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1 PREAMBLES

For a stationary time series Yt, its population lag-l partial autocorrelation function

(pact) is defined as

πY (l) = Corr

(
Yt, Yt+l

∣∣∣∣Yt+1:t+l−1 = yt+1:t+l−1

)
, l ≥ 2

such that πY (0) = 1 and πY (1) = Corr(Yt, Yt+1). We now state a result that shows

properties of the partial autocorrelation function (pact) of a stationary msar model.

Proposition 1 Suppose the true msar model of Yt is stationary, and its maximal ar-

order is q∗ = max1≤j≤K qj. Then, πY (l) = 0, for any l ≥ q∗ + 1.

Proof. For lag l = q∗ + 1, we have that

Cov(Yt, Yt+q∗+1|yt+1:t+q∗) =
K∑
j=1

Cov(Yt, Yt+q∗+1|St+q∗+1 = j, yt+1:t+q∗)P (St+q∗+1 = j|yt+1:t+q∗).
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By the msar model assumptions, the conditional distribution of (Yt+q∗+1|St+q∗+1 =

j, yt+1:t+q∗) is Gaussian with variance σ2
j , and mean µt+q∗+1,j = θj0+θj1yt+q∗+. . .+θjq∗yt+1

which clearly does not depend on yt. The latter is because the maximal ar-order

across the ar-regimes in the msar model is q∗. This implies that conditioning on

(St+q∗+1, Yt+1:t+q∗), the variables Yt and Yt+q∗+1 are independent. Thus, all the conditional

covariances in the above sum are zero, which results in Cov(Yt, Yt+q∗+1|yt+1:t+q∗) = 0, or

equivalently πY (q∗ + 1) = 0. Similarly, we have that πY (l) = 0, for any l ≥ q∗ + 2. This

completes the proof. ♠

The rest of this section is a preparation for the proof of our main results. Recall

from Section 2 of the manuscript, the conditional log-likelihood of a msar model with

K regimes and a maximum ar-order q is given by

`n(ΦK ; sq) = log{f3(yq+1:n|y1:q, sq,ΦK)}, (A.1)

where ΦK = (ν1, . . . , νK ,θ1, . . . ,θK ,P = {αij}), and θj = (θj0, θj1, . . . , θjq)
> is the coef-

ficient vector of the k-th ar-process. Since in Theorems 1 and 2 we regard K as known,

for simplicity in notation we drop the subscript K from the vector of parameters. In The-

orem 3, we show that the rbic does not under-estimate K when is unknown, and we also

show that the conditional h-step ahead predictive density can be estimated consistently

when the number of regimes is estimated by the rbic.

Before we embark on the proofs, we state Lemma 1 which shows the large sample

properties of the (conditional) score and observed information matrix, respectively,

`′n(Φ; sq) =
∂`n(Φ; sq)

∂Φ
, `′′n(Φ; sq) =

∂2`n(Φ; sq)

∂Φ∂Φ>

for all sq ∈ {1, . . . , K}. The result is due to Douc et al. (2004) and we omit its proof.

Lemma 1 Suppose the true msar model of Yt is strictly stationary, ergodic and E|Yt|(4+2δ) <

∆ <∞, for some δ > 0. Then, for all sq ∈ {1, . . . , K},

(i) For any Φ ∈ Θ,

n−1E

{
[`′n(Φ; sq)][`

′
n(Φ; sq)]

>
∣∣∣∣Y1:q, sq} = −n−1E

{
`′′n(Φ; sq)

∣∣∣∣Y1:q, sq},
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and, at Φ = Φ∗, both sides converge to the Fisher information matrix I(Φ∗), in

probability, as n→∞.

(ii) For any possibly random sequence Φ̃n in Θ such that Φ̃n
p−→ Φ∗, as n→∞,

− 1

n
`′′n(Φ̃n; sq)

p−→ I(Φ∗).

(iii) Asymptotic normality: 1√
n
`′n(Φ∗; sq)

D−→ N (0, I(Φ∗)), as n→∞.

Regularity conditions on the penalty rn and tuning parameter λn:

We now state the regularity conditions on the tuning parameter λn and the penalty

function rn. For each 1 ≤ j ≤ K, denote

=∗j = {1 ≤ l ≤ q : θ∗jl 6= 0}

as the set of indices corresponding to the true non-zero ar-coefficients of the j-th regime

of the msar model. The regularity conditions are as follow.

C1. For all n and λ, the penalty function rn(θ;λ) is symmetric, nonnegative, nondecreas-

ing and it has first derivative for all θ ∈ (0,∞). The function is also continuously twice

differentiable for all θ ∈ (cλ,∞), and some constant c > 0. In addition, rn(0;λ) = 0.

C2. As n → ∞, we have λn = o(1) such that minl∈=∗k |θ
∗
jl|/λn −→ ∞,, and we have

an = o(n1/2), bn = o(1), where

an = max
j,l
{|r′n(θ∗jl;λn)|/

√
n; l ∈ =∗j} , bn = max

j,l
{|r′′n(θ∗jl;λn)|/n; l ∈ =∗j}.

The r′n(θ∗jl;λ) and r′′n(θ∗jl;λ) are the first and second derivatives of rn(θ;λ) at θ∗jl 6= 0.

C3. limn→∞ inf{r′n(θ;λn) : 0 < θ ≤ n−1/2 log n)}/
√
n = +∞.

C1 is a smoothness condition on the penalty which facilitates obtaining estimators by

differentiating the objective function and for studying the asymptotic properties of the

estimators of the true non-zero ar-coefficients. C2 is required to obtain
√
n-consistent

estimators of the true non-zero coefficients, while C3 is required for consistency in ar-

order selection or sparsity.
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Examples of rn: Let ωjl > 0 be some pre-specified (possibly random) weights.

– lasso: rn(θjl;λ) = (n− q)λ|θjl|.

– adaptive lasso (adalasso): rn(θjl;λ) = (n− q)λ ωjl|θjl|.

– scad: it is most often characterized by its first derivative,

r′n(θjl;λ) = (n− q)
{
λI(|θjl| ≤ λ) +

(aλ− |θjl|)+
(a− 1)

I(|θjl| > λ)

}
× sgn(θjl)

for some constant a > 2, where I(·) and sgn(·) are the indicator and sign functions, and

(·)+ is the positive part of the input, respectively.

The common choice of the weights in adalasso are ωjl = |θ̃jl|−γ, for some γ > 0,

where θ̃jl is the (conditional) mle of θjl. Park and Sakaori (2013) proposed the weights

ωjl(α) = |θ̃jl α(1 − α)l|−γ, for some 0 < α < 1, where the lag effect l is also taken into

consideration: the larger the lag l, the heavier the penalty on the θjl; these weights were

designed for estimation and ar-order selection in ar models, under the assumptions of

no seasonality effects and that generally the |θjl| decline with increasing lag length l.

2 PROOFS

Proof of Theorem 1:

Let ηn = n−1/2(1 + an) = o(1). For any sq ∈ {1, . . . , K}, it suffices to show that for

any given ε > 0, there exists a constant C such that

lim
n→∞

P{ sup
‖u‖2=C

Ln(Φ∗ + ηnu; sq, λn) < Ln(Φ∗; sq, λn)} ≥ 1− ε. (A.2)

To prove (A.2), we verify that Dn(u; sq, λn) = Ln(Φ∗ + ηnu; sq, λn)−Ln(Φ∗; sq, λn) < 0

uniformly in u with probability approaching one, as n → ∞. Recall the partitioning
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Φ∗ = (Φ∗1,0) given in Section 6 of the manuscript. Since rn(0;λ) = 0, we write

Dn(u; sq, λn) = {`n(Φ∗ + ηnu; sq)− `n(Φ∗; sq)} −
K∑
j=1

{pn(ν̃∗j )− pn(ν∗j )}

− {Rn(Φ∗ + ηnu;λn)−Rn(Φ∗;λn)}

≤ {`n(Φ∗ + ηnu; sq)− `n(Φ∗; sq)} −
K∑
j=1

{pn(ν̃∗j )− pn(ν∗j )}

− {Rn(Φ∗1 + ηnu1;λn)−Rn(Φ∗1;λn)}

= D1n(u; sq)−D2n(u)−D3n(u;λn),

where u1 is a sub-vector of u, and pn(ν̃∗j ) is used for the penalty at a point shifted from

ν∗j . Its exact value does not matter. We now proceed to evaluate the orders of three

differences D1n(u; sq), D2n(u) and D3n(u;λn). By Taylor’s expansion, we have

D1n(u; sq) = ηn u
>`′n(Φ∗; sq) + (η2n/2)u>`′′n(Φ∗n; sq) u = E1n + E2n

where Φ∗n lies between Φ∗ and Φ∗ + ηnu. By Lemma 1, `′n(Φ∗; sq) = Op(
√
n). Thus, for

large n, we have that uniformly in u,

E1n = Op(
√
nηn).

On the other hand, from ηn = o(1), we get that Φ∗n
p−→ Φ∗, and by Lemma 1,

uniformly in u, n−1`′′n(Φ∗n; sq)− I(Φ∗) = op(1) which implies that, for large n,

E2n = −(nη2n/2) u>I(Φ∗)u {1 + op(1)}.

Combining the two assessments, for all sq ∈ {1, . . . , K} and for large n we have

D1n(u; sq) = Op(
√
nηn)− (nη2n/2) u>I(Φ∗)u {1 + op(1)}.

Next, we check the order of D2n(u). Under the assumption of stationary, ergodic and

E|Yt|(4+2δ) < ∆ <∞, for some δ > 0, it is clear that V2
n

p−→ Var(Yt), as n→∞. Thus, in

a op(1) neighbourhood of ν∗j , we have pn(ν) = Op(n
−1/2) uniformly in u; see the definition

of this penalty in equation (3.2) of the manuscript. This implies that D2n(u) = op(n
−1/2).

In other words, this part of the penalty has minimal effect when Φ is near Φ∗.
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We now focus on D3n(u;λn). First, we have

|D3n(u;λn)| = |Rn(Φ∗1+ηnu1;λn)−Rn(Φ∗1;λn)| ≤
K∑
j=1

∑
l∈=∗j

|rn(θ∗jl+ηnujl;λn)−rn(θ∗jl;λn)|

Since λn = o(1) and θ∗jl 6= 0 for all l ∈ =∗j , we have that for large n, θ∗jl ∈ (cλn,∞),

for some c > 0. Also, we have ηn = o(1). Thus, by conditions C1 and C2, the penalty

rn(θ;λn) accepts its second-order continuous derivatives at θ = θ∗jl and any point between

θ∗jl and θ∗jl + ηnujl. Thus, by a second order Taylor’s expansion of rn(θ;λn),

|D3n(u;λn)| ≤
K∑
j=1

∑
l∈=∗j

|[ηnr′n(θ∗jl;λn)ujl +
η2n
2
r′′n(θ∗jl;λn)u2jl(1 + o(1))]|

≤ q̃
√
nηnan‖u‖2 + nη2n

bn
2
‖u‖22

where q̃ = max1≤j≤K |=∗j | is the maximum cardinality of the index sets =∗j . Since bn =

o(1), by the order assessment of Dn(u; sq, λn) = D1n(u; sq) − D2n(u) − D3n(u;λn), we

can see that, for large n, the negative quantity

−1

2
nη2n u

>I(Φ∗)u [1 + op(1)] = −1

2
(1 + an)2 u>I(Φ∗)u [1 + op(1)] < 0

is the dominant term in Dn(u; sq, λn), for large n. Therefore, (A.2) holds and this

completes the proof. ♠

Proof of Theorem 2:

The result of Lemma 2 below will be used to prove the ar-order estimation consistency

property of the regularization method, claimed in Part (i) of Theorem 2. As described

in the beginning of Section 6 of the manuscript, recall the partitioning of an arbitrary

parameter vector Φ = (Φ1,Φ2) ∈ Θ, where dim(Φ) = d, dim(Φ1) = dim(Φ∗1) = d1 < d.

By Theorem 1, if an = O(1), for any sq ∈ {1, . . . , K} there exists a local maximizer

Φ̂n,sq of the penalized conditional log-likelihood Ln(Φ; sq, λn) such that ‖Φ̂n,sq −Φ∗‖2 =

Op(n
−1/2), as n→∞.
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Lemma 2 Assume the conditions of Theorem 1 and that λn and the penalty rn in ad-

dition satisfy Condition C3, and an = O(1). Then, for any Φ such that ‖Φ − Φ∗‖2 =

O(n−1/2) and with the above partitioning, and for any sq ∈ {1, . . . , K}, as n→∞, with

probability tending to one,

Ln((Φ1,Φ2); sq, λn)− Ln((Φ1,0); sq, λn) < 0.

Proof of Lemma 2. Note that the two partitioning (Φ1,Φ2) and (Φ1,0) of Φ share the

same regime specific variance values. Thus, Ln(Φ; sq, λn) and ˜̀
n(Φ; sq) have equal-sized

adjustment in terms of pn(νk). Therefore, we have

Ln((Φ1,Φ2); sq, λn)− Ln((Φ1,0); sq, λn) = {`n((Φ1,Φ2); sq)− `n((Φ1,0); sq)} −

{Rn((Φ1,Φ2);λn)−Rn((Φ1,0);λn)}.

(A.3)

We now provide order assessments of the two differences in (A.3).

By a second-order Taylor’s expansion,

`n((Φ1,Φ2); sq) = `n(Φ∗; sq) + {`′n(Φ∗; sq)}>(Φ−Φ∗) + (Φ−Φ∗)>[`′′n(Φ∗n; sq)](Φ−Φ∗)

`n((Φ1,0); sq) = `n((Φ∗1,0); sq) + {`′n((Φ∗1,0); sq)}>(Φ1 −Φ∗1)

+(Φ1 −Φ∗1)
>[`′′n((Φ∗n1,0); sq)](Φ1 −Φ∗1).

where Φ∗n lies between Φ and Φ∗; and Φ∗n1 lies between Φ1 and Φ∗1. Furthermore, because

Φ∗2 = 0, we have `n(Φ∗; sq) = `n((Φ∗1,0); sq), and also the partitioning

{`′n(Φ∗; sq)}>(Φ−Φ∗) = {∂`n((Φ∗1,0); sq)/∂Φ1}>(Φ1 −Φ∗1) + {∂`n((Φ∗1,0); sq)/∂Φ2}>Φ2.

Also, since Φ∗2 = 0, by Lemma 1 we have ∂`n((Φ∗1,0); sq)/∂Φ2 = Op(
√
n). Thus,

{`′n(Φ∗; sq)}>(Φ−Φ∗) = {∂`n((Φ∗1,0); sq)/∂Φ1}>(Φ1 −Φ∗1) +Op(
√
n)|Φ2|.

Therefore,

`n((Φ1,Φ2); sq)− `n((Φ1,0); sq) = Op(
√
n)|Φ2|+ n(Φ−Φ∗)>[`′′n(Φ∗n; sq)/n](Φ−Φ∗)

− n(Φ1 −Φ∗1)
>[`′′n((Φ∗n1,0); sq)/n](Φ1 −Φ∗1)
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By Lemma 1, since Φ∗n
p→ Φ∗ and Φ∗n1

p→ Φ∗1, as n→∞, for all sq ∈ {1, 2, . . . , K},

n−1`′′n(Φ∗n; sq)
p−→ −I(Φ∗) , n−1`′′n((Φ∗n1,0); sq)

p−→ −I11(Φ
∗
1).

Note that I11(Φ
∗
1) is a sub-matrix of I(Φ∗). By condition E|Yt|(4+2δ) < ∆ <∞, the two

matrices in the above two limits are finite. Thus, for large n, we have

`n((Φ1,Φ2); sq)− `n((Φ1,0); sq) = Op(
√
n)|Φ2| − n(Φ−Φ∗)>[I(Φ∗)](Φ−Φ∗)(1 + op(1))

+ n(Φ1 −Φ∗1)
>[I11(Φ

∗)](Φ1 −Φ∗1)(1 + op(1)).

By partitioning the matrix I(Φ∗) into four sub-matrices, one of which is I11(Φ
∗), we have

`n((Φ1,Φ2); sq)− `n((Φ1,0); sq) = Op(
√
n)|Φ2| − n{2(Φ1 −Φ∗1)

>[I12(Φ
∗)]Φ2

+Φ>2 [I22(Φ
∗)]Φ2}(1 + op(1))

where I12(Φ
∗) and I22(Φ

∗) are sub-matrices of I(Φ∗). Since ‖Φ1 −Φ∗1‖ = O(n−1/2) and

‖Φ2‖ = O(n−1/2), thus

`n((Φ1,Φ2); sq)−`n((Φ1,0); sq) = Op(
√
n)|Φ2|+n{Op(n

−1/2)|Φ2|+Op(n
−1/2)|Φ2|}(1+op(1))

which implies that, for large n,

`n((Φ1,Φ2); sq)− `n((Φ1,0); sq) = Op(
√
n)|Φ2| = Op(

√
n)

K∑
j=1

∑
l 6∈=∗j

|θjl|.

We now study the second difference in (A.3). Since rn(0;λn) = 0, for any λn, we have

Rn((Φ1,Φ2);λn)−Rn((Φ1,0);λn) =
K∑
j=1

∑
l 6∈=∗j

rn(θjl;λn).

Combining the assessments of the two differences in (A.3), for all sq ∈ {1, . . . , K} we

arrive at

Ln((Φ1,Φ2); sq, λn)− Ln((Φ1,0); sq, λn) =
K∑
j=1

∑
l 6∈=∗j

{
Op(
√
n)|θjl| − rn(θjl;λn)

}
.
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Because Φ is within n−1/2-neighbourhood of Φ∗, we must have θjl = O(n−1/2) for all

l 6∈ =∗j (the set of non-zero coefficients). Once θ is in this range, condition C3 on the

penalty rn is applicable which leads to

Op(
√
n)|θjl| − rn(θjl;λn) < 0

for large n. Therefore the conclusion of this lemma: for all sq, as n→∞,

Ln((Φ1,Φ2); sq, λn)− Ln((Φ1,0); sq, λn) < 0

with probability tending to one. This completes the proof of Lemma 2. ♠

We now return to the proof of Theorem 2.

Proof of Theorem 2:

Part (i). Let (Φ̂n,sq ,1,0) be the maximizer of the penalized conditional log-likelihood

Ln((Φ1,0); sq, λn), for all sq ∈ {1, . . . , K}. Note that

Ln((Φ1,Φ2); sq, λn)− Ln((Φ̂n,sq ,1,0); sq, λn) = [Ln((Φ1,Φ2); sq, λn)− Ln((Φ1,0); sq, λn)]

− [Ln((Φ̂n,sq ,1,0); sq, λn)− Ln((Φ1,0); sq, λn)].

The second term in the above difference is positive by the definition of (Φ̂n,sq ,1,0). By

Lemma 2, with probability tending to one the first term is also negative, whenever

‖Φ−Φ∗‖2 = O(n−1/2). Hence, for any Φ such that ‖Φ−Φ∗‖2 = O(n−1/2), we have

Ln((Φ1,Φ2); sq, λn)− Ln((Φ̂n,sq ,1,0); sq, λn) < 0

in probability. This implies that, with probability tending to one as n → ∞, the maxi-

mizer of the penalized conditional log-likelihood Ln((Φ1,Φ2); sq, λn) is indeed (Φ̂n,sq ,1,0).

On the other hand, by Theorem 1 if an = O(1), there exists a root-n consistent estimator

Φ̂n,sq = (Φ̂n,sq ,1, Φ̂n,sq ,2) of Φ∗. This implies Part (i) and completes the proof.

Part (ii). By Part (i), the maximizer Φ̂n,sq = (Φ̂n,sq ,1, Φ̂n,sq ,2) of Ln(Φ; sq, λn) has

its Φ̂n,sq ,2 = 0, with probability tending to one, as n → ∞. Thus, by considering

Ln((Φ1,0); sq, λn) ≡ Ln(Φ1; sq, λn) as only a function of Φ1, Theorem 1 guarantees the
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existence of a local maximizer Φ̂n,sq ,1 of Ln(Φ1; sq, λn) which is a
√
n-consistent estimator

of Φ∗1. Because Φ∗1 is not on the boundary of the parameter space, the local maximizer

in its infinitesimal neighborhood must satisfies

∂Ln(Φ1; sq, λn)

∂Φ1

∣∣∣∣
Φ1=Φ̂n,sq,1

=

{
∂ ˜̀

n(Φ1; sq)

∂Φ1

− ∂Rn(Φ1;λn)

∂Φ1

}∣∣∣∣
Φ1=Φ̂n,sq,1

= 0.

Using the first order Taylor’s expansion, we have

∂Rn(Φ1;λn)

∂Φ1

∣∣∣∣
Φ1=Φ̂n,sq,1

= R′n(Φ∗1;λn) +

{
R′′n(Φ∗1;λn) + op(n)

}(
Φ̂n,sq ,1 −Φ∗1

)

∂ ˜̀
n(Φ1; sq)

∂Φ1

∣∣∣∣
Φ1=Φ̂n,sq,1

= ˜̀′
n(Φ∗1; sq) +

{
˜̀′′
n(Φ∗1; sq) + op(n)

}(
Φ̂n,sq ,1 −Φ∗1

)
.

Thus,

√
n

{ ˜̀′′
n(Φ∗1; sq)

n
− R

′′
n(Φ∗1;λn)

n
+ op(1)

}
(Φ̂n,sq ,1 −Φ∗1) = −

˜̀′
n(Φ∗1; sq)√

n
+
R′n(Φ∗1;λn)√

n
.

By the definition of pn(νk), we have that ˜̀
n(Φ; sq) − `n(Φ; sq) = O(n−1/2). Thus, by

Lemma 1, as n→∞,

˜̀′
n(Φ∗1; sq)√

n
=
`′n(Φ∗1; sq)√

n
− op(1)

D−→ N (0, I11(Φ
∗
1))

−
˜̀′′
n(Φ∗1; sq)

n
= −`

′′
n(Φ∗1; sq)

n
+ op(1) = −`

′′
n(Φ∗1; sq)

n
+ op(1)

p−→ I11(Φ
∗
1)

where I11(Φ
∗
1) is the positive definite matrix based on the msar model when the zero

ar-coefficients Φ∗2 = 0 are removed from the model. By Slutsky’s theorem, as n→∞,

√
n

{[
I11(Φ

∗
1) +

R′′n(Φ∗1;λn)

n

]
(Φ̂n,sq ,1 −Φ∗1) +

R′n(Φ∗1;λn)

n

}
D−→ N (0, I11(Φ

∗
1)). ♠

Proof of Theorem 3:

Part (i). Let Φ̂n,κ,s′′q and Φ̂
∗
n,s′q

be maximizers of the penalized conditional log-likelihood

function Ln(Φ; sq, λn) under the msar models with κ and K regimes, respectively, for

any choices of the initial states sq = s′′q ∈ {1, . . . , κ} and sq = s′q ∈ {1, . . . , K}. Then,

Pr(K̂n < K) ≤
K−1∑
κ=1

Pr{rbic(Φ̂n,κ,s′′q ) > rbic(Φ̂
∗
n,s′q

)}.
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It suffices to show that, for each κ < K,

rbic(Φ̂n,κ,s′′q )− rbic(Φ̂
∗
n,s′q

) < 0 (A.4)

in probability, as n→∞. We now focus on such a κ.

Let Gκ be the space of the parameter vector Φκ of a msar model with exactly κ

regimes. For each Φ ∈ Gκ, we have Φ 6= Φ∗. By the definition of the conditional

likelihood in equation (A.1) of this document, we have that

1

n
{`n(Φ; s′′q)− `n(Φ∗; s′q)} =

1

n
log

[
f3(Yq+1, . . . , Yn|Y1:q, s′′q ,Φ)

f3(Yq+1, . . . , yn|Y1:q, s′q,Φ∗)

]

=
1

n

n∑
t=q+1

log

[
h(Yt|Y1:t−1, s′′q ,Φ)

h(Yt|Y1:t−1, s′q,Φ∗)

]
where h(·)’s are the conditional densities of Yt given (Y1:t−1, sq), for sq = s′′q or sq = s′q.

By Jensen’s inequality, the ergodic theorem and the results of Douc et al. (2004) and

Xie et al. (2008), for any Φ ∈ Gκ, and any choices of s′′q and s′q as mentioned above, as

n→∞, we have

1

n
{`n(Φ; s′′q)− `n(Φ∗; s′q)}

a.s−→ E∗
{

log

[
h(Yt|Y−∞:t−1,Φ)

h(Yt|Y−∞:t−1,Φ
∗)

]}
< 0,

where E∗{·} is the expectation under the true distribution. The quantity on the right

hand side of the above limit resembles the negative of Kulback-Leibler information, and

thus we call it −KL(Φ∗; Φ).

Next, we show that the above inequality is true uniformly on Gκ rather than valid

for individual members. This can be done following the same steps of Wald (1949). We

outline a few key steps without complete details as follows. For each Φ ∈ Gκ and a

positive value ρ > 0, define

h(yt|y1:t−1,Φ, s′′q , ρ) = sup
{
h(yt|y1:t−1, Φ̃, s′′q) : ‖Φ̃−Φ‖2 < ρ

}
and

`n(Φ; s′′q , ρ) =
n∑

t=q+1

log h(yt|y1:t−1,Φ, s′′q , ρ).
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When ρ ↓ 0, we have (in obvious notation)

KL(Φ∗; Φ, ρ) = E∗
{

log

[
h(Yt|Y−∞:t−1,Φ

∗)

h(Yt|Y−∞:t−1,Φ, ρ)

]}
−→ KL(Φ∗; Φ) > 0.

Thus, for each Φ ∈ Gκ, there exists a ρ > 0 such that KL(Φ∗; Φ, ρ) > 0. By the ergodic

theorem for martingales, the same ρ makes

n−1{`n(Φ; s′′q , ρ)− `n(Φ∗; s′q)} < −ε < 0

for some ε > 0, almost surely, as n → ∞. Due to the assumed compactness of Gκ, this

result implies

sup{`n(Φ; s′′q) : Φ ∈ Gκ} − `n(Φ∗; s′q) < −nε

for some ε > 0, almost surely, for the given κ < K.

Now we use the above result to prove (A.4). That is, the inequality must be valid

after the influences of the penalty and regularization terms are considered. We have

`n(Φ̂n,κ,s′′q ; s′′q)− `n(Φ̂
∗
n,s′q

; s′q) = `n(Φ̂n,κ,s′′q ; s′′q)− Ln(Φ̂
∗
n,s′q

; s′q, λn)−Rn(Φ̂
∗
n,s′q

;λn)−
K∑
j=1

pn(ν̂∗j )

≤ {`n(Φ̂n,κ,s′′q ; s′′q)− Ln(Φ∗; s′q, λn)} −Rn(Φ̂
∗
n,s′q

;λn)−
K∑
j=1

pn(ν̂∗j )

≤ {sup `n(Φ; s′′q)− `n(Φ∗; s′q)}+ {Rn(Φ∗;λn)−Rn(Φ̂
∗
n,s′q

;λn)}

+
K∑
j=1

{pn(ν∗j )− pn(ν̂∗j )}. (A.5)

For notational simplicity, we have omitted the range of supremum which is Gκ. We also

used ν̂∗j for the corresponding element in Φ̂
∗
n,s′q

.

By Theorem 1, Φ̂
∗
n,s′q

a.s−→ Φ∗, as n→∞. Since pn(ν∗k) = o(n) and Rn(Φ∗;λn) = o(n),

we have

{Rn(Φ∗;λn)−Rn(Φ̂
∗
n,s′q

;λn)}+ {
K∑
j=1

pn(ν∗j )−
K∑
j=1

pn(ν̂∗j )} = o(n).

Using this assessment, from (A.5), for large n, we find

`n(Φ̂n,κ,s′′q ; s′′q)− `n(Φ̂
∗
n,s′q

; s′q) ≤ −nε+ o(n).
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Thus, for each κ < K, and any s′′q ∈ {1, . . . , κ} and s′q ∈ {1, . . . , K}, as n→∞,

rbic(Φ̂n,κ,s′′q )− rbic(Φ̂
∗
n,s′q

) = {`n(Φ̂n,κ,s′′q ; s′′q)− `n(Φ̂
∗
n,s′q

; s′q)}

− 0.5(log n){dim(Φ̂n,κ,s′′q )− dim(Φ̂
∗
n,s′q

)} < 0

almost surely because the penalty term is o(n). This completes the proof of this part. ♠

Part (ii). First, we introduce some notation. For any given finite number of regimes

κ, where K ≤ κ ≤ K, consider the one-step ahead predictive density similar to the one

given in equation (4.1) of the manuscript but with K replaced by κ. The density can be

written as

fκ(yn+1|y1:n) =
κ∑
j=1

Pr(Sn+1 = j|y1:n)φ(yn+1;x
>
n+1θj, νj) =

∫
Rq+1×R+

φ(yn+1;x
>
n+1θ, ν) dGn,κ(θ, ν),

where

Gn,κ(θ, ν) =
κ∑
j=1

Pr(Sn+1 = j|y1:n) I(θj ≤ θ, νj ≤ ν) (A.6)

and I(·) is an indicator function. Using this representation, the estimated one-step ahead

predictive density, based on a fitted κ-regime msar model, is written as

f̂κ(yn+1|y1:n) =

∫
Rq+1×R+

φ(yn+1;x
>
n+1θ, ν) dĜn,κ(θ, ν),

where

Ĝn,κ(θ, ν) =
κ∑
j=1

P̂r(Sn+1 = j|y1:n) I(θ̂j ≤ θ, ν̂j ≤ ν). (A.7)

The estimates are based on the mpcle given in Section 3 of the manuscript. Similarly,

the true one-step ahead predictive density has the representation

f ∗(yn+1|y1:n) =

∫
Rq+1×R+

φ(yn+1;x
>
n+1θ, ν) dG∗n(θ, ν),

where

G∗n(θ, ν) =
K∑
j=1

∗
Pr(Sn+1 = j|y1:n) I(θ∗j ≤ θ, ν∗j ≤ ν). (A.8)

Upon the specification of the (conditional) initial distributions {Pr(Sq = l|y1:q), l =

1, . . . , κ} ≡ γq and {Pr(Sq = l|y1:q), l = 1, . . . , K} ≡ γ∗q, the conditional probabilities
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Pr(·|y1:n) in (A.6), (A.7), and (A.8) are computed using the prediction and filtering

equations given in Section 4 of the manuscript. As discussed in the manuscript, the

effect of the initial distribution diminishes at a geometric rate in n, (Ocone and Pardoux,

1996; Kleptsyna and Veretennikov, 2008; Douc et al., 2009).

In the first part of the proof, we show that the distance (defined below) between Ĝn,κ

and G∗n converges to zero, almost surely, as n→∞, for any K ≤ κ ≤ K.

For any distribution of the form (A.6), consider the distance

Dn(Gn,κ, G
∗
n) =

∫
y1:n+1

{∫
Rq+1×R+

|Gn,κ(θ, ν)−G∗n(θ, ν)| e−{|θ|1+|ν|} dθdν

}
f ∗(y1:n+1)dy1:n+1

(A.9)

where | · |1 is the L1-norm of a vector, and f ∗(y1:n+1) is the joint density of Y1:n+1. For

an arbitrary small value δ > 0, consider the family

Hn(δ) = {Gn,κ : Dn(Gn,κ, G
∗
n) > δ}

of those distributions that are of δ distance from the true distribution G∗n. Clearly

G∗n /∈ Hn(δ), and thus we have

E∗
{

log

[
fκ(Yn+1|Y1:n)

f ∗(Yn+1|Y1:n)

]}
< 0

for any Gn,κ ∈ Hn(δ), where the expectation is with respect to the true joint density

function of Y1:n+1. This implies that, for t = q + 1, . . . , n,

E∗
{

log

[
fκ(Yt|Y1:t−1)
f ∗(Yt|Y1:t−1)

]}
< 0

where the conditional densities fκ(Yt|Y1:t−1) and f ∗(Yt|Y1:t−1) have similar representations

as of fκ(Yn+1|Y1:n) and f ∗(Yn+1|Y1:n) described above but with their own distributions

Gt,κ ∈ Ht(δ) and G∗t , respectively. By the stationarity and ergodicity conditions, we then

have that

1

n− q

n∑
t=q+1

log

[
fκ(Yt|Y1:t−1)
f ∗(Yt|Y1:t−1)

]
=

1

n− q
log

[
f2(Yq+1, . . . , Yn|Y1:q)
f ∗2 (Yq+1, . . . , Yn|Y1:q)

]
< −ε(δ) (A.10)

for some ε(δ) > 0, and given κ > K, almost surely, for large n. Here, f2(·) is the joint

conditional distribution given in (2.2) of the manuscript, and f ∗2 (·) is the true distribution
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based on a msar with K regimes. These functions may also be re-written as

f2(Yq+1, . . . , Yn|Y1:q) =

∫ { n∏
t=q+1

φ(yt;x
>
t θt, νt)

}
dGjoint,K(γ)

f ∗2 (Yq+1, . . . , Yn|Y1:q) =

∫ { n∏
t=q+1

φ(yt;x
>
t θt, νt)

}
dG∗joint(γ),

where x>t = (1, yt−1, . . . , yt−q), γ = (θ1, ν1, . . . ,θn, νn), and the joint distributions

Gjoint,κ(γ) =
κ∑

sq+1=1

. . .

κ∑
sn=1

Pr(Sq+1 = sq+1|y1:q)

{
n∏

t=q+2

αst−1,st

n∏
t=q+1

I(θ′st ≤ θt, ν
′
st ≤ νt)

}

G∗joint(γ) =
K∑

sq+1=1

. . .
K∑

sn=1

∗
Pr(Sq+1 = sq+1|y1:q)

{
n∏

t=q+2

α∗st−1,st

n∏
t=q+1

I(θ∗st ≤ θt, ν
∗
st ≤ νt)

}
.

Here, the distribution Gjoint,K(γ) belongs to the family

Hn,joint(δ) = {Gjoint,κ : Dn(Gjoint,κ, G
∗
joint) > δ},

where the distance is defined as in (A.9) with the inner integration with respect to γ.

On the other hand, since both penalties pn(·) and rn(·;λn) are of order o(n), for large

n we can generalize (A.10) to

sup
Hn,joint(δ)

{
log

[
f2(Yq+1, . . . , Yn|Y1:q)
f ∗2 (Yq+1, . . . , Yn|Y1:q)

]
−
[ κ∑
j=1

pn(νj)−
K∑
j=1

pn(ν∗j )

]
−
[
Rn(Φκ;λn)−Rn(Φ∗;λn)

]}
< −(n− q)ε(δ),

where

Rn(Φκ;λn) =
κ∑
j=1

q∑
l=1

rn(θjl;λn) , Rn(Φ∗;λn) =
K∑
j=1

q∑
l=1

rn(θ∗jl;λn).

Hence, the maximum penalized log-likelihood estimator of the joint distribution Gjoint,κ

cannot belong to the family Hn,joint(δ), almost surely, as n → ∞. Since δ is arbitrarily

small, we have Dn(Ĝjoint,κ, G
∗
joint,n) → 0, as n → ∞. This implies that Ĝjoint,κ converges

weakly to G∗joint,n, as n → ∞. Consequently, the distribution in (A.7) converges to

the true distribution G∗n in (A.8), as n → ∞. Therefore, due to the boundedness of
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φ(yn+1;x
>
n+1θ, ν) on the assumed compact parameter space, we conclude that, as n→∞,

the one-step ahead predictive density f̂κ(yn+1|y1:n) converges to the true one-step ahead

predictive density f ∗(yn+1|y1:n), almost surely for all values of y1:n+1. The same proof

can be extend to the h-step ahead predictive density.

Finally, we consider the proof when the rbic-based estimator K̂n is used for the

number of regimes K. Note that, for any δ > 0,

P

{
Dn(Gn,K̂n

, G∗n) > δ

}
=

K∑
κ=1

P

{
Dn(Gn,K̂n

, G∗n) > δ, K̂n = κ

}

=
K−1∑
κ=1

P

{
Dn(Gn,κ, G

∗
n) > δ, K̂n = κ

}
+

K∑
κ=K

P

{
Dn(Gn,κ, G

∗
n) > δ, K̂n = κ

}

≤
K−1∑
κ=1

P (K̂n = κ) +
K∑

κ=K

P

{
Dn(Gn,κ, G

∗
n) > δ

}
.

By Theorem 3-(i), as n → ∞ the first term on the right hand side goes to zero, and

according to the above discussion the second term also goes to zero. The rest of the

proof is similar to fixed case K and thus omitted. ♠

3 COMPUTATION VIA EM ALGORITHM

Maximization of the penalized conditional log-likelihood Ln(Φ; sq, λ), given in (3.3)

of the manuscript, for a msar model with K regimes and a maximal ar-order q is an

optimization over a space of dimension K(q + 2) +K(K − 1). For example, with K = 3

and q = 10, the likelihood function involves 42 parameters; this dimension is large, but

direct optimization using Nelder-Mead or quasi-Newton methods (via optim in R) is still

possible when a local quadratic approximation (lqa) to the penalty is adopted: following

Fan and Li (2001), the lqa

rn(θjl;λ) ' rn(θ
(0)
jl ;λ) +

r′n(θ
(0)
jl ;λ)

2θ
(0)
jl

(θ2jl − θ
2(0)
jl )

holds in a neighbourhood of a current value θ
(0)
jl , and may be used.

In this manuscript we instead use a modified em algorithm to numerically approximate

the maximum point of the function Ln(Φ; sq, λ). We apply coordinate descent-based
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methods for maximization in the M-step of the em algorithm. As in Zou and Li (2008),

for folded concave penalties such as scad we use the local linear approximation (lla)

rn(θjl;λ) ' rn(θ
(0)
jl ;λ) + r′n(θ

(0)
jl ;λ)(|θjl| − |θ(0)jl |). (A.11)

The advantage of the lla is that when coupled with a coordinate descent method, it leads

to thresholding-type updates of the ar-coefficients in the M-step of the em algorithm;

more details are given below.

3.1 EM Algorithm

For observation yt, let Vtij equal 1 if St−1 = i and St = j, and equal 0 otherwise; Vtij

records the presence of a transition between regime i at time t− 1 and regime j at time

t. Also, let Utj equal 1 if St = j. Let x>t = (1, yt−1, . . . , yt−q). The complete conditional

log-likelihood is

`cn(ΦK ; sq) =
K∑
i=1

K∑
j=1

n∑
t=q+1

Vtij logαij +
K∑
j=1

n∑
t=q+1

Utj

{
log φ(yt;µt,j, νj)

}
,

where µt,j = x>θj. Thus, the penalized complete (conditional adjusted) log-likelihood is

Lcn(ΦK ; sq, λ) = `cn(ΦK ; sq)−
K∑
j=1

pn(νj)−
K∑
j=1

q∑
l=1

rn(θjl;λ).

Given the current value of the parameter Φ
(m)
K , at (m+ 1)-th iteration the em algorithm

proceeds as follows.

E-step: In this step, we compute the conditional expectation of the approximated pe-

nalized complete conditional log-likelihood with respect to Vtij and Utj, given Φ
(m)
K , sq

and the data y1:n. The approximation is due to the lla in (A.11). Thus, at (m + 1)-th

iteration, the em objective function (up to a constant) is given by

Q(ΦK ; Φ
(m)
K , sq) =

K∑
j=1

n∑
t=q+1

$
(m)
t,sq ,j

logαsq ,j +
K∑
i 6=sq

K∑
j=1

n∑
t=q+2

$
(m)
tij logαij

+
K∑
j=1

n∑
t=q+1

ω
(m)
tj log φ(yt;µtj, νj)−

K∑
j=1

pn(νj)−
K∑
j=1

q∑
l=1

r′n(θ
(m)
jl ;λ)|θjl|,
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where for each t, j, k,

$
(m)
tij = E(Vtij|y1:n, sq; Φ(m)

K ) ≡ P [St−1 = i, St = j|y1:n, sq; Φ(m)
K ], (A.12)

ω
(m)
tj = E(Utj|y1:n, sq; Φ(m)

K ) ≡ P [St = j|y1:n, sq; Φ(m)
K ]. (A.13)

These are “smoothing” probabilities that may be computed numerically in a routine fash-

ion using the conventional forward-backward algorithm of Baum et al. (1970) proposed

for hidden Markov models. The details are given in the end of this Section.

M-step: Here, by using the penalty pn(νk) given in equation (3.2) of the manuscript,

we maximize the function Q(ΦK ; Φ
(m)
K , sq) with respect to ΦK . The maximization with

respect to the ar-coefficients θjl is performed using a coordinate descent approach. The

parameter estimates are then updated as follows. First, we compute the quantities

z1,jl =
1

n− q

n∑
t=q+1

ω
(m)
tj yt−l(yt − µ̃tj,−l) and z2,jl =

1

n− q

n∑
t=q+1

ω
(m)
tj y2t−l,

where µ̃tj,−l = θ
(m)
j0 +

∑l−1
v=1 θ

(m+1)
jv yt−v +

∑q
v>l θ

(m)
jv yt−v, 1 ≤ l ≤ q and 1 ≤ j ≤ K. We

then update the ar-coefficients by

θ
(m+1)
jl =

T (z1,jl;λjl)

z2,jl
, (A.14)

where T (z;λ) = sign(z)(|z| − λ)+ is the soft-thresholding operator (Donoho and John-

stone, 1994), and λjl varies depending on the penalty rn(θjl;λ). For the three penalties

considered in this manuscript the values of λjl are given in the end of this section.

The regime-specific intercepts and variances are updated by

θ
(m+1)
j0 =

∑n
t=q+1 ω

(m)
tj (yt − µ(m+1)

tj )∑n
t=q+1 ω

(m)
tj

(A.15)

ν
(m+1)
j =

∑n
t=q+1 ω

(m)
tj (yt − x>t θ

(m+1)
j )2 + 2V2

n/
√
n− q∑n

t=q+1 ω
(m)
tj + 2/

√
n− q

, (A.16)

where µ
(m+1)
tj =

∑q
l=1 θ

(m+1)
jl yt−l. The updated transition probabilities are

α
(m+1)
sq ,j

=

∑n
t=q+1$

(m)
t,sq ,j∑n

t=q+1

∑K
i=1$

(m)
t,sq ,i

, α
(m+1)
ij =

∑n
t=q+2$

(m)
tij∑n

t=q+2

∑K
h=1$

(m)
tih

(A.17)
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for i 6= sq, 1 ≤ i, j ≤ K, and any sq ∈ {1, . . . , K}.

Starting from an initial value Φ
(0)
K , the em algorithm continues until some convergence

criterion is met. We used the stopping rule ‖Φ(m+1)
K −Φ

(m)
K ‖ ≤ ε, for a pre-specified small

value ε, taken 10−5 in our simulations and data analysis.

More details:

1. The soft-thresholding operator in (A.14):

T (z;λ) = sign(z)(|z| − λ)+ =


z − λ ; z > λ > 0,

0 ; |z| ≤ λ,

z + λ ; z < −λ,

The values of λjl used in (A.14):

λjl =


λ ; lasso,

λ ωjl ; adalasso,

r′n(θ
(m)
jl ;λ)/(n− q) ; scad,

where ωjl are the weights in the adalasso and r′n(·;λ) is the first derivative of the scad

penalty with respect to |θjl|.

2. Forward-backward algorithm for computing (A.12) and (A.13):

Note that all of our computation is done by conditioning on y1:q and sq. For simplicity

in notation, denote the event (or set) Eq = {Y1:q = y1:q, Sq = sq}. Thus, the conditional

probabilities in (A.12) and (A.13) can be re-written as

$
(m)
tij = PEq(St−1 = i, St = j|yq+1:n; Φ

(m)
K ), (A.18)

ω
(m)
tj = PEq(St = j|yq+1:n; Φ

(m)
K ) (A.19)

for t = q+ 1, . . . , n and i, j = 1, 2, . . . , K, where PEq(·) indicates conditioning on y1:q and

sq. Note that $
(m)
q+1,sq ,j

= ω
(m)
q+1,j, for all j = 1, 2, . . . , K. Numerical computation of these

conditional probabilities is done as follows:
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Denote the quantities

aj(t;Eq) = PEq(yq+1, . . . , yi, Si = j; Φ
(m)
K ) , t = q + 1, . . . , n (A.20)

bj(t;Eq) = PEq(yi+1, . . . , yn|Si = j,Φ
(m)
K ) , t = q + 1, . . . , n− 1. (A.21)

Then, using the model assumptions we have that

ω
(m)
tj =

aj(t;Eq)bj(t;Eq)∑K
l=1 al(n;Eq)

(A.22)

for t = q + 1, . . . , n and j = 1, 2, . . . , K. Similarly,

$
(m)
tij =

α
(m)
ij φ(yt;µ

(m)
tj , ν

(m)
j )× ai(t− 1;Eq)× bj(t;Eq)∑K

l=1 al(n;Eq)
(A.23)

for t = q + 2, . . . , n and i, j = 1, 2, . . . , K. The quantities in (A.20)-(A.21) are computed

recursively using the following forward-backward formulae:

aj(t;Eq) =
K∑
i=1

ai(t− 1;Eq)α
(m)
ij φ(yt;µ

(m)
tj , ν

(m)
j ), (A.24)

bj(t;Eq) =
K∑
i=1

α
(m)
ji φ(yt+1;µ

(m)
t+1,j, ν

(m)
j )bi(t+ 1;Eq), (A.25)

where aj(q+1;Eq) = α
(m)
sq ,j
φ(yq+1;µ

(m)
q+1,j, ν

(m)
j ) and bj(n;Eq) = 1, for j = 1, . . . , K. Hence,

we first compute the sequences in (A.24) and (A.25) which are then used to compute the

quantities in (A.22) and (A.23).

3.2 Tuning of λ in rn(θ, λ)

One remaining issue in the implementation of the regularization method is the choice

of tuning parameter λ. Given (K, q), we recommend an information criterion together

with a grid search scheme as follows.

Consider a pre-chosen grid of λ-values {λ1, λ2, . . . , λM} for some M , say, M = 10.

For each λi, we obtain the mpcle Φ̂n,K,sq(λi) using the em algorithm presented above.

We compute the information criterion (ic)

ic(λi) = `n(Φ̂n,K,sq(λi); sq)− 0.5× df(λi) log(n− q)
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where `n(·) is the conditional log-likelihood in (A.1), and df(λi) =
∑K

j=1

∑q
l=1 I(θ̂jl 6= 0)

is the total number of estimated non-zero ar-coefficients θ̂jl. This information criterion

mimics the one used in generalized linear regression by Zhang et al. (2010). We choose

the value of tuning parameter as λ̃ = argmax1≤i≤M{ic(λi)}.

Although theoretical properties of the tuning parameter λ̃ chosen by the ic is currently

unknown to us, our numerical results suggests that the ic performs reasonably well in

selecting appropriate level of the penalty parameter λ.

4 ADDITIONAL SIMULATION RESULTS

This section contains the simulation results for the fifth model, M5, which is a three-

state (K = 3) msar with the transition probability matrix and its corresponding sta-

tionary distribution specified as

P =


.20 .40 .40

.10 .50 .40

.70 .20 .10

 , (π1, π2, π3) = (.316, .376, .308).

The state-specific variances and means are, respectively, (σ1, σ2, σ3) = (2, 2, 4), and

µt,1 = .7yt−1 − .6yt−2 , µt,2 = −.5yt−1 , µt,3 = 1.5yt−1 − .75yt−2.

Since the simulation results were similar when conditioning on any initial state sq ∈

{1, 2, 3}, we report the results for sq = 1. For a pre-specified common ar-order q = 5, the

total number of possible models (2Kq) to be examined by the standard bic for ar-order

estimation is about 29791, which is computationally not feasible for us. Thus, below we

only discuss the simulation results for the new method.

Table A4 contains the average (over 300 replications) estimated sensitivity and speci-

ficity (ES1, ES2) results using lasso, adalasso and scad. We have considered larger

sample sizes n = 250, 500, 800 for this model since it is more complex compared to the

two-state models M1–M4. We see that the regularization method identifies the true zero

ar-coefficients (average estimated sensitivity, ES1) at least 93% to 100% of the times,

across different regimes and sample sizes, for the three penalties. Regarding the ES2, for
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the smaller sample size n = 250, the lasso identifies the true non-zero ar-coefficients

approximately 68% to 93% of the times across the three regimes of the model, whereas

adalasso and scad identify the true non-zero coefficients approximately 83% to 95%

and 91% to 97% of the times across the three regimes, respectively. Overall, the regu-

larization method using the scad and adalasso outperform the lasso for the smaller

sample sizes that we have considered. As the sample size increase all the three penalties

improve.

Figure A5 shows the boxplots of the empirical L2 losses of the parameter estimates

based on the lasso, adalasso, and scad, as well as the estimates based on the oracle

model. The results are based on the 300 random samples from model M5. For the

sample size n = 250, the empirical median (and variation) losses of the estimates based

on the new method are higher than those of the estimates under the true (oracle) model.

This is more evident for the lasso penalty. As the sample size increases the performance

of the new method based on the three penalties improves and it is comparable to the

oracle estimator, with scad and adalasso outperforming the lasso.

We next examine the performance of the estimator K̂n of K obtained by using the

three criteria raic, rbic and rmsc described in Section 5 of the manuscript. We fit

msar models with number of hidden regimes K = 1, . . . , 5, to each simulated sample

from model M5, and obtain the mpcle which is then used to compute the criteria raic,

rbic and rmsc. We choose K̂n as the one that maximizes any of the three criteria. The

results corresponding to different sample sizes (n = 250, 500, 800) and the regularization

penalties are given in Tables A5–A7.

It is seen that, for the smaller sample size, the proportion of underestimation of the

correct order K = 3 by the rbic is higher than those by raic and rmsc. As the

sample size increases this proportion decreases to zero, which is expected by the result

of Theorem 3-(i). When n = 800, the performance of all the three is very good.
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Table A1: Average computational time (ACT, in seconds) taken by a method to complete

per-sample results discussed in Section 7.1. of the main paper.

n = 150 n = 250 n = 500

Model bic lasso adalasso scad bic lasso adalasso scad bic lasso adalasso scad

M1 17.4 1.36 .410 .957 30.4 2.02 .707 1.36 66.2 4.03 1.71 1.98

M2 22 .853 .375 1.05 42.6 1.41 .595 1.71 96.6 4.35 2.35 3.77

M3 85 1.06 .403 .830 111 1.81 .853 1.37 270 2.90 2.17 1.99

M4 90.4 1.59 .830 1.05 144 3.00 1.32 1.78 297 5.44 2.13 2.91
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Table A2: Average proportion of times (in 300 replications) that a number of ar-regimes
1 ≤ K ≤ 5 is selected by a criterion1. Results for the true order K = 2 are in bold.

n = 150 n = 250 n = 500

Models K raic rbic rmsc raic rbic rmsc raic rbic rmsc

M1 1 .094 .691 .165 .019 .246 .030 .000 .009 .004
2 .399 .306 .385 .644 .750 .731 .762 .987 .942
3 .201 .003 .086 .170 .004 .117 .126 .004 .036

4 or 5 .306 .000 .364 .167 .000 .122 .112 .000 .018

M2 1 .000 .028 .000 .000 .004 .000 .000 .000 .000
2 .784 .965 .794 .866 .989 .870 .932 1.00 .860
3 .135 .007 .053 .090 .007 .047 .051 .000 .030

4 or 5 .081 .000 .153 .044 .000 .083 .017 .000 .110

M3 1 .073 .543 .223 .013 .220 .060 .000 .003 .000
2 .507 .457 .387 .703 .780 .770 .810 .997 .903
3 .200 .000 .050 .160 .000 .020 .110 .000 .010

4 or 5 .220 .000 .340 .124 .000 .150 .080 .000 .087

M4 1 .077 .510 .203 .017 .177 .070 .000 .000 .000
2 .390 .487 .413 .703 .823 .767 .790 1.00 .943
3 .230 .003 .043 .143 .000 .010 .100 .000 .010

4 or 5 .303 .000 .341 .137 .000 .153 .110 .000 .047

1 Each criterion is computed based on the mpcle obtained by the adalasso penalty with q = 10.

Table A3: Average proportion of times (in 300 replications) that a number of ar-regimes
1 ≤ K ≤ 5 is selected by a criterion1. Results for the true order K = 2 are in bold.

n = 150 n = 250 n = 500

Models K raic rbic rmsc raic rbic rmsc raic rbic rmsc

M1 1 .201 .752 .205 .057 .371 .072 .004 .031 .004
2 .338 .248 .245 .583 .621 .614 .816 .969 .825
3 .169 .000 .076 .155 .008 .068 .085 .000 .013

4 or 5 .292 .000 .474 .205 .000 .246 .095 .000 .158

M2 1 .000 .064 .011 .000 .004 .000 .000 .000 .000
2 .745 .929 .805 .892 .989 .848 .941 1.00 .823
3 .163 .007 .025 .090 .007 .051 .051 .000 .042

4 or 5 .092 .000 .159 .018 .000 .101 .008 .000 .135

M3 1 .113 .697 .353 .027 .317 .137 .000 .013 .000
2 .470 .303 .210 .660 .683 .610 .867 .987 .800
3 .203 .000 .057 .160 .000 .040 .083 .000 .050

4 or 5 .214 .000 .380 .153 .000 .213 .050 .000 .150

M4 1 .110 .633 .267 053 .330 .147 .000 .013 .003
2 .380 .367 .197 .587 .667 .527 .807 .987 .840
3 .233 .000 .017 .157 .003 .030 .117 .000 .023

4 or 5 .277 .000 .519 .203 .000 .296 .076 .000 .134

1 Each criterion is computed based on the mpcle obtained by the lasso penalty with q = 10.
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Table A4: Average (standard deviation), over 300 replications, of estimated Sensitivity
(ES1) and Specificity (ES2) in model M5: K = 3 and q = 10.

msar n=250 n=500 n=800
Penalty Regimes ES1 ES2 ES1 ES2 ES1 ES2

lasso Reg1 .930(.103) .685(.408) .966(.062) .830(.345) .980(.047) .977(.120)
Reg2 .979(.052) .928(.259) .996(.023) .993(.085) 1.00(.000) 1.00(.000)
Reg3 .967(.072) .779(.393) .985(.044) .978(.139) .994(.027) .998(.030)

adalasso Reg1 .975(.066) .829(.326) .992(.034) .968(.149) 1.00(.000) .993(.072)
Reg2 .991(.038) .959(.199) .999(.011) 1.00(.000) 1.00(.000) 1.00(.000)
Reg3 .976(.065) .959(.161) .995(.024) 1.00(.000) 1.00(.007) 1.00(.000)

scad Reg1 .977(.077) .909(.241) .997(.020) .987(.078) .999(.017) .998(.030)
Reg2 .994(.029) .976(.153) .998(.013) 1.00(.000) 1.00(.000) 1.00(.000)
Reg3 .989(.051) .979(.108) .998.(015) .996(.060) .997(.023) 1.00(.000)

27



Table A5: Average proportion of times (in 300 replications) that a number of ar-regimes
1 ≤ K ≤ 5 is selected by a criterion1. Results for the true order K = 3 are in bold.

n = 250 n = 500 n = 800

Model K raic rbic rmsc raic rbic rmsc raic rbic rmsc

M5 1 .000 .007 .000 .000 .000 .000 .000 .000 .000
2 .084 .650 .303 .003 .182 .020 .000 .003 .000
3 .714 .343 .609 .814 .814 .932 .953 .997 .983

4 or 5 .202 .000 .088 .183 .004 .048 .047 .000 .017

1 Each criterion is computed based on the mpcle obtained by the adalasso penalty with q = 10.

Table A6: Average proportion of times (in 300 replications) that a number of ar-regimes
1 ≤ K ≤ 5 is selected by a criterion1. Results for the true order K = 3 are in bold.

n = 250 n = 500 n = 800

Model K raic rbic rmsc raic rbic rmsc raic rbic rmsc

M5 1 .000 .007 .003 .000 .000 .000 .000 .000 .000
2 .215 .842 .684 .057 .574 .233 .003 .127 .013
3 .471 .151 .175 .659 .426 .713 .793 .873 .970

4 or 5 .314 .000 .138 .284 .000 .054 .204 .000 .017

1 Each criterion is computed based on the mpcle obtained by the lasso penalty with q = 10.

Table A7: Average proportion of times (in 300 replications) that a number of ar-regimes
1 ≤ K ≤ 5 is selected by a criterion1. Results for the true order K = 3 are in bold.

n = 250 n = 500 n = 800

Model K raic rbic rmsc raic rbic rmsc raic rbic rmsc

M5 1 .000 .007 .000 .000 .000 .000 .000 .000 .000
2 .037 .592 .209 .000 .145 .007 .000 .003 .000
3 .667 .401 .667 .791 .851 .916 .866 .997 .980

4 or 5 .296 .000 .124 .209 .004 .077 .134 .000 .020

1 Each criterion is computed based on the mpcle obtained by the scad penalty with q = 10.
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Figure A1: Model M1: Empirical L2-losses of the estimates of ar coefficients, variances,
and transition probabilities (represented by the columns), based on the oracle, bic with
q = 5, and lasso, adalasso, scad with q = 10, and sample sizes n = 150, 250, 500
(represented by the rows).
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Figure A2: Model M2: Empirical L2-losses of the estimates of ar coefficients, variances,
and transition probabilities (represented by the columns), based on the oracle, bic with
q = 5, and lasso, adalasso, scad with q = 10, and sample sizes n = 150, 250, 500
(represented by the rows).
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Figure A3: Model M3: Empirical L2-losses of the estimates of ar coefficients, variances,
and transition probabilities (represented by the columns), based on the oracle, bic with
q = 6, and lasso, adalasso, scad with q = 10, and sample sizes n = 150, 250, 500
(represented by the rows)..
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Figure A4: Model M4: Empirical L2-losses of the estimates of ar coefficients, variances,
and transition probabilities (represented by the columns), based on the oracle, bic with
q = 6, and lasso, adalasso, scad with q = 10, and sample sizes n = 150, 250, 500
(represented by the rows).
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Figure A5: Model M5: Empirical L2-losses of the estimates of ar coefficients, variances,
and transition probabilities (represented by the columns), based on the oracle, and lasso,
adalasso, scad with q = 10, and sample sizes n = 250, 500, 800 (represented by the
rows).
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Figure A6: Model M2 with K = 2 and q = 10: Boxplots of the log of estimated predictive
densities f̂K(yn+1:h|y1:n), for K = 2, 3, 4, 5, the sample sizes n = 250, 500, 800, 1000, and
h = n/10 = 25, 50, 80, 100.
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Figure A7: (a) Time series plot of the U.S. quarterly gdp data over the period of 1947-
2013. (b) the sample pacf plot of the series. (c) classified yt, t = 16, . . . , 267, into regime
1 (green) and regime 2 (red) based on the fitted msar model using scad.
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Figure A8: (a) Time series plot of the monthly U.S. unemployment rates over the period
of 1948 to 2010. (b) time series plot of the first differences of the series. (c) the sample
pacf plot of the first differences. (d) classified xt, t = 26, . . . , 731, into regime 1 (green)
and regime 2 (red) based on the fitted msar model using scad.
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Table A8: Average (standard deviation), over 300 replications, of estimated Sensitivity

(ES1) and Specificity (ES2)1.

msar n = 150 n = 250 n = 500

Model Regimes ES1 ES2 ES1 ES2 ES1 ES2

bic M1 Reg1 .950(.137) .905(.217) .970(.096) .985(.085) .983(.073) 1.00(.000)

Reg2 .929(.173) .908(.210) .972(.092) .992(.076) .980(.079) 1.00(.000)

M2 Reg1 .961(.114) .989(.072) .980(.085) 1.00(.000) .989(.059) 1.00(.000)

Reg2 .977(.094) .998(.030) .987(.071) 1.00(.000) .991(.055) 1.00(.000)

M3 Reg1 .920(.129) .985(.085) .960(.096) 1.00(.000) .982(.071) 1.00(.000)

Reg2 .904(.167) .933(.142) .959(.110) .986(.068) .986(.068) 1.00(.000)

M4 Reg1 .929(.123) .940(.163) .963(.096) .998(.029) .988(.054) 1.00(.000)

Reg2 .940(.128) .962(.106) .970(.096) .994(.043) .979(.081) 1.00(.000)

lasso M1 Reg1 .893(.179) .760(.374) .977(.081) .967(.149) .997(.029) 1.00(.000)

Reg2 .908(.165) .741(.355) .971(.085) .945(.172) .996(.032) .998(.029)

M2 Reg1 .938(.127) .971(.136) .969(.096) .992(.076) .996(.032) .998(.029)

Reg2 .968(.095) .970(.138) .993(.043) .987(.107) .998(.029) .997(.058)

M3 Reg1 .883(.176) .878(.315) .925(.130) .975(.148) .971(.083) 1.00(.000)

Reg2 .851(.223) .880(.248) .926(.168) .968(.116) .979(.090) .999(.019)

M4 Reg1 .879(.192) .710(.434) .923(.146) 945(.227) .962(.107) 1.00(.000)

Reg2 .859(.214) .900(.194) .909(.180) .988(.062) .979(.081) 1.00(.000)

adalasso M1 Reg1 .923(.167) .843(.287) .977(.081) .967(.149) .997(.029) 1.00(.000)

Reg2 .934(.156) .778(.327) .971(.085) .945(.172) .996(.032) .998(.029)

M2 Reg1 .959(.107) .961(.151) .986(.065) .987(.090) 1.00(.000) .998(.029)

Reg2 .985(.069) .972(.136) .995(.041) .990(.081) .999(.014) .998(.029)

M3 Reg1 .927(.154) .942(.210) .971(.090) 995(.064) .999(.014) 1.00(.000)

Reg2 .880(.210) .878(.221) .953(.136) .961(.126) .997(.033) .999(.019)

M4 Reg1 .919(.151) .841(330) 958(.109) .970(.161) .998(.020) .997(.058)

Reg2 .920(.171) .914(.176) .962(.122) .988(.079) .997(.033) 1.00(.000)

scad M1 Reg1 .930(.165) .857(.276) .979(.078) .972(.136) .991(.047) 1.00(.000)

Reg2 .937(.160) .802(.303) .971(.088) .953(.157) .992(.045) 1.00(.000)

M2 Reg1 .958(.115) .965(.140) .988(.069) .985(.095) 1.00(.000) .998(.029)

Reg2 .973(.101) .975(.124) .993(.052) .988(.104) .998(.029) .997(.058)

M3 Reg1 .943(.127) .855(.308) .971(.092) .981(.131) .993(.045) 1.00(.000)

Reg2 .922(.172) .918(.176) .963(.121) .994(.043) .986(.073) 1.00(.000)

M4 Reg1 .943(.127) .855(.308) .971(.092) .982(.131) .993(.045) 1.00(.000)

Reg2 .922(.172) .918(.176) .963(.121) .994(.043) .986(.073) 1.00(.000)

1 For all the methods, we used q = 5 and 6 for models M1–M2 and M3–M4, respectively.
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Figure A9: Model M1: The empirical L2-losses for the oracle, bic, lasso, adalasso,

and scad estimates of ar coefficients, variances, and transition probabilities (represented

by the columns), sample sizes n = 150, 250, 500 (represented by the rows), and q = 5.
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Figure A10: Model M2: The empirical L2-losses for the oracle, bic, lasso, adalasso,

and scad estimates of ar coefficients, variances, and transition probabilities (represented

by the columns), sample sizes n = 150, 250, 500 (represented by the rows), and q = 5.
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Figure A11: Model M3: The empirical L2-losses for the oracle, bic, lasso, adalasso,

and scad estimates of ar coefficients, variances, and transition probabilities (represented

by the columns), sample sizes n = 150, 250, 500 (represented by the rows), and q = 6.
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Figure A12: Model M4: The empirical L2-losses for the oracle, bic, lasso, adalasso,

and scad estimates of ar coefficients, variances, and transition probabilities (represented

by the columns), sample sizes n = 150, 250, 500 (represented by the rows), and q = 6.
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