Testing the Linear Mean and Constant Variance

Conditions in Sufficient Dimension Reduction

Zhejiang University of Finance and Economics ${ }^{1}$, Temple University ${ }^{2}$ and Renmin University of China ${ }^{3}$

Supplementary Material

This supplement contains the proofs of Propositions 1 and 2 and Theorems 1 and 2 .

S1 Proof of Proposition 1

For part 1, note that $E(\varepsilon)=\mathbf{0}$ because $E(\mathbf{x})=\mathbf{0}$ and $\varepsilon=\mathbf{x}-\mathbf{P}_{\mathbf{B}} \mathbf{x}$. All we need to show is that the LCM condition holds if and only if $E(\varepsilon \mid$ $\left.\mathbf{B}^{\mathrm{T}} \mathbf{x}\right)=\mathbf{0}$. For the "only if" part, suppose the LCM condition holds. The LCM condition guarantees that $E\left(\mathbf{x} \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)=\mathbf{P}_{\mathbf{B}} \mathbf{x}$. Also note that $E\left(\mathbf{P}_{\mathbf{B}} \mathbf{x} \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)=\mathbf{P}_{\mathbf{B}} \mathbf{x}$ because $\mathbf{P}_{\mathbf{B}} \mathbf{x}$ is a function of $\mathbf{B}^{\mathrm{T}} \mathbf{x}$. Thus $E(\varepsilon \mid$ $\left.\mathbf{B}^{\mathrm{T}} \mathbf{x}\right)=E\left(\mathbf{x} \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)-\mathbf{P}_{\mathbf{B}} \mathbf{x}=\mathbf{0}$. For the "if" part, suppose $E\left(\boldsymbol{\varepsilon} \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)=\mathbf{0}$.

Then $\mathbf{0}=E\left\{\left(\mathbf{x}-\mathbf{P}_{\mathbf{B}} \mathbf{x}\right) \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right\}=E\left(\mathbf{x} \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)-\mathbf{P}_{\mathbf{B}} \mathbf{x}$. It follows that $E\left(\mathbf{x} \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)=\mathbf{P}_{\mathbf{B}} \mathbf{x}$, which is a linear function of $\mathbf{B}^{\mathrm{T}} \mathbf{x}$.

From the definition of $\boldsymbol{\zeta}=\left\{\boldsymbol{\varepsilon}^{\mathrm{T}},(\boldsymbol{\varepsilon} \otimes \boldsymbol{\varepsilon})^{\mathrm{T}}\right\}^{\mathrm{T}}$ and the result of part 1, the
statement in part 2 is equivalent to the following: under the LCM condition, the CCV condition holds if and only if $E\left(\varepsilon \otimes \varepsilon \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)=E(\varepsilon \otimes \varepsilon)$. By the property of the kronecker product, $E\left(\varepsilon \otimes \varepsilon \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)=E(\varepsilon \otimes \varepsilon)$ is equivalent to $E\left(\varepsilon \varepsilon^{\mathrm{T}} \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)=E\left(\varepsilon \varepsilon^{\mathrm{T}}\right)$. It remains to show that under the LCM condition, the CCV condition holds if and only if $E\left(\varepsilon \varepsilon^{\mathrm{T}} \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)=E\left(\varepsilon \varepsilon^{\mathrm{T}}\right)$.

For the "only if" part, suppose $\operatorname{var}\left(\mathbf{x} \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)$ is constant. Then

$$
\begin{align*}
\operatorname{var}\left(\mathbf{x} \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right) & =E\left\{\operatorname{var}\left(\mathbf{x} \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)\right\}=\operatorname{var}(\mathbf{x})-\operatorname{var}\left\{E\left(\mathbf{x} \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)\right\} \\
& =\mathbf{I}_{p}-\mathbf{P}_{\mathbf{B}}=\mathbf{Q}_{\mathbf{B}} \tag{S1.1}
\end{align*}
$$

Here the first equality is true because $\operatorname{var}\left(\mathbf{x} \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)$ is constant. The second equality follows from the EV-VE formula. The third equality is true because $\operatorname{var}(\mathbf{x})=\mathbf{I}_{p}, \operatorname{var}\left\{E\left(\mathbf{x} \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)\right\}=\operatorname{var}\left(\mathbf{P}_{\mathbf{B}} \mathbf{x}\right)$, and $\mathbf{P}_{\mathbf{B}}$ is idempotent. The last equality is from the definition of $\mathbf{Q}_{\mathbf{B}}$. Under the LCM condition, we have $\varepsilon=\mathbf{x}-\mathbf{P}_{\mathbf{B}} \mathbf{x}=\mathbf{x}-E\left(\mathbf{x} \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)$. The definition of conditional variance leads to

$$
\begin{align*}
E\left(\varepsilon \varepsilon^{\mathrm{T}} \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right) & =E\left[\left\{\mathbf{x}-E\left(\mathbf{x} \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)\right\}\left\{\mathbf{x}-E\left(\mathbf{x} \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)\right\}^{\mathrm{T}} \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right] \\
& =\operatorname{var}\left(\mathbf{x} \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right) \tag{S1.2}
\end{align*}
$$

On the other hand, note that $\boldsymbol{\varepsilon}=\mathbf{x}-\mathbf{P}_{\mathbf{B}} \mathbf{x}=\left(\mathbf{I}_{p}-\mathbf{P}_{\mathbf{B}}\right) \mathbf{x}=\mathbf{Q}_{\mathbf{B}} \mathbf{x}$. It follows that

$$
\begin{equation*}
E\left(\varepsilon \varepsilon^{\mathrm{T}}\right)=\mathrm{Q}_{\mathrm{B}} \operatorname{var}(\mathbf{x}) \mathrm{Q}_{\mathrm{B}}=\mathrm{Q}_{\mathrm{B}} \mathrm{Q}_{\mathrm{B}}=\mathrm{Q}_{\mathrm{B}} \tag{S1.3}
\end{equation*}
$$

(S1.1), (S1.2), and (S1.3) together imply that $E\left(\varepsilon \varepsilon^{\mathrm{T}} \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)=E\left(\varepsilon \varepsilon^{\mathrm{T}}\right)$. For the "if" part, suppose $E\left(\varepsilon \varepsilon^{\mathrm{T}} \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)=E\left(\varepsilon \varepsilon^{\mathrm{T}}\right)$. Under the LCM condition, both (S1.2) and (S1.3) are true. Together they imply $\operatorname{var}\left(\mathbf{x} \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)=\mathbf{Q}_{\mathbf{B}}$ is a constant matrix.

S2 Proof of Proposition 2

The proof is similar to Theorem 1 of Shao and Zhang (2014), and is thus omitted.

S3 Proof of Theorem 1

For part 1, define $\boldsymbol{\xi}_{n}(\mathbf{s})=n^{-1} \sum_{j=1}^{n} \widehat{\boldsymbol{\varepsilon}}_{j} \exp \left(i \mathbf{s}^{\mathrm{T}} \widehat{\mathbf{B}}^{\mathrm{T}} \mathbf{x}_{j}\right)$ and $\boldsymbol{\phi}_{n}(\mathbf{s})=n^{1 / 2} \boldsymbol{\xi}_{n}(\mathbf{s})$. From the proof of Theorem 4 in Shao and Zhang (2014), we have $n \widehat{\omega}_{n}=$ $\left\|\phi_{n}(\mathbf{s})\right\|^{2}$. It remains to show that $\left\|\phi_{n}(\mathbf{s})\right\|^{2} \xrightarrow{d}\|\phi(\mathbf{s})\|^{2}$ as $n \rightarrow \infty$. First we have

$$
\begin{equation*}
\exp \left(i \mathbf{s}^{\mathrm{T}} \widehat{\mathbf{B}}^{\mathrm{T}} \mathbf{x}_{j}\right)=\cos \left(\mathbf{s}^{\mathrm{T}} \widehat{\mathbf{B}}^{\mathrm{T}} \mathbf{x}_{j}\right)+i \sin \left(\mathbf{s}^{\mathrm{T}} \widehat{\mathbf{B}}^{\mathrm{T}} \mathbf{x}_{j}\right) \tag{S3.4}
\end{equation*}
$$

Let $\theta_{1}=\mathbf{s}^{\mathrm{T}} \widehat{\mathbf{B}}^{\mathrm{T}} \mathbf{x}_{j}, \theta_{2}=\mathbf{s}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{x}_{j}$, and $\theta_{3}=\mathbf{s}^{\mathrm{T}}(\widehat{\mathbf{B}}-\mathbf{B})^{\mathrm{T}} \mathbf{x}_{j}$. Because $\widehat{\mathbf{B}}-\mathbf{B}=$ $O_{p}\left(n^{-1 / 2}\right)$, we have $\theta_{3}=O_{p}\left(n^{-1 / 2}\right)$. Note that $\cos \theta=\sum_{j=0}^{\infty}\{j(2 j)!\}^{-1} \theta^{2 j}$
and $\sin \theta=\sum_{j=0}^{\infty}\{j(2 j+1)!\}^{-1} \theta^{2 j+1}$ for any $\theta \in \mathbb{R}$. It follows that

$$
\begin{equation*}
\cos \theta_{3}=1+o_{p}\left(n^{-1 / 2}\right) \text { and } \sin \theta_{3}=\theta_{3}+o_{p}\left(n^{-1 / 2}\right) \tag{S3.5}
\end{equation*}
$$

Note that $\theta_{1}=\theta_{2}+\theta_{3}$. By the angle sum identities, we have $\cos \theta_{1}=$ $\cos \theta_{2} \cos \theta_{3}-\sin \theta_{2} \sin \theta_{3}$ and $\sin \theta_{1}=\sin \theta_{2} \cos \theta_{3}+\cos \theta_{2} \sin \theta_{3}$. Together with (S3.4) and (S3.5), we obtain

$$
\begin{aligned}
\exp \left(i \theta_{1}\right) & =\cos \theta_{2}-\theta_{3} \sin \theta_{2}+i\left(\sin \theta_{2}+\theta_{3} \cos \theta_{2}\right)+o_{p}\left(n^{-1 / 2}\right) \\
& =\exp \left(i \theta_{2}\right)+\theta_{3}\left(-\sin \theta_{2}+i \cos \theta_{2}\right)+o_{p}\left(n^{-1 / 2}\right)
\end{aligned}
$$

Plug in $\theta_{1}=\mathbf{s}^{\mathrm{T}} \widehat{\mathbf{B}}^{\mathrm{T}} \mathbf{x}_{j}, \theta_{2}=\mathbf{s}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{x}_{j}, \theta_{3}=\mathbf{s}^{\mathrm{T}}(\widehat{\mathbf{B}}-\mathbf{B})^{\mathrm{T}} \mathbf{x}_{j}$, and we get

$$
\begin{aligned}
\exp \left(i \mathbf{s}^{\mathrm{T}} \widehat{\mathbf{B}}^{\mathrm{T}} \mathbf{x}_{j}\right)= & \exp \left(i \mathbf{s}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{x}_{j}\right)+\left\{i \cos \left(\mathbf{s}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{x}_{j}\right)-\sin \left(\mathbf{s}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{x}_{j}\right)\right\} \\
& \mathbf{s}^{\mathrm{T}}(\widehat{\mathbf{B}}-\mathbf{B})^{\mathrm{T}} \mathbf{x}_{j}+o_{p}\left(n^{-1 / 2}\right),
\end{aligned}
$$

where the second term above is of order $O_{p}\left(n^{-1 / 2}\right)$. On the other hand,

$$
\widehat{\varepsilon}_{j}=\left(\mathbf{I}_{p}-\mathbf{P}_{\widehat{\mathbf{B}}}\right) \mathbf{x}_{j}=\left(\mathbf{I}_{p}-\mathbf{P}_{\mathbf{B}}\right) \mathbf{x}_{j}+\left(\mathbf{P}_{\mathbf{B}}-\mathbf{P}_{\widehat{\mathbf{B}}}\right) \mathbf{x}_{j}=\boldsymbol{\varepsilon}_{j}+\left(\mathbf{P}_{\mathbf{B}}-\mathbf{P}_{\widehat{\mathbf{B}}}\right) \mathbf{x}_{j},
$$

where $\left(\mathbf{P}_{\mathbf{B}}-\mathbf{P}_{\widehat{\mathbf{B}}}\right) \mathbf{x}_{j}=O_{p}\left(n^{-1 / 2}\right)$. Together with the definition of $\boldsymbol{\phi}_{n}(\mathbf{s})$, we have

$$
\begin{align*}
\boldsymbol{\phi}_{n}(\mathbf{s}) & =n^{-1 / 2} \sum_{j=1}^{n} \widehat{\varepsilon}_{j} \exp \left(i \mathbf{s}^{\mathrm{T}} \widehat{\mathbf{B}}^{\mathrm{T}} \mathbf{x}_{j}\right) \\
& =\boldsymbol{\phi}_{n}^{(1)}(\mathbf{s})+\boldsymbol{\phi}_{n}^{(2)}(\mathbf{s})+\boldsymbol{\phi}_{n}^{(3)}(\mathbf{s})+o_{p}(1) \tag{S3.6}
\end{align*}
$$

where $\boldsymbol{\phi}_{n}^{(1)}(\mathbf{s})=n^{-1 / 2} \sum_{j=1}^{n} \boldsymbol{\varepsilon}_{j} \exp \left(i \mathbf{s}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{x}_{j}\right), \boldsymbol{\phi}_{n}^{(2)}(\mathbf{s})=n^{-1 / 2}\left(\mathbf{P}_{\mathbf{B}}-\mathbf{P}_{\widehat{\mathbf{B}}}\right) \sum_{j=1}^{n}$ $\mathbf{x}_{j} \exp \left(i \mathbf{s}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{x}_{j}\right)$, and $\boldsymbol{\phi}_{n}^{(3)}(\mathbf{s})=n^{-1 / 2} \sum_{j=1}^{n} \boldsymbol{\varepsilon}_{j}\left\{i \cos \left(\mathbf{s}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{x}_{j}\right)-\sin \left(\mathbf{s}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{x}_{j}\right)\right\}$
$\mathbf{s}^{\mathrm{T}}(\widehat{\mathbf{B}}-\mathbf{B})^{\mathrm{T}} \mathbf{x}_{j}$. Because $\mathbf{P}_{\widehat{\mathbf{B}}}-\mathbf{P}_{\mathbf{B}}=n^{-1} \sum_{j=1}^{n} \ell_{2}\left(\mathbf{x}_{j}, Y_{j}\right)+o_{p}\left(n^{-1 / 2}\right), \boldsymbol{\phi}_{n}^{(2)}(\mathbf{s})$ becomes

$$
\begin{equation*}
\boldsymbol{\phi}_{n}^{(2)}(\mathbf{s})=n^{-1 / 2} E\left\{\mathbf{x} \exp \left(i \mathbf{s}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)\right\} \sum_{j=1}^{n} \boldsymbol{\ell}_{2}\left(\mathbf{x}_{j}, Y_{j}\right)+o_{p}(1) \tag{S3.7}
\end{equation*}
$$

Because $\widehat{\mathbf{B}}-\mathbf{B}=n^{-1} \sum_{i=1}^{n} \boldsymbol{\ell}_{1}\left(\mathbf{x}_{i}, Y_{i}\right)+o_{p}\left(n^{-1 / 2}\right), \boldsymbol{\phi}_{n}^{(3)}(\mathbf{s})$ becomes

$$
\begin{align*}
\boldsymbol{\phi}_{n}^{(3)}(\mathbf{s}) & =n^{-1 / 2} E\left[\varepsilon\left\{i \cos \left(\mathbf{s}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)-\sin \left(\mathbf{s}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)\right\} \mathbf{x}^{\mathrm{T}}\right]\left\{\sum_{j=1}^{n} \boldsymbol{\ell}_{1}\left(\mathbf{x}_{j}, Y_{j}\right)\right\} \mathbf{s} \\
& +o_{p}(1) . \tag{S3.8}
\end{align*}
$$

Recall that $\mathbf{g}(\mathbf{s})=E\left\{\mathbf{x} \exp \left(i \mathbf{s}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)\right\}$ and $\mathbf{h}(\mathbf{s})=E\left[\varepsilon\left\{i \cos \left(\mathbf{s}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)-\right.\right.$ $\left.\sin \left(\mathbf{s}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)\right\} \mathbf{x}^{\mathrm{T}}$. (S3.6), (S3.7), and (S3.8) together lead to

$$
\begin{equation*}
\phi_{n}(\mathbf{s})=n^{-1 / 2} \sum_{j=1}^{n} \ell_{3}\left(\mathbf{x}_{j}, Y_{j}, \mathbf{s}\right)+o_{p}(1) \tag{S3.9}
\end{equation*}
$$

where $\boldsymbol{\ell}_{3}\left(\mathbf{x}_{j}, Y_{j}, \mathbf{s}\right)=\boldsymbol{\varepsilon}_{j} \exp \left(i \mathbf{s}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{x}_{j}\right)-\boldsymbol{\ell}_{2}\left(\mathbf{x}_{j}, Y_{j}\right) \mathbf{g}(\mathbf{s})+\mathbf{h}(\mathbf{s}) \boldsymbol{\ell}_{1}\left(\mathbf{x}_{j}, Y_{j}\right) \mathbf{s}$. Under H_{0}, we have $E\left(\varepsilon \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)=\mathbf{0}$. Thus $E\left\{\varepsilon \exp \left(i \mathbf{s}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)\right\}=E\{E(\varepsilon \mid$ $\left.\left.\mathbf{B}^{\mathrm{T}} \mathbf{x}\right) \exp \left(i \mathbf{s}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)\right\}=\mathbf{0}$. Also $E\left\{\boldsymbol{\ell}_{k}(\mathbf{x}, Y)\right\}=\mathbf{0}$ for $k=1,2$. Take expectation on both sides of (S3.9),

$$
\begin{equation*}
E\left\{\boldsymbol{\phi}_{n}(\mathbf{s})\right\}=\mathbf{0} \text { as } n \rightarrow \infty \tag{S3.10}
\end{equation*}
$$

For $\operatorname{cov}_{\boldsymbol{\phi}_{n}}\left(\mathbf{s}, \mathbf{s}_{0}\right)=\operatorname{cov}\left\{\boldsymbol{\phi}_{n}(\mathbf{s}), \overline{\boldsymbol{\phi}_{n}\left(\mathbf{s}_{0}\right)}\right\}, \operatorname{cov} \boldsymbol{\phi}_{n}\left(\mathbf{s}, \mathbf{s}_{0}\right)=E\left\{\boldsymbol{\phi}_{n}(\mathbf{s}){\left.\overline{\boldsymbol{\phi}_{n}\left(\mathbf{s}_{0}\right)^{\mathrm{T}}}\right\}}^{\mathrm{T}}\right\}$ as $n \rightarrow \infty$. Because $\left(\mathbf{x}_{j}, Y_{j}\right) \Perp\left(\mathbf{x}_{k}, Y_{k}\right)$ for $j \neq k$ and $E\left\{\boldsymbol{\ell}_{3}(\mathbf{x}, Y, \mathbf{s})\right\}=\mathbf{0}$, $E\left\{\sum_{j=1}^{n} \sum_{k=1}^{n} \ell_{3}\left(\mathbf{x}_{j}, Y_{j}, \mathbf{s}\right) \overline{\ell_{3}\left(\mathbf{x}_{k}, Y_{k}, \mathbf{s}_{0}\right)}\right\}=E\left\{\sum_{j=1}^{n} \ell_{3}\left(\mathbf{x}_{j}, Y_{j}, \mathbf{s}\right) \overline{\ell_{3}\left(\mathbf{x}_{j}, Y_{j}, \mathbf{s}_{0}\right)}\right\}$.

Thus as $n \rightarrow \infty$, we have

$$
\begin{align*}
\operatorname{cov}_{\boldsymbol{\phi}_{n}}\left(\mathbf{s}, \mathbf{s}_{0}\right) & =n^{-1} E\left\{\sum_{j=1}^{n} \ell_{3}\left(\mathbf{x}_{j}, Y_{j}, \mathbf{s}\right) \overline{\ell_{3}\left(\mathbf{x}_{j}, Y_{j}, \mathbf{s}_{0}\right)}\right\} \\
& =E\left\{\ell_{3}(\mathbf{x}, Y, \mathbf{s}) \overline{\ell_{3}\left(\mathbf{x}, Y, \mathbf{s}_{0}\right)}\right\} \tag{S3.11}
\end{align*}
$$

Note that $\overline{\exp \left(i \mathbf{s}_{0}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)}=\exp \left(-i \mathbf{s}_{0}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{x}\right), \overline{\mathbf{g}\left(\mathbf{s}_{0}\right)}=\mathbf{g}\left(-\mathbf{s}_{0}\right)$, and $\overline{\mathbf{h}\left(\mathbf{s}_{0}\right)}=$ $\mathbf{h}\left(-\mathbf{s}_{0}\right)$. We have $\overline{\boldsymbol{\ell}_{3}\left(\mathbf{x}, Y, \mathbf{s}_{0}\right)}=\boldsymbol{\varepsilon} \exp \left(-i \mathbf{s}_{0}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)-\boldsymbol{\ell}_{2}(\mathbf{x}, Y) \mathbf{g}\left(-\mathbf{s}_{0}\right)+\mathbf{h}\left(-\mathbf{s}_{0}\right)$ $\boldsymbol{\ell}_{1}(\mathbf{x}, Y) \mathbf{s}_{0}$. Plug them into S3.11 , together with the definition of $\operatorname{cov} \boldsymbol{\phi}^{\left(\mathbf{s}, \mathbf{s}_{0}\right),}$ we have

$$
\begin{equation*}
{ }^{\operatorname{cov}} \phi_{n}\left(\mathbf{s}, \mathbf{s}_{0}\right)=\operatorname{cov}_{\phi}\left(\mathbf{s}, \mathbf{s}_{0}\right) \text { as } n \rightarrow \infty . \tag{S3.12}
\end{equation*}
$$

From $(\overline{\mathrm{S} 3.10})$ and $(\overline{\mathrm{S} 3.12})$, we know the two complex-valued Gaussian processes $\boldsymbol{\phi}_{n}(\mathbf{s})$ and $\boldsymbol{\phi}(\mathbf{s})$ have the same mean function and the same covariance function as $n \rightarrow \infty$. From the proof of Theorem 5 and Corollary 2 in Székely et al. (2007), we know $\left\|\boldsymbol{\phi}_{n}(\mathbf{s})\right\|^{2} \xrightarrow{d}\|\boldsymbol{\phi}(\mathbf{s})\|^{2}$ as n goes to infinity.

Now we turn to part 2. First note that $\widehat{\omega}_{n} \xrightarrow{p} m\left(\boldsymbol{\varepsilon} \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)$ as n goes to infinity. Under $H_{1}: E\left(\varepsilon \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right) \neq E(\boldsymbol{\varepsilon})$ almost surely, $m\left(\boldsymbol{\varepsilon} \mid \mathbf{B}^{\mathrm{T}} \mathbf{x}\right)>0$ according to Proposition 1. Thus $n \widehat{\omega}_{n} \xrightarrow{p} \infty$ under H_{1}.

S4 Proof of Theorem 2

From Theorem 1, we have $n \widehat{\omega}_{n} \xrightarrow{d}\|\boldsymbol{\phi}(\mathbf{s})\|^{2}$. Recall that $\widehat{\mathbf{B}}^{(t)}$ is an estimator of B based on $\left\{\left(\mathbf{x}_{j}^{(t)}, Y_{j}\right): j=1, \ldots, n\right\}$. Let $\boldsymbol{\phi}_{n}^{(t)}(\mathbf{s})=n^{1 / 2} \boldsymbol{\xi}_{n}^{(t)}(\mathbf{s})$, where $\boldsymbol{\xi}_{n}^{(t)}(\mathbf{s})=n^{-1} \sum_{j=1}^{n} \widehat{\boldsymbol{\varepsilon}}_{j}^{(t)} \exp \left\{i \mathbf{s}^{\mathrm{T}}\left(\widehat{\mathbf{B}}^{(t)}\right)^{\mathrm{T}} \mathbf{x}_{j}^{(t)}\right\}$. Then $n \widehat{\omega}_{n}^{(t)}=\left\|\boldsymbol{\phi}_{n}^{(t)}(\mathbf{s})\right\|^{2}$. Following the proof of Theorem 1, where \mathbf{B} and $\widehat{\mathbf{B}}$ are replaced by $\widehat{\mathbf{B}}$ and $\widehat{\mathbf{B}}^{(t)}$ respectively, we have $\left\|\boldsymbol{\phi}_{n}^{(t)}(\mathbf{s})\right\|^{2} \xrightarrow{d}\left\|\boldsymbol{\phi}^{*}(\mathbf{s})\right\|^{2}$ as long as $E\left(\mathbf{x}^{*} \mid \widehat{\mathbf{B}}^{\mathrm{T}} \mathbf{x}^{*}\right)=\mathbf{0}$. If we have the additional condition that $\operatorname{cov}^{*}\left(\mathbf{s}, \mathbf{s}_{0}\right)=\operatorname{cov}_{\phi}\left(\mathbf{s}, \mathbf{s}_{0}\right)$, then $\left\|\boldsymbol{\phi}^{*}(\mathbf{s})\right\|^{2}=\|\boldsymbol{\phi}(\mathbf{s})\|^{2}$ and we get the desired result. It remains to show that (i) $E\left(\mathbf{x}^{*} \mid \widehat{\mathbf{B}}^{\mathrm{T}} \mathbf{x}^{*}\right)=\mathbf{0}$ as $n \rightarrow \infty$, and (ii) $\operatorname{cov}_{\boldsymbol{\phi}} \boldsymbol{\phi}^{*}\left(\mathbf{s}, \mathbf{s}_{0}\right)=\operatorname{cov}_{\boldsymbol{\phi}}\left(\mathbf{s}, \mathbf{s}_{0}\right)$.

Because $\mathbf{x}^{*}=\mathbf{P}_{\widehat{\mathbf{B}}} \mathbf{x}+W^{*} \mathbf{Q}_{\widehat{\mathbf{B}}} \mathbf{x}$, we have $E\left(\mathbf{x}^{*}\right)=\mathbf{0}=E(\mathbf{x})$. Note that $\mathbf{x}^{*}\left(\mathbf{x}^{*}\right)^{\mathrm{T}}=\mathbf{P}_{\widehat{\mathbf{B}}} \mathbf{x} \mathbf{x}^{\mathrm{T}} \mathbf{P}_{\widehat{\mathbf{B}}}+\left(W^{*}\right)^{2} \mathbf{Q}_{\widehat{\mathbf{B}}} \mathbf{x} \mathbf{x}^{\mathrm{T}} \mathbf{Q}_{\widehat{\mathbf{B}}}+W^{*} \mathbf{P}_{\widehat{\mathbf{B}}} \mathbf{x} \mathbf{x}^{\mathrm{T}} \mathbf{Q}_{\widehat{\mathbf{B}}}+W^{*} \mathbf{Q}_{\widehat{\mathbf{B}}} \mathbf{x} \mathbf{x}^{\mathrm{T}} \mathbf{P}_{\widehat{\mathbf{B}}}$. Because $\operatorname{var}(\mathbf{x})=\mathbf{I}_{p}, \mathbf{Q}_{\widehat{\mathbf{B}}} \mathbf{P}_{\widehat{\mathbf{B}}}=\mathbf{0}, E\left\{\left(W^{*}\right)^{2}\right\}=1$ and $W^{*} \Perp \mathbf{x}$, we have $\operatorname{var}\left(\mathbf{x}^{*}\right)=E\left\{\mathbf{x}^{*}\left(\mathbf{x}^{*}\right)^{\mathrm{T}}\right\}=\mathbf{P}_{\widehat{\mathbf{B}}}+\mathbf{Q}_{\widehat{\mathbf{B}}}=\mathbf{I}_{p}=\operatorname{var}(\mathbf{x})$. Thus (ii) is true from condition (C3).

Define $\psi(\mathbf{B}) \stackrel{\text { def }}{=} E\left(\mathbf{Q}_{\mathbf{B}} \varepsilon^{*} \mid \mathbf{P}_{\mathbf{B}} \mathbf{x}^{*}\right)$ and $\psi(\widehat{\mathbf{B}}) \stackrel{\text { def }}{=} E\left(\mathbf{Q}_{\widehat{\mathbf{B}}} \varepsilon^{*} \mid \mathbf{P}_{\widehat{\mathbf{B}}} \mathbf{x}^{*}\right)$, where $\widehat{\mathbf{B}}$ can be any consistent estimator of \mathbf{B}. We thus have $\psi(\mathbf{B})-\psi(\widehat{\mathbf{B}})=$ $\psi^{\prime}(\boldsymbol{\kappa})(\mathbf{B}-\widehat{\mathbf{B}})$ where $\boldsymbol{\kappa}$ is between \mathbf{B} and $\widehat{\mathbf{B}}$. According to condition (C4), $\psi^{\prime}(\boldsymbol{\kappa})$ is bounded and for any $C>0$ we have $\operatorname{Pr}\left(\|\widehat{\mathbf{B}}-\mathbf{B}\|_{\max } \leq C n^{-1 / 2}\right) \rightarrow 1$, where $\|\mathbf{A}\|_{\max } \stackrel{\text { def }}{=} \max \left\{\left|a_{i j}\right|\right\}$ for any matrix \mathbf{A}. Besides, we write $E\left(\mathbf{Q}_{\widehat{\mathbf{B}}} \varepsilon^{*} \mid\right.$

$$
\begin{aligned}
& \left.\mathbf{P}_{\widehat{\mathbf{B}}} \mathbf{x}^{*}\right) \\
& \quad=E\left(\mathbf{Q}_{\widehat{\mathbf{B}}} \varepsilon^{*} \mid \mathbf{P}_{\widehat{\mathbf{B}}} \mathbf{x}^{*},\|\widehat{\mathbf{B}}-\mathbf{B}\|_{\max } \leq C n^{-1 / 2}\right) \operatorname{Pr}\left(\|\widehat{\mathbf{B}}-\mathbf{B}\|_{\max } \leq C n^{-1 / 2}\right) \\
& \quad+E\left(\mathbf{Q}_{\widehat{\mathbf{B}}} \varepsilon^{*} \mid \mathbf{P}_{\widehat{\mathbf{B}}} \mathbf{x}^{*},\|\widehat{\mathbf{B}}-\mathbf{B}\|_{\max }>C n^{-1 / 2}\right) \operatorname{Pr}\left(\|\widehat{\mathbf{B}}-\mathbf{B}\|_{\max }>C n^{-1 / 2}\right)
\end{aligned}
$$

together with the fact that

$$
\sup _{\|\widehat{\mathbf{B}}-\mathbf{B}\|_{\max } \leq C n^{-1 / 2}} E\left(\mathbf{Q}_{\widehat{\mathbf{B}}} \varepsilon^{*} \mid \mathbf{P}_{\widehat{\mathbf{B}}} \mathbf{x}^{*}\right) \rightarrow E\left(\mathbf{Q}_{\mathbf{B}} \varepsilon^{*} \mid \mathbf{P}_{\mathbf{B}} \mathbf{x}^{*}\right) \rightarrow \mathbf{0}
$$

and

$$
\operatorname{Pr}\left(\|\widehat{\mathbf{B}}-\mathbf{B}\|_{\max }>C n^{-1 / 2}\right) \rightarrow 0
$$

thus we have $E\left(\mathbf{Q}_{\widehat{\mathbf{B}}} \varepsilon^{*} \mid \mathbf{P}_{\widehat{\mathbf{B}}} \mathbf{x}^{*},\|\widehat{\mathbf{B}}-\mathbf{B}\|_{\max } \leq C n^{-1 / 2}\right) \rightarrow \mathbf{0}$ and $\operatorname{Pr}(\| \widehat{\mathbf{B}}-$ $\left.\mathbf{B} \|_{\max }>C n^{-1 / 2}\right) \rightarrow 0$. Combing the above results, we have $E\left(\mathbf{Q}_{\widehat{\mathbf{B}}} \varepsilon^{*} \mid\right.$ $\left.\mathbf{P}_{\widehat{\mathbf{B}}} \mathbf{x}^{*}\right) \rightarrow \mathbf{0}$ and (i) is true. This completes the proof of Theorem 2.

References

Shao, X. and Zhang, J. (2014). Martingale difference correlation and its use in high-dimensional variable screening. Journal of the American Statistical Association, 109:1302-1318.

Székely, G. J., Rizzo, M. L., and Bakirov, N. K. (2007). Measuring and
testing dependence by correlation of distances. The Annals of Statistics, 35:2769-2794.

Tingyou Zhou, Assistant Professor, School of Data Sciences, Zhejiang University of Finance and Economics, 18 Xueyuan Road, Xiasha High Education District, Hangzhou 310018, China.

E-mail: zhoutingyou@zufe.edu.cn

Yuexiao Dong, Associate Professor, Department of Statistical Science, Fox School of Business, Temple University, 1801 Liacouras Walk, Philadelphia, PA 19122, USA.

E-mail: ydong@temple.edu
Liping Zhu, Center for Applied Statistics, Institute of Statistics and Big Data, Renmin University of China, Beijing 100872, China.

E-mail: zhu.liping@ruc.edu.cn

