SPECTRAL DISTRIBUTION OF THE SAMPLE COVARIANCE OF HIGH-DIMENSIONAL TIME SERIES WITH UNIT ROOTS

Alexei Onatski* and Chen Wang ${ }^{\dagger}$
*Faculty of Economics, University of Cambridge.
${ }^{\dagger}$ Department of Statistics and Actuarial Science, University of Hong Kong.

Supplementary Material

This note contains proofs of Lemma $1,2,3$ and convergence of $\mathcal{L}\left(H_{\Gamma}, H\right)$ in Onatski and Wang (2020) (OW in what follows).

S1 Proof of Lemma 1

The definition of \boldsymbol{C} yields

$$
\begin{aligned}
\|\boldsymbol{\Gamma}-\boldsymbol{C}\|_{F}^{2} & =2 \sum_{k=1}^{T-1}(T-k)\left(c_{k}-\gamma_{k}\right)^{2} \\
& =2 \sum_{k=1}^{T-1} \frac{(T-k) k^{2}}{T^{2}}\left(\gamma_{k}-\gamma_{k-T}\right)^{2} \leq 8 \sum_{k=1}^{T-1} k \gamma_{k}^{2} .
\end{aligned}
$$

Recall that γ_{k} are the Fourier coefficients of the spectral density $f(\omega)$, and that $f(\omega)$ in our case is continuous, and thus bounded and L^{2}, on $[0,2 \pi]$. Hence, for any $\delta>0$, there exists $K>0$ such that $\sum_{k>K} \gamma_{k}^{2} \leq \delta / 16$. Therefore,

$$
\|\boldsymbol{\Gamma}-\boldsymbol{C}\|_{F}^{2} \leq 8 K \sum_{k=1}^{K} \gamma_{k}^{2}+\delta T / 2 \leq \delta T
$$

for all sufficiently large T. Since $\delta>0$ is arbitrary, we obtain $\|\boldsymbol{\Gamma}-\boldsymbol{C}\|_{F}^{2}=$ $o(T)$.

S2 Proof of convergence of $\mathcal{L}\left(H_{\Gamma}, H\right)$

The rank inequality together with (A.1) of OW yield

$$
\begin{equation*}
\mathcal{L}\left(H_{\Gamma}, \bar{H}_{\Gamma}\right) \leq 1 /(2 \sqrt{u}) . \tag{S2.1}
\end{equation*}
$$

Further, inequality (A.2) and Lemma 1 of OW imply that

$$
\begin{equation*}
\left\|\overline{\boldsymbol{A}}^{1 / 2} \boldsymbol{\Gamma} \overline{\boldsymbol{A}}^{1 / 2}-\overline{\boldsymbol{A}}^{1 / 2} \boldsymbol{C} \overline{\boldsymbol{A}}^{1 / 2}\right\|_{F}^{2} \leq u^{2}\|\boldsymbol{\Gamma}-\boldsymbol{C}\|_{F}^{2}=o(T) \tag{S2.2}
\end{equation*}
$$

for any fixed u. By Corollary A. 41 of Bai and Silverstein (2010),

$$
\mathcal{L}\left(\bar{H}_{\boldsymbol{\Gamma}}, \bar{H}_{\boldsymbol{C}}\right)^{3} \leq \frac{1}{T}\left\|\overline{\boldsymbol{A}}^{1 / 2} \boldsymbol{\Gamma} \overline{\boldsymbol{A}}^{1 / 2}-\overline{\boldsymbol{A}}^{1 / 2} \boldsymbol{C} \overline{\boldsymbol{A}}^{1 / 2}\right\|_{F}^{2}
$$

Hence, (S2.2) yields

$$
\begin{equation*}
\mathcal{L}\left(\bar{H}_{\boldsymbol{\Gamma}}, \bar{H}_{C}\right)=o(1) \tag{S2.3}
\end{equation*}
$$

for any fixed u, as $T \rightarrow \infty$.

To bound $\mathcal{L}\left(\bar{H}_{C}, H_{u}\right)$, note that \bar{H}_{C} is the ESD of $\overline{\boldsymbol{A}} \boldsymbol{C}$ because the eigenvalues of $\overline{\boldsymbol{A}} \boldsymbol{C}$ and $\overline{\boldsymbol{A}}^{1 / 2} \boldsymbol{C} \overline{\boldsymbol{A}}^{1 / 2}$ coincide. On the other hand, both $\overline{\boldsymbol{A}}$ and \boldsymbol{C} are circulant matrices. Therefore, they are simultaneously diagonalizable by multiplication from the right by $\mathcal{F}^{*} / \sqrt{T}$ and from the left by \mathcal{F} / \sqrt{T}. Consider the spectral decomposition $\boldsymbol{C}=\mathcal{F}^{*} \boldsymbol{D}_{C} \mathcal{F} / T$ with

$$
\boldsymbol{D}_{\boldsymbol{C}}=\operatorname{diag}\left(d_{0}, d_{1}, \ldots, d_{T-1}\right)
$$

Then,

$$
\overline{\boldsymbol{A}} \boldsymbol{C}=\mathcal{F}^{*} \overline{\boldsymbol{D}}_{\boldsymbol{C}} \mathcal{F} / T
$$

with $\overline{\boldsymbol{D}}_{\boldsymbol{C}}$ being a diagonal matrix with the first diagonal element 0 and the $t+1$-th diagonal element $\left(1-\cos _{u} \omega_{t}\right)^{-1} d_{t} / 2$.

Recall that $f(\omega)$ can be written as

$$
\begin{equation*}
f(\omega)=\frac{1}{2 \pi} \sum_{k=-\infty}^{\infty} \gamma_{k} \exp (\mathrm{i} k \omega) \tag{S2.4}
\end{equation*}
$$

Denote by $\sigma_{T}(\omega)$ the Cesàro sum of this Fourier series

$$
\sigma_{T}(\omega)=\frac{1}{T} \sum_{k=0}^{T-1} f_{k}(\omega)
$$

where $f_{k}(\omega) \equiv \frac{1}{2 \pi} \sum_{s=-k}^{k} \gamma_{s} \exp (\mathrm{i} s \omega)$ are the partial sums of (S2.4). As shown by Lemma 4.3 of Tyrtyshnikov (1996), $d_{s}=2 \pi \sigma_{T}\left(\omega_{s}\right)$ for $s=$ $0, \ldots, T-1$. On the other hand, by Fejér's theorem (e.g. p. 91 of Rudin (1987)) Cesàro sums uniformly converge to $f(\omega)$ as $T \rightarrow \infty$ (because $f(\omega)$
is continuous under our assumptions). Therefore,

$$
\max _{s=0, \ldots, T-1}\left|d_{s}-2 \pi f\left(\omega_{s}\right)\right|=o(1)
$$

and

$$
\begin{equation*}
\max _{s=1, \ldots, T-1}\left|\overline{\boldsymbol{D}}_{C, s s}-\frac{\pi f\left(\omega_{s}\right)}{1-\cos _{u} \omega_{s}}\right|=o(1) \tag{S2.5}
\end{equation*}
$$

To establish the weak convergence of \bar{H}_{C} to H_{u}, it is sufficient to show that, for any continuous function g with bounded support

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{s=0}^{T-1} g\left(\overline{\boldsymbol{D}}_{\boldsymbol{C}, s s}\right)=\int g(x) \mathrm{d} H_{u}(x)
$$

But for any such function, (S2.5 yields

$$
\frac{1}{T} \sum_{s=0}^{T-1} g\left(\overline{\boldsymbol{D}}_{\boldsymbol{C}, s s}\right)=\frac{1}{T} \sum_{s=0}^{T-1} g\left(\frac{\pi f\left(\omega_{s}\right)}{1-\cos _{u} \omega_{s}}\right)+o(1)
$$

Furthermore, $g\left(\frac{\pi f\left(\omega_{s}\right)}{1-\cos _{u} \omega_{s}}\right)$, being a continuous function of ω, is Riemann integrable, and thus,

$$
\begin{aligned}
\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{s=0}^{T-1} g\left(\overline{\boldsymbol{D}}_{\boldsymbol{C}, s s}\right) & =\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{s=0}^{T-1} g\left(\frac{\pi f\left(\omega_{s}\right)}{1-\cos _{u} \omega_{s}}\right) \\
& =\int_{0}^{2 \pi} g\left(\frac{\pi f(\omega)}{1-\cos _{u} \omega}\right) \mathrm{d} \omega=\int g(x) \mathrm{d} H_{u}(x)
\end{aligned}
$$

Thus, \bar{H}_{C} is indeed weakly converging to H_{u} as $T \rightarrow \infty$, and hence,

$$
\begin{equation*}
\mathcal{L}\left(\bar{H}_{C}, H_{u}\right)=o(1) \tag{S2.6}
\end{equation*}
$$

for any fixed u, as $T \rightarrow \infty$.

Finally, by definition,

$$
H_{u}(x)=\frac{1}{2 \pi} \mu\left(\omega \in(0,2 \pi): \frac{\pi f(\omega)}{1-\cos _{u} \omega} \leq x\right)
$$

and

$$
H(x)=\frac{1}{2 \pi} \mu\left(\omega \in(0,2 \pi): \frac{\pi f(\omega)}{1-\cos \omega} \leq x\right)
$$

But $\cos _{u} \omega \neq \cos \omega$ may only hold for

$$
\omega \leq \pi /(2 \sqrt{u}) \text { or } \omega \geq 2 \pi-\pi /(2 \sqrt{u})
$$

Hence,

$$
\begin{equation*}
\mathcal{L}\left(H_{u}, H\right) \leq \sup _{x}\left|H(x)-H_{u}(x)\right| \leq 1 /(2 \sqrt{u}) \tag{S2.7}
\end{equation*}
$$

Combining (S2.1), (S2.3), (S2.6), and (S2.7), and noting that $u>0$ can be arbitrarily large, we conclude that $\mathcal{L}\left(H_{\Gamma}, H\right) \rightarrow 0$ as $T \rightarrow \infty$.

S3 Proof of Lemma 2

Let us show that Lemma 2 follows from Theorem 1.1 of Bai and Zhou (2008).

Let $\boldsymbol{W}=\overline{\boldsymbol{A}}^{1 / 2} \boldsymbol{\Gamma}^{1 / 2}$, and let Z_{k} be the k-th column of $\boldsymbol{W} \boldsymbol{\eta}^{\prime}$. Then,

$$
\mathbb{E} Z_{i k} Z_{l k}=\operatorname{Cov}\left(Z_{i k}, Z_{l k}\right)=\left(\overline{\boldsymbol{A}}^{1 / 2} \boldsymbol{\Gamma} \overline{\boldsymbol{A}}^{1 / 2}\right)_{i l} \equiv t_{i l},
$$

which is independent from k. Moreover,

$$
\left\|\overline{\boldsymbol{A}}^{1 / 2} \boldsymbol{\Gamma} \overline{\boldsymbol{A}}^{1 / 2}\right\| \leq u\|\boldsymbol{\Gamma}\| \leq 2 u\left(\sum_{j=0}^{\infty}\left|\theta_{j}\right|\right)^{2}<\infty
$$

(see, e.g. p. 434 of Bai and Zhou (2008)). By (S2.3) and (S2.6), the ESD of $\overline{\boldsymbol{A}}^{1 / 2} \boldsymbol{\Gamma} \overline{\boldsymbol{A}}^{1 / 2}$ (which is the same as that of $\boldsymbol{\Gamma}^{1 / 2} \overline{\boldsymbol{A}} \boldsymbol{\Gamma}^{1 / 2}$) converges to H_{u}. The only assumption of Theorem 1.1 of Bai and Zhou (2008) left to verify is that for any non-random $T \times T$ matrix \boldsymbol{B} with bounded norm,

$$
\mathbb{E}\left(Z_{k}^{\prime} \boldsymbol{B} Z_{k}-\operatorname{tr}\left(\boldsymbol{B} \overline{\boldsymbol{A}}^{1 / 2} \boldsymbol{\Gamma} \overline{\boldsymbol{A}}^{1 / 2}\right)\right)^{2}=o\left(T^{2}\right) .
$$

Let $\overline{\boldsymbol{B}}=\overline{\boldsymbol{A}}^{1 / 2} \boldsymbol{B} \overline{\boldsymbol{A}}^{1 / 2}$. Clearly, for any fixed $u>0, \overline{\boldsymbol{B}}$ has a bounded norm as long as \boldsymbol{B} has a bounded norm. On the other hand, $Z_{k}=\overline{\boldsymbol{A}}^{1 / 2} \varepsilon_{k}$, where ε_{k} is the transpose of the k-th row of ε. Hence, it is sufficient to show that

$$
\mathbb{E}\left(\varepsilon_{k}^{\prime} \overline{\boldsymbol{B}} \varepsilon_{k}-\operatorname{tr}(\overline{\boldsymbol{B}} \boldsymbol{\Gamma})\right)^{2}=o\left(T^{2}\right) .
$$

But this fact was established in Bai and Zhou (2008, p. 435). To summarize, all conditions of Theorem 1.1 Bai and Zhou (2008) are satisfied and thus, $\bar{F}_{n, T}$ a.s. weakly converges to F_{u} as $n, T \rightarrow_{c} \infty$. This completes the proof.

S4 Proof of Lemma 3

Recall that T_{γ} is defined as the smallest integer s.t. $n / T_{\gamma} \leq \gamma$. Let $T=$ $T_{\infty}>T_{\gamma}$ and let $\boldsymbol{\xi}$ be an $n \times T$ matrix with i.i.d. $N(0,1)$ entries. Consider a partition $\boldsymbol{\xi}=\left[\boldsymbol{\xi}_{\gamma}, \boldsymbol{\xi}_{\infty}\right]$, where $\boldsymbol{\xi}_{\gamma}$ and $\boldsymbol{\xi}_{\infty}$ are $n \times T_{\gamma}$ and $n \times\left(T_{\infty}-T_{\gamma}\right)$ respectively. Further, let $\boldsymbol{\Delta}$ be defined similarly to $\boldsymbol{\Delta}_{\gamma}$ with T_{γ} replaced by
T and partition $\boldsymbol{\Delta}=\operatorname{diag}\left[\boldsymbol{\Delta}_{1}, \boldsymbol{\Delta}_{2}\right]$, where $\boldsymbol{\Delta}_{1}$ is $T_{\gamma} \times T_{\gamma}$. Then we have

$$
\boldsymbol{M}_{n, T_{\gamma}}=\frac{n}{\left(T_{\gamma}+1\right)^{2}} \boldsymbol{\xi}_{\gamma} \boldsymbol{\Delta}_{\gamma} \boldsymbol{\xi}_{\gamma}^{\prime} \text { and } \boldsymbol{M}_{n, T_{\infty}}=\frac{n}{\left(T_{\infty}+1\right)^{2}}\left(\boldsymbol{\xi}_{\gamma} \boldsymbol{\Delta}_{1} \boldsymbol{\xi}_{\gamma}^{\prime}+\boldsymbol{\xi}_{\infty} \boldsymbol{\Delta}_{2} \boldsymbol{\xi}_{\infty}^{\prime}\right)
$$

Hence,

$$
\boldsymbol{M}_{n, T_{\infty}}-\boldsymbol{M}_{n, T_{\gamma}}=n \boldsymbol{\xi}_{\gamma}\left(\frac{\boldsymbol{\Delta}_{1}}{\left(T_{\infty}+1\right)^{2}}-\frac{\boldsymbol{\Delta}_{\gamma}}{\left(T_{\gamma}+1\right)^{2}}\right) \boldsymbol{\xi}_{\gamma}^{\prime}+n \frac{\boldsymbol{\xi}_{\infty} \boldsymbol{\Delta}_{\boldsymbol{2}} \boldsymbol{\xi}_{\infty}^{\prime}}{\left(T_{\infty}+1\right)^{2}}
$$

First, consider $n \boldsymbol{\xi}_{\gamma}\left(\frac{\boldsymbol{\Delta}_{1}}{\left(T_{\infty}+1\right)^{2}}-\frac{\boldsymbol{\Delta}_{\gamma}}{\left(T_{\gamma}+1\right)^{2}}\right) \boldsymbol{\xi}_{\gamma}^{\prime}$. Recall that the diagonal elements of $\boldsymbol{\Delta}_{1}$ have form $\frac{1}{2}\left(1-\cos \pi j /\left(T_{\infty}+1\right)\right)^{-1}$ for $j \leq T_{\gamma}$. The diagonal elements of $\boldsymbol{\Delta}_{\gamma}$ have a similar form with T_{∞} replaced by T_{γ}. Since

$$
\cos x=1-\frac{1}{2} x^{2}+\frac{1}{4!} x^{4} \cos t
$$

for some $t \in[0, x]$, we have

$$
\frac{1}{2\left(T_{\infty}+1\right)^{2}}\left(1-\cos \pi j /\left(T_{\infty}+1\right)\right)^{-1}=\frac{1}{(\pi j)^{2}}\left(1-\frac{\cos t}{12} \frac{(\pi j)^{2}}{\left(T_{\infty}+1\right)^{2}}\right)^{-1}
$$

for some $t \in[0, \pi]$ and hence

$$
\frac{1}{2\left(T_{\infty}+1\right)^{2}}\left(1-\cos \pi j /\left(T_{\infty}+1\right)\right)^{-1}-\frac{1}{(\pi j)^{2}}=\frac{\cos t}{12\left(T_{\infty}+1\right)^{2}}\left(1-\frac{\cos t}{12} \frac{(\pi j)^{2}}{\left(T_{\infty}+1\right)^{2}}\right)^{-1} .
$$

Since $j \leq T_{\gamma}<T_{\infty}$, we have

$$
1-\frac{\cos t}{12} \frac{(\pi j)^{2}}{\left(T_{\infty}+1\right)^{2}}>1-\frac{\pi^{2}}{12}>\frac{1}{12}
$$

and thus

$$
\left|\frac{1}{2\left(T_{\infty}+1\right)^{2}}\left(1-\cos \pi j /\left(T_{\infty}+1\right)\right)^{-1}-\frac{1}{(\pi j)^{2}}\right|<\frac{1}{T_{\infty}^{2}} .
$$

The inequality holds similarly for the elements of $\boldsymbol{\Delta}_{\gamma}$,

$$
\left|\frac{1}{2\left(T_{\gamma}+1\right)^{2}}\left(1-\cos \pi j /\left(T_{\gamma}+1\right)\right)^{-1}-\frac{1}{(\pi j)^{2}}\right|<\frac{1}{T_{\gamma}^{2}}
$$

Therefore, we have

$$
\left|\frac{1}{2\left(T_{\infty}+1\right)^{2}}\left(1-\cos \pi j /\left(T_{\infty}+1\right)\right)^{-1}-\frac{1}{2\left(T_{\gamma}+1\right)^{2}}\left(1-\cos \pi j /\left(T_{\gamma}+1\right)\right)^{-1}\right|<\frac{2}{T_{\gamma}^{2}} .
$$

To summarize,

$$
\left\|n \frac{\boldsymbol{\xi}_{\gamma} \boldsymbol{\Delta}_{1} \boldsymbol{\xi}_{\gamma}^{\prime}}{\left(1+T_{\infty}\right)^{2}}-n \frac{\boldsymbol{\xi}_{\gamma} \boldsymbol{\Delta}_{\gamma} \boldsymbol{\xi}_{\gamma}}{\left(1+T_{\gamma}\right)^{2}}\right\|<\left\|2 \frac{n}{T_{\gamma}} \frac{\boldsymbol{\xi}_{\gamma} \boldsymbol{\xi}_{\gamma}^{\prime}}{T_{\gamma}}\right\|<4 \gamma .
$$

with high probability for sufficiently small γ. The last inequality is due to the fact that the largest eigenvalue of $\frac{\xi_{\gamma} \xi_{\gamma}^{\prime}}{T_{\gamma}}$ a.s. converges to $(1+\sqrt{\gamma})^{2}$.

Next consider the component $n \frac{\xi_{\infty} \Delta_{2} \xi_{\infty}^{\prime}}{\left(T_{\infty}+1\right)^{2}}$. Since $1-\cos x>x^{2} / 6$ for $x \in[0, \pi]$, we have

$$
2\left(T_{\infty}+1\right)^{2}\left(1-\cos \pi j /\left(T_{\infty}+1\right)\right)>(\pi j)^{2} / 3
$$

Partition $\boldsymbol{\Delta}_{2}$ as $\operatorname{diag}\left[\boldsymbol{\Delta}_{2,1}, \cdots, \boldsymbol{\Delta}_{2,\left(T_{\infty}-T_{\gamma}\right) / T_{\gamma}}\right]$ where each $\boldsymbol{\Delta}_{2, i}$ is T_{γ}-dimensional.
(We can choose T_{∞} so that $\left(T_{\infty}-T_{\gamma}\right) / T_{\gamma}$ is an integer, so such a representation is possible.) Using the fact that the diagonal elements of $\boldsymbol{\Delta}_{2, i} /\left(T_{\infty}+1\right)^{2}$ have form

$$
\frac{1}{2\left(T_{\infty}+1\right)^{2}\left(1-\cos \pi j /\left(T_{\infty}+1\right)\right)}
$$

with $j=i T_{\gamma}+1, \cdots,(i+1) T_{\gamma}-1$, we find that the upper bound on the
diagonal elements of $\boldsymbol{\Delta}_{2, i} /\left(T_{\infty}+1\right)^{2}$ equals

$$
\frac{1}{2\left(T_{\infty}+1\right)^{2}\left(1-\cos i T_{\gamma} \pi /\left(T_{\infty}+1\right)\right)},
$$

which is no larger than $3 /\left(i \pi T_{\gamma}\right)^{2}$.
Partition $\boldsymbol{\xi}_{\infty}$ conformably with $\boldsymbol{\Delta}_{2}$ so that $\boldsymbol{\xi}_{\infty}=\left[\boldsymbol{\xi}_{\infty, 1}, \cdots, \boldsymbol{\xi}_{\infty,\left(T_{\infty}-T_{\gamma}\right) / T_{\gamma}}\right]$.
Then, from the above, we have

$$
\left\|n \frac{\boldsymbol{\xi}_{\infty} \boldsymbol{\Delta}_{2} \boldsymbol{\xi}_{\infty}^{\prime}}{\left(T_{\infty}+1\right)^{2}}\right\| \leq \frac{3 n}{\pi^{2} T_{\gamma}} \sum_{i=1}^{\left(T_{\infty}-T_{\gamma}\right) / T_{\gamma}} \frac{1}{i^{2}}\left\|\frac{\boldsymbol{\xi}_{\infty, i} \boldsymbol{\xi}_{\infty, i}^{\prime}}{T_{\gamma}}\right\|
$$

The Gaussian concentration inequality for the singular values of a rectangular matrix with i.i.d. Gaussian entries (see Theorem II. 13 of Davidson and Szarek (2001)) implies that, for any $t>0$,

$$
\mathbb{P}\left(\left\|\frac{\boldsymbol{\xi}_{\infty, i} \boldsymbol{\xi}_{\infty, i}^{\prime}}{T_{\gamma}}\right\| \geq\left(1+\sqrt{\frac{n}{T_{\gamma}}}+t\right)^{2}\right)<\exp \left(-\frac{T_{\gamma} t^{2}}{2}\right)
$$

Taking $t=i^{1 / 4}$, we then have

$$
\sum_{i=1}^{\left(T_{\infty}-T_{\gamma}\right) / T_{\gamma}} \mathbb{P}\left(\left\|\frac{\boldsymbol{\xi}_{\infty, i} \boldsymbol{\xi}_{\infty, i}^{\prime}}{T_{\gamma}}\right\| \geq\left(1+\sqrt{\frac{n}{T_{\gamma}}}+i^{1 / 4}\right)^{2}\right)<\sum_{i=1}^{\infty} \exp \left(-\frac{T_{\gamma} i^{1 / 2}}{2}\right)
$$

Clearly, the right hand side of the above inequality can be made arbitrarily small by choosing sufficiently large T_{γ}. Therefore, with large probability, for sufficiently large T_{γ}, all $\left\|\frac{\xi_{\infty,,} \xi_{\infty, i}^{\prime}}{T_{\gamma}}\right\|$ are smaller than $\left(1+\sqrt{\frac{n}{T_{\gamma}}}+i^{1 / 4}\right)^{2}$ and

$$
\left\|n \frac{\boldsymbol{\xi}_{\infty} \Delta_{2} \boldsymbol{\xi}_{\infty}^{\prime}}{\left(T_{\infty}+1\right)^{2}}\right\| \leq \frac{3 n}{\pi^{2} T_{\gamma}} \sum_{i=1}^{\left(T_{\infty}-T_{\gamma}\right) / T_{\gamma}} \frac{\left(1+\sqrt{\frac{n}{T_{\gamma}}}+i^{1 / 4}\right)^{2}}{i^{2}} \leq K \gamma
$$

for some constant K that does not depend on $\gamma \in(0,1)$. This completes the proof.

References

Bai, Z. and Silverstein, J. W. (2010) Spectral Analysis of Large Matrices, (second ed.). Springer.

Bai, Z. and Zhou, W. (2008) Large sample covariance matrices without independence structures in columns. Statistica Sinica 18, 425-442.

Davidson, K. R. and S. J. Szarek (2001) Local operator theory, random matrices and Banach spaces. In Handbook of the Geometry of Banach Spaces (Edited by W.B. Johnson and J. Lindenstrauss), Handbook of the Geometry of Banach Spaces, Vol. I, 317-366. NorthHolland, Amsterdam.

Onatski, A. and Wang, C. (2020) Spectral distribution of the sample covariance of highdimensional time series with unit roots. manuscript, Faculty of Economics, University of Cambridge.

Rudin, W. (1987) Real and Complex Analysis, 3rd edition, McGrow-Hill, Inc.

Tyrtyshnikov, E. E. (1996) A Unifying Approach to Some Old and New Theorems on Distribution and Clustering. Linear Algebra and Its Applications 232, 1-43.

