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Generalization of Theorem 2.

The following conditions on g or F will be needed by Theorem 2 in Section 2 and

Theorems 7–9 in this section.

(g.1) Lipschitz continuous: The function, g : Rd → R, is said to be Lipschitz continuous

if there exists a constant c > 0 such that |g(a1) − g(a2)| ≤ c||a1 − a2||2 for any

a1, a2 ∈ Rd. Example: First-order polynomial functions.

(g.2) Order-p continuous: The function, g : Rd → R, is said to be order-p continuous

if there exists a constant c > 0 and φp(a1− a2) ≤ c+ maxp(||a1||2, ||a2||2) for any

a1, a2 ∈ Rd such that |g(a1)− g(a2)| ≤ φ(a1, a2)||a1 − a2||2 for any a1, a2 ∈ Rd.

Example: All polynomial functions.

(g.3) Uniformly bounded-variation: For a real valued function f : R → R, the total

variation of f is defined as VR(f) = supp>0 sup−∞<c1,...,cp<∞
∑p−1

i=1 |f(ci+1)−f(ci)|.

The function, g : Rd → R, is said to be uniformly bounded-variation if there exists

a constant c > 0 such that VR(g(·, x2, . . . , xd)) < c for any (x2, . . . , xd) ∈ Rd−1.

Example: Linear combinations of sign functions, e.g. g(x1, x2) = sign(x1x2) +
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sign(x1 + x2).

(F ) Light-tailed distribution: The distribution of a random variable X is said to be

light-tailed if there exists constants c, c1 > 0 such that P (|X| > x) ≤ e−cx for all

x > c1. Example: Normal distribution, exponential distribution, and truncated

distributions.

Lemma 4. Suppose F is light-tailed. Let Xmax = max{|X1|, . . . , |Xn|}. Then, for

arbitrary a > 0 with n→∞, we have

EXa
max = O(log n)a.

Proof. Since the distribution is light-tailed, we have P (|X| > x) ≤ e−cx for any |x| > c0,

where c and c0 are two fixed positive numbers.

E(Xmax)
a =

∫

x>0

axa−1P (Xmax > x)dx

≤
∫ 2c−1 logn

0

axa−1dx+

∫ ∞

2c−1 logn

axa−1P (Xmax > x)dx

= O(log n)a +

∫ ∞

2c−1 logn

axa−1P (Xmax > x)dx

= O(log n)a +

∫ ∞

2c−1 logn

axa−1ne−cxdx = O(log n)a +O(1). �

Lemma 5. Suppose (i) g is order-p continuous, and (ii) F is light-tailed. We have

E(Uoa − V̄ )2 = O

(
1

mL
(log n)2p+2

)
.
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Proof. Let Xmax = max{|X1|, . . . , |Xn|}. For l ∈ ZL, define dl = max{|Xi1 − Xi2| :

i1, i2 ∈ Gl}. Since g is order-p continuous, for η ∼ η′ in Ga, |g(Xη) − g(Xη′)| ≤

(c1 +Xp
max)d

1/2dl, and so |g(Xη)− g(Xη′)|2 ≤ (c1 +Xp
max)

2 · d ·∑d
j=1 d

2
aj

.

Since Uoa and V̄ always use the same Soa = {η1, . . . ,ηm}, we have

E(Uoa − V̄ )2 = E

(
1

m

m∑

i=1

(g(Xηi)− ḡ(Xηi))
)2

.

For i1 6= i2, E(g(Xηi1 )− ḡ(Xηi1 ))(g(Xηi2 )− ḡ(Xηi2 )) = 0.

E(Uoa − V̄ )2 = m−2E
m∑

i=1

(g(Xηi)− ḡ(Xηi))2

≤ m−2E
m∑

i=1

(c1 +Xp
max)

2 · d ·
d∑

j=1

d2aij

Since
∑L

l=1 dl ≤ 2Xmax, we have
∑L

l=1 d
2
l ≤ 4X2

max. Using Lemma 4, we have

E(Uoa − V̄ )2 ≤ m−2dE

(
(c1 +Xp

max)
2

m∑

i=1

d∑

j=1

d2aij

)
= m−2dE

(
(c1 +Xp

max)
2

d∑

j=1

m∑

i=1

d2aij

)

= m−2dE

(
(c1 +Xp

max)
2

d∑

j=1

mL−14X2
max

)
= O

(
1

mL
(log n)2p+2

)
. �

Theorem 7. Suppose (i) The kernel function g is order-p continuous, and (ii) F is

light-tailed. For Uoa based on OA(m, d, L, t), we have

MSE(Uoa) = MSE(U0) +
R(t)

m
+O

(
(log n)2p+2

mL

)
+O

(
1

n2

)
. (6.14)

Proof. This is the direct result of (6.6), Lemma 1(ii), Lemmas 2 and 5. �
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Theorem 8. Suppose the kernel function g has uniformly bounded variation. For Uoa

based on OA(m, d, L, t), we have

MSE(Uoa) = MSE(U0) +
R(t)

m
+O

(
1

mL

)
+O

(
1

n2

)
. (6.15)

Proof. From (6.6), Lemma 1(ii) and Lemma 2, we only need to prove E(Uoa − V̄ )2 =

O(m−1L−1). First, we introduce some notations that will be used only in the proof of

this theorem. Given the order statistic of {X1, . . . , Xn} denoted by X(1), . . . , X(n), for

l = 1, . . . , L and (x2, . . . , xd) ∈ Rd−1, define D(l|x2, . . . , xk) = max(l−1)nL−1<i1<i2≤l·nL−1

|g(X(i1), x2, . . . , xk) − g(X(i2), x2, . . . , xk)|. Since g has uniformly bounded variation, g

is bounded, say |g| ≤M .

E[(g(Xη)− g(Xη′))2|η ∼ η′] = L−d
∑

a∈ZdL

|Ga|−2
∑

η∈Ga

∑

η′∈Ga
(g(Xη)− g(Xη′))2

≤ 2ML−d|Ga|−2
∑

a∈ZdL

∑

η∈Ga

∑

η′∈Ga
|g(Xη)− g(Xη′)|.

Note that g(Xη)−g(Xη′) can be written as the summation of the difference in changing

each element of Xη = (Xη1 , . . . , Xηd) to Xη′ = (Xη′1 , . . . , Xη′d
) one by one as follows.

|g(Xη)− g(Xη′)|

= |g(Xη1 , Xη2 , · · · )− g(Xη′1 , Xη2 , · · · )|+ |g(Xη′1 , Xη2 , Xη3 , · · · )− g(Xη′1 , Xη′2 , Xη3 , · · · )|

+ · · ·+ |g(Xη′1 , Xη′2 , Xη′3 , · · · , Xη′d−1
, Xηd)− g(Xη′1 , Xη′2 , Xη′3 , · · · , Xη′d−1

, Xη′d
)|

≤ D(a1|Xη2 , . . . , Xηd) +D(a2|Xη′1 , Xη3 , . . . , Xηd) + · · ·+D(ad|Xη′1 , Xη′3 , . . . , Xη′d−1
)

For orthogonal arrays, we can separate
∑
a∈ZdL

∑
η∈Ga

∑
η′∈Ga D(a1|Xη2 , . . . , Xηd)
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into |ZdL||Ga|2/L groups such that each group contains L elements whose summation is

control by the total variation c > 0. So we have

∑

a∈ZdL

∑

η∈Ga

∑

η′∈Ga
D(a1|Xη2 , . . . , Xηd) ≤ cLd|Ga|2/L.

Similarly analyzing the D(a2|Xη′1 , Xη3 , . . . , Xηd), . . ., D(ad|Xη′1 , Xη′3 , . . . , Xη′d−1
, we have

E[(g(Xη)− g(Xη′))2|η ∼ η′] = O(L−1) and so E(Uoa − V̄ )2 = O(m−1L−1). Theorem 8

is the direct result of (6.6), Lemma 1(ii), Lemma 2. �

Theorem 9. Suppose (i) The kernel function g is a linear combination of some order-

p continuous functions and some uniformly bounded-variation functions, and (ii) F is

light-tailed. Then (6.14) still holds with L2 ≤ n(log n)−1.

Proof. This is the direct result of Theorems 7 and 8.

Choosing L and t.

From Eq(2.13) of Theorem 3 in the manuscript and the relation m = λLt, we

know that the trade-off between L and t depends on the variance of each component

in the Heoffding’s decomposition, i.e., δ2j , j = 1, . . . , d. We shall give these variances

a estimator δ̂2j . Using Eq(2.13) with R(t) and Eγ2(X1, . . . , Xd) being estimated as a

function of δ̂2j , we should choose the combination of L and t which minimizes

φ(L, t) =
R̂(t)

m
+

d

12mL2
Êγ2(X1, . . . , Xd),

where R̂(t) and Êγ2(X1, . . . , Xd) are functions of δ̂2j ’s.
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Now we provide two methods for generating δ̂2j . (1) When the Heoffding’s decom-

position is easy to calculate, one can write down the analytical expression and give a

direct estimation of δ2j ’s. (2) We can use a bootstrap approach for δ̂2j ’s. With a small

sample size n′ � n, it is easy to bootstrap MSE(U0) (the complete U-statistic). For

details of the bootstrap approach, we may refer to Marie Huskova and Paul Janssen

(1993a,b). Now, let us review the formula of MSE(U0):

MSE(U0) =

(
n

d

)−1 d∑

j=1

(
d

j

)(
n− d
d− j

)
σ2
j =

d∑

j=1

(
d

j

)2(
n

j

)−1
δ2j .

Usually, with at most d different n′(> d), we can generate linear equations of δ2j based

on the d different M̂SE(U0) based on the bootstrap approach. And the solution of these

linear equations can be used as the estimation of δ̂2j ’s.

For the second method, we now use the setup in Example 1 for illustration. For

convenience, we set n = 104 and m = 106. The two choices of the combination of L

and t is (L = 100, t = 3) and (L = 1000, t = 2). We use bootstrap method to estimate

the variance of the complete U-statistic with n′ = 4, 5, 6. The subsample size n′ is

so small that the computational burden of the bootstrapped complete U-statistic, i.e.,

(
n′

3

)
is negligible. Simulation reveals that δ̂1 = 0.0557, δ̂2 = 0.00217 and δ̂3 = 1.06257.

Simple analysis reveals that t = 3 shall work better than t = 2, which is verified by the

simulation result. Actually, with m = 106, the efficiency of Uoa is 100.0% when t = 3

and 97.88% when t = 2.

Examples for multi-sample and multi-dimensional cases. Consider
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the multi-sample case. Suppose d1 = d2 = 2, n1 = n2 = 9 and the two samples are

X
(1)
6 ≤ X

(1)
8 ≤ X

(1)
2 ≤ X

(1)
4 ≤ X

(1)
7 ≤ X

(1)
5 ≤ X

(1)
3 ≤ X

(1)
9 ≤ X

(1)
1 .

X
(2)
2 ≤ X

(2)
7 ≤ X

(2)
3 ≤ X

(2)
6 ≤ X

(2)
1 ≤ X

(2)
4 ≤ X

(2)
5 ≤ X

(2)
9 ≤ X

(2)
8 .

Then we have L = 3 groups listed as G
(1)
1 = {6, 8, 2}, G(1)

2 = {4, 7, 5}, G(1)
3 = {3, 9, 1}

and G
(2)
1 = {2, 7, 3}, G(2)

2 = {6, 1, 4}, G(2)
3 = {5, 9, 8}. An example of OA(m = 9, d =

4, L = 3, t = 2) in step 1 is given as follows in transpose.

AT =




1 1 1 2 2 2 3 3 3

1 2 3 1 2 3 1 2 3

1 2 3 2 3 1 3 1 2

1 2 3 3 1 2 2 3 1




.

Then we could possibly have the Xηi , i = 1, . . . , 9, used in the construction of 9-run

multi-sample construction as follows.

{Xη1 , . . . ,Xη9} =





X
(1)
8 X

(1)
2 X

(1)
6 X

(1)
4 X

(1)
4 X

(1)
5 X

(1)
9 X

(1)
1 X

(1)
9

X
(1)
6 X

(1)
7 X

(1)
3 X

(1)
8 X

(1)
7 X

(1)
1 X

(1)
6 X

(1)
7 X

(1)
3

X
(2)
7 X

(2)
1 X

(2)
5 X

(2)
4 X

(2)
8 X

(2)
3 X

(2)
9 X

(2)
2 X

(2)
6

X
(2)
3 X

(2)
6 X

(2)
9 X

(2)
5 X

(2)
3 X

(2)
1 X

(2)
6 X

(2)
8 X

(2)
3





.

Consider the multi-dimensional case. Suppose X1 = (1.0, 3.2), X2 = (0.9, 1.0),

X3 = (0.9, 3.1), X4 = (0.8, 2.1), X5 = (0.7, 2.2), X6 = (0.9, 1.2), X7 = (0.9, 1.9),

X8 = (0.8, 1.1), X9 = (0.9, 2.8). Simple clustering methods reveal G1 = {6, 8, 2}, G2 =

{4, 7, 5}, G3 = {3, 9, 1}. The choosing of ηi, i = 1, . . . , 9, might be the same as (2.9).
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