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Supplementary Material

In this supplementary document, proofs are provided for some of the results presented in the main document.
Specifically, proofs for the Gaussian particularizations of our main results (Corollaries [1| and [2)) are given in Section
The proof for the instrumental tightness properties of Lemma [3]is included in Section Finally, proofs for the

key asymptotic properties of normalized bilinear forms (Lemma [I| and Proposition [1)) are given in Section
S1 Gaussian particularizations

S1.1 Proof of Corollary

Refer to definition (1.4)) of &, and introduce also

Fajiry = Cov(ij, ), Rojiry = Cov(tiz, Xirjr)-

Note that the centering terms in covariances #; and Ao are respectively E;;E;; and

Ev;;Exi -, and that both equal k;;k;;:. Observe also that the sum

[P fial = Y Phiuy Cov(tiz, xiry)

T,
Z7]7Z 7]
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is unchanged by swapping the indices (ij) with (i'j"), so
[PY, k] = [PY, k1] — 2[P¥, ko] . (S1.1)
Using definition of ;; and setting ;i = E[E;E0E51],
Y Pl Eyty) = Z Vbt g BE + )G+ ) = > Pk s

7]17‘7 7.]Z7.] 7]Z7J

since the latter sum is unaffected by replacing ¢ with j, and " with j’.

Now we can insert the centering in 51, and argue in a parallel manner for %5, to obtain

Z Zﬂju‘izgﬂm (i — 1) = 5,2, Z(py,i)z(py,i’)2<,uiii’i’ - 1),

5,45’ i3
v 2
73 KQ g U”/KU Muzy /‘fz‘/j') =1, E (pu,i) pu,i/pu,jf(#iii/jf - Hi’j’)a
i,5,0" . (v

where in each final equality we used the summation device for indices occurring exactly
twice; for example, if j appears twice, ) j KijDuj = Cupyi.

To this point, no Gaussian assumption was used. If the data is Gaussian, gy =
KijKitj + Kiy Kjj + Kij kg, and in particular iy —1 = 2kK2

and Higir g7 — Rqgtjr = Qlﬁiilfii]‘/. We

[

then obtain

[P", Fa] = %Z Z(Pu,ilw/pu,i/)z = 2&2, tr (PD,I/FPD,V)27

[P ko] = 26 (pua)* = 2610 (Pp,),

and inserting these into (S1.1)) and then ([2.6)), we complete the proof.

S1.2 Proof of Corollary
If the data is Gaussian, Rijirjr = 0 and E[gzgjgz’gj’] = RijRqij + Rt Kjj1 + Rij Rt - Hence,

(S w = p, b, Opy + [PFY &, (S1.2)
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and, from the definition of % in ([1.3))-(1.4)), we obtain

(V) 2 17 ] 14 33’ iy’ i v O LYY VAN Y VARV AV

(S1.3)
With this, we evaluate [P*% k], where we need to deal with terms of two types: involving
products such as liijl{i/j//i?i, and such as Ky j K Kjir.

For the first type, we use the same

summation device as in Section i.e., if for example index j occurs exactly twice,

> KijPvj = luPy,, so that
Z ,PZIZZJ/ HZ]F‘:’L ]//f g Zpk i\Dv, z"i”’pul )pl i g v Dg PD I/(F o F)PD vPlL = f Zkl;
4,5,8" .5’ 4,3/

where, recall Pp, = diag(p,1,-..,Pum). For the second type of terms, by the same device,

Z PZZIJI Ry ‘]/K/Zl/’%]l, — éké Zpk z’py i'Pli = Ekg Pr PD Pl = Ekg ykl

R -,
Z7]7Z 7] 7

The rest of terms are evaluated similarly, yielding

E kvlv E kvlv
P@]z 14! Kij K ]”i i gkflzklu P@]z r5! KirjrKigr Rjgr = Ekglg ykla

R
/L7.]7Z 7]

g Pkyl i Rij Ry ]//'i g =1 &Zkla

iji'j
,5,0 .5
(Edid = 0,02
iji j/ ,{/Z] K'/Z ‘]/K" / k<Kl
1,,3",5"

R
17‘771 7‘7

kviv
§ P@ﬂ 15t RijRigt Rijr = glg ykla

A
Z7‘77Z 7‘7

kvlv
E Pzﬂ 2 RijRi jRj0 = Zk&é,,ykl.

R
1’7]71’ 7]

Combining terms according to (S1.2)-(S1.3) leads to the result of Corollary

S2 Proof of Lemma [3], (5.28)—(5.30)

Tightness of G,,(g,) in (5-28)), and a fortiori that of n=Y/2G,,(g,), follows from that of Mn(z)
in|Gao et al.| (2017, Proposition 1), itself an adaptation of Lemma 1.1 of Bai and Silverstein

(2004) to the sample correlation setting, and the arguments following that Lemma. Note in
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particular that, with notation z,,C,C from [Bai and Silverstein| (2004), a complex contour
C U C enclosing the support of F, can be chosen, by taking b, < x, < b, + 3¢, such that
|9,(2)] is bounded above by a constant for z € C UC.

To prove (5.29)), from it suffices to show that the matrix valued process {W,,(p) €
R™ ™ p € I} is uniformly tight. Since m stays fixed throughout, we only need to show
tightness for each of the scalar processes formed from the matrix entries el W,(p)e; on 1.

Let P,,[E,, denote probability and expectation conditional on the event E,. = {u; <

b, +¢€}. We show tightness of W,,(p) on I by establishing the moment criterion of Billingsley

(1968, eq. (12.51)): we exhibit C' such that for each k,I < m and p,p’ € I,
E,ler, [Walp) = Wa(p)led® < Clp— o).

Write the quadratic form inside the expectation as wTBny — Ky tr B, with & = XlT e, and
y = XT¢, being the k™ and I" rows of X, and B, = n""?[B,(p) — B,(p')]. Lemma [I] with
p = 2 yields

E,lex [Wa(p) = Wa(p)lerl® < 2ComE, [tr B] + [[n'/2B,|)%].
Now n'/2B,, has eigenvalues (p' — p)ui(p — )~ (p — )", so that on B, we have tr B2 <
In'/2B,||> < C(p — p)?, which establishes the moment condition.

To establish ([5.30)), we work conditionally on E,.. The tightness just established yields,

for given €, a value M for which the event E!, defined by

sup n'/?|| K (p) — Ko(p; y)|| > M

pel

has P,-probability at most e. For all large enough n such that b, + 3¢ > (1 + \/7,)?, we

combine this with the eigenvalue perturbation bound

A (0) = Xow(p)] < K (p) — Kolp; va)l (S2.1)
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for p € I, where \,(p) and g, (p) = —pm(p; vn)l, — p are the " eigenvalues of K(p) — pl,,

and Ko(p;vn) — pl,, respectively. Observe that Ao, (p.,) = 0 and

pAow(p) = —1 — E,,/x(p —2)7%F, (dr) < —1,

hence for ppe = pn = Mn=2 we have Ao, (pn_) > Mn="? and Ao, (ppy) < —Mn~Y2. Now
(S2.1)) shows that on event EJ¢, A, (p,—) > sMn~'% and A\, (pny) < —2Mn~1/2. Since A, (p)
is continuous in p, there exists p,. € (p,_, py+) such that A, (p,«) = 0; note from the Schur

complement decomposition
det (R — ply1p) = det (Rag — pl,) det (K (p) — plpn)

that p,. is an eigenvalue of R. This is almost surely l@, since éy,pyn 22, pu, and p, =
p(L,,7) is different from the almost sure limit of any eigenvalue of R adjacent to l, (given
by (5.20)), because ¢, is simple and supercritical. Therefore, we have £, € (pn_, pns), and

thus £, — pya| < Mn~1/2 which proves (5.30).

S3 Proofs of asymptotic properties of normalized bilinear forms

S3.1 Proof of Lemma |1 (Trace Lemma)

Lemmais established by using truncation arguments, similar to|Gao et al.| (2017, Lemma 5),
but adapted to bilinear forms instead of quadratic forms. Also, in contrast to that result,
we do not consider data that is centered with the sample mean.

Let C, denote a constant depending only on s, with different instances not necessarily
identical. Define the events £2 2 {|n~!||z||> — 1| < €} and &Y £ {|n"Y|y|*> — 1| < ¢}, for
some € € (0,1/2), and use £%, £Y to denote their complements. Using Markov’s inequality

and Burkholder inequalities for sums of martingale difference sequences (Bai and Silverstein),
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2009, Lemmas 2.13), we have, for any s > 1,

n s

S

i=1

n s/2 n
< Cs(ne)™® (Z E|z? — 1|2) + ZE|$§ —1°| =0 (n_s/QVZ/Q + n_s+17/23> :
i=1 i=1

PEN<e*E|nz|* - 1!5 = (ne)°E

(S3.1)
and a bound of the same order for P[£Y], for the same reason. Now define &, = £* N &Y
and its complement &,. Then P[£,] < P[E¥] +P[EY] = O (n_s/%j/Q + n‘SHUQS) by (S3.1)).

Also, since 1 = 1g, + 1¢ (recall that 15 denotes the indicator function on set A), we have

E |n_1fTng — pn"ttr B}S =E |n_1fTng — pn? trB‘s 1, +E ’n_la_cTBy —pn~ttr B|S 1z .
(S3.2)
We now bound the two terms on the right hand side of (S3.2). For the second term, from

In~'zT By — pn~' tr B| < 2||B|| and (S3.1)), we have
E|n 5" By — pn~'tr B|" 15, < 2°|| B|P[£,] = || B||"O (n—s/%j/? + n—s+1y2s) .

For the first term in (|S3.2)), use the decomposition

ptr B

—1=-T p~ -1
n - By—on trB =
e =Tyl

[xTBy —ptr B} +

1L—n"zlllyll] £ a1 + as,
][]y : )
and the triangle inequality to write

E |n_1;fTng —pn? trB‘s 1e, <Cs (Elay|*1s, + E|as|*1g,) .
Noting that € € (0,1/2), ||z]|* > n/2 and ||y||* > n/2 on &,, so that

Elai|°1le, < 2°n™°E |:UTBy — ptr B!S <Cn* [1/28 tr B® + (vytr B2)S/2] ,

where the last inequality follows from [JY, Lemma 4]. For ay, for the same reasons and
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p| <1,
Elas|*1le, <2° (n ' tr B) E |1 —n~'zlllyll|" 1e, <2°|BI’E[1—n""|z||lyll]" 1e,. (S3.3)
We now show that E |1 — n*1||x||||y|||s 1e, = O(n’s/QVZﬂ +n"*"uy,). Note that

1= nHalllyll] < n= 2yl n= 22l = 1] + [n 2yl - 1

I

and that, on &, and with € € (0,1/2), we have n='/2||y|| < 1/3/2. Therefore,

E[1—n alllyl|" 1e, < € [E[n~ 2z — 1| +E [ /2y - 1]

<C B> =1+ E|nyl> - 1] = 0 <n’5/21/j/2 + n’”lz/zs) ,

by the fact that |a — 1] < |a* — 1] for @ > 0, and (S3.1]). Combining this bound with ([S3.3)),

we obtain

Elas| "1, < C.l[BI" (0™ 40~ ).

The proof is complete after combining the different bounds and using them back in (S3.2)).

S3.2 Proof of Proposition (1| (CLT)

We use the Cramer-Wold device and show for each ¢ € RM that ¢”Z, = Ny (0,c" D).
The proof follows a martingale CLT approach of Baik and Silverstein presented in the Ap-
pendix of (Capitaine et al.| (2009). While here normalized data vectors are considered, a
parallel treatment for bilinear forms with un-normalized data is presented in the companion
manuscript [JY, Theorem 10].

Start with a single bilinear form z7 By = Zij Z;b;;9; built from n vectors (i =1,...,n)

('fl)gz) - (5-:13_1xi7 &y_lyz) € R27
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where the zero mean i.i.d. vectors (x;,y;) have covariance

and 67 =n~" " a7 and 6, =n~" Y 7 are the sample variances. Rewrite 62 = 1+ v,
with v, =n~t S°F 22 — 1 = O,(n"Y/?), and use the Taylor expansion of f(a) = 1/v/1+a

around a¢ = 0 to obtain

1 1
Gl=1-— 5Vt op(n?), et =1- U+ 0p(n~1?). (S3.4)

The symmetry of B allows the decomposition
1 (#"By—ptrB) =n"" Z(fzﬂz — p)bii + 2:.5:(Y) + 4iSi(Z), (S3.5)
where S;(y) = Z; llbwy] The terms in the sum above are not martingale differences, since

the data vectors z, y are normalized to unit length. In order to apply the Baik-Silverstein
argument, we aim at finding an alternative decomposition in terms of the unnormalized data

vectors x, y; let us see this, term by term. For the first term, using (S3.4)),

n_l Z(-fzgz - u Uxay Z xzyz (VA n_l Z pbu
|:1 - %(U:c + Uy) + Op 1/2 :| szyz i n_l Z pbu

1

(93.6)

Note that

n~! Z ziyibi = n Z pbi+n~" Z(ﬂﬁzyz —p)by =n"" Z pbi + Op(n_1/2)
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and recall that v, and v, are O,(n"1/2) so that, from (S3.6),

1
n Z(@g@ — p)bis =n"" Z(Izyz — p)bi; — 5P (n"'trB) (22 + 42 —2) + Op(n_1/2),

% %

For the second term in ([S3.5)),
nt Z Z;8i(§) = (6,0,) ' n" Z 2:5i(y)

where, from the independence of z;y; and b;; and the spectral norm bound of B,

i—1
nt Z 2:8;(y) =n"" Z Z 20 = Op(n~1?).
i -1

i j=

This, along with the fact that v, and v, are O,(n~'/2), yield
_ e 1 _ _
n w0 = L 50+ o)+ o] 0 LS )

=n! Z 2:5i(y) + op(n~1?).
The third term in (S3.5), n=' >, 4:5:(Z), is handled similarly. Altogether, we have the

decomposition

1
n' (z"By—ptrB) =n~" Z($iyi_P)bii_§P (n~" tr B) (x24-y2 —2)+2:S:(y) +y:Si(x) +o,(n~?),

1

where we can now apply the Baik-Silverstein argument. Specifically, in the setting of the

theorem,

CTZn — n*1/2 ch (leBngl — tr Bn) = Z Zdi —+ Zyi + Z;m + Op(l) = Z an + 0p<1)7
l =1 i=1

where

Vn Zg = Z G [(xliyli — p1)bii — %Pl (nfl tr B,) (Ii + yi - 2)} = Z G b@TZli
l

l
\/ﬁZyi = Z Czl’h'Si(yz-)
l

Vi Zei = aiiSi()

l
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are martingale differences w.r.t. F,;, the o-field generated by B, and {(x;;,y;),1 <1 <

M,1 < j <i}. In the case of Z;; we have introduced notation

. bii 21 — P
b=n tI'Bn, bl = N Z;; — s

recalling that z;; = xy; and wy; = py(zd + y3) /2.
Let E;_; denote conditional expectation w.r.t. F,; 1 and apply the martingale CLT.

The limiting variance is found from v? = plim V,? with
Z Ez 1 nz = n dd + 2(Vn,dy + Vn,d;r) + Vn,yy + Vn,:vac + 2Vn,$y7 (837)

where V,, oo = >0 | E;1[Z4i Zyi] for indices a,b € {d,y,x}. The terms Z,; and Z,; are exactly

as in [JY] and, therefore

1 T
Viy = Vivww — (0= w)e'C™ o C%e
1
mey 5(6 w)ch'C™ o C¥c.
We only need to compute V,, g4, Vi gr and V,, g,. Start with V,, gq = >0 | E;_1[Z3], where
Czr Czv
TLE@_lZgi = Z Clcl’szEi—l(zlizlj;)biy and Ei—1<zli217;> = ! !

IR wz ww
’ iw uw

does not depend on i. Consequently

Vidd = chcl’[ Zb i+ = O — O )]
L

and plim V}, 44 = ¢ (WK, + ¢K>) ¢, with K, K, given by (4.15)).

Turn now to

ndy E ]Ez 1 Zdz yz

_ZCICIIM”, [ 7126“5 Y. ] ZC[C[/M“, [ 7125 Y. ], (838)

NG NG
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where

1
My = El(owy — par). M) = Spu(n™" tr BB} + 5} — 2.

By [JY, Lemma 12], the two quantities between brackets in converge to zero in prob-
ability and, therefore, V;, 4, 2 0. Similarly, Vidz 2 0. Combining terms according to (S3.7)
and the previous limits, we finally get v?> = ¢’ D¢, with D as in the theorem.

Finally, we verify the Lindeberg condition. An important closure property, shown in
Capitaine et al. (2009, Appendix), called [A] below, states that, for random variables X7, X

and positive e,
E[| X1 + Xo|*1ix, 1 x03e] < 4 (E[|X1*11x,5¢/2) + E[|X2*1)x,3¢/2]) -

It suffices to establish the Lindeberg condition for the martingale difference sequences

1 Pl - Pl _
Zl(il) = %(xlz‘yli — p1)bii, Zz(f) = 2\/ﬁ(n Ytr B,) (a7 — 1), Zl(ig) = 2\/5(” Yt By) (v — 1),

1 1
i =21 (), 2y =Y (1)

Vn v

This follows just as in [A]; recalling that || B|| < 8 we have, for € > 0,

n

1
ZEHZZ(i )’21|Zfi1>\25] < ﬁQE[(xliyli - pl)21|$liyli_9l|2\/ﬁe/ﬂ] —0

i=1

as n — oo, by the dominated convergence theorem. The sequences Zl(f) and Zl(i?’) are handled

analogously, with (z7 — 1) and (y2 — 1) in place of (x;y; — pi). For Z¥

5 it can be easily

shown, as in [A], that E[|S;(1,)]4] = O(1), so that E[|Z."|*] = O(n~2) and

n

4 4
Y EIZ11 0] < (1) Y EIZP| =0

i=1 =1

as n — 0o0. The same reasoning applies to the last sequence Zl(f), and the proof is complete.
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