamma_{0}, \mathscr{D} \mid Y, X\right)} \\
= & \frac{\exp \left(-a 1^{T} \gamma+b \gamma^{T} G \gamma\right)}{\exp \left(-a 1^{T} \gamma_{0}+b \gamma_{0}^{T} G \gamma_{0}\right)}\left(n \tau^{2} \epsilon_{0}\right)^{\frac{1}{2}\left|\gamma_{0}\right|}\left(1-\frac{R_{\gamma}^{*}-R_{\gamma_{0}}^{*}}{R_{\gamma}^{*}+2 b_{0}}\right)^{\frac{n}{2}+a_{0}}
\end{aligned}
$$

$$
\begin{align*}
& \leq \exp \left\{a\left|\gamma_{0}\right|\right\} n^{\frac{\left|\gamma_{0}\right|}{2}}\left(\frac{1}{\epsilon_{0} / 2}\right)^{\frac{\left|\gamma_{0}\right|-|\gamma|}{2}} \\
& \times \exp \left\{\frac{\left(\frac{n}{2}+a_{0}\right)\left(-4\left|\gamma_{0}\right| \log p+\frac{1}{1+n \epsilon_{0} \tau^{2} / 2} n \log p\right)}{n-|\gamma|+\sqrt{(n-|\gamma|) \log p}+\frac{1}{1+n \epsilon_{0} \tau^{2} / 2} Y^{T} P_{\gamma} Y+2 b_{0}}\right\} \\
& \leq \exp \left\{\left(-2\left|\gamma_{0}\right| \log p\right)\right\} . \tag{S1.53}
\end{align*}
$$

When $\gamma \nsubseteq \gamma_{0}$ and $\gamma \nsupseteq \gamma_{0}$, the exact same results as the previous case without the inverse gamma prior can be obtained by following the arguments leading up to (S1.43). Similarly, Corollary 1 can be acquired from the same arguments leading up to (S1.49).

Proof of Theorem 5. We start proving Theorem 5 by considering the ratio between posterior ratios under two settings corresponding to $b>0$ and $b=0$ respectively. Specifically, let $\pi_{1}(\gamma, \mathscr{D} \mid Y, X)$ represent the posterior probability under $b>0$ and $\pi_{1}(\gamma, \mathscr{D} \mid Y, X)$ represent the posterior probability under $b=0$. It follows from (S1.29) that

$$
\begin{equation*}
\frac{\frac{\pi_{1}\left(\gamma, \mathscr{O}_{0} \mid Y, X\right)}{\pi_{1}\left(\gamma_{0}\left|\mathscr{P}_{0}\right| Y, X\right)}}{\frac{\pi_{2}\left(\gamma, \mathscr{P}^{\prime} \mid Y, X\right)}{\pi_{2}\left(\gamma_{0}, \mathscr{D}_{0} \mid Y, X\right)}}=\exp \left\{\gamma^{T} G_{0} \gamma-\gamma_{0}^{T} G_{0} \gamma_{0}\right\} . \tag{S1.54}
\end{equation*}
$$

Note that by Condition 1, for any $\gamma, \gamma^{T} G_{0} \gamma=\sum_{1 \leq i, j \leq p}\left(G_{0}\right)_{i j} \gamma_{i} \gamma_{j}$ will be maximized at $\gamma=\gamma_{0}$. Therefore, for any γ, we have

$$
\begin{equation*}
\frac{\pi_{1}\left(\gamma, \mathscr{D}_{0} \mid Y, X\right)}{\pi_{1}\left(\gamma_{0}, \mathscr{D}_{0} \mid Y, X\right)} \leq \frac{\pi_{2}\left(\gamma, \mathscr{D}_{0} \mid Y, X\right)}{\pi_{2}\left(\gamma_{0}, \mathscr{D}_{0} \mid Y, X\right)} . \tag{S1.55}
\end{equation*}
$$

In addition, over all possible scenarios of γ, there exists at least one $\gamma \neq$
γ_{0} such that $\gamma^{T} G_{0} \gamma<\gamma_{0}^{T} G_{0} \gamma_{0}$ and $\frac{\pi_{1}\left(\gamma, \mathscr{O}_{0} \mid Y, X\right)}{\pi_{1}\left(\gamma_{0}, \mathscr{O}_{0} \mid Y, X\right)}$ is strictly smaller than $\frac{\pi_{2}\left(\gamma, \mathscr{O}_{0} \mid Y, X\right)}{\pi_{2}\left(\gamma_{0}, \mathscr{Q}_{0} \mid Y, X\right)}$. Hence, it follows from (S1.55) that

$$
\begin{equation*}
\sum_{\gamma \neq \gamma_{0}} \frac{\pi_{1}\left(\gamma, \mathscr{D}_{0} \mid Y, X\right)}{\pi_{1}\left(\gamma_{0}, \mathscr{D}_{0} \mid Y, X\right)}<\sum_{\gamma \neq \gamma_{0}} \frac{\pi_{2}\left(\gamma, \mathscr{D}_{0} \mid Y, X\right)}{\pi_{2}\left(\gamma_{0}, \mathscr{D}_{0} \mid Y, X\right)} \tag{S1.56}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\frac{1-\pi_{1}\left(\gamma_{0}, \mathscr{D}_{0} \mid Y, X\right)}{\pi_{1}\left(\gamma_{0}, \mathscr{D}_{0} \mid Y, X\right)}<\frac{1-\pi_{2}\left(\gamma_{0}, \mathscr{D}_{0} \mid Y, X\right)}{\pi_{2}\left(\gamma_{0}, \mathscr{D}_{0} \mid Y, X\right)} \tag{S1.57}
\end{equation*}
$$

Therefore, we have

$$
\pi_{1}\left(\gamma_{0}, \mathscr{D}_{0} \mid Y, X\right)>\pi_{2}\left(\gamma_{0}, \mathscr{D}_{0} \mid Y, X\right)
$$

References

Bickel, P. J. and E. Levina (2008). Regularized estimation of large covariance matrices. Ann. Statist. 36, 199-227.

Cao, X., K. Khare, and M. Ghosh (2019a). High-dimensional posterior consistency for hierarchical non-local priors in regression. Bayesian Anal., to appear.

Cao, X., K. Khare, and M. Ghosh (2019b). Posterior graph selection and estimation consistency for high-dimensional Bayesian DAG models. Ann. Statist. 47(1), 319-348.

Rudelson, M. and R. Vershynin (2013). Hanson-Wright inequality and sub-Gaussian concentration. Electron. Comm. Probab. 18.

[^0]: ${ }^{1}$ For matrices A and B, we say $A \geq B$ if $A-B$ is positive semi-definite

