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S1 Proof of Proposition 1

For part 1, note that E(ε) = 0 because E(x) = 0 and ε = x − PBx.

All we need to show is that the LCM condition holds if and only if E(ε |

BTx) = 0. For the “only if” part, suppose the LCM condition holds.

The LCM condition guarantees that E(x | BTx) = PBx. Also note that

E(PBx | BTx) = PBx because PBx is a function of BTx. Thus E(ε |

BTx) = E(x | BTx)−PBx = 0. For the “if” part, suppose E(ε | BTx) = 0.

Then 0 = E{(x − PBx) | BTx} = E(x | BTx) − PBx. It follows that

E(x | BTx) = PBx, which is a linear function of BTx.

From the definition of ζ = {εT, (ε⊗ ε)T}T and the result of part 1, the
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statement in part 2 is equivalent to the following: under the LCM condition,

the CCV condition holds if and only if E(ε⊗ ε | BTx) = E(ε⊗ ε). By the

property of the kronecker product, E(ε⊗ε | BTx) = E(ε⊗ε) is equivalent

to E(εεT | BTx) = E(εεT). It remains to show that under the LCM

condition, the CCV condition holds if and only if E(εεT | BTx) = E(εεT).

For the “only if” part, suppose var(x | BTx) is constant. Then

var(x | BTx) = E{var(x | BTx)} = var(x)− var{E(x | BTx)}

= Ip −PB = QB. (S1.1)

Here the first equality is true because var(x | BTx) is constant. The second

equality follows from the EV-VE formula. The third equality is true because

var(x) = Ip, var{E(x | BTx)} = var(PBx), and PB is idempotent. The

last equality is from the definition of QB. Under the LCM condition, we

have ε = x−PBx = x−E(x | BTx). The definition of conditional variance

leads to

E(εεT | BTx) = E[{x− E(x | BTx)}{x− E(x | BTx)}T | BTx]

= var(x | BTx). (S1.2)

On the other hand, note that ε = x−PBx = (Ip−PB)x = QBx. It follows

that

E(εεT) = QBvar(x)QB = QBQB = QB. (S1.3)
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(S1.1), (S1.2), and (S1.3) together imply that E(εεT | BTx) = E(εεT). For

the “if” part, suppose E(εεT | BTx) = E(εεT). Under the LCM condition,

both (S1.2) and (S1.3) are true. Together they imply var(x | BTx) = QB

is a constant matrix. �

S2 Proof of Proposition 2

The proof is similar to Theorem 1 of Shao and Zhang (2014), and is thus

omitted. �

S3 Proof of Theorem 1

For part 1, define ξn(s) = n−1
∑n

j=1 ε̂j exp(isTB̂Txj) and φn(s) = n1/2ξn(s).

From the proof of Theorem 4 in Shao and Zhang (2014), we have nω̂n =

‖φn(s)‖2. It remains to show that ‖φn(s)‖2 d→ ||φ(s)||2 as n → ∞. First

we have

exp(isTB̂Txj) = cos(sTB̂Txj) + i sin(sTB̂Txj). (S3.4)

Let θ1 = sTB̂Txj, θ2 = sTBTxj, and θ3 = sT(B̂−B)Txj. Because B̂−B =

Op(n
−1/2), we have θ3 = Op(n

−1/2). Note that cos θ =
∑∞

j=0{j(2j)!}−1θ2j



T. Zhou, Y. Dong, and L. Zhu

and sin θ =
∑∞

j=0{j(2j + 1)!}−1θ2j+1 for any θ ∈ R. It follows that

cos θ3 = 1 + op(n
−1/2) and sin θ3 = θ3 + op(n

−1/2). (S3.5)

Note that θ1 = θ2 + θ3. By the angle sum identities, we have cos θ1 =

cos θ2 cos θ3 − sin θ2 sin θ3 and sin θ1 = sin θ2 cos θ3 + cos θ2 sin θ3. Together

with (S3.4) and (S3.5), we obtain

exp(iθ1) = cos θ2 − θ3 sin θ2 + i(sin θ2 + θ3 cos θ2) + op(n
−1/2)

= exp(iθ2) + θ3(− sin θ2 + i cos θ2) + op(n
−1/2).

Plug in θ1 = sTB̂Txj, θ2 = sTBTxj, θ3 = sT(B̂−B)Txj, and we get

exp(isTB̂Txj) = exp(isTBTxj) + {i cos(sTBTxj)− sin(sTBTxj)}

sT(B̂−B)Txj + op(n
−1/2),

where the second term above is of order Op(n
−1/2). On the other hand,

ε̂j = (Ip −PB̂)xj = (Ip −PB)xj + (PB −PB̂)xj = εj + (PB −PB̂)xj,

where (PB−PB̂)xj = Op(n
−1/2). Together with the definition of φn(s), we

have

φn(s) = n−1/2
n∑

j=1

ε̂j exp(isTB̂Txj)

= φ(1)
n (s) + φ(2)

n (s) + φ(3)
n (s) + op(1), (S3.6)

where φ(1)
n (s) = n−1/2

∑n
j=1 εj exp(isTBTxj), φ

(2)
n (s) = n−1/2(PB−PB̂)

∑n
j=1

xj exp(isTBTxj), and φ(3)
n (s) = n−1/2

∑n
j=1 εj{i cos(sTBTxj)−sin(sTBTxj)}
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sT(B̂−B)Txj. Because PB̂−PB = n−1
∑n

j=1 `2(xj, Yj) + op(n
−1/2), φ(2)

n (s)

becomes

φ(2)
n (s) = n−1/2E {x exp(isTBTx)}

n∑
j=1

`2(xj, Yj) + op(1). (S3.7)

Because B̂−B = n−1
∑n

i=1 `1(xi, Yi) + op(n
−1/2), φ(3)

n (s) becomes

φ(3)
n (s) = n−1/2E [ε{i cos(sTBTx)− sin(sTBTx)}xT]

{
n∑

j=1

`1(xj, Yj)

}
s

+ op(1). (S3.8)

Recall that g(s) = E {x exp(isTBTx)} and h(s) = E[ε{i cos(sTBTx) −

sin(sTBTx)}xT]. (S3.6), (S3.7), and (S3.8) together lead to

φn(s) = n−1/2
n∑

j=1

`3(xj, Yj, s) + op(1), (S3.9)

where `3(xj, Yj, s) = εj exp(isTBTxj)−`2(xj, Yj)g(s)+h(s)`1(xj, Yj)s. Un-

der H0, we have E(ε | BTx) = 0. Thus E{ε exp(isTBTx)} = E{E(ε |

BTx) exp(isTBTx)} = 0. Also E{`k(x, Y )} = 0 for k = 1, 2. Take expecta-

tion on both sides of (S3.9),

E{φn(s)} = 0 as n→∞. (S3.10)

For covφn
(s, s0) = cov

{
φn(s),φn(s0)

}
, covφn

(s, s0) = E
{
φn(s)φn(s0)

T
}

as n→∞. Because (xj, Yj)⊥⊥(xk, Yk) for j 6= k and E{`3(x, Y, s)} = 0,

E

{
n∑

j=1

n∑
k=1

`3(xj, Yj, s)`3(xk, Yk, s0)

}
= E

{
n∑

j=1

`3(xj, Yj, s)`3(xj, Yj, s0)

}
.
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Thus as n→∞, we have

covφn
(s, s0) = n−1E

{
n∑

j=1

`3(xj, Yj, s)`3(xj, Yj, s0)

}
= E

{
`3(x, Y, s)`3(x, Y, s0)

}
(S3.11)

Note that exp(isT

0B
Tx) = exp(−isT

0B
Tx), g(s0) = g(−s0), and h(s0) =

h(−s0). We have `3(x, Y, s0) = ε exp(−isT

0B
Tx)− `2(x, Y )g(−s0) + h(−s0)

`1(x, Y )s0. Plug them into (S3.11), together with the definition of covφ(s, s0),

we have

covφn
(s, s0) = covφ(s, s0) as n→∞. (S3.12)

From (S3.10) and (S3.12), we know the two complex-valued Gaussian pro-

cesses φn(s) and φ(s) have the same mean function and the same covariance

function as n→∞. From the proof of Theorem 5 and Corollary 2 in Székely

et al. (2007), we know ||φn(s)||2 d→ ||φ(s)||2 as n goes to infinity.

Now we turn to part 2. First note that ω̂n
p→ m(ε | BTx) as n goes

to infinity. Under H1 : E(ε | BTx) 6= E(ε) almost surely, m(ε | BTx) > 0

according to Proposition 1. Thus nω̂n
p→∞ under H1. �
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S4 Proof of Theorem 2

From Theorem 1, we have nω̂n
d→ ||φ(s)||2. Recall that B̂(t) is an estimator

of B based on {(x(t)
j , Yj) : j = 1, . . . , n}. Let φ(t)

n (s) = n1/2ξ(t)n (s), where

ξ(t)n (s) = n−1
∑n

j=1 ε̂
(t)
j exp

{
isT(B̂(t))Tx

(t)
j

}
. Then nω̂

(t)
n = ‖φ(t)

n (s)‖2. Fol-

lowing the proof of Theorem 1, where B and B̂ are replaced by B̂ and B̂(t)

respectively, we have ||φ(t)
n (s)||2 d→ ||φ∗(s)||2 as long as E(x∗ | B̂Tx∗) = 0.

If we have the additional condition that covφ∗(s, s0) = covφ(s, s0), then

||φ∗(s)||2 = ||φ(s)||2 and we get the desired result. It remains to show that

(i) E(x∗ | B̂Tx∗) = 0 as n→∞, and (ii) covφ∗(s, s0) = covφ(s, s0).

Because x∗ = PB̂x + W ∗QB̂x, we have E(x∗) = 0 = E(x). Note that

x∗(x∗)T = PB̂xxTPB̂ + (W ∗)2QB̂xxTQB̂ +W ∗PB̂xxTQB̂ +W ∗QB̂xxTPB̂.

Because var(x) = Ip, QB̂PB̂ = 0, E{(W ∗)2} = 1 and W ∗⊥⊥x, we have

var(x∗) = E{x∗(x∗)T} = PB̂ + QB̂ = Ip = var(x). Thus (ii) is true from

condition (C3).

Define ψ(B)
def

= E(QBε
∗ | PBx∗) and ψ(B̂)

def

= E(QB̂ε
∗ | PB̂x∗), where

B̂ can be any consistent estimator of B. We thus have ψ(B) − ψ(B̂) =

ψ′(κ)(B− B̂) where κ is between B and B̂. According to condition (C4),

ψ′(κ) is bounded and for any C > 0 we have Pr(||B̂−B||max ≤ Cn−1/2)→ 1,

where ||A||max
def

= max{| aij |} for any matrix A. Besides, we write E(QB̂ε
∗ |
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PB̂x∗)

= E(QB̂ε
∗ | PB̂x∗, ||B̂−B||max ≤ Cn−1/2)Pr(||B̂−B||max ≤ Cn−1/2)

+ E(QB̂ε
∗ | PB̂x∗, ||B̂−B||max > Cn−1/2)Pr(||B̂−B||max > Cn−1/2),

together with the fact that

sup
||B̂−B||max≤Cn−1/2

E(QB̂ε
∗ | PB̂x∗)→ E(QBε

∗ | PBx∗)→ 0,

and

Pr(||B̂−B||max > Cn−1/2)→ 0,

thus we have E(QB̂ε
∗ | PB̂x∗, ||B̂ − B||max ≤ Cn−1/2) → 0 and Pr(||B̂ −

B||max > Cn−1/2) → 0. Combing the above results, we have E(QB̂ε
∗ |

PB̂x∗)→ 0 and (i) is true. This completes the proof of Theorem 2. �
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