DESIGN BASED INCOMPLETE U-STATISTICS

Xiangshun Kong ${ }^{1}$, Wei Zheng ${ }^{2}$
${ }^{1}$ Beijing Institute of Technology and ${ }^{2}$ University of Tennessee

Generalization of Theorem 2.

The following conditions on g or F will be needed by Theorem 2 in Section 2 and Theorems 7-9 in this section.
(g.1) Lipschitz continuous: The function, $g: R^{d} \rightarrow R$, is said to be Lipschitz continuous if there exists a constant $c>0$ such that $\left|g\left(\mathbf{a}_{\mathbf{1}}\right)-g\left(\mathbf{a}_{\mathbf{2}}\right)\right| \leq c| | \mathbf{a}_{\mathbf{1}}-\mathbf{a}_{\mathbf{2}} \|_{2}$ for any $\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}} \in R^{d}$. Example: First-order polynomial functions.
(g.2) Order-p continuous: The function, $g: R^{d} \rightarrow R$, is said to be order- p continuous if there exists a constant $c>0$ and $\phi_{p}\left(\mathbf{a}_{\mathbf{1}}-\mathbf{a}_{\mathbf{2}}\right) \leq c+\max ^{p}\left(\left\|\mathbf{a}_{\mathbf{1}}\right\|\left\|_{2},\right\| \mathbf{a}_{\mathbf{2}} \|_{2}\right)$ for any $\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}} \in R^{d}$ such that $\left|g\left(\mathbf{a}_{1}\right)-g\left(\mathbf{a}_{2}\right)\right| \leq \phi\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right)\left\|\mathbf{a}_{\mathbf{1}}-\mathbf{a}_{\mathbf{2}}\right\|_{2}$ for any $\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{2} \in R^{d}$. Example: All polynomial functions.
(g.3) Uniformly bounded-variation: For a real valued function $f: R \rightarrow R$, the total variation of f is defined as $V_{R}(f)=\sup _{p>0} \sup _{-\infty<c_{1}, \ldots, c_{p}<\infty} \sum_{i=1}^{p-1}\left|f\left(c_{i+1}\right)-f\left(c_{i}\right)\right|$. The function, $g: R^{d} \rightarrow R$, is said to be uniformly bounded-variation if there exists a constant $c>0$ such that $V_{R}\left(g\left(\cdot, x_{2}, \ldots, x_{d}\right)\right)<c$ for any $\left(x_{2}, \ldots, x_{d}\right) \in R^{d-1}$.

Example: Linear combinations of sign functions, e.g. $g\left(x_{1}, x_{2}\right)=\operatorname{sign}\left(x_{1} x_{2}\right)+$
$\operatorname{sign}\left(x_{1}+x_{2}\right)$.
(F) Light-tailed distribution: The distribution of a random variable X is said to be light-tailed if there exists constants $c, c_{1}>0$ such that $P(|X|>x) \leq e^{-c x}$ for all $x>c_{1}$. Example: Normal distribution, exponential distribution, and truncated distributions.

Lemma 4. Suppose F is light-tailed. Let $X_{\max }=\max \left\{\left|X_{1}\right|, \ldots,\left|X_{n}\right|\right\}$. Then, for arbitrary $a>0$ with $n \rightarrow \infty$, we have

$$
E X_{\max }^{a}=O(\log n)^{a} .
$$

Proof. Since the distribution is light-tailed, we have $P(|X|>x) \leq e^{-c x}$ for any $|x|>c_{0}$, where c and c_{0} are two fixed positive numbers.

$$
\begin{aligned}
E\left(X_{\max }\right)^{a} & =\int_{x>0} a x^{a-1} P\left(X_{\max }>x\right) d x \\
& \leq \int_{0}^{2 c^{-1} \log n} a x^{a-1} d x+\int_{2 c^{-1} \log n}^{\infty} a x^{a-1} P\left(X_{\max }>x\right) d x \\
& =O(\log n)^{a}+\int_{2 c^{-1} \log n}^{\infty} a x^{a-1} P\left(X_{\max }>x\right) d x \\
& =O(\log n)^{a}+\int_{2 c^{-1} \log n}^{\infty} a x^{a-1} n e^{-c x} d x=O(\log n)^{a}+O(1)
\end{aligned}
$$

Lemma 5. Suppose (i)g is order-p continuous, and (ii) F is light-tailed. We have

$$
E\left(U_{o a}-\bar{V}\right)^{2}=O\left(\frac{1}{m L}(\log n)^{2 p+2}\right) .
$$

Proof. Let $X_{\max }=\max \left\{\left|X_{1}\right|, \ldots,\left|X_{n}\right|\right\}$. For $l \in \mathcal{Z}_{L}$, define $d_{l}=\max \left\{\left|X_{i_{1}}-X_{i_{2}}\right|:\right.$ $\left.i_{1}, i_{2} \in G_{l}\right\}$. Since g is order- p continuous, for $\boldsymbol{\eta} \sim \boldsymbol{\eta}^{\prime}$ in $\mathcal{G}_{\boldsymbol{a}},\left|g\left(\mathcal{X}_{\boldsymbol{\eta}}\right)-g\left(\mathcal{X}_{\boldsymbol{\eta}^{\prime}}\right)\right| \leq$ $\left(c_{1}+X_{\max }^{p}\right) d^{1 / 2} d_{l}$, and so $\left|g\left(\mathcal{X}_{\boldsymbol{\eta}}\right)-g\left(\mathcal{X}_{\boldsymbol{\eta}^{\prime}}\right)\right|^{2} \leq\left(c_{1}+X_{\max }^{p}\right)^{2} \cdot d \cdot \sum_{j=1}^{d} d_{a_{j}}^{2}$.

Since $U_{o a}$ and \bar{V} always use the same $S_{o a}=\left\{\boldsymbol{\eta}^{1}, \ldots, \boldsymbol{\eta}^{m}\right\}$, we have

$$
E\left(U_{o a}-\bar{V}\right)^{2}=E\left(\frac{1}{m} \sum_{i=1}^{m}\left(g\left(\mathcal{X}_{\boldsymbol{\eta}^{i}}\right)-\bar{g}\left(\mathcal{X}_{\boldsymbol{\eta}^{i}}\right)\right)\right)^{2}
$$

For $\boldsymbol{i}_{1} \neq \boldsymbol{i}_{2}, E\left(g\left(X_{\boldsymbol{\eta}^{i_{1}}}\right)-\bar{g}\left(X_{\boldsymbol{\eta}^{i_{1}}}\right)\right)\left(g\left(X_{\boldsymbol{\eta}^{i_{2}}}\right)-\bar{g}\left(X_{\boldsymbol{\eta}^{i_{2}}}\right)\right)=0$.

$$
\begin{aligned}
E\left(U_{o a}-\bar{V}\right)^{2} & =m^{-2} E \sum_{i=1}^{m}\left(g\left(\mathcal{X}_{\boldsymbol{\eta}^{i}}\right)-\bar{g}\left(\mathcal{X}_{\boldsymbol{\eta}^{i}}\right)\right)^{2} \\
& \leq m^{-2} E \sum_{i=1}^{m}\left(c_{1}+X_{\max }^{p}\right)^{2} \cdot d \cdot \sum_{j=1}^{d} d_{a_{j}^{i}}^{2}
\end{aligned}
$$

Since $\sum_{l=1}^{L} d_{l} \leq 2 X_{\text {max }}$, we have $\sum_{l=1}^{L} d_{l}^{2} \leq 4 X_{\text {max }}^{2}$. Using Lemma 4, we have

$$
\begin{aligned}
E\left(U_{o a}-\bar{V}\right)^{2} & \leq m^{-2} d E\left(\left(c_{1}+X_{\max }^{p}\right)^{2} \sum_{i=1}^{m} \sum_{j=1}^{d} d_{a_{j}^{i}}^{2}\right)=m^{-2} d E\left(\left(c_{1}+X_{\max }^{p}\right)^{2} \sum_{j=1}^{d} \sum_{i=1}^{m} d_{a_{j}^{i}}^{2}\right) \\
& =m^{-2} d E\left(\left(c_{1}+X_{\max }^{p}\right)^{2} \sum_{j=1}^{d} m L^{-1} 4 X_{\max }^{2}\right)=O\left(\frac{1}{m L}(\log n)^{2 p+2}\right)
\end{aligned}
$$

Theorem 7. Suppose (i) The kernel function g is order-p continuous, and (ii) F is light-tailed. For $U_{\text {oa }}$ based on $O A(m, d, L, t)$, we have

$$
\begin{equation*}
\operatorname{MSE}\left(U_{o a}\right)=\operatorname{MSE}\left(U_{0}\right)+\frac{R(t)}{m}+O\left(\frac{(\log n)^{2 p+2}}{m L}\right)+O\left(\frac{1}{n^{2}}\right) . \tag{6.14}
\end{equation*}
$$

Proof. This is the direct result of (6.6), Lemma 1(ii), Lemmas 2 and 5.

Theorem 8. Suppose the kernel function g has uniformly bounded variation. For $U_{o a}$ based on $O A(m, d, L, t)$, we have

$$
\begin{equation*}
\operatorname{MSE}\left(U_{o a}\right)=\operatorname{MSE}\left(U_{0}\right)+\frac{R(t)}{m}+O\left(\frac{1}{m L}\right)+O\left(\frac{1}{n^{2}}\right) . \tag{6.15}
\end{equation*}
$$

Proof. From (6.6), Lemma 1(ii) and Lemma 2, we only need to prove $E\left(U_{o a}-\bar{V}\right)^{2}=$ $O\left(m^{-1} L^{-1}\right)$. First, we introduce some notations that will be used only in the proof of this theorem. Given the order statistic of $\left\{X_{1}, \ldots, X_{n}\right\}$ denoted by $X_{(1)}, \ldots, X_{(n)}$, for $l=1, \ldots, L$ and $\left(x_{2}, \ldots, x_{d}\right) \in R^{d-1}$, define $D\left(l \mid x_{2}, \ldots, x_{k}\right)=\max _{(l-1) n L^{-1}<i_{1}<i_{2} \leq l \cdot n L^{-1}}$ $\left|g\left(X_{\left(i_{1}\right)}, x_{2}, \ldots, x_{k}\right)-g\left(X_{\left(i_{2}\right)}, x_{2}, \ldots, x_{k}\right)\right|$. Since g has uniformly bounded variation, g is bounded, say $|g| \leq M$.

$$
\begin{aligned}
E\left[\left(g\left(\mathcal{X}_{\boldsymbol{\eta}}\right)-g\left(\mathcal{X}_{\boldsymbol{\eta}^{\prime}}\right)\right)^{2} \mid \boldsymbol{\eta} \sim \boldsymbol{\eta}^{\prime}\right] & =L^{-d} \sum_{\boldsymbol{a} \in \mathcal{Z}_{L}^{d}}\left|\mathcal{G}_{\boldsymbol{a}}\right|^{-2} \sum_{\boldsymbol{\eta} \in \mathcal{G}_{\boldsymbol{a}}} \sum_{\boldsymbol{\eta}^{\prime} \in \mathcal{G}_{\boldsymbol{a}}}\left(g\left(\mathcal{X}_{\boldsymbol{\eta}}\right)-g\left(\mathcal{X}_{\boldsymbol{\eta}^{\prime}}\right)\right)^{2} \\
& \leq 2 M L^{-d}\left|\mathcal{G}_{\boldsymbol{a}}\right|^{-2} \sum_{\boldsymbol{a} \in \mathcal{Z}_{L}^{d}} \sum_{\boldsymbol{\eta} \in \mathcal{G}_{\boldsymbol{a}}} \sum_{\boldsymbol{\eta}^{\prime} \in \mathcal{G}_{\boldsymbol{a}}}\left|g\left(\mathcal{X}_{\boldsymbol{\eta}}\right)-g\left(\mathcal{X}_{\boldsymbol{\eta}^{\prime}}\right)\right| .
\end{aligned}
$$

Note that $g\left(\mathcal{X}_{\boldsymbol{\eta}}\right)-g\left(\mathcal{X}_{\boldsymbol{\eta}^{\prime}}\right)$ can be written as the summation of the difference in changing each element of $\mathcal{X}_{\eta}=\left(X_{\eta_{1}}, \ldots, X_{\eta_{d}}\right)$ to $\mathcal{X}_{\eta^{\prime}}=\left(X_{\eta_{1}^{\prime}}, \ldots, X_{\eta_{d}^{\prime}}\right)$ one by one as follows.

$$
\begin{aligned}
& \left|g\left(\mathcal{X}_{\eta}\right)-g\left(\mathcal{X}_{\eta^{\prime}}\right)\right| \\
= & \left|g\left(X_{\eta_{1}}, X_{\eta_{2}}, \cdots\right)-g\left(X_{\eta_{1}^{\prime}}, X_{\eta_{2}}, \cdots\right)\right|+\left|g\left(X_{\eta_{1}^{\prime}}, X_{\eta_{2}}, X_{\eta_{3}}, \cdots\right)-g\left(X_{\eta_{1}^{\prime}}, X_{\eta_{2}^{\prime}}, X_{\eta_{3}}, \cdots\right)\right| \\
+ & \cdots+\mid g\left(X_{\eta_{1}^{\prime}}, X_{\eta_{2}^{\prime}}, X_{\eta_{3}^{\prime}}, \cdots, X_{\eta_{d-1}^{\prime}}, X_{\eta_{d}}\right)-g\left(X_{\eta_{1}^{\prime}}, X_{\eta_{2}^{\prime}}, X_{\eta_{3}^{\prime}}, \cdots, X_{\eta_{d-1}^{\prime}}, X_{\eta_{d}^{\prime}} \mid\right. \\
\leq & D\left(a_{1} \mid X_{\eta_{2}}, \ldots, X_{\eta_{d}}\right)+D\left(a_{2} \mid X_{\eta_{1}^{\prime}}, X_{\eta_{3}}, \ldots, X_{\eta_{d}}\right)+\cdots+D\left(a_{d} \mid X_{\eta_{1}^{\prime}}, X_{\eta_{3}^{\prime}}, \ldots, X_{\eta_{d-1}^{\prime}}\right)
\end{aligned}
$$

For orthogonal arrays, we can separate $\sum_{\boldsymbol{a} \in \mathcal{Z}_{L}^{d}} \sum_{\boldsymbol{\eta} \in \mathcal{G}_{\boldsymbol{a}}} \sum_{\boldsymbol{\eta}^{\prime} \in \mathcal{G}_{\boldsymbol{a}}} D\left(a_{1} \mid X_{\eta_{2}}, \ldots, X_{\eta_{d}}\right)$
into $\left|\mathcal{Z}_{L}^{d}\right|\left|\mathcal{G}_{\boldsymbol{a}}\right|^{2} / L$ groups such that each group contains L elements whose summation is control by the total variation $c>0$. So we have

$$
\sum_{\boldsymbol{a} \in \mathcal{Z}_{L}^{d}} \sum_{\boldsymbol{\eta} \in \mathcal{G}_{\boldsymbol{a}}} \sum_{\boldsymbol{\eta}^{\prime} \in \mathcal{G}_{\boldsymbol{a}}} D\left(a_{1} \mid X_{\eta_{2}}, \ldots, X_{\eta_{d}}\right) \leq c L^{d}\left|\mathcal{G}_{\boldsymbol{a}}\right|^{2} / L
$$

Similarly analyzing the $D\left(a_{2} \mid X_{\eta_{1}^{\prime}}, X_{\eta_{3}}, \ldots, X_{\eta_{d}}\right), \ldots, D\left(a_{d} \mid X_{\eta_{1}^{\prime}}, X_{\eta_{3}^{\prime}}, \ldots, X_{\eta_{d-1}^{\prime}}\right.$, we have $E\left[\left(g\left(\mathcal{X}_{\boldsymbol{\eta}}\right)-g\left(\mathcal{X}_{\boldsymbol{\eta}^{\prime}}\right)\right)^{2} \mid \boldsymbol{\eta} \sim \boldsymbol{\eta}^{\prime}\right]=O\left(L^{-1}\right)$ and so $E\left(U_{o a}-\bar{V}\right)^{2}=O\left(m^{-1} L^{-1}\right)$. Theorem 8 is the direct result of (6.6), Lemma 1(ii), Lemma 2.

Theorem 9. Suppose (i) The kernel function g is a linear combination of some orderp continuous functions and some uniformly bounded-variation functions, and (ii) F is light-tailed. Then (6.14) still holds with $L^{2} \leq n(\log n)^{-1}$.

Proof. This is the direct result of Theorems 7 and 8.

Choosing L and t.

From $\operatorname{Eq}(2.13)$ of Theorem 3 in the manuscript and the relation $m=\lambda L^{t}$, we know that the trade-off between L and t depends on the variance of each component in the Heoffding's decomposition, i.e., $\delta_{j}^{2}, j=1, \ldots, d$. We shall give these variances a estimator $\hat{\delta}_{j}^{2}$. Using $\operatorname{Eq}(2.13)$ with $R(t)$ and $E \gamma^{2}\left(X_{1}, \ldots, X_{d}\right)$ being estimated as a function of $\hat{\delta}_{j}^{2}$, we should choose the combination of L and t which minimizes

$$
\phi(L, t)=\frac{\hat{R}(t)}{m}+\frac{d}{12 m L^{2}} \hat{E} \gamma^{2}\left(X_{1}, \ldots, X_{d}\right)
$$

where $\hat{R}(t)$ and $\hat{E} \gamma^{2}\left(X_{1}, \ldots, X_{d}\right)$ are functions of $\hat{\delta}_{j}^{2}$'s.

Now we provide two methods for generating $\hat{\delta}_{j}^{2}$. (1) When the Heoffding's decomposition is easy to calculate, one can write down the analytical expression and give a direct estimation of δ_{j}^{2} 's. (2) We can use a bootstrap approach for $\hat{\delta}_{j}^{2}$'s. With a small sample size $n^{\prime} \ll n$, it is easy to bootstrap $\operatorname{MSE}\left(U_{0}\right)$ (the complete U-statistic). For details of the bootstrap approach, we may refer to Marie Huskova and Paul Janssen (1993a,b). Now, let us review the formula of $\operatorname{MSE}\left(U_{0}\right)$:

$$
\operatorname{MSE}\left(U_{0}\right)=\binom{n}{d}^{-1} \sum_{j=1}^{d}\binom{d}{j}\binom{n-d}{d-j} \sigma_{j}^{2}=\sum_{j=1}^{d}\binom{d}{j}^{2}\binom{n}{j}^{-1} \delta_{j}^{2}
$$

Usually, with at most d different $n^{\prime}(>d)$, we can generate linear equations of δ_{j}^{2} based on the d different $\widehat{\operatorname{MSE}}\left(U_{0}\right)$ based on the bootstrap approach. And the solution of these linear equations can be used as the estimation of $\hat{\delta}_{j}^{2}$'s.

For the second method, we now use the setup in Example 1 for illustration. For convenience, we set $n=10^{4}$ and $m=10^{6}$. The two choices of the combination of L and t is $(L=100, t=3)$ and $(L=1000, t=2)$. We use bootstrap method to estimate the variance of the complete U-statistic with $n^{\prime}=4,5,6$. The subsample size n^{\prime} is so small that the computational burden of the bootstrapped complete U-statistic, i.e., $\binom{n^{\prime}}{3}$ is negligible. Simulation reveals that $\hat{\delta}_{1}=0.0557, \hat{\delta}_{2}=0.00217$ and $\hat{\delta}_{3}=1.06257$. Simple analysis reveals that $t=3$ shall work better than $t=2$, which is verified by the simulation result. Actually, with $m=10^{6}$, the efficiency of $U_{o a}$ is 100.0% when $t=3$ and 97.88% when $t=2$.

Examples for multi-sample and multi-dimensional cases. Consider

the multi-sample case. Suppose $d_{1}=d_{2}=2, n_{1}=n_{2}=9$ and the two samples are

$$
\begin{aligned}
& X_{6}^{(1)} \leq X_{8}^{(1)} \leq X_{2}^{(1)} \leq X_{4}^{(1)} \leq X_{7}^{(1)} \leq X_{5}^{(1)} \leq X_{3}^{(1)} \leq X_{9}^{(1)} \leq X_{1}^{(1)} . \\
& X_{2}^{(2)} \leq X_{7}^{(2)} \leq X_{3}^{(2)} \leq X_{6}^{(2)} \leq X_{1}^{(2)} \leq X_{4}^{(2)} \leq X_{5}^{(2)} \leq X_{9}^{(2)} \leq X_{8}^{(2)}
\end{aligned}
$$

Then we have $L=3$ groups listed as $G_{1}^{(1)}=\{6,8,2\}, G_{2}^{(1)}=\{4,7,5\}, G_{3}^{(1)}=\{3,9,1\}$ and $G_{1}^{(2)}=\{2,7,3\}, G_{2}^{(2)}=\{6,1,4\}, G_{3}^{(2)}=\{5,9,8\}$. An example of $O A(m=9, d=$ $4, L=3, t=2$) in step 1 is given as follows in transpose.

$$
A^{T}=\left(\begin{array}{lllllllll}
1 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 3 \\
1 & 2 & 3 & 1 & 2 & 3 & 1 & 2 & 3 \\
1 & 2 & 3 & 2 & 3 & 1 & 3 & 1 & 2 \\
1 & 2 & 3 & 3 & 1 & 2 & 2 & 3 & 1
\end{array}\right)
$$

Then we could possibly have the $\mathcal{X}_{\eta^{i}}, i=1, \ldots, 9$, used in the construction of 9-run multi-sample construction as follows.

$$
\left\{\mathcal{X}_{\eta^{1}}, \ldots, \mathcal{X}_{\eta^{9}}\right\}=\left\{\begin{array}{ccccccccc}
X_{8}^{(1)} & X_{2}^{(1)} & X_{6}^{(1)} & X_{4}^{(1)} & X_{4}^{(1)} & X_{5}^{(1)} & X_{9}^{(1)} & X_{1}^{(1)} & X_{9}^{(1)} \\
X_{6}^{(1)} & X_{7}^{(1)} & X_{3}^{(1)} & X_{8}^{(1)} & X_{7}^{(1)} & X_{1}^{(1)} & X_{6}^{(1)} & X_{7}^{(1)} & X_{3}^{(1)} \\
X_{7}^{(2)} & X_{1}^{(2)} & X_{5}^{(2)} & X_{4}^{(2)} & X_{8}^{(2)} & X_{3}^{(2)} & X_{9}^{(2)} & X_{2}^{(2)} & X_{6}^{(2)} \\
X_{3}^{(2)} & X_{6}^{(2)} & X_{9}^{(2)} & X_{5}^{(2)} & X_{3}^{(2)} & X_{1}^{(2)} & X_{6}^{(2)} & X_{8}^{(2)} & X_{3}^{(2)}
\end{array}\right\}
$$

Consider the multi-dimensional case. Suppose $X_{1}=(1.0,3.2), X_{2}=(0.9,1.0)$, $X_{3}=(0.9,3.1), X_{4}=(0.8,2.1), X_{5}=(0.7,2.2), X_{6}=(0.9,1.2), X_{7}=(0.9,1.9)$, $X_{8}=(0.8,1.1), X_{9}=(0.9,2.8)$. Simple clustering methods reveal $G_{1}=\{6,8,2\}, G_{2}=$ $\{4,7,5\}, G_{3}=\{3,9,1\}$. The choosing of $\eta^{i}, i=1, \ldots, 9$, might be the same as (2.9).

