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We give proofs of main results and additional simulations in the Supplementary

Material. Specifically, in Section S1–S5, we prove Theorems 1–5, respectively. We

present the proof of Proposition 6 in Section S6 and provide additional simulations

in Section S7.

S1. Theorem 1

Theorem 1 has two parts of conclusions, with mr →∞ and mr is finite respectively.

We next prove the two parts in Sections S1.1 and S1.2 respectively. A lemma used

in Section S1.1 is given and proved in Section S1.3.
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S1.1 Proof of the part for mr →∞ in Theorem 1

In this section, we consider mr → ∞ and max{p,m, r}/n → 0. We prove the

conclusion for mr → ∞ in Theorem 1 based on the result of Theorem 3, which is

proved in Section S3.

When (p,m, r) are all fixed, we know that −2 logLn
D−→ χ2

mr as n→∞. Note that

E(χ2
mr) = mr, var(χ2

mr) = 2mr, and when mr →∞, (χ2
mr −mr)/

√
2mr

D−→ N (0, 1).

It follows that P (χ2
mr >

√
2mrzα +mr)→ α and

χ2
mr(α) =

√
2mr × {zα + o(1)}+mr, (S1.1)

where zα denotes the upper α-quantile of N (0, 1).

We define the asymptotic regime RA = {(p,m, r, n) : n > p + m, p ≥ r, mr →

∞, and max{p,m, r}/n → 0 as n → ∞}. Under the asymptotic regime RA,

Theorem 3 shows that (−2 logLn + µn)/(nσn)
D−→ N (0, 1). Note that

P{−2 logLn > χ2
mr(α)} = P

{−2 logLn + µn
nσn

>
χ2
mr(α) + µn
nσn

}
.

Thus when n→∞, P{−2 logLn > χ2
mr(α)} → α is equivalent to

χ2
mr(α) + µn
nσn

→ zα, as n→∞. (S1.2)
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When mr →∞, by (S1.1), we know (S1.2) is equivalent to

√
2mr × {zα + o(1)}+mr + µn

nσn
→ zα, as n→∞. (S1.3)

(S1.3) holds for any significance level α if and only if nσn =
√

2mr{1 + o(1)} and

(µn +mr)/
√

2mr = o(1).

Next we will prove that under RA, nσn =
√

2mr{1+o(1)} in the first step, derive

the form of µn in the second step, and obtain the conclusion in the third step.

Step 1. Note that

σ2
n = 2 log

(n+ r − p−m)(n− p)
(n− p−m)(n+ r − p)

.

By the Taylor expansion, log(1− a) = −a− a2/2− a3/3 +O(a4) for a = o(1). Under

RA, we know that p/n,m/n, r/n→ 0 and r/(n− p−m)→ 0. Then we have

log
n+ r − p−m
n− p−m

= log
(

1 +
r

n− p−m

)
=

r

n− p−m
− 1

2

r2

(n− p−m)2
+

1

3

r3

(n− p−m)3
+O

( r4

n4

)
, (S1.4)
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and similarly,

− log
n− p+ r

n− p
= − log

(
1 +

r

n− p

)
= − r

n− p
+

1

2

r2

(n− p)2
− 1

3

r3

(n− p)3
+O

( r4

n4

)
. (S1.5)

Since for any numbers a and b, a2−b2 = (a−b)(a+b) and a3−b3 = (a−b)(a2+b2+ab),

we then know

(S1.4) + (S1.5)

=
r

n− p−m
− r

n− p
− 1

2

{ r2

(n− p−m)2
− r2

(n− p)2

}
+

1

3

{ r3

(n− p−m)3
− r3

(n− p)3

}
+O

( r4

n4

)
=

rm

(n− p−m)(n− p)
− 1

2
r2 × m(2n− 2p−m)

(n− p−m)2(n− p)2
+O

{r3(m+ r)

n4

}
. (S1.6)

We next examine the first two terms in (S1.6). Note that for a = o(1) and

b = o(1), 1/(1− a) = 1 + a+O(a2) and 1/{(1− a)(1− b)} = 1 + a+ b+O(a2 + b2).

Then for the first term in (S1.6), we have

rm

(n− p−m)(n− p)
=

rm

n2{1− (p+m)/n}(1− p/n)
(S1.7)

=
rm

n2

{
1 +

2p+m

n
+O

(p2 +m2

n2

)}
.
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In addition, note that for a = o(1) and b = o(1), 1/{(1− a)2(1− b)2} = 1 + 2a+ 2b+

O(a2 + b2). Then for the second term in (S1.6), we have

−1

2
r2 × m(2n− 2p−m)

(n− p−m)2(n− p)2
(S1.8)

= −nmr2
{

1− p+m/2

n

} 1

n4

{
1 +

2(p+m)

n
+

2p

n
+O

(p2 +m2

n2

)}
= −mr

2

n3

{
1 +

3p+ 3m/2

n
+O

(p2 +m2

n2

)}
.

Combining (S1.7) and (S1.8), we obtain

(S1.6) = (S1.7) + (S1.8) +O
{r3(m+ r)

n4

}
=

rm

n2
+
rm

n2

{2p+m− r
n

}
+O

{mr(m2 + r2 + p2)

n4

}
. (S1.9)

We then know that σ2
n = 2 × (S1.6) = (2mr/n2) × {1 + o(1)}, and thus nσn =

√
2mr{1 + o(1)}.
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Step 2. In this step, we derive the form of µn. Under the asymptotic region RA,

we know that by Lemma 1 and Taylor expansion,

µn = −mr
{

1 +
p− r
n

+O
(p2 + r2

n2

)}
−1

2
× mr(m+ r)

n

{
1 +O

(p+ r

n

)}
+ o(1)mr × p+m+ r

n

= −mr −mrp+m/2− r/2
n

+ o(1)mr × p+m+ r

n
.

Step 3. As discussed, under RA, (S1.3) holds for any level α, if and only if nσn =

√
2mr{1 + o(1)} and (µn +mr)/

√
2mr = o(1). In the first step, we have shown that

nσn =
√

2mr{1 + o(1)} under RA. In the second step, we obtain the form of µn.

Thus we have

µn +mr√
2mr

= −
√
mr√
2

(p+m/2− r/2
n

)
× {1 + o(1)},

which converges to 0, if and only if limn→∞
√
mr(p+m/2− r/2)n−1 = 0.
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S1.2 Proof of the part for finite mr in Theorem 1

By Muirhead (2009), the characteristic function of−2 logLn is φ1(t) = E{exp(−2it logLn)}

and

log φ1(t) = −mr
2

log(1− 2it) +
∞∑
l=1

ςl{(1− 2it)−l − 1}, (S1.10)

where

ςl =
(−1)l+1

l(l + 1)

[ m∑
k=1

{Bl+1{(1− k − p)/2}
(n/2)l

− Bl+1{(1− k + r − p)/2}
(n/2)l

}]
,

and Bl+1(·) is the Bernoulli polynomials which takes the form Bl+1(z) =
∑l+1

v=0 cvz
v.

We next estimate the order of ςl with respect to n. We note that for any z1 and z2,

Bl+1(z1)− Bl+1(z2) (S1.11)

=
l+1∑
v=0

cv(z
v
1 − zv2) =

l+1∑
v=1

cv

v∑
w=1

(
v

w

)
(z1 − z2)wzv−w2

=(z1 − z2)
l+1∑
v=1

v∑
w=1

cv

(
v

w

)
(z1 − z2)w−1zv−w2 .

Let z1 = (1− k − p)/2 and z2 = (1− k + r − p)/2. Then we have z1 − z2 = (−r)/2.

When m and r are finite, the order of ςl with respect to n is O{(p/n)l}. When

p/n → 0, by the expansion (S1.10), we have φ1(t) = (1− 2it)−mr/2{1 + o(1)}. Then
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−2 logLn
D−→ χ2

mr as n → ∞. When p/n is bounded from 0 below, (S1.10) does

not converge to −2−1mr log(1 − 2it) generally for all t. Then the approximation

−2 logLn
D−→ χ2

mr fails.

S1.3 Lemma used in Section S1.1

Lemma 1. Under the asymptotic regime RA,

µn = − nmr

n+ r − p
− 1

2

nmr(m+ r)

(n+ r − p)2
− nmr(m2/3 +mr/2 + r2/3)

(n+ r − p)3

+O(1)
mr(m3 + r3)

n3
+O(mr/n).

Proof. By the definition of µn in Theorem 3,

µn = n(n−m− p− 1/2) log
(n+ r − p−m)(n− p)
(n− p−m)(n+ r − p)

+ nr log
(n+ r − p−m)

(n+ r − p)

+nm log
(n− p)

(n+ r − p)
.

Note that

log
(n+ r − p−m)(n− p)
(n− p−m)(n+ r − p)

= log
n+ r − p−m
n+ r − p

+ log
n− p

n+ r − p
− log

n− p−m
n+ r − p

= log
(

1− m

n+ r − p

)
+ log

(
1− r

n+ r − p

)
− log

(
1− m+ r

n+ r − p

)
.
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It follows that

µn = n(n−m− p+ r − 1/2) log
(

1− m

n+ r − p

)
(S1.12)

+n(n− p− 1/2) log
(

1− r

n+ r − p

)
(S1.13)

−n(n−m− p− 1/2) log
(

1− m+ r

n+ r − p

)
, (S1.14)

which gives µn = (S1.12) + (S1.13) + (S1.14). We next analyze (S1.12)/n, (S1.13)/n

and (S1.14)/n respectively.

By the Taylor expansion, we have

log
(

1− m

n+ r − p

)
= −

∞∑
k=1

1

k

( m

n+ r − p

)k
,

log
(

1− r

n+ r − p

)
= −

∞∑
k=1

1

k

( r

n+ r − p

)k
,

log
(

1− m+ r

n+ r − p

)
= −

∞∑
k=1

1

k

( m+ r

n+ r − p

)k
.

Then

(S1.12)/n = −(n+ r − p)
∞∑
k=1

1

k

( m

n+ r − p

)k
+ (m+ 1/2)

∞∑
k=1

1

k

( m

n+ r − p

)k
= −

∞∑
k=1

1

k

mk

(n+ r − p)k−1
+
∞∑
k=1

1

k

mk+1

(n+ r − p)k
+
∞∑
k=1

1

k

mk/2

(n+ r − p)k
,
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(S1.13)/n = −(n+ r − p)
∞∑
k=1

1

k

( r

n+ r − p

)k
+ (r + 1/2)

∞∑
k=1

1

k

( r

n+ r − p

)k
= −

∞∑
k=1

1

k

rk

(n+ r − p)k−1
+
∞∑
k=1

1

k

rk+1

(n+ r − p)k
+
∞∑
k=1

1

k

rk/2

(n+ r − p)k
,

and

(S1.14)/n = (n+ r − p)
∞∑
k=1

1

k

( m+ r

n+ r − p

)k
− (m+ r + 1/2)

∞∑
k=1

1

k

( m+ r

n+ r − p

)k
=

∞∑
k=1

1

k

(m+ r)k

(n+ r − p)k−1
−
∞∑
k=1

1

k

(m+ r)k+1

(n+ r − p)k
−
∞∑
k=1

1

k

(m+ r)k/2

(n+ r − p)k
.

It follows that {(S1.12) + (S1.13) + (S1.14)}/n = (S1.15) + (S1.16), where

∞∑
k=1

1

k

(m+ r)k −mk − rk

(n+ r − p)k−1
−
∞∑
k=1

1

k

(m+ r)k+1 −mk+1 − rk+1

(n+ r − p)k
, (S1.15)

−1

2

∞∑
k=1

1

k

(m+ r)k −mk − rk

(n+ r − p)k
. (S1.16)
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As (m+ r)1 −m1 − r1 = 0, we know

(S1.15) =
∞∑
k=2

1

k

(m+ r)k −mk − rk

(n+ r − p)k−1
−
∞∑
k=1

1

k

(m+ r)k+1 −mk+1 − rk+1

(n+ r − p)k

=
∞∑
k=1

( 1

k + 1
− 1

k

)(m+ r)k+1 −mk+1 − rk+1

(n+ r − p)k

= −1

2

2mr

n+ r − p
(S1.17)

−1

6

(m+ r)3 −m3 − r3

(n+ r − p)2
(S1.18)

− 1

12

(m+ r)4 −m4 − r4

(n+ r − p)3
(S1.19)

−
∞∑
k=4

1

k(k + 1)

(m+ r)k+1 −mk+1 − rk+1

(n+ r − p)k
, (S1.20)

which gives (S1.15) = (S1.17) + (S1.18) + (S1.19) + (S1.20). We have n× (S1.17) =

−nmr(n+ r − p)−1, n×(S1.18) = −2−1nmr(m+ r)(n+ r − p)−2, and n×(S1.19) =

−nmr(m2/3 +mr/2 + r2/3)× (n+ r − p)−3. In addition,

|(S1.20)| =
∞∑
k=4

1

k(k + 1)

∑k
q=1

(
k+1
q

)
mqrk+1−q

(n+ r − p)k

≤ mr

n+ r − p

∞∑
k=4

1

k
× 2k+1(max{m, r})k−1

(n+ r − p)k−1

=
mr

n+ r − p
O
{(max{m, r}

n+ r − p

)3}
= O(1)

mr(m3 + r3)

n4
,

where in the last two equations, we use the property of Taylor expansion and the

condition that max{p,m, r} = o(n). Therefore, n×(S1.20) = mr×O{(m3 + r3)/n3}.
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Moreover,

(S1.16) =
∞∑
k=1

1

k

(m+ r)k −mk − rk

(n+ r − p)k

=
∞∑
k=2

1

k

∑k−1
q=1

(
k
q

)
mqrk−q

(n+ r − p)k

≤ mr

(n+ r − p)2

∞∑
k=2

1

k
× 2k(max{m, r})k−2

(n+ r − p)k−2

= O(mr/n2),

where in the last equation we use the fact that

∞∑
k=2

1

k
× 2k(max{m, r})k−2

(n+ r − p)k−2
≤ 2 +

∞∑
k=3

1

k − 2
× 2k(max{m, r})k−2

(n+ r − p)k−2

= 2 + 4
∞∑
k=1

1

k
× 2k(max{m, r})k

(n+ r − p)k

= 2 + 4 log[1− {2 max{m, r}/(n+ r − p)}].

In summary,

µn = (S1.12) + (S1.13) + (S1.14)

= n× {(S1.15) + (S1.16)}

= − nmr

n+ r − p
− 1

2

nmr(m+ r)

(n+ r − p)2
− nmr(m2/3 +mr/2 + r2/3)

(n+ r − p)3

+O(1)
mr(m3 + r3)

n3
+O(mr/n).
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S2. Theorem 2

Similarly to Section S1, we prove Theorem 2 when mr → ∞ and mr is finite in

Sections S2.1 and S2.2 respectively.

S2.1 Proof of the part for mr →∞ in Theorem 2

When (p,m, r) are all fixed, by Bartlett correction, we know that with ρ = 1 −

(p − r/2 + m/2 + 1/2)/n, −2ρ logLn
D−→ χ2

mr as n → ∞. Note that under RA =

{(p,m, r, n) : n > p + m, p ≥ r, mr → ∞, and max{p,m, r}/n → 0 as n → ∞},

ρ = 1 + o(1). Then similarly to the proof of Theorem 1 in Section S1.1, we know

that under RA, P{−2ρ logLn > χ2
mr(α)} → α holds for any given significance level

α if and only if nσn =
√

2mr{1 + o(1)} and (µn +mr/ρ)/
√

2mr = o(1).

Following the same argument as in Section S1.1, we know that under RA, nσn =
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√
2mr{1 + o(1)}. In addition, by the Taylor expansion,

mr

ρ
=

mr

1− (p+m/2− r/2 + 1/2)/n

=
nmr

n− p+ r − (m+ r)/2
+mrO

( 1

n

)
=

nmr

n− p+ r

∞∑
k=0

{ m+ r

2(n− p+ r)

}k
+mrO

( 1

n

)
=

nmr

n− p+ r
+

nmr(m+ r)

2(n+ r − p)2
+
nmr(m+ r)2

4(n− p+ r)3

+mr ×O
(m3 + r3

n3

)
+mrO

( 1

n

)
,

where in the last equation, we use the fact that
∑∞

k=3[(m + r)/{2(n − p + r)}]k =

O{(m3 + r3)/n3} as max{p,m, r} = o(n). It follows that under RA, by Lemma 1,

µn − (−mr/ρ)√
2mr

(S2.21)

=
1√
2mr

{
− nmr

n+ r − p
− nmr(m+ r)

2(n+ r − p)2
− nmr(m2/3 +mr/2 + r2/3)

(n+ r − p)3

+
nmr

n− p+ r
+

nmr(m+ r)

2(n+ r − p)2
+
nmr(m+ r)2

4(n− p+ r)3

}
+
√
mr ×O

(m3 + r3

n3

)
+O(

√
mr/n)

= −
√
mr√
2

1

12

n(m2 + r2)

(n+ r − p)3
+
√
mr ×O

(m3 + r3

n3

)
+O(

√
mr/n)

= −
√
mr(m2 + r2)

12
√

2n2
+ o(1)×

√
mr(m2 + r2)

n2
+O(

√
mr/n),

where in the last equation, we use the fact that max{p,m, r} = o(n). We thus know
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that (S2.21) = 0 if and only if
√
mr(m2 + r2)/n2 → 0.

S2.2 Proof of the part for finite mr in Theorem 2

By Muirhead (2009), for the LRT with Bartlett correction, the characteristic function

of −2ρ logLn is φ2(t) = E{exp(−2itρ logLn)}. Moreover, we have

log φ2(t) = −mr
2

log(1− 2it) +
∞∑
l=1

ς̃l{(1− 2it)−l − 1},

where

ς̃l =
(−1)l+1

l(l + 1)

[ m∑
k=1

{Bl+1(z̃k,1)

(ρn/2)l
− Bl+1(z̃k,2)

(ρn/2)l

}]
,

z̃k,1 = (1 − ρ)n/2 + (1 − k − p)/2 and z̃k,2 = (1 − ρ)n/2 + (1 − k + r − p)/2. Since

ρ = 1− (p− r/2 +m/2 + 1/2)/n,

z̃k,1 =(p− r/2 +m/2 + 1/2)/2 + (1− k − p)/2 = (3− r +m)/4,

z̃k,2 =(p− r/2 +m/2 + 1/2)/2 + (1− k + r − p)/2 = (3 + r +m)/4.

In addition, ρn = n− (p− r/2 +m/2 + 1/2). Therefore, by the expansion in (S1.11),

when m and r are fixed and n− p→∞, we have log φ2(t) = −2−1mr log(1− 2it) +

O{(n − p)−1} and φ2(t) = (1 − 2it)−mr/2[1 + O{(n − p)−1}]. It follows that when
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m and r are fixed and n − p → ∞, −2ρ logLn
D−→ χ2

mr. On the other hand, when

n− p is fixed, by the expansion in (S1.11), we know ς̃l is of constant order in n, and

thus
∑∞

l=1 ς̃l{(1 − 2it)−l − 1} is not ignorable generally for all t. We then know the

approximation −2ρ logLn
D−→ χ2

mr fails.

S3. Theorem 3

In this section, we give the proof of Theorem 3, where the main proof is in Section

S3.1 and some lemmas used are provided and proved in Section S3.2.

S3.1 Proof of Theorem 3

Proof. To prove the central limit theorem that Hn := {−2 logLn + µn}/(nσn)
D−→

N (0, 1), it is sufficient to show

E exp

{
logLn − µn/2

nσn/2
s

}
→ exp{s2/2}, (S3.22)

as n → ∞ and |s| < 1, where σ2
n and µn are defined in Theorem 3. Equivalently, it

suffices to show that for any subsequence {nk}, there is a further subsequence {nkj}

such that Hnkj
converges to N (0, 1) in distribution as j →∞. In the following, the

further subsequence is selected in a way such that the subsequential limits of some

bounded quantities (to be specified in the proof below) exist, which is guaranteed
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by Bolzano-Weierstrass Theorem. Therefore, we only need to verify the theorems by

assuming that the limits for these bounded quantities exist. In the following, we give

the proof by discussing two settings r ≥ m and m ≥ r separately.

Case 1. When r ≥ m and r →∞. By Lemma 3, under the null hypothesis, the

distribution of Ln can be reexpressed as the distribution of a product of indepen-

dent beta random variables. Let h = 2s/(nσn), by Lemma 2, then under the null

hypothesis, Ln’s hth moment can be written as

E exp

{
logLn
nσn/2

s

}
= E(Lhn) =

Γm{1
2
n(1 + h)− 1

2
p}Γm{1

2
(n+ r − p)}

Γm{1
2
(n− p)}Γm{1

2
n(1 + h) + 1

2
(r − p)}

, (S3.23)

where Γm(a), a ∈ C and Re(a) > (m − 1)/2, is the multivariate Gamma function

defined to be

Γm(a) =

∫
A>0

e−tr(A) detAa−(m+1)/2(dA). (S3.24)

The above integration is taken over the space of positive definite m×m matrices, i.e.,

{Am×m : A � 0}; and tr(A) is the trace of A. Note that when m = 1, Γm(a) becomes

the usual definition of Gamma function. By Lemma 4, Γm(a) can be written as a
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product of ordinary Gamma functions as

Γm(a) = πm(m−1)/4

m∏
j=1

Γ{a− (j − 1)/2}.

Note that n > m+ p and r ≥ 1. Thus the limits of m/(n+ r− p) and m/(n− p)

are in [0, 1] for all n. Applying the subsequence argument above, for any subsequence

{nk}, we take a further subsequence nkj such that mkj/(nkj+rkj−pkj) and mkj/(nkj−

pkj) converge to some constants in [0, 1]. Thus without loss of generality, we consider

the cases when m/(n + r − p) and m/(n − p) converge to some constants in [0, 1].

Next we give the proof by discussing different cases below.

Case 1.1 If m/(n + r − p) → γ > 0, this implies that m → ∞ as n → ∞. And

as r ≥ m and n > p + m, we know m/(n+ r − p) ≤ 1/2, then γ ∈ (0, 1/2]. Since

1 ≥ m/(n− p) ≥ m/(n+ r − p), then m/(n− p)→ γ′ ∈ (0, 1].

If γ′ ∈ (0, 1), nh×[− log{1−m/(n−p)}]1/2 = O(1), which satisfies the assumption

of Lemma 5.4 in Jiang and Yang (2013). If γ′ = 1, as

σ2
n = 2 log

(
1− m

n+ r − p

)
− 2 log

(
1− m

n− p

)
, (S3.25)

and m/(n+ r− p)→ γ ∈ (0, 1/2], we know σ2
n has leading order log{1−m/(n− p)}.

Then as nhσn = O(1) by definition, we also know nh× [− log{1−m/(n− p)}]1/2 =
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O(1), which satisfies the assumption of Lemma 5.4 in Jiang and Yang (2013). Fol-

lowing the lemma, we have

log
Γm{1

2
n(1 + h)− 1

2
p}

Γm{1
2
(n− p)}

= log
Γm{1

2
(n− p) + 1

2
nh}

Γm{1
2
(n− p)}

=−
{n2h2

4
+
nh

2

(
n−m− p− 1

2

)}
log
(

1− m

n− p

)
+
mnh

2
{log(n− p)− log 2e}+ o(1), (S3.26)

and similarly, we can obtain

log
Γm{1

2
(n+ r − p)}

Γm{1
2
n(1 + h) + 1

2
(r − p)}

= log
Γm{1

2
(n+ r − p)}

Γm{1
2
(n+ r − p) + 1

2
nh}

=
{n2h2

4
+
nh

2

(
n+ r −m− p− 1

2

)}
log
(

1− m

n+ r − p

)
− mnh

2
{log(n+ r − p)− log 2e}+ o(1). (S3.27)

Combining (S3.23), (S3.26) and (S3.27), we have

logE exp

{
logLn
nσn/2

s

}
=
n2h2

4
log

(n+ r − p−m)(n− p)
(n− p−m)(n+ r − p)

+
hµn

2
+ o(1)

=
s2

2
+
hµn

2
+ o(1),
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where

µn = n(n−m− p− 1/2) log
(n+ r − p−m)(n− p)
(n− p−m)(n+ r − p)

+ nr log
(n+ r − p−m)

(n+ r − p)

+ nm log
(n− p)

(n+ r − p)
.

Therefore, logE exp
{

logLn−µn/2
nσn/2

s
}

= s2/2 + o(1) is proved.

Case 1.2 We discuss the case when m/(n+ r− p)→ 0 and m/(n− p)→ 0 below.

By Lemma 7, we know that when n− p→∞ and r →∞,

log
Γm{1

2
n(1 + h)− 1

2
p}

Γm{1
2
(n− p)}

=−
{

2m+
(
n− p−m− 1

2

)
log
(

1− m

n− p

)}nh
2

−
{ m

n− p
+ log

(
1− m

n− p

)}n2h2

4

+m
{(n− p+ nh)

2
log

(n− p+ nh)

2
− (n− p)

2
log

(n− p)
2

}
+ o(1), (S3.28)
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and

log
Γm{1

2
(n+ r − p)}

Γm{1
2
n(1 + h) + 1

2
(r − p)}

=
{

2m+
(
n+ r − p−m− 1

2

)
log
(

1− m

n+ r − p

)}nh
2

−m
{(n+ r − p+ nh)

2
log

(n+ r − p+ nh)

2
− (n+ r − p)

2
log

(n+ r − p)
2

}
+
{ m

n+ r − p
+ log

(
1− m

n+ r − p

)}n2h2

4
+ o(1). (S3.29)

By Taylor expansion of the log function, we have

σ2
n = 2 log

(
1− m

n+ r − p

)
− 2 log

(
1− m

n− p

)
=

2mr

(n− p)(n+ r − p)
{1 + o(1)}, (S3.30)

where the second order terms of Taylor expansion of the log functions is ignorable as

m = o(n− p). Also, as r →∞,

h =
s

nσn/2
=
s
√

2(n− p)(n+ r − p)
n
√
mr

{1 + o(1)} → 0. (S3.31)



22 Y. HE, T. JIANG, J. WEN, AND G. XU

Therefore, combining (S3.23), (S3.28) and (S3.29), we obtain

logE exp

{
logLn
nσn/2

s

}
(S3.32)

=
n2h2

4
log

(n+ r − p−m)(n− p)
(n− p−m)(n+ r − p)

+
n2h2

4

(
m

n+ r − p
− m

n− p

)
+
nh

2
(n−m− p− 1/2) log

(n+ r − p−m)(n− p)
(n− p−m)(n+ r − p)

+
nh

2
r log

(n+ r − p−m)

(n+ r − p)
+
nh

2
m log

n− p+ nh

n+ r − p+ nh

+
m(n+ r − p)

2
log

n+ r − p
n+ r − p+ nh

+
m(n− p)

2
log

n− p+ nh

n− p
+ o(1).

We then analyze the terms in (S3.32) separately. By (S3.31),

n2h2

4

(
m

n+ r − p
− m

n− p

)
= −s

2(n− p)(n+ r − p)
2mr

× mr

(n− p)(n+ r − p)
{1 + o(1)}

= −s
2

2
+ o(1). (S3.33)

In addition, as nh/(n− p)→ 0 and nh/(n+ r − p)→ 0, we have

m(n+ r − p)
2

log
n+ r − p

n+ r − p+ nh
(S3.34)

= −m(n+ r − p)
2

{
nh

n+ r − p
− n2h2

2(n+ r − p)2
+Rn,1

}
,
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and

m(n− p)
2

log
n− p+ nh

n− p
(S3.35)

=
m(n− p)

2

{ nh

n− p
− n2h2

2(n− p)2
+Rn,2

}
,

where the remainder terms

Rn,1 =
∞∑
k=3

1

k
(−1)k+1 (nh)k

(n+ r − p)k
, Rn,2 =

∞∑
k=3

1

k
(−1)k+1 (nh)k

(n− p)k
. (S3.36)

Then we have

(S3.34) + (S3.35)

=
mn2h2

4(n+ r − p)
− mn2h2

4(n− p)
− m(n+ r − p)

2
Rn,1 +

m(n− p)
2

Rn,2

= −s
2

2
+ o(1), (S3.37)

where in the last equation, we use (S3.33) and Lemma 8. Furthermore, by nh/(n +
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r − p)→ 0 and (S3.31), we have

nh

2
m log

n− p+ nh

n+ r − p+ nh

=
nh

2
m log

{
n− p

n+ r − p
+

nhr

(n+ r − p)(n+ r − p+ nh)

}
=
nh

2
m log

n− p
n+ r − p

+
nmh

2

n+ r − p
n− p

nhr

(n+ r − p)(n+ r − p+ nh)
+ o(1)

=
nh

2
m log

n− p
n+ r − p

+ s2 + o(1). (S3.38)

Combining (S3.32), (S3.33), (S3.37) and (S3.38), we obtain logE exp
{

logLn−µn/2
nσn/2

s
}

=

s2/2 + o(1).

Case 1.3 When m/(n + r − p)→ 0 and m/(n− p)→ γ ∈ (0, 1], we know (S3.26)

still holds following similar analysis to Case 1.1. And (S3.29) also holds following

similar analysis to Case 1.2. To establish (S3.22), we next show that under this case,
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the difference between the result of (S3.27) and (S3.29) is ignorable.

(S3.29)− (S3.27)

= 2m
nh

2
+
mnh

2
{log(n+ r − p)− log 2e}+

n2h2

4
× m

n+ r − p

− m(n+ r − p)
2

log
n+ r − p+ nh

n+ r − p
− mnh

2
log

n+ r − p+ nh

2
+ o(1)

= mnh+
mnh

2

{
log
(n+ r − p

2

)
− 1

}
+
n2h2

4
× m

n+ r − p

− m(n+ r − p)
2

log

(
1 +

nh

n+ r − p

)
− mnh

2
log

(
n+ r − p

2
+
nh

2

)
+ o(1).

(S3.39)

We then analyze the terms in (S3.39) separately.

Since m/(n − p) → γ ∈ (0, 1], similarly to (S3.25), we know that nh = 2s/σn =

O(s). As m/(n+ r−p)→ 0, it follows that n2h2m/(n+ r−p)→ 0. Applying Taylor

expansion, we then have

mnh

2
log

(
n+ r − p

2
+
nh

2

)
=

mnh

2

{
log

(
n+ r − p

2

)
+O

( nh

n+ r − p

)}
=

mnh

2
log

(
n+ r − p

2

)
+O

( mn2h2

n+ r − p

)
=

mnh

2
log

(
n+ r − p

2

)
+ o(1). (S3.40)
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Similarly, by nh = O(s), m/(n+ r − p)→ 0, and Taylor expansion, we have

m(n+ r − p)
2

log

(
1 +

nh

n+ r − p

)
=
m(n+ r − p)

2

{
nh

n+ r − p
+O

( n2h2

(n+ r − p)2

)}
=
mnh

2
+ o(1). (S3.41)

In summary, combining (S3.40) and (S3.41), we have (S3.39) = (S3.29) − (S3.27) =

o(1). Then by the results in Case 1.1, we get the same conclusion as in Case 1.1.

Case 2. When m > r, m → ∞. According to Lemma 3, we can make the

following substitution

m→ r, r → m, n− p→ n+ r − p−m.

Then the substituted mean and variance are

µn = n(n− p−m− 1/2) log
(n− p)(n− p+ r −m)

(n− p−m)(n+ r − p)
+ nm log

(n− p)
(n+ r − p)

+ nr log
(n− p+ r −m)

(n+ r − p)
,
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and

σ2
n = 2 log

(n− p)(n− p+ r −m)

(n− p−m)(n+ r − p)
,

which take the same forms as those in the setting when r ≥ m. And the theorem

can be proved following similar analysis when m→∞, n− p+ r −m→∞.

S3.2 Lemmas in the proof of Theorem 3

Lemma 2 (Corollary 10.5.2 in Muirhead (2009)). Under the null hypothesis, Ln’s

h-th moment can be written as

E(Lhn) =
Γm{1

2
n(1 + h)− 1

2
p}Γm{1

2
(n+ r − p)}

Γm{1
2
(n− p)}Γm{1

2
n(1 + h) + 1

2
(r − p)}

.

Lemma 3 (Theorem 10.5.3 in Muirhead (2009)). Under the null hypothesis, when

n − p ≥ m and r ≥ m, 2
n

logLn has the same distribution as
∑m

i=1 log Vi, where

Vi’s are independent random variables and Vi ∼ beta(1
2
(n − p − i + 1), 1

2
r); when

n − p ≥ m ≥ r, 2
n

logLn has the same distribution as
∑r

i=1 log Vi, where Vi’s are

independent and Vi ∼ beta(1
2
(n+ r − p−m− i+ 1), 1

2
m).

Lemma 4 (Theorem 2.1.12 in Muirhead (2009)). The multivariate Gamma function

defined in (S3.24) can be written as

Γm(a) = πm(m−1)/4

m∏
j=1

Γ(a− (j − 1)/2).
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Lemma 5. Consider m is fixed and a→∞. We have

1

a− 1

m∑
i=1

i− 1

a− i
=

{1

2

(
σ2
a −

m

(a− 1)2

)}
{1 +O(1/a)}, (S3.42)

m∑
i=1

{log(a− 1)− log(a− i)} = −µa +O
(m2

a2

)
, (S3.43)

where µa = −(m− a + 3/2) log{1−m/(a− 1)} + (a− 1)m/a and σ2
a = −2[m/(a−

1) + log{1−m/(a− 1)}].

Proof. We first prove (S3.42). As m is fixed and a→∞, we have

σ2
a = −2

[ m

a− 1
+ log

(
1− m

a− 1

)]
=
( m

a− 1

)2

{1 +O(m/a)},

and

1

a− 1

m∑
i=1

i− 1

a− i
=

1

a− 1

m∑
i=1

i− 1

a− 1
+ εa =

m(m− 1)

2(a− 1)2
+ εa,

where |εa| ≤ 2(a− 1)−3
∑m

i=1(i− 1)2 ≤ 3(m/a)3. Therefore,

1

a− 1

m∑
i=1

i− 1

a− i
=

m(m− 1)

2(a− 1)2

{
1 +O

(m
a

)}
=

[1

2

{
σ2
a −

m

(a− 1)2

}]
{1 +O(1/a)},
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where in the last equation, we use the fact that O(m/a) = O(1/a) as m is fixed.

Then (S3.42) is proved.

We then prove (S3.43). Recall Stirling formula, (see, e.g., p. 368 Gamelin, 2001)

log Γ(x) = (x− 1/2) log x− x+ log
√

2π +
1

12x
+O(x−3)

as x→∞. Therefore,

log Γ(a− 1)− log Γ(a−m− 1)

= (a− 3/2) log(a− 1)− (a−m− 3/2) log(a−m− 1)−m

+
1

12

( 1

a− 1
− 1

a−m− 1

)
+O(a−3)

= (a− 3/2) log(a− 1)− (a−m− 3/2) log(a−m− 1)−m+O(ma−2).
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Since for integers k ≥ 1, Γ(k) = (k − 1)! = Πk−1
i=1 i. Then we have

m∑
i=1

{log(a− 1)− log(a− i)}

= m log(a− 1)− {log Γ(a− 1)− log Γ(a−m− 1)}+ log
(

1− m

a− 1

)
= m log(a− 1)− (a− 3/2) log(a− 1) + (a−m− 3/2) log(a−m− 1)

+m+ log
(

1− m

a− 1

)
+O(ma−2)

= −(m− a+ 3/2) log
(

1− m

a− 1

)
+m− m

a− 1
+O

(m2

a2

)
= −(m− a+ 3/2) log

(
1− m

a− 1

)
+
a− 1

a
m+O

(m2

a2

)
= −µa +O

(m2

a2

)
,

where in the last two equations, we use the fact that a−2
a−1

m = a−1
a
m+O(ma−2).

Lemma 6. Consider m is fixed and a→∞. Define

gi(x) =
(a− i

2
+ x
)

log
(a− i

2
+ x
)
−
(a− 1

2
+ x
)

log
(a− 1

2
+ x
)

for 1 ≤ i ≤ m and x > −(a −m)/2. Let µa and σa be as in Lemma 5. If t = o(a)

and mt2/a2 = o(1), we have that as a→∞,

m∑
i=1

{gi(t)− gi(0)} = µat+
σ2
a

2
t2 + o(1).
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Proof. We know for 1 ≤ i ≤ m,

g′i(x) = log(
a− i

2
+ x)− log(

a− 1

2
+ x),

g
′′

i (x) =
1

a−i
2

+ x
− 1

a−1
2

+ x
=

i−1
2

(a−i
2

+ x)(a−1
2

+ x)
,

g
(3)
i (x) = − 1

(a−i
2

+ x)2
+

1

(a−1
2

+ x)2

= −
i−1

2
· 2a−i−1

2
+ (i− 1)x

(a−i
2

+ x)2(a−1
2

+ x)2
.

By Taylor expansion,

gi(t)− gi(0) = g′i(0)t+
t2

2
g
′′

i (0) +
t3

6
g

(3)
i (ξi)

= {log(a− i)− log(a− 1)}t+
i− 1

(a− 1)(a− i)
t2 +

t3

6
g

(3)
i (ξi).

For 1 ≤ i ≤ m, fixed m and 0 ≤ ξi ≤ t = o(a), we have sup|ξi|≤|t|,1≤i≤m |g
(3)
i (ξi)| ≤

ca−3, where c denotes an universal constant. Therefore, as t = o(a), |t3g(3)
i (ξi)| ≤

ct3a−3 = o(1). In addition, by Lemma 5, and the fact that mt2/(a − 1)2 = o(1), we

have as a→∞,

m∑
i=1

{gi(t)− gi(0)} = µat+
[1

2

(
σ2
a −

m

(a− 1)2

)]
t2 + o(1)

= µat+
σ2
a

2
t2 + o(1).
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Lemma 7. Consider n− p→∞, r →∞, m/(n− p)→ 0 and m/(n− p + r)→ 0.

For t = nh/2, a = n− p+ r or a = n− p, we have

log
Γm(a−1

2
+ t)

Γm(a−1
2

)
= υat+ ϑat

2 + γa(t) + o(1),

where

υa = −[2m+ (a−m− 3/2) log{1−m/(a− 1)}]; ϑa = −[m/(a− 1) + log{1−m/(a− 1)}];

γa(t) = m
{(a− 1

2
+ t
)

log
(a− 1

2
+ t
)
− a− 1

2
log
(a− 1

2

)}
.

Proof. By Lemma 4, we know

log
Γm(a−1

2
+ t)

Γm(a−1
2

)
=

m∑
i=1

log
Γ(a−i

2
+ t)

Γ(a−i
2

)
. (S3.44)

To prove the lemma, we expand each summed term in (S3.44), log{Γ(a−i
2

+t)/Γ(a−i
2

)},

by Lemma A.1. in Jiang and Qi (2015). To apply the lemma, we first need to check

the condition that for each 1 ≤ i ≤ m, t ∈ [−δ(a − i)/2, δ(a − i)/2] for any given

δ ∈ (0, 1).

Recall that we previously define nh = 2s/σn in Section S3.1. Then t = nh/2 =
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sσ−1
n . Note that when m/(n− p) and m/(n− p+ r)→ 0,

σ2
n =

1

2
log

(
1− m

n+ r − p

)
− 1

2
log

(
1− m

n− p

)
=

mr

2(n− p)(n+ r − p)
{1 + o(1)}.

Thus we have

t = O(s)

√
(n− p)(n− p+ r)

mr
. (S3.45)

For a = n− p+ r or a = n− p, and 1 ≤ i ≤ m, by (S3.45), we then have

t

a− i
≤ t

n− p−m
= O(s)

√
(n− p)(n− p+ r)

mr(n− p−m)2

= O(s)

√
1 + r/(n− p)

mr{1−m/(n− p)}2

= O(s)

√{ 1

mr
+

1

m(n− p)

}
{1 + o(1)} = o(1),

where the last two equations follow from the condition that m/(n− p)→ 0, r →∞

and n− p→∞. Then we know that for each 1 ≤ i ≤ m, t ∈ [−δ(a− i)/2, δ(a− i)/2]

for any given δ ∈ (0, 1).

Therefore, the condition of Lemma A.1. in Jiang and Qi (2015) is satisfied. By
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that lemma, we know when a→∞, for uniformly 1 ≤ i ≤ m,

log
Γ(a−i

2
+ t)

Γ(a−i
2

)
=

(a− i
2

+ t
)

log
(a− i

2
+ t
)
− a− i

2
log

a− i
2

−t− t

a− i
+O

( t2
a2

)
.

Write t
a−i = t

a
+ t

a
× i

a−i . Then similarly to Lemma 5, we have

m∑
i=1

t

a− i
=

mt

a
+
tm(m+ 1)

2a(a− 1)
+O

{ t
a
×
(m
a

)3}
. (S3.46)

For a = n− p, by (S3.45), m/(n− p)→ 0 and m ≤ r,

tm(m+ 1)

a(a− 1)
= O(s)

√
(n− p)(n− p+ r)

mr

m2

(n− p)2

= O(s)

√
m(n− p+ r)

r(n− p)
m

n− p

= O(s)

√
m

min{n− p, r}
m

n− p
= o(1).

For a = n − p + r, similar conclusion, tm(m + 1)/{a(a − 1)} = o(1), holds by

substituting n − p with n − p + r. In addition, for a = n − p or a = n − p + r, by
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(S3.45),

t

a
≤ t

n− p
= O(s)

√
max{n− p, r}
mr(n− p)

= O(s)

√
1

m×min{n− p, r}
= o(1). (S3.47)

Then based on (S3.46) and (S3.47), we obtain

m∑
i=1

{
− t− t

a− i
+O(t2/a2)

}
= −mt− mt

a
+ o(1).

Therefore, from (S3.44), we have

log
Γm(a−1

2
+ t)

Γm(a−1
2

)
(S3.48)

= −(a+ 1)mt

a
+

m∑
i=1

{(a− i
2

+ t
)

log
(a− i

2
+ t
)
− a− i

2
log

a− i
2

}
+ o(1).

For 1 ≤ i ≤ m, define the function

gi(x) =
(a− i

2
+ x
)

log
(a− i

2
+ x
)
−
(a− 1

2
+ x
)

log
(a− 1

2
+ x
)
,

and x > −(a−m)/2. We then know that the summation term “
∑

” in (S3.48) equals
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to

m
[(a− 1

2
+ t
)

log
(a− 1

2
+ t
)
− a− 1

2
log

a− 1

2

]
+

m∑
i=1

{gi(t)− gi(0)}. (S3.49)

We then examine the function
∑m

i=1{gi(t) − gi(0)} in (S3.49). Note that by

(S3.47), we know t = o(a), mt2/a2 = o(1) and mt/a = O(1) as m < n − p and

m ≤ r. Thus the conditions of Lemma 6 and Lemma A.3. in Jiang and Qi (2015)

are satisfied when m is fixed and m → ∞ respectively. When m is fixed, we apply

Lemma 6; when m → ∞, we apply Lemma A.3. in Jiang and Qi (2015). Then we

obtain

m∑
i=1

{gi(t)− gi(0)} = µat+
1

2
σ2
at

2 + o(1),

where

µa = (m− a+ 3/2) log
(

1− m

a− 1

)
−ma− 1

a
,

σ2
a = −2

[ m

a− 1
+ log

(
1− m

a− 1

)]
.
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Therefore, the proposition can be proved by noticing

υa = −(a+ 1)m

a
+ µa; ϑa = σ2

a/2;

γa(t) = m
[(a− 1

2
+ t
)

log
(a− 1

2
+ t
)
− a− 1

2
log

a− 1

2

]
.

Lemma 8. Under Case 1 in Section S3.1, Rn,1 and Rn,2 defined in (S3.36) satisfy

−m(n+ r − p)
2

Rn,1 +
m(n− p)

2
Rn,2 = o(1).

Proof. Note that

−m(n+ r − p)
2

Rn,1 +
m(n− p)

2
Rn,2

=
m

2

[ ∞∑
k=3

1

k
(−nh)k

{ 1

(n+ r − p)k−1
− 1

(n− p)k−1

}]
=

m

2

{ ∞∑
k=3

1

k
(−nh)k

−
∑k−1

q=1

(
k−1
q

)
rq(n− p)k−1−q

(n+ r − p)k−1(n− p)k−1

}
=

mnh

2

∞∑
k=3

1

k

( −nh
n+ r − p

)k−1
k−1∑
q=1

(
k − 1

q

)( r

n− p

)q
. (S3.50)
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If r/(n− p) = 1,

|(S3.50)| ≤ mnh

∞∑
k=3

( 2nh

n+ r − p

)k−1

= O
{
mnh

n2h2

(n+ r − p)2

}
,

where

mnh× n2h2

(n+ r − p)2
= O

{m√(n− p)(n+ r − p)√
mr

× (n− p)(n+ r − p)
mr(n+ r − p)2

}
= O

{m√r2

√
mr
× r2

mr × r2

}
= o(1),

as r →∞.

If r/(n−p) > 1, as {nh/(n+r−p)}×{r/(n−p)} = O{
√
r/
√
m(n− p)(n+ r − p)} =

o(1),

|(S3.50)| ≤ mnh
∞∑
k=3

( 2nh

n+ r − p
× r

n− p

)k−1

= O
{
mnh

( 2nh

n+ r − p

)2( r

n− p

)2}
,
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where

mnh
( nh

n+ r − p

)2( r

n− p

)2

= O
{m√(n− p)(n+ r − p)√

mr
× (n− p)(n+ r − p)

mr(n+ r − p)2
× r2

(n− p)2

}
= O

{√(n− p)(n+ r − p)√
mr

r

(n− p)(n+ r − p)

}
= O

{ r√
mr(n+ r − p)(n− p)

}
= o(1),

as n+ r − p ≥ r and n− p→∞.

If r/(n− p) < 1,

|(S3.50)| ≤ mnh
∞∑
k=3

( nh

n+ r − p

)k−1 r

(n− p)
= O

{
mnh

(nh)2

(n+ r − p)2
× r

(n− p)

}
,

where

mnh
(nh)2

(n+ r − p)2
× r

(n− p)

= O
{m√(n− p)(n+ r − p)√

mr
× (n− p)(n+ r − p)

mr(n+ r − p)2
× r

(n− p)

}
= O

{ √
n− p√

mr(n+ r − p)

}
= o(1).
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S4. Theorem 4

We give the main proof of Theorem 4 in Section S4.1, where we use some concepts

of hypergeometric function, which is introduced in Section S4.2, and the lemmas we

use are given and proved in Section S4.3.

S4.1 Proof of Theorem 4

As p/n = ρp, r/n = ρr, m/n = ρm with ρp, ρr, ρm ∈ (0, 1) and ρp + ρm < 1, we know

that σ2
n in Theorem 3 satisfies

σ2
n = 2 log

{(
1− ρm

1 + ρr − ρp

)(
1− ρm

1− ρp

)−1}
,

which is a positive constant, and we write the constant as σ2. Then T1 = {−2 logLn+

µn}/(nσ), and we examine the moment generating function E{2s logLn/(nσ)}. Let

h = 2s/(nσ). By Lemma 9, we have

E{2s logLn/(nσ)} = E{exp(h logLn)}

= ELhn = E0L
h
n × 1F1

(nh
2

;
1

2
(n+ r − p) +

nh

2
;−1

2
Ω
)
, (S4.51)

where E0L
h
n is the moment generating function of logLn under H0, and 1F1 is the

hypergeometric function, which depends on Ω only through its eigenvalues symmet-
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rically.

As 1F1 only depends on Ω via its eigenvalues symmetrically, without loss of gener-

ality, we consider the alternative with Ω = diag(w1, · · · , wm) and w1 ≥ · · · ≥ wm ≥ 0.

Let ξa = nh/2, ξb = (n+ r − p+ nh)/2 and Q = −Ω/2 = diag(−w1/2, · · · ,−wm/2),

then we write 1F1(nh/2, (n + r − p + nh)/2;−Ω/2) as 1F1(ξa; ξb;Q). Note that we

assume that Ω has fixed rank m0 in Theorem 4, then ω1 ≥ . . . ≥ ωm0 > 0 are m0

nonzero eigenvalues of Ω. Further define Q̃ = diag(−ω1/2, . . . ,−ωm0/2). By Lemma

11, we know 1F1(ξa; ξb;Q) = 1F1(ξa; ξb; Q̃). Then to evaluate 1F1(ξa; ξb;Q) when Q

has fixed rank, without loss of generality, we consider 1F1(ξa; ξb; Q̃).

Let W = log 1F1(ξa; ξb; Q̃) and Q̃ = −n∆̃/2 with ∆̃ = diag(δ1, . . . , δm0). From

Lemma 12, we know that W (∆̃) is the unique solution of each of the m0 partial

differential equations

[1

2
(n+ r − p−m0 + 1) +

nh

2
+

1

2
nδj +

1

2

m0∑
i 6=j

δj
δj − δi

]∂W
∂δj

+δj

[∂2W

∂δ2
j

+

(
∂W

∂δj

)2 ]
− 1

2

m0∑
i 6=j

δi
δj − δi

∂W

∂δi
= −nh

2
× n, (S4.52)

for j = 1, . . . ,m0, subject to the conditions that W (∆̃) is (a) a symmetric function

of δ1, . . . , δm0 , and (b) analytic at ∆̃ = 0m0×m0 with W (0m0×m0) = 0. As r/n = ρr,
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p/n = ρp, m0 is a fixed number and nh = 2s/σ, we can write (S4.52) into

[1

2
(1 + ρr − ρp)n+

1

2
(2s/σ −m0 + 1) +

1

2
nδj +

1

2

m0∑
i 6=j

δj
δj − δi

]∂W
∂δj

+δj

[∂2W

∂δ2
j

+

(
∂W

∂δj

)2 ]
− 1

2

m0∑
i 6=j

δi
δj − δi

∂W

∂δi
= − s

σ
× n. (S4.53)

Similarly to Theorem 10.5.6 in Muirhead (2009), we writeW (∆̃) = P0(∆̃)+P1(∆̃)/n+

. . .. Note that nh = 2s/σ. Matching n on both sides of (S4.53), we obtain

[1

2
(1 + ρr − ρp)n+

1

2
nδj

]∂P0

∂δj
= −sn

σ
.

Solving this subject to conditions (a) and (b), we obtain

P0(∆̃) = −2s

σ

m0∑
j=1

log
(

1 +
δj

1 + ρr − ρp

)
.

Then we have W (∆̃) = P0(∆̃) +O(n−1). From (S4.51), we know

ELhn = E0L
h
n × elog 1F1 = E0e

s
nσ/2

log(Ln)+W . (S4.54)

Write W∆ =
∑m0

j=1 log[1 + δj(1 + ρr− ρp)−1] and A1 = 2/σ. (S3.22) and (S4.54) show

that {logLn−µn/2}/(nσn/2)
D−→ N (−A1W∆, 1), and thus {−2 logLn +µn}/(nσ)

D−→

N (A1W∆, 1). Then the power P (T1 > zα)→ Φ̄(zα − A1W∆).
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S4.2 Brief review of hypergeometric function

We rephrase some related definitions and results about hypergeometric function,

where the details can be found in Chapter 7 in Muirhead (2009).

Let k be a positive integer; a partition κ of k is written as κ = (k1, k2, . . .), where∑
t kt = k and k1 ≥ k2 ≥ . . . are non-negative integers. In addition, let M be an

m × m symmetric matrix with eigenvalues l1, . . . , lm, and let κ = (k1, k2 . . .) be a

partition of k into no more than m nonzero parts. We write the zonal polynomial of

M corresponding to κ as Cκ(M). Then by the definition, we know the hypergeometric

function 1F1(ξa; ξb;Q) satisfies

1F1(ξa; ξb;Q) =
∞∑
k=0

∑
κ:k

(ξa)κ
(ξb)κ

Cκ(Q)

k!
, (S4.55)

where
∑

κ:k represents the summation over the partitions κ = (k1, . . . , km), k1 ≥

. . . ≥ km ≥ 0, of k, Cκ(Q) is the zonal polynomial of Q corresponding to κ, and the

generalized hypergeometric coefficient (ξ)κ is given by (ξ)κ =
∏t

i=1(ξ − (i − 1)/2)ki

with (a)ki = a(a+ 1) . . . (a+ ki − 1) and (a)0 = 1.

We then characterize the zonal polynomials Cκ(M). For given partition κ =

(k1, k2, . . .) of k, define the monomial symmetric functionsNκ(M) =
∑
{i1,...,it} l

k1
i1
. . . lktit ,

where t is the number of nonzero parts in the partition κ, and the summation is over

the distinct permutations (i1, . . . , it) of t different integers from 1, . . . ,m. For another
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partition λ = (λ1, λ2, . . .), we write κ > λ if ki > λi for the first index i for which the

parts in κ and λ are unequal. Then we have Cκ(M) =
∑

λ≤κ cκ,λNλ(M), where cκ,λ

are constants.

S4.3 Lemmas in the proof of Theorem 4

Lemma 9. ELhn = E0L
h
n × 1F1(nh/2; (n+ r − p+ nh)/2;−Ω/2).

Proof. The result follows from Theorem 10.5.1 in Muirhead (2009).

Lemma 10. Suppose matrix M of size m×m has m eigenvalues l1, . . . , lm, but only

has m0 positive eigenvalues l1, . . . , lm0 and M̃ = diag(l1, . . . , lm0). Then for given

partition κ, the zonal polynomial functions satisfy Nκ(M) = Nκ(M̃).

Proof. By the definition of monomial functionNλ(M), we note that
∑
{i1,...,it} l

k1
i1
. . . lktit =∑

{̃i1,...,̃it} l
k1
ĩ1
. . . lkt

ĩt
, where

∑
{̃i1,...,̃it} represents the summation over the distinct per-

mutations (̃i1, . . . , ĩt) of t different integers from 1, . . . ,m0. It follows that Nλ(M) =

Nλ(M̃), where M̃ = diag(l1, . . . , lm0).

Lemma 11. Suppose Q has fixed rank m0, then 1F1(ξa; ξb;Q) = 1F1(ξa; ξb; Q̃).

Proof. As Q has rank m0, it only has m0 nonzero eigenvalues. To prove the lemma,

we note that the hypergeometric function can be expressed as the linear combination

of the zonal polynomials of a matrix. We then state two properties of the zonal

polynomial functions Cκ(Q). First, by Corollary 7.2.4 in Muirhead (2009), we know



45

that when κ is a partition of k into more than m0 nonzero parts, Cκ(Q) = 0. Second,

when κ is a partition of k into fewer than m0 nonzero parts, Cκ(Q) = Cκ(Q̃). To see

this, we note that Cκ(Q) =
∑

λ≤κ cλ,κNλ(Q) and the constants cκ,λ do not depend on

the eigenvalues of Q. Then by Lemma 10, we know that Cκ(M) = Cκ(M̃). Finally,

by the definition in (S4.55), we have 1F1(ξa; ξb;Q) = 1F1(ξa; ξb; Q̃).

Lemma 12. W = log 1F1(ξa; ξb; Q̃) with Q̃ = −n∆̃/2 discussed in Section S4.1 is

the unique solution of each of the m0 partial differential equations

[1

2
(n+ r − p−m0 + 1) +

nh

2
+

1

2
nδj +

1

2

m0∑
i 6=j

δj
δj − δi

]∂W
∂δj

+δj

[∂2W

∂δ2
j

+

(
∂W

∂δj

)2 ]
− 1

2

m0∑
i 6=j

δi
δj − δi

∂W

∂δi
= −nh

2
× n,

for j = 1, . . . ,m0, subject to the conditions that W (∆̃) is (a) a symmetric function

of δ1, . . . , δm0, and (b) analytic at ∆̃ = 0m0×m0 with W (0m0×m0) = 0.

Proof. As m0 is fixed, the result follows from Theorem 7.5.6 in Muirhead (2009) by

changing of variables.

S5. Theorem 5

We give the conditions of Theorem 5 in Section S5.1, and the main proof Theorem 5

is given in Section S5.2, while the lemmas we use in the proof are given and proved

in Section S5.3.
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S5.1 Conditions of Theorem 5

To derive Theorem 5, we need some regularity conditions. We use λmax(·) and λmin(·)

to denote the largest and smallest eigenvalues of a matrix respectively; diag(·) denotes

the vector of diagonal elements of a matrix; max diag(·) and min diag(·) represent the

maximum and minimum value of the diagonal elements of a matrix respectively; ‖ · ‖

denotes the `2-norm of a vector; and ei = (0, . . . , 0, 1, 0, . . . , 0)ᵀ denotes the indicator

vector with 1 on the ith entry.

Condition 1. The rows of X and E independently follow multivariate Gaussian

distribution with covariance matrices Σx and Σ respectively. There exist nonnega-

tive constants t and τ and positive constants (c1, c2, c3, c4, c5) such that λmax(Σx) ≤

c1n
τ , λmin(Σ) ≥ c2n

−t, min diag(Σx) ≥ c3, max diag(Σ) ≤ c4 and max diag(BᵀΣxB) ≤

c5.

Condition 2. For some constants κ, u, c6 > 0 and c7 > 0, and fixed i ∈ M∗, there

exists a0,i ∈ Rm with ‖a0,i‖ = 1 such that max{‖Σ1/2
x Ba0,i‖, ‖Σ1/2a0,i‖} ≤ c6n

u and

|eᵀiΣxBa0,i|σ−1
x,i ≥ c7n

−κ, where σ2
x,i is the i-th diagonal element of Σx.

Condition 3. Assume m = O(ns) with 0 ≤ s < 1; ι+τ < 1, where ι = 2κ+2u+t+s;

p > c9n for some constant c9 > 1; log p = O(nπ) for some constant π ∈ (0, 1− 2κ−

2u− t− s); and δn1−ι−τ →∞ as n→∞.

Remark 1. In Condition 1, we assume that X and E follow the Gaussian distribution
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for the ease of theoretical developments. We allow the eigenvalues of Σx and Σ to

diverge or degenerate as n grows, which is similarly assumed in Fan and Lv (2008)

and Wang and Leng (2016) etc. in studying the linear regression with univariate

response. The boundedness of the diagonal elements of Σ and BᵀΣxB is satisfied

when the variances of response variables are O(1). Condition 2 implies that there

exists a combination of the response variables whose absolute covariance with the i-th

predictor is sufficiently large. In particular, suppose for each i ∈ M∗, there exists

ki ∈ {1, . . . ,m} such that cov(x1,i, y1,ki)σ
−1
x,i ≥ c7n

−κ. Then Condition 2 is satisfied

under Condition 1. Condition 3 allows the number of predictors p grow exponentially

with n. The requirement 2u+ 2κ+ τ + t+ s < 1 is satisfied when the eigenvalues of

Σx, BᵀΣxB and Σ do not diverge or degenerate too fast with n, and the covariance

between x1,i and yᵀ
1a0,i is sufficiently large.

S5.2 Proof of Theorem 5

Before proceeding to the proof, we define some notations and provide some prelim-

inary results. Note that by the form of ωj, we could assume E(X) = 0 with loss of

generality. Let Z = XΣ
−1/2
x . We know that the entries in Z are i.i.d. N (0, 1) by

Condition 1, and then with probability 1, the n × p matrix Z has full rank n. Let
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µ
1/2
1 , . . . , µ

1/2
n be the n singular values of Z. Then ZᵀZ has the eigendecomposition

ZᵀZ = Uᵀdiag(µ1, . . . , µn, 0, . . . , 0)U, (S5.56)

where U belongs to the orthogonal group O(p). We write Uᵀ = (u1, . . . ,up). It

follows that the Moore-Penrose generalized inverse of (S5.56) is

(ZᵀZ)+ =
n∑
i=1

1

µi
uiu

ᵀ
i .

Moreover, we have the decomposition

S := (ZᵀZ)+ZᵀZ = Uᵀdiag(In, 0)U = ŨᵀŨ , (S5.57)

where Ũ = (In,0)n×pU and (In,0)n×p represents an n×p matrix with first n columns

being In and 0 in the remaining columns. Since X = ZΣ
1/2
x , by (S5.56), we know

that

XᵀX = Σ1/2
x Ũᵀdiag(µ1, . . . , µn)ŨΣ1/2

x . (S5.58)



49

In addition, define P = In − 1n1
ᵀ
n/n. We can then write ωi equivalently as

ωi = max
a:‖a‖=1

aᵀY ᵀP ᵀPxi√
(aᵀY ᵀP ᵀPY a){(xi)ᵀP ᵀPxi}

.

By the property of ωi, we assume without loss of generality that X and E have mean

zero. Furthermore, suppose diag(Σx) = diag(σx,1, . . . , σx,p) and let

ζi = max
a:‖a‖=1

aᵀY ᵀP ᵀPxi

σx,i
√
n× aᵀY ᵀP ᵀPY a

. (S5.59)

Then by Lemma 18, we know ωi = ζi{1+o(1)} with probability 1−O{exp(−c0n/ log n)}

for some constant c0 > 0. As Y = XB + E, we have

ζi = max
a:‖a‖=1

aᵀBᵀXᵀP ᵀPxi + aᵀEᵀP ᵀPxi

σx,i
√
n× aᵀ(Y ᵀP ᵀPY )a

= ξi + ηi, (S5.60)

where

ξi = max
a:‖a‖=1

aᵀBᵀXᵀP ᵀPxi

σx,i
√
naᵀ(Y ᵀP ᵀPY )a

, ηi = max
a:‖a‖=1

aᵀEᵀP ᵀPxi

σx,i
√
naᵀ(Y ᵀP ᵀPY )a

.

Moreover, we write B = [β1, . . . ,βm], where βj represents the j-th column of B. We

then study ξi and ηi separately.

Step 1: We first examine ξ = (ξ1, . . . , ξp)
ᵀ.
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Step 1.1 (bounding ‖ξ‖ from above) For i = 1, . . . , p,

|ξi| ≤ {nλmin(Y ᵀP ᵀPY )}−1/2σ−1
x,i‖BᵀXᵀP ᵀPxi‖,

where ‖ · ‖ represents the `2-norm of a vector. Then we know

‖ξ‖2 =

p∑
i=1

ξ2
i ≤ {nλmin(Y ᵀP ᵀPY )}−1

p∑
i=1

σ−2
x,i‖BᵀXᵀP ᵀPxi‖2 (S5.61)

By Lemma 19, we know that there exist constants c1 and c0 such that λmin(Y ᵀP ᵀPY ) ≥

c1n
1−t with probability 1 − O{exp(−c0n)}. To bound ‖ξ‖ from above, we then ex-

amine
∑p

i=1 σ
−2
x,i‖BᵀXᵀP ᵀPxi‖2. Since min1≤i≤p σ

2
x,i ≥ c3 by Condition 1,

p∑
i=1

σ−2
x,i‖BᵀXᵀP ᵀPxi‖2 ≤ c−1

3

p∑
i=1

m∑
k=1

(βᵀ
kX

ᵀP ᵀPxi)2

= c−1
3

m∑
k=1

βᵀ
kX

ᵀP ᵀP

p∑
i=1

xi(xi)ᵀP ᵀPXβk. (S5.62)

As
∑p

i=1 xi(xi)ᵀ = XXᵀ and P ᵀP = In − 1n1
ᵀ
n/n, we have

(S5.62) = c−1
3

m∑
k=1

‖βᵀ
kX

ᵀ(In − 1n1
ᵀ
n/n)X‖2

≤ 2c−1
3 × (Aξ,1 + Aξ,2), (S5.63)

where Aξ,1 =
∑m

k=1 ‖β
ᵀ
kX

ᵀX‖2 and Aξ,2 =
∑m

k=1 ‖β
ᵀ
kX

ᵀ(1n1
ᵀ
n/n)X‖2.
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We next examine Aξ,1 and Aξ,2 separately. By (S5.58),

Aξ,1 =
m∑
k=1

βᵀ
kΣ

1/2
x Ũᵀdiag(µ1, . . . , µn)ŨΣ1/2

x Σ1/2
x Ũᵀdiag(µ1, . . . , µn)ŨΣ1/2

x βk

≤ p2{λmax(p−1ZZᵀ)}2λmax(Σx)
m∑
k=1

βᵀ
kΣ

1/2
x ŨᵀŨΣ1/2

x βk, (S5.64)

where in the last inequality, we use the fact that ŨΣxŨ
ᵀ � λmax(Σx)In, and diag(µ1, . . . , µn) �

pλmax(p−1ZZᵀ)In, as µ
1/2
1 , . . . , µ

1/2
n are the singular values of Z. We then bound

(S5.64) from above by examining βᵀ
kΣ

1/2
x ŨᵀŨΣ

1/2
x βk. For fixed k = 1, . . . ,m, let

Q ∈ O(p) such that Σ
1/2
x βk = ‖Σ1/2

x βk‖2Qe1. By (S5.57) and Lemma 14, we know

βᵀ
kΣ

1/2
x ŨᵀŨΣ1/2

x βk = ‖Σ1/2
x βk‖2〈QᵀSQe1, e1〉

(d)
= ‖Σ1/2

x βk‖2〈Se1, e1〉. (S5.65)

By Condition 1, ‖Σ1/2
x βk‖2 = βᵀ

kΣxβk ≤ c5 for some constant c5 > 0. Then by

(S5.65) and Lemma 15, we know for some positive constants c0 and c1,

P (βᵀ
kΣ

1/2
x ŨᵀŨΣ1/2

x βk > c1n/p) ≤ O{exp(−c0n)}. (S5.66)

Combining (S5.64), Lemma 16, Condition 1 and (S5.66), we then know for some pos-

itive constants c0 and c, with probability 1−O{m exp(−c0n)}, Aξ,1 ≤ cmp2nτn/p =

cmpn1+τ .
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For Aξ,2, note that

Aξ,2 =
m∑
k=1

βᵀ
kΣ

1/2
x Zᵀ(1n1

ᵀ
n/n)ZΣxZ

ᵀ(1n1
ᵀ
n/n)ZΣ1/2

x βk. (S5.67)

Similarly, considering fixed k = 1, . . . ,m, we let Q ∈ O(p) such that Σ
1/2
x βk =

‖Σ1/2
x βk‖Qe1. Then

βᵀ
kΣ

1/2
x Zᵀ(1n1

ᵀ
n/n)ZΣxZ

ᵀ(1n1
ᵀ
n/n)ZΣ1/2

x βk

= ‖Σ1/2
x βk‖2eᵀ1Q

ᵀZᵀ(1n1
ᵀ
n/n)ZΣxZ

ᵀ(1n1
ᵀ
n/n)ZQe1

≤ λmax(Σx)‖Σ1/2
x βk‖2eᵀ1Q

ᵀZᵀ(1n1
ᵀ
n/n)ZQQᵀZᵀ(1n1

ᵀ
n/n)ZQe1

(d)
= λmax(Σx)‖Σ1/2

x βk‖2‖Zᵀ(1n1
ᵀ
n/n)Ze1‖2, (S5.68)

where in the last equality, we use the fact that ZQ
(d)
= Z. Since the entries in Z

are i.i.d. N (0, 1), we have L = (L1, . . . , Lp)
ᵀ = Zᵀ1n/

√
n ∼ N (0p×1, Ip) with L1 =

1ᵀ
nZe1/

√
n. It follows that ‖Zᵀ(1n1

ᵀ
n/n)Ze1‖2 =

∑p
j=1 L

2
1L

2
j . Since L2

1 ∼ χ2
1, there

exist constants c0 and c1 such that P (|L2
1 − 1| > c1n) ≤ O{exp(−c0n)}. Moreover,

note that L2
j ’s are i.i.d. χ2

1-distributed random variables. By Lemma 13, for some

positive constants c0 and c1, when p ≥ n,

P
( p∑
j=2

L2
j/(p− 1) > 1 + c1

)
≤ O{exp(−c0p)} ≤ O{exp(−c0n)}. (S5.69)
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Thus there exist constants c and c0 such that with probability 1−O{exp(−c0n)},

‖Zᵀ(1n1
ᵀ
n/n)Ze1‖2 =

p∑
j=1

L2
1L

2
j = L4

1 + L2
1

p∑
j=2

L2
j ≤ cpn.

By Condition 1, λmax(Σx) ≤ c1n
τ and ‖Σ1/2

x βk‖2 ≤ c2 for some constant c1 and

c2. From (S5.67) and (S5.68), we know that Aξ,2 ≤ cmpnτ+1 with probability 1 −

O{m exp(−c0n)}.

In summary, we obtain that for some constants c and c0, Aξ,1 and Aξ,2 ≤ cmpnτ+1

with probability 1 − O{exp(−c0n)}. Then by (S5.61), (S5.63) and Lemma 19, we

have for some positive constants c1 and c0,

P{‖ξ‖2 > c1n
−(1+1−t)pmn1+τ} ≤ O{m exp(−c0n)} = O{exp(−c0n)}, (S5.70)

where the last equality is from Condition 3.

Step 1.2 (bounding |ξi| for i ∈ M∗ from below) Without loss of generality, we

consider B 6= 0p×m. For fixed i ∈M∗,

ξi = max
a:‖a‖2=1

aᵀBᵀXᵀP ᵀPxi

σx,i
√
n× aᵀ(Y ᵀP ᵀPY )a

≥ {n× aᵀ
0,iY

ᵀP ᵀPY a0,i}−1/2σ−1
x,i |a

ᵀ
0,iB

ᵀXᵀP ᵀPXei|, (S5.71)
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where a0,i in the last inequality is specified in Condition 2. To bound |ξi| from below,

we then examine (S5.71). By Lemma 19, there exist constants c0 and c2 such that

with probability 1−O{exp(−c0n)},

aᵀ
0,iY

ᵀP ᵀPY a0,i ≤ c2n
2u+1. (S5.72)

Moreover, as P ᵀP = In − 1n1
ᵀ
n/n, σ−1

x,ia
ᵀ
0,iB

ᵀXᵀP ᵀPXei = Ãξ,i,1 − Ãξ,i,2, where

Ãξ,i,1 = σ−1
x,ia

ᵀ
0,iB

ᵀXᵀXei and Ãξ,i,2 = σ−1
x,ia

ᵀ
0,iB

ᵀXᵀ(1n1
ᵀ
n/n)Xei.

We first consider Ãξ,i,1. From (S5.58),

σ−1
x,ia

ᵀ
0,iB

ᵀXᵀXei = σ−1
x,ia

ᵀ
0,iB

ᵀΣ1/2
x Ũᵀdiag(µ1, . . . , µn)ŨΣ1/2

x ei. (S5.73)

Note that for fixed i = 1, . . . , p, ‖Σ1/2
x ei‖2σ−2

x,i = 1. Then there exists Q̃ ∈ O(p) such

that Σ
1/2
x eiσ

−1
x,i = Q̃e1, and

Σ1/2
x Ba0,i − 〈Σ1/2

x Ba0,i,Σ
1/2
x eiσ

−1
x,i 〉Σ1/2

x eiσ
−1
x,i

= (‖Σ1/2
x Ba0,i‖2 − 〈Σ1/2

x Ba0,i,Σ
1/2
x eiσ

−1
x,i 〉2)1/2Q̃e2. (S5.74)

By Condition 2, there exists constant c such that ‖Σ1/2
x Ba0,i‖ ≤ cnu. Thus

Σ1/2
x Ba0,i = 〈Σ1/2

x Ba0,i,Σ
1/2
x eiσ

−1
x,i 〉Q̃e1 +O(nu)Q̃e2. (S5.75)
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Let Tη,1 = Ũᵀdiag(µ1, . . . , µn)ŨQ̃e1. As Q̃e1 = Σ
1/2
x eiσ

−1
x,i , it follows that

(S5.73) = 〈Σ1/2
x Ba0,i,Σ

1/2
x eiσ

−1
x,i 〉e

ᵀ
1Q̃

ᵀTη,1 +O(nu)eᵀ2Q̃
ᵀTη,1. (S5.76)

Since the uniform distribution on the orthogonal group O(p) is invariant under itself,

ŨQ̃
(d)
= Ũ . Then as (µ1, . . . , µn)ᵀ is independent of Ũ by Lemma 14, we know that

Q̃ᵀTη,1
(d)
= R, where R = (R1, . . . , Rp)

ᵀ = Ũᵀdiag(µ1, . . . , µn)Ũe1. By (S5.76), we

then have

(S5.73)
(d)
= ξi,1 + ξi,2, (S5.77)

where ξi,1 = 〈Σ1/2
x Ba0,i,Σ

1/2
x eiσ

−1
x,i 〉R1 and ξi,2 = O(nu)R2.

We next examine ξi,1 and ξi,2 separately. For ξi,1, as µ1, . . . , µn ≥ pλmin(p−1ZZᵀ),

and by (S5.57), we have

R1 ≥ peᵀ1Ũ
ᵀλmin(p−1ZZᵀ)InŨe1 = pλmin(p−1ZZᵀ)〈Se1, e1〉.

Thus, by Condition 1, Lemmas 15 and 16, and Bonferroni inequality, we have for

some positive constants c1 and c0,

P (R1 < c1p× n/p) ≤ O{exp(−c0n)}. (S5.78)



56 Y. HE, T. JIANG, J. WEN, AND G. XU

This, along with Condition 2, show that for some positive constants c1 and c0,

P (|ξi,1| < c1n
1−κ) ≤ O{exp(−c0n)}. (S5.79)

We then consider ξi,2 = O(nu)R2. By Lemma 17, we know that there exist positive

constants c1 and c0 such that P (|R2| > c1n
1/2|W1|) ≤ O{exp(−c0n}, where W1 is an

independent N (0, 1)-distributed random variable. It follows that for some positive

constants c1 and c0, we have

P (|ξi,2| > c1n
u+1/2|W1|) ≤ O{exp(−c0n)}. (S5.80)

For some constant c2 > 0, let xn =
√

2c2n
1−κ−u/

√
log n. Then by the classical

Gaussian tail bound, we have

P (n1/2|W | > xn) ≤
√

2/π
exp{−c2n

1−2κ−2u/ log n}√
2c2n1/2−κ−u/

√
log n

≤ O{exp(−c2n
1−2κ−2u/ log n)},

which, along with inequality (S5.80), show that for some positive constants c1 and

c0,

P (|ξi,2| > c1n
uxn) ≤ O[exp{−c0n

1−2κ−2u/ log n}], (S5.81)
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where nuxn =
√

2c2n
1−κ/
√

log n.

We then consider Ãξ,i,2. Similarly, we take Q̃ ∈ O(p) satisfying Σ
1/2
x eiσ

−1
x,i = Q̃e1

and (S5.74). As ZQ̃
(d)
= Z and by (S5.75), similarly to (S5.77), we have

Ãξ,i,2 = aᵀ
0,iB

ᵀΣ1/2
x Zᵀ(1n1

ᵀ
n/n)ZQ̃e1

(d)
= ξ̃i,1 + ξ̃i,2,

where ξ̃i,1 = 〈Σ1/2
x Ba0,i,Σ

1/2
x eiσ

−1
x,i 〉e

ᵀ
1Z

ᵀ1n1
ᵀ
nZe1/n and ξ̃i,2 = O(nu)eᵀ2Z

ᵀ1n1
ᵀ
nZe1/n.

Note that 1ᵀ
nZe1/

√
n ∼ N (0, 1) and 1ᵀ

nZe2/
√
n ∼ N (0, 1) independently. Then for

some positive constants c1 and c0,

P (|eᵀ1Zᵀ1n1
ᵀ
nZe1/n| > c1n

1−κ−u/ log n) ≤ O[exp{−c0n
1−κ−u/ log n}],

P (|eᵀ2Zᵀ1n1
ᵀ
nZe1/n| > c1n

1−κ−u/ log n) ≤ O[exp{−c0n
1−κ−u/ log n}].

These, combined with (S5.78), show that there exist some constants c1 and c0 such

that

P (|ξ̃i,1| > c1|ξi,1|n−u−κ/ log n) ≤ P (|ξ̃i,1| > c1〈Σ1/2
x Ba0,i,Σ

1/2
x eiσ

−1
x,i 〉n1−κ−u/ log n)

+P (R1 < c1n)

≤ O{exp(−c0n
1−κ−u/ log n)},

P (|ξ̃i,2| > c1n
1−κ/ log n) ≤ O{exp(−c0n

1−κ−u/ log n)}. (S5.82)
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In summary, by Bonferroni’s inequality, combining (S5.71), (S5.72), (S5.77),

(S5.79), (S5.81) and (S5.82), we have for some positive constants c1 and c0,

P (|ξi| < c1(n× n2u+1)−1/2n1−κ) ≤ O[exp{−c0n
1−2κ−2u/ log n}], i ∈M∗. (S5.83)

Step 2 We next examine η = (η1, . . . , ηp)
ᵀ defined in (S5.60).

Step 2.1 (bounding ‖η‖2 from above) By Condition 1,

ηi = max
a:‖a‖=1

aᵀEᵀP ᵀPxi

σx,i
√
n× aᵀY ᵀP ᵀPY a

≤ {nλmin(Y ᵀP ᵀPY )}−1/2c−1
3 ‖EᵀP ᵀPxi‖.(S5.84)

Let εj denote the j-th column of E, then E = [ε1, . . . , εm]. As P ᵀP = In − 1n1
ᵀ
n/n,

we have ‖EᵀP ᵀPxi‖2 =
∑m

j=1{(εj)ᵀxi − (εj)ᵀ1n1
ᵀ
nx

i/n}2. Note that
∑p

i=1 xi(xi)ᵀ =

XXᵀ. Then by (S5.84),

p∑
i=1

η2
i ≤ c−2

3 {nλmin(Y ᵀP ᵀPY )}−1

p∑
i=1

m∑
j=1

2× [{(εj)ᵀxi}2 + {(εj)ᵀ1n1ᵀ
nx

i/n}2]

= 2c−2
3 {nλmin(Y ᵀP ᵀPY )}−1

×
m∑
j=1

{(εj)ᵀ
p∑
i=1

xi(xi)ᵀεj + (εj)ᵀ1n1
ᵀ
n

p∑
i=1

xi(xi)ᵀ1n1
ᵀ
nε

j/n2}

= 2c−2
3 {nλmin(Y ᵀP ᵀPY )}−1

m∑
j=1

{(εj)ᵀXXᵀεj + (εj)ᵀ1n1
ᵀ
nXX

ᵀ1n1
ᵀ
nε

j/n2}

≤ 2c−2
3 {nλmin(Y ᵀP ᵀPY )}−1λmax(Σx)

m∑
j=1

(Aη,j,1 + Aη,j,2), (S5.85)
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where Aη,j,1 = (εj)ᵀZZᵀεj and Aη,j,2 = (εj)ᵀ1n1
ᵀ
nZZ

ᵀ1n1
ᵀ
nε

j/n2.

Note that Aη,j,1 ≤ pλmax(p−1ZZᵀ)‖εj‖2. Suppose diag(Σ) = (σ2
ε,1, . . . , σ

2
ε,m)ᵀ.

Then by Condition 1 and Lemma 13, we know for some positive constants c and c0,

P (‖εj‖2
2 > cnσ2

ε,j/ log n) ≤ exp(−c0n/ log n). (S5.86)

In addition, Aη,j,2 ≤ pλmax(p−1ZZᵀ)×(1ᵀ
nε

j)2/n. Similarly to (S5.86), by Condition 1

and the tail bound of the Chi-squared distribution, there exist some positive constants

c and c0,

P{(1ᵀ
nε

j)2/n > cnσ2
ε,j/ log n} ≤ O{exp(−c0n/ log n)}. (S5.87)

Combining (S5.86) and (S5.87), we know that for some constants c1, c2 and c0, with

probability 1−O{m exp(−c0n/ log n)},

Aη,j,1 + Aη,j,2 ≤ c1pn

m∑
j=1

σ2
ε,j/ log n ≤ c2pnm/ log n, (S5.88)

where the last inequality is from diag(Σ) ≤ c4 for some constant c4 > 0 by Condition

1.

Combining (S5.85), (S5.88), Lemma 19 and Conditions 1 and 3, we know for
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some positive constants c1, c2 and c0,

P (‖η‖2 > c1{n× n1−t}−1pn1+τm/ log n) ≤ O{m exp(−c2n/ log n)}

= O{exp(−c0n/ log n)}. (S5.89)

Step 2.2 (bounding |ηi| from above) From Step 2.1, we know

η2
i ≤ {nλmin(Y ᵀP ᵀPY )}−1σ−2

x,i

m∑
j=1

(εᵀjP
ᵀPxi)2. (S5.90)

Then conditioning on X, σ−1
x,i ε

ᵀ
jP

ᵀPxi ∼ N (0, σ2
ε,j(x

i)ᵀP ᵀPxiσ−2
x,i ). Let E1 be the

event {var(σ−1
x,i ε

ᵀ
jP

ᵀPxi|X) ≤ c1n} for some constant c1 > 0. Note that

var(εᵀε,jP
ᵀPxiσ−1

x,i |X) = σ2
ε,j{(xi)ᵀxi − (xi)ᵀ1ᵀ

n1nx
i/n}σ−2

x,i ≤ σ2
ε,j(x

i)ᵀxiσ−2
x,i .

Using the same argument as in Step 1.1, we can show that, there exist some positive

constants c1 and c0,

P (Ec1) ≤ P{σ2
ε,j(x

i)ᵀxiσ−2
x,i > c1n} ≤ O{exp(−c0n)}, (S5.91)
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where Ec1 represents the complement of the event E1. On the event E1, for any a > 0,

by Condition 1, we have

P (|εᵀjP ᵀPxi|σ−1
x,i > a|X, E1) ≤ P{

√
c1n|W | > a}, (S5.92)

where W is an independent N (0, 1)-distributed random variable. Thus, combining

(S5.91) and (S5.92), we have

P (|εᵀjP ᵀPxi|σ−1
x,i > a) ≤ O{exp(−c0n)}+ P{

√
c1n|W | > a}. (S5.93)

Let x′n =
√

2c0c1n
1−κ−t/2−s/2−u/

√
log n. Invoking the classical Gaussian tail bound,

we have

P{
√
c1n|W | > x′n} = O{exp(−c0n

1−2κ−t−s−2u/ log n)}.

By (S5.90) and Lemma 19, we then have

P (|ηi| > (n1+1−t)−1/2x′n
√
m) ≤

m∑
j=1

P (|εᵀjP ᵀPxi| > x′n)

+P{λmin(Y ᵀP ᵀPY ) < c1n
1−t},

where (n1+1−t)−1/2x′n
√
m =

√
2c0c1mn

−κ−s/2−u/
√

log n ≤ c2n
−κ−u/

√
log n for some
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constant c2 > 0 by Condition 3. In summary, we have

P [max
1≤i≤p

|ηi| > c2n
−κ−u/

√
log n]

≤ O[p exp{−c2n
1−2κ−t−s−2u/ log n}]

= O[exp{−c0n
1−2κ−t−s−2u/ log n}], (S5.94)

where the last equality is from Condition 3.

Step 3. We combine the results in Steps 1 and 2. By Bonferroni’s inequlaity, it

follows from (S5.70), (S5.83), (S5.89) and (S5.94) that, for some positive constants

c̃1, c̃2 and c̃,

P{min
i∈M∗

|ζi| < c̃1(n× n2u+1)−1/2n1−κ or ‖ζ‖2 > c̃2(n× n1−t)−1n1+τpm}

≤ O[|M∗| exp{−c̃n1−2κ−2u−t−s/ log n}]. (S5.95)

By Lemma 18 and (S5.95), we know that there exist some positive constants c1, c2

and c,

P{min
i∈M∗

|ωi| < c1(n× n2u+1)−1/2n1−κ or ‖ω‖2 > c2(n× n−t)−1n1+τpm}

≤ O[|M∗| exp{−cn1−2κ−2u−t−s/ log n}],
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which is O[exp{−c0n
1−2κ−2u−t−s/ log n}] for some constant c0 > 0 by Condition 3 and

|M∗| ≤ p. This shows that with overIwhelming probability 1−O[exp{−c0n
1−2κ−2u−t−s/ log n}],

the magnitudes of ωi, i ∈ M∗ are uniformly at least of order c1(n × n2u+1)−1/2n1−κ,

and for some positive constants c1 and c2,

#{1 ≤ k ≤ p : |ωk| ≥ min
i∈M∗

|ωi|} ≤ c1
(n× n2u+1)× pmn1+τ

n× n1−t × (n1−κ)2
≤ c2pn

s+2u+2κ+τ+t−1,

where the last inequality is from Condition 3. Thus, if the proportion δ of features

selected satisfies δn1−2κ−2u−τ−t−s → ∞, then δp ≥ c2pn
s+τ+t+2κ+2u−1 when δ is suf-

ficiently large, and we know with probability 1 − O[exp{−c0n
1−2κ−2u−τ−t−s/ log n}],

M∗ ⊆Mδ.

S5.3 Lemmas in the proof of Theorem 5

Lemma 13 (Lemma 3 in Fan and Lv (2008)). Let ϑi, i = 1, 2, . . . , n be i.i.d. χ2
1-

distributed random variables. Then for any ε > 0, we have P (n−1
∑n

i=1 ϑi > 1 + ε) ≤

exp(−Aεn), where Aε = [ε − log(1 + ε)]/2 > 0; for any ε ∈ (0, 1), P (n−1
∑n

i=1 ϑi <

1− ε) ≤ exp(−Bεn),where Bε = [−ε− log(1− ε)]/2 > 0.

Lemma 14 (Lemma 1 in Fan and Lv (2008)). For U and (µ1, . . . , µn)ᵀ in (S5.56),
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and Õ uniformly distributed on the orthogonal group O(p), we know that

(In,0)n×pU
(d)
= (In,0)n×pÕ, (S5.96)

and (µ1, . . . , µn)ᵀ is independent of (In,0)n×pU .

Proof. As µ
1/2
1 , . . . , µ

1/2
n are n singular values of Z, we know that Z has the singular

value decomposition Z = V1D1U , where V1 ∈ O(n), U ∈ O(p) is given in (S5.56),

and D1 is an n× p diagonal matrix whose diagonal elements are µ
1/2
1 , . . . , µ

1/2
n . Since

the entries in Z are i.i.d. N (0, 1), for any Õ ∈ O(p), ZÕ
(d)
= Z. Thus, conditional

on V1 and (µ1, . . . , µn)ᵀ, the conditional distribution of (In,0)n×pU is invariant under

O(p). This shows that (S5.96) holds for Õ uniformly distributed on the orthogonal

group O(p), and (µ1, . . . , µn)ᵀ is independent of (In,0)n×pU .

Lemma 15 (Lemma 4 in Fan and Lv (2008)). S defined in (S5.57) is uniformly

distributed on the Grassmann manifold Gp,n. For any constant c0 > 0, there are

constants c1 and c2 with 0 < c1 < 1 < c2 such that

P (〈Se1, e1〉 < c1n/p or > c2n/p) ≤ 4 exp(−c0n).

Lemma 16. The matrix Z is of size n × p and the matrix Z̃ is of size n ×m with

Condition 3 satisfied. The entries in Z and Z̃ are i.i.d. N (0, 1). For some constants
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c1, c0 > 0,

P{λmax(n−1ZZᵀ) > c1 or λmin(n−1ZᵀZ) < 1/c1} ≤ exp(−c0n). (S5.97)

There exist some constants c1 > 1, c > 0 and c0 > 0, when n > c,

P [λmax{n−1(PZ̃)ᵀPZ̃} > c1 or λmin{n−1(PZ̃)ᵀPZ̃} < 1/c1] ≤ exp(−c0n/ log n).(S5.98)

Proof. As the entries in Z are i.i.d. N (0, 1), by Appendix A.7 in Fan and Lv (2008),

we know that (S5.97) holds. For Z̃, since its entries are also i.i.d. N (0, 1) and

n > c7m for some c7 > 1, symmetrically, we know there exist constants c̃1 > 1 and

c̃0 > 0 such that

P{λmax(n−1Z̃ᵀZ̃) > c̃1 or λmin(n−1Z̃ᵀZ̃) < 1/c̃1} ≤ exp(−c̃0n). (S5.99)

Since (PZ̃)ᵀPZ̃ = Z̃ᵀPZ̃ = Z̃ᵀZ̃ − Z̃ᵀ1n1
ᵀ
nZ̃/n, by Weyl’s inequality, we have

λmax{(PZ̃)ᵀPZ̃} ≤ λmax(Z̃ᵀZ̃) + λmax(−Z̃ᵀ1n1
ᵀ
nZ̃/n),

λmin{(PZ̃)ᵀPZ̃} ≥ λmin(Z̃ᵀZ̃) + λmin(−Z̃ᵀ1n1
ᵀ
nZ̃/n). (S5.100)

Let AZ = Z̃ᵀ1n1
ᵀ
nZ̃/n. As rank(AZ) = 1 and tr(AZ) ≥ 0, we know λmax(−AZ) =
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−λmin(AZ) = 0 and λmin(−AZ) = −λmax(AZ) = −tr(AZ) = −1ᵀ
nZ̃Z̃

ᵀ1n/n.

We then examine 1ᵀ
nZ̃Z̃

ᵀ1n/n. For zij∼N (0, 1) independently,

1ᵀ
nZ̃Z̃

ᵀ1n/n =
m∑
j=1

( n∑
i=1

zij/
√
n
)2

∼ χ2
m.

By Lemma 13, we know for the random variable W̃ ∼ χ2
m and any constant c2 > 0,

there exists constant c3 > 0 such that

P{|W̃/m− 1| > c2n/(m log n)} ≤ exp{−c3m× n/(m log n)}, (S5.101)

This implies that with probability 1−O{exp(−c3n/ log n)}, λmax(AZ/n) = 1ᵀ
nZ̃Z̃

ᵀ1n/n
2 ≤

c2/ log n for some constant c2 > 0, as m = O(ns) with s ∈ [0, 1).

When n is sufficiently large, there exists constant c1 such that 1 > c1 > c̃1 and

1/c1 +c2/ log n < 1/c̃1. Thus by (S5.100) and (S5.101), we know there exists constant

c0 > 0 such that with probability 1− exp(−c0n/ log n),

{λmin(n−1(PZ̃)ᵀPZ̃) < 1/c1} ⊆ {λmin(n−1Z̃ᵀZ̃) < 1/c1 + c2/ log n}

⊆ {λmin(n−1Z̃ᵀZ̃) < 1/c̃1},

{λmax(n−1(PZ̃)ᵀPZ̃) > c1} ⊆ {λmax(n−1Z̃ᵀZ̃) > c̃1}.

By (S5.99), (S5.98) is then proved.



67

Lemma 17. For R = (R1, . . . , Rp)
ᵀ = Ũᵀdiag(µ1, . . . , µn)Ũe1, there exist positive

constants c1 and c0 such that P (|R2| > c1n
1/2|W1|) ≤ O{exp(−c0n}, where |W1| is

an independent N (0, 1)-distributed random variable.

Proof. Let R̃ = (R2, . . . , Rp)
ᵀ. We first show that R̃ is invariant under the orthogonal

group O(p − 1). For any Q ∈ O(p − 1), let Q̃ = diag(1, Q) ∈ O(p). By Lemma 14,

we know that Ũ is independent of diag(µ1, . . . , µn) and Q̃Ũ
(d)
= Ũ . Thus

Q̃ᵀR = Q̃ᵀŨᵀdiag(µ1, . . . , µn)ŨQ̃Q̃ᵀe1
(d)
= Ũᵀdiag(µ1, . . . , µn)Ũe1,

where we use the fact that Q̃ᵀe1 = e1. This implies that R̃ is invariant under

the orthogonal group O(p − 1). It follows that R̃
(d)
= ‖R̃‖W/‖W‖2, where W =

(W1, . . . ,Wp−1)ᵀ ∼ N (0, Ip−1), independent of ‖R̃‖.

In particular, we have R2
(d)
= ‖R̃‖W1/‖W‖2. Note that ‖R̃‖ ≤ ‖R‖ and ‖R‖2 =

eᵀ1Ũ
ᵀdiag(µ2

1, . . . , µ
2
n)Ũe1. Since µ1, . . . , µn ≤ pλmax(p−1ZZᵀ),

‖R‖2 ≤ {λmax(p−1ZZᵀ)}2p2eᵀ1Ũ
ᵀŨe1={λmax(p−1ZZᵀ)}2p2〈Se1, e1〉.

By Lemmas 14 and 16, we then know for some positive constants c1 and c0, P (‖R‖ >

c1
√
pn) ≤ O{exp(−c0n)}. Moreover, by Lemma 13, we know for some constants c1
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and c0, P{‖W‖2 < c1(p − 1)} ≤ exp(−c0n) when p > n. Thus we obtain that for

some constants c1 and c0, P (|R2| > c1|W1|n1/2) ≤ O{exp(−c0n)}, where W1 is an

independent N (0, 1)-distributed random variable.

Lemma 18. For some constant c0 > 0, ωi = ζi{1 + o(1)} with probability 1 −

O{exp(−c0n/ log n)}.

Proof. By the definitions of ωi and ζi and P ᵀP = P , we know

ωi − ζi ≤ max
a

aᵀY ᵀPxi(
√
nσx,i −

√
(xi)ᵀPxi)

σx,i
√
n((xi)ᵀPxi)(aᵀY ᵀPY a)

= ζi

√
nσx,i −

√
(xi)ᵀPxi√

(xi)ᵀPxi
,

ζi − ωi ≤ max
a

aᵀY ᵀP ᵀxi(
√

(xi)ᵀPxi −
√
nσx,i)

σx,i
√
n((xi)ᵀPxi)(aᵀY ᵀPY a)

= ζi

√
(xi)ᵀPxi −

√
nσx,i√

(xi)ᵀPxi
.

Thus

|ωi − ζi| ≤ ζi

∣∣∣∣∣
√

(xi)ᵀPxi −
√
nσx,i√

(xi)ᵀPxi

∣∣∣∣∣ = ζi

∣∣∣1− σx,i√n/{(xi)ᵀPxi}
∣∣∣.

Let x̄i =
∑n

k=1 xk,i/n, which is the mean of the entries in xi. It follows that

(xi)ᵀPxi =
∑n

k=1(xk,i − x̄i)2 =
∑n

k=1 x
2
k,i − n(x̄i)2. Then with c̃1 = c1/2

P (|(xi)ᵀPxi/(nσ2
x,i)− 1| > c1/log n) (S5.102)

≤ P{(x̄i)2/σ2
x,i > c̃1/log n}+ P

{∣∣∣ n∑
k=1

x2
k,i/(nσ

2
x,i)− 1

∣∣∣ > c̃1/log n
}
.
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By Condition 1, (
√
nx̄i)2/σ2

x,i ∼ χ2
1. Then by the tail of χ2

1 distribution, for some con-

stant c0 > 0, P{(x̄i)2/σ2
x,i > c̃1/log n} ≤ O{exp(−c0n/log n)}. In addition, x2

k,i/σ
2
x,i,

k = 1, . . . , n are i.i.d. χ2
1-distributed random variables. By Lemma 13, there exists

some constant c0 > 0,

P
{∣∣∣ n∑

k=1

x2
k,i/(nσ

2
x,i)− 1

∣∣∣ > c̃1/log n
}
≤ O{exp(c0n/log n)}.

In summary, we know for any constant c1 > 0, there exists constant c0 > 0 such that

(S5.102) ≤ O{exp(−c0n/ log n)}. Thus, for i = 1, . . . , p, ωi = ζi{1 +O(1/
√

log n)} =

ζi(1 + o(1)) with probability 1− O{p exp(−c0n/ log n)} = 1− O{exp(−c0n/ log n)},

where the last equality is from Condition 3.

Lemma 19. Consider n > c for c in Lemma 16. There exist constants c1, c2 and c0,

with probability 1−O{exp(−c0n/ log n)},

λmin(Y ᵀP ᵀPY ) ≥ c1n
1−t,

and for a0,i in Condition 2,

aᵀ
0,iY

ᵀP ᵀPY a0,i ≤ c2n
2u+1. (S5.103)

Proof. Since X and E follow independent Gaussian distributions by Condition 1,
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the rows of Y are independent multivariate Gaussian with mean zero and covariance

Σy = BᵀΣxB + Σ. Define Z̃ = Y Σ
−1/2
y . Then Z̃ is of size n×m and the entries in Z̃

are i.i.d. N (0, 1). Thus the concentration inequality (S5.98) in Lemma 16 holds. It

follows that there exist constants c1 and c0, with probability 1−O{exp(−c0n)},

Y ᵀP ᵀPY =Σ1/2
y Z̃ᵀP ᵀPZ̃Σ1/2

y

�nΣ1/2
y λmin(n−1Z̃ᵀP ᵀPZ̃)ImΣ1/2

y � c1nΣy.

By Weyl’s inequality and Condition 1, we then know

λmin(Y ᵀP ᵀPY ) ≥ c1nλmin(Σy) ≥ c1nλmin(Σ) ≥ c1n
1−t. (S5.104)

Similarly we know for some constant c2, with probability 1−O{exp(−c0n)},

aᵀ
0,iY

ᵀP ᵀPY a0,i = aᵀ
0,iΣ

1/2
y Z̃ᵀP ᵀPZ̃Σ1/2

y a0,i

≤ c2naᵀ
0,iΣya0,i

= c2naᵀ
0,i(B

ᵀΣxB + Σ)a0,i

≤ c2n
2u+1,

where the last inequality is from Condition 2.
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S6. Proposition 6 (Meinshausen et al., 2009, Theorem 3.2)

The proof of Proposition 6 directly follows the proof in Meinshausen et al. (2009).

For z ∈ (0, 1), define

ψ(z) =
1

J

J∑
j=1

1{p(j) ≤ z}. (S6.105)

Note that {Q(γ) ≤ α} and {ψ(αγ) ≥ γ} are equivalent. For a random variable U

taking values in [0, 1],

sup
γ∈(γmin,1)

1{U ≤ αγ}
γ

=


0 U ≥ α

α/U αγmin ≤ U < α

1/γmin U < αγmin.

Thus when U has a uniform distribution on [0, 1],

E
[

sup
γ∈(γmin,1)

1{U ≤ αγ}
γ

]
=

∫ αγmin

0

γ−1
mindx+

∫ α

αγmin

αx−1dx = α(1− log γmin).

Hence, define the event B(j) as M∗ ⊆Mδ for the jth split, then

E
[

sup
γ∈(γmin,1)

1{p(j) ≤ αγ}/γ
]
≤ E

{
E
[

sup
γ∈(γmin,1)

1{p(j) ≤ αγ}/γ
∣∣∣B(j)

]}
+

1

γmin

P{B(j)}

≤ α(1− log γmin) +O[exp{−c0n
1−ι/ log n}],
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where the constant ι is given in Theorem 5. Averaging over J splits yields

E
[

sup
γ∈(γmin,1)

1

γ

1

J

J∑
j=1

1{p(j)/γ ≤ α}
]
≤ α(1− log γmin) +O[exp{−c0n

1−ι/ log n}].

From Markov inequality and (S6.105), E[supγ∈(γmin,1) 1{ψ(αγ) ≥ γ}] ≤ α(1−log γmin)+

O[exp{−c0n
1−ι/ log n}]. Since {Q(γ) ≤ α} and {ψ(αγ) ≥ γ} are equivalent, it fol-

lows that P [infγ∈(γmin,1)Q(γ) ≤ α] ≤ α(1− log γmin) +O[exp{−c0n
1−ι/ log n}], which

implies that P [infγ∈(γmin,1)Q(γ)(1− log γmin) ≤ α] ≤ α+O[exp{−c0n
1−ι/ log n}]. By

definition of pt, lim supn→∞ P [pt ≤ α] ≤ α is obtained.

S7. Supplementary Simulations

S7.1 Supplementary simulations when n > p+m

Estimated type I errors

We provide additional simulations under H0 following the same set-up as in Figure 4.

In Figure S1, we present the estimated type I errors of the χ2 approximation and the

normal approximations of T1 and T3 with varying m and r respectively. It exhibits

similar pattern as in Figure 4, which shows that as (p,m, r) become larger, the χ2

approximation performs poorly, while the normal approximations for T1 and T3 still

control the type I error well.
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Figure S1: Estimated type I error

Additional simulations under alternative hypotheses

In this section, we generate data from the multivariate regression model Y = XB+E,

where the rows of X and E are independent multivariate Gaussian with covariance

matrices Σx = (ρ|i−j|)p×p and Σ = (ρ|i−j|)m×m respectively. We consider a sparse

scenario when only the (1, 1)-entry of B is nonzero with a value vd. We also consider

a dense scenario when all the entries of B are independently generated from N (0, σ2
d).
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For each scenario, we estimate the test powers for different vd or σ2
d values, which are

referred to as the signal sizes in the following. We take n = 100,m = 20, p = 50, r =

30 and conduct 10,000 simulations for two different C matrices. In the first case, we

take C = [Ir,0r×(p−r)], where Ir is an identity matrix of dimension r × r, 0r×(p−r) is

an all zero matrix of dimension r × (p − r). Then H0 : CB = 0r×m examines the

relationship between Y and the first r predictors of X. In the second case, we take

C = [Ir,0r×(p−r−1),−1r], where 1r is an all 1 vector of length r, and 0r×(p−r−1) is

an all zero matrix of dimension r × (p − r − 1). Then H0 : CB = 0r×m tests the

equivalence of effects of the first r predictors and the last predictor. For two types

of B and two types of C matrices, we plot the estimated powers of T1, T2, T3 versus

signal sizes with ρ = 0.7, ρ = 0.5 and ρ = 0 in Figures S2, S3 and S4 respectively,

where similar results are observed.

Figures S2–S4 show that under the dense B scenario, T1 is more powerful than

T2; but under the sparse B scenario, T2 is more powerful than T1. In addition,

the combined statistic T3 still maintains high power under both scenarios. These

results demonstrate the good performance of the proposed statistic T3. Note that the

patterns we observe in Figures S2–S4 are similar to that in Figure 5, which indicates

that the conclusion we obtain under the canonical form can be instructive when

considering the linear form.
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Figure S2: Estimated powers versus signal sizes with ρ = 0.7
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Figure S3: Estimated powers versus signal sizes with ρ = 0.5
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Figure S4: Estimated powers versus signal sizes with ρ = 0
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Robustness with other distributions

We further conduct some simulations considering other distributions, which exhibit

similar patterns as in Figure S2 and imply the robustness of the proposed methods.

(a) X and Y follow multinomial distributions For i = 1, . . . , n and j =

1, . . . , p, we generate the entry xi,j in X independently and identically in the fol-

lowing way. In particular, we first generate zi,j
i.i.d.∼ N (0, 1), and set the value of xi,j

as below:

xi,j =



−3 zi,j < −1,

−2 zi,j ∈ [−1,−0.4),

−1 zi,j ∈ [−0.4, 0),

1 zi,j ∈ [0, 0.4),

2 zi,j ∈ [0.4, 1),

3 zi,j > 1.

Given B and X, we generate W = XB+E, where the entries of E are i.i.d. N (0, 1).

For i = 1, . . . , n and j = 1, . . . , p, let wi,j and yi,j denote the entries of W and Y
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respectively. We then set

yi,j =



−3 wi,j < −1,

−2 wi,j ∈ [−1,−0.4),

−1 wi,j ∈ [−0.4, 0),

1 wi,j ∈ [0, 0.4),

2 wi,j ∈ [0.4, 1),

3 wi,j > 1.

We present the results in Figure S5, where “B sparse” and “B dense” represent

two different types of B matrix, which are generated following the same method as in

Section S7.1. Similarly, we also take C = [Ir,0r×(p−r)] and C = [Ir,0r×(p−r−1),−1r]

respectively. We can observe similar patterns to that in Figure S2.

(b) Errors follow t distribution In this part, we examine the case when the

errors in matrix E independently and identically follows t distribution. In particular,

we first generate the entries in X as i.i.d. N (0, 1). Then we generate the entries in E

as i.i.d. tdf with df ∈ {3, 5}. The results are summarized in Figure S6, where similar

patterns are observed as in Figure S2.
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Figure S5: Power comparison when X and Y follow multinomial distribution
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Figure S6: Power comparison when entries in E follow t distribution
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S7.2 Supplementary simulations when n < p+m

Supplementary simulations with normal distribution

Under the similar set-up to that of Figure 6, we present additional results with rk = 5

in Figure S7, where similar patterns are observed as in Figure 6.

Figure S7: Estimated powers versus signal sizes when n < m+ p

In addition, under the similar set-up to that of Figure 6, we conduct simulations

when ρ = 0 and rk ∈ {1, 5}. The results are presented in Figure S8, where similar

patterns are observed as in Figure 6.
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Figure S8: Estimated powers versus signal sizes when n < m+ p
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Robustness with other distributions

To examine the robustness of the two-step procedure, we generate X and Y follow-

ing Section S7.1 with n = 100, m = 20, p = 120. We then generate B and apply

the testing procedure similarly as in Section 5.2 with rk ∈ {1, 5}. The results are

presented in Figure S9, where part (a) gives the results when X and Y follow multi-

nomial distribution, and parts (b) and (c) give the results when the error terms in E

are i.i.d. t3 or t5. We note that similar patterns are observed as in Figure 6. This

shows that the proposed two-step procedure is robust to the normal assumption.

S7.3 Simulations on P{ψ(αγ) ≥ γ}

We conduct a simulation study to illustrate how the value of P{ψ(αγ) ≥ γ} depends

on the correlations of the p-values. We consider an “ideal” case with equal correlated

p-values. Specifically we generate p(j) = 1 − Φ(VJ,j) for j = 1, . . . , J , where VJ =

(VJ,1, . . . , VJ,J)ᵀ ∼ N (0,ΣJ) with ΣJ = (1− ρ)IJ,J + ρ1ᵀ
J1J . Note that larger ρ value

implies larger correlations between p(j)’s. We take J = 200 and use 106 Monte Carlo

repetitions to estimate P{ψ(αγ) ≥ γ}. Figure S10 gives the simulation results for

ρ ∈ {0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 1}, and γ ∈ (0, 1) and (0, 0.01) respectively. When

ρ is small, the largest value of P{ψ(αγ) ≥ γ} is attained at 5 × 10−3 = J−1; when

ρ = 1, the largest value is attained at γ = 1. These observations are consistent with

the above theoretical argument.
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(a) X and Y follow multinomial distributions
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(b) Entries in E follow t3 distribution
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Figure S9: Estimated powers of two-step procedure with other distributions
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Figure S10: Estimated P{ψ(αγ) ≥ γ} versus γ under different correlation levels

S7.4 Simulations compared with screening using lasso

In this paper, we propose the two-stage testing procedure using the screening with

canonical correlations. Note that the proposed method aggregates the joint infor-

mation of the response variables, and thus could be better than simply applying

the marginal screening with respect to each response variable. To further study the

effect of highly correlated predictors, we compare our method to using lasso with

cross-validation, which is expected to account for the dependence in the predictors

while not for the dependence in the responses.

In particular, for the screening with canonical correlations, 20% predictors are se-

lected as in Section 5.2; for the screening with lasso, we select the predictors (≤ 20%

of all predictors) that minimize the MSE in 10-fold cross-validation. In the simula-

tions, we take C = [Ir,0r×(p−r)], and generate the rows of X and E as independent

multivariate Gaussian with covariance matrices Σx = (ρ|i−j|)p×p and Σ = (ρ|i−j|)m×m
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respectively. For each setting considered, we choose ρ ∈ {0.7, 0.9}, which are the

cases when the predictors are of large correlations.

Figure S11: Screening Comparison: B is diagonal

We next consider two simulation settings, whose results are provided in the fol-

lowing Figures S11 and S12 respectively. In the first setting, we choose B to be a

p×m diagonal matrix with σs in the first rk diagonal entries, where σs represents the

signal size that varies in simulations. We take n = 100, p = 120,m = 5, r = 5 and

rk = 5. In the second setting, we generate B with a nonzero submatrix of size rk×m

in the upper left corner, where the entries are randomly generated from N (0, σ2
s).
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We take n = 100, p = 120,m = 5, r = 120 and rk = 5. In both Figures S11 and

S12, we provide the estimated powers versus signal sizes in the left column, where

J represents the number of splits similarly as in Figure 6. In addition, we provide

the corresponding proportion of simulations that cover the true active set (correct

covering proportion) versus signal sizes in the right column.

Figure S12: Screening Comparison: B has a nonzero submatrix

By the simulation results, we find that under the considered simulation settings,

even though the correlations among predictors are large, using the canonical corre-

lation in screening performs better than using lasso with cross-validation, in terms

of both test power and correct covering proportion. The results suggest that the
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correlation-based procedure can still account for the dependence among predictors

reasonably under certain settings with correlated predictors. In addition, comparing

the test power and corresponding correct covering proportion in Figures S11 and S12,

we find that the under selection of the true active set generally leads to loss of power

in testing. To further improve the test power, it is still of interest to develop a screen-

ing approach that could fit a wider range of scenarios and is also computationally

efficient. Besides the two screening approaches compared here, we can also gener-

alize other screening methods to the multivariate regression setting, as discussed in

Remark 3 on Page 20. We will further study this in the follow-up research.

S8. Supplementary Results of Real Data Analysis

In this section, we present the analysis results of the regressions of GEPs on CNVs

for the same dataset in Section 6. Then the m-variate response is the GEPs data and

the p-variate predictor is the CNVs data, where now the dimension parameters are

(p,m) = (138, 673), (87, 1161), (18, 516) for the three chromosomes correspondingly.

Similarly to Section 6, we apply the proposed procedure with nS = 26, nT = 63 and

J = 2000. As m values are large in this case, we choose different fixed numbers of

principal components when applying PCA on the response Y . The chosen number

of principal components and predictors are denoted as m0 and p0 respectively, which

are generally chosen as large as possible considering the sample size given. We next
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Chromosome pair
(m0, p0) 8→ 8 17→ 17 22→ 22 8→ 17 17→ 22 8→ 22
(10,45) x x x x x X
(15,45) x x x x x X
(15,40) x x x x x X
(20,40) x x x x x X
(20,35) x x x x x X

Table S1: Decision results

Figure S13: Boxplot of p values for regressions on different chromosome pairs

provide the decision results in Table S1, where the notations follow the same meaning

as in Table 1. In addition, to further illustrate the results, we also report the boxplots

of the p-values with respect to different chromosome pairs in Figure S13, where

(m0, p0) = (15, 40).

From the results, we can see that the p-values presented in Figure S13 support the

test results in Table S1. Particularly, in the boxplots of the regressions on the same
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chromosome pairs (the first three boxplots), the obtained p-values are significantly

smaller than 0.05. For the regressions of the 17th on the 8th chromosomes and the

22nd on the 17th chromosomes (the 4th and 5th boxplots), the medians of the p-

values are smaller 0.05. These observations are consistent with the rejections of the

corresponding null hypotheses. Moreover, for the regression of the 22nd on the 8th

chromosomes (the 6th boxplot), most of the p-values are greater than 0.05, which

supports the decision that we accept the corresponding null hypothesis.
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