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Supplementary Material

This note contains proofs of Lemma 1,2,3 and convergence of L (HΓ, H) in Onatski and Wang

(2020) (OW in what follows).

S1 Proof of Lemma 1

The definition of C yields

‖Γ−C‖2F = 2
T−1∑
k=1

(T − k) (ck − γk)2

= 2
T−1∑
k=1

(T − k) k2

T 2
(γk − γk−T )2 ≤ 8

T−1∑
k=1

kγ2k.
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Recall that γk are the Fourier coefficients of the spectral density f (ω) , and

that f (ω) in our case is continuous, and thus bounded and L2, on [0, 2π] .

Hence, for any δ > 0, there exists K > 0 such that
∑

k>K γ
2
k ≤ δ/16.

Therefore,

‖Γ−C‖2F ≤ 8K
K∑
k=1

γ2k + δT/2 ≤ δT

for all sufficiently large T. Since δ > 0 is arbitrary, we obtain ‖Γ−C‖2F =

o (T ) .

S2 Proof of convergence of L (HΓ, H)

The rank inequality together with (A.1) of OW yield

L
(
HΓ, H̄Γ

)
≤ 1/

(
2
√
u
)
. (S2.1)

Further, inequality (A.2) and Lemma 1 of OW imply that

∥∥Ā1/2ΓĀ1/2 − Ā1/2CĀ1/2
∥∥2
F
≤ u2 ‖Γ−C‖2F = o (T ) (S2.2)

for any fixed u. By Corollary A.41 of Bai and Silverstein (2010),

L
(
H̄Γ, H̄C

)3 ≤ 1

T

∥∥Ā1/2ΓĀ1/2 − Ā1/2CĀ1/2
∥∥2
F
.

Hence, (S2.2) yields

L
(
H̄Γ, H̄C

)
= o(1) (S2.3)

for any fixed u, as T →∞.



S2. PROOF OF CONVERGENCE OF L (HΓ, H)

To bound L
(
H̄C , Hu

)
, note that H̄C is the ESD of ĀC because the

eigenvalues of ĀC and Ā1/2CĀ1/2 coincide. On the other hand, both Ā

and C are circulant matrices. Therefore, they are simultaneously diago-

nalizable by multiplication from the right by F∗/
√
T and from the left by

F/
√
T . Consider the spectral decomposition C = F∗DCF/T with

DC = diag (d0, d1, ..., dT−1) .

Then,

ĀC = F∗D̄CF/T

with D̄C being a diagonal matrix with the first diagonal element 0 and the

t+ 1-th diagonal element (1− cosu ωt)
−1 dt/2.

Recall that f (ω) can be written as

f (ω) =
1

2π

∞∑
k=−∞

γk exp (ikω) . (S2.4)

Denote by σT (ω) the Cesàro sum of this Fourier series

σT (ω) =
1

T

T−1∑
k=0

fk (ω) ,

where fk (ω) ≡ 1
2π

∑k
s=−k γs exp (isω) are the partial sums of (S2.4). As

shown by Lemma 4.3 of Tyrtyshnikov (1996), ds = 2πσT (ωs) for s =

0, ..., T − 1. On the other hand, by Fejér’s theorem (e.g. p.91 of Rudin

(1987)) Cesàro sums uniformly converge to f (ω) as T →∞ (because f (ω)
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is continuous under our assumptions). Therefore,

max
s=0,...,T−1

|ds − 2πf (ωs)| = o(1)

and

max
s=1,...,T−1

∣∣∣∣D̄C,ss −
πf (ωs)

1− cosu ωs

∣∣∣∣ = o(1). (S2.5)

To establish the weak convergence of H̄C to Hu, it is sufficient to show

that, for any continuous function g with bounded support

lim
T→∞

1

T

T−1∑
s=0

g
(
D̄C,ss

)
=

∫
g(x)dHu (x) .

But for any such function, (S2.5) yields

1

T

T−1∑
s=0

g
(
D̄C,ss

)
=

1

T

T−1∑
s=0

g

(
πf (ωs)

1− cosu ωs

)
+ o(1).

Furthermore, g
(

πf(ωs)
1−cosu ωs

)
, being a continuous function of ω, is Riemann

integrable, and thus,

lim
T→∞

1

T

T−1∑
s=0

g
(
D̄C,ss

)
= lim

T→∞

1

T

T−1∑
s=0

g

(
πf (ωs)

1− cosu ωs

)
=

∫ 2π

0

g

(
πf (ω)

1− cosu ω

)
dω =

∫
g(x)dHu (x) .

Thus, H̄C is indeed weakly converging to Hu as T →∞, and hence,

L
(
H̄C , Hu

)
= o(1) (S2.6)

for any fixed u, as T →∞.
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Finally, by definition,

Hu (x) =
1

2π
µ

(
ω ∈ (0, 2π) :

πf (ω)

1− cosu ω
≤ x

)
and

H (x) =
1

2π
µ

(
ω ∈ (0, 2π) :

πf (ω)

1− cosω
≤ x

)
.

But cosu ω 6= cosω may only hold for

ω ≤ π/
(
2
√
u
)

or ω ≥ 2π − π/
(
2
√
u
)
.

Hence,

L (Hu, H) ≤ sup
x
|H (x)−Hu (x)| ≤ 1/

(
2
√
u
)
. (S2.7)

Combining (S2.1), (S2.3), (S2.6), and (S2.7), and noting that u > 0 can be

arbitrarily large, we conclude that L (HΓ, H)→ 0 as T →∞.

S3 Proof of Lemma 2

Let us show that Lemma 2 follows from Theorem 1.1 of Bai and Zhou

(2008).

Let W = Ā1/2Γ1/2, and let Zk be the k-th column of Wη′. Then,

EZikZlk = Cov (Zik, Zlk) =
(
Ā1/2ΓĀ1/2

)
il
≡ til,

which is independent from k. Moreover,

∥∥Ā1/2ΓĀ1/2
∥∥ ≤ u ‖Γ‖ ≤ 2u

(
∞∑
j=0

|θj|

)2

<∞
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(see, e.g. p. 434 of Bai and Zhou (2008)). By (S2.3) and (S2.6), the ESD

of Ā1/2ΓĀ1/2 (which is the same as that of Γ1/2ĀΓ1/2) converges to Hu.

The only assumption of Theorem 1.1 of Bai and Zhou (2008) left to verify

is that for any non-random T × T matrix B with bounded norm,

E
(
Z ′kBZk − tr

(
BĀ1/2ΓĀ1/2

))2
= o

(
T 2
)
.

Let B̄ = Ā1/2BĀ1/2. Clearly, for any fixed u > 0, B̄ has a bounded

norm as long as B has a bounded norm. On the other hand, Zk = Ā1/2εk,

where εk is the transpose of the k-th row of ε. Hence, it is sufficient to show

that

E
(
ε′kB̄εk − tr

(
B̄Γ

))2
= o

(
T 2
)
.

But this fact was established in Bai and Zhou (2008, p. 435). To summarize,

all conditions of Theorem 1.1 Bai and Zhou (2008) are satisfied and thus,

F̄n,T a.s. weakly converges to Fu as n, T →c ∞. This completes the proof.

S4 Proof of Lemma 3

Recall that Tγ is defined as the smallest integer s.t. n/Tγ ≤ γ. Let T =

T∞ > Tγ and let ξ be an n× T matrix with i.i.d. N(0, 1) entries. Consider

a partition ξ = [ξγ, ξ∞], where ξγ and ξ∞ are n × Tγ and n × (T∞ − Tγ)

respectively. Further, let ∆ be defined similarly to ∆γ with Tγ replaced by
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T and partition ∆ = diag[∆1,∆2], where ∆1 is Tγ × Tγ. Then we have

Mn,Tγ =
n

(Tγ + 1)2
ξγ∆γξ

′
γ and Mn,T∞ =

n

(T∞ + 1)2
(ξγ∆1ξ

′
γ + ξ∞∆2ξ

′
∞).

Hence,

Mn,T∞ −Mn,Tγ = nξγ

(
∆1

(T∞ + 1)2
− ∆γ

(Tγ + 1)2

)
ξ′γ + n

ξ∞∆2ξ
′
∞

(T∞ + 1)2
.

First, consider nξγ

(
∆1

(T∞+1)2
− ∆γ

(Tγ+1)2

)
ξ′γ. Recall that the diagonal el-

ements of ∆1 have form 1
2
(1− cos πj/(T∞+ 1))−1 for j ≤ Tγ. The diagonal

elements of ∆γ have a similar form with T∞ replaced by Tγ. Since

cosx = 1− 1

2
x2 +

1

4!
x4 cos t

for some t ∈ [0, x], we have

1

2(T∞ + 1)2
(1− cosπj/(T∞ + 1))−1 =

1

(πj)2

(
1− cos t

12

(πj)2

(T∞ + 1)2

)−1
for some t ∈ [0, π] and hence

1

2(T∞ + 1)2
(1− cos πj/(T∞ + 1))−1− 1

(πj)2
=

cos t

12(T∞ + 1)2

(
1− cos t

12

(πj)2

(T∞ + 1)2

)−1
.

Since j ≤ Tγ < T∞, we have

1− cos t

12

(πj)2

(T∞ + 1)2
> 1− π2

12
>

1

12
,

and thus ∣∣∣∣ 1

2(T∞ + 1)2
(1− cos πj/(T∞ + 1))−1 − 1

(πj)2

∣∣∣∣ < 1

T 2
∞
.
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The inequality holds similarly for the elements of ∆γ,∣∣∣∣ 1

2(Tγ + 1)2
(1− cos πj/(Tγ + 1))−1 − 1

(πj)2

∣∣∣∣ < 1

T 2
γ

.

Therefore, we have∣∣∣∣ 1

2(T∞ + 1)2
(1− cos πj/(T∞ + 1))−1 − 1

2(Tγ + 1)2
(1− cos πj/(Tγ + 1))−1

∣∣∣∣ < 2

T 2
γ

.

To summarize,∥∥∥∥∥n ξγ∆1ξ
′
γ

(1 + T∞)2
− n ξγ∆γξγ

(1 + Tγ)
2

∥∥∥∥∥ <
∥∥∥∥2

n

Tγ

ξγξ
′
γ

Tγ

∥∥∥∥ < 4γ.

with high probability for sufficiently small γ. The last inequality is due to

the fact that the largest eigenvalue of
ξγξ′γ
Tγ

a.s. converges to (1 +
√
γ)2.

Next consider the component nξ∞∆2ξ′∞
(T∞+1)2

. Since 1 − cosx > x2/6 for

x ∈ [0, π], we have

2(T∞ + 1)2(1− cosπj/(T∞ + 1)) > (πj)2/3.

Partition ∆2 as diag[∆2,1, · · · ,∆2,(T∞−Tγ)/Tγ ] where each ∆2,i is Tγ-dimensional.

(We can choose T∞ so that (T∞−Tγ)/Tγ is an integer, so such a representa-

tion is possible.) Using the fact that the diagonal elements of ∆2,i/(T∞+1)2

have form

1

2(T∞ + 1)2(1− cos πj/(T∞ + 1))

with j = iTγ + 1, · · · , (i + 1)Tγ − 1, we find that the upper bound on the
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diagonal elements of ∆2,i/(T∞ + 1)2 equals

1

2(T∞ + 1)2(1− cos iTγπ/(T∞ + 1))
,

which is no larger than 3/(iπTγ)
2.

Partition ξ∞ conformably with ∆2 so that ξ∞ = [ξ∞,1, · · · , ξ∞,(T∞−Tγ)/Tγ ].

Then, from the above, we have∥∥∥∥n ξ∞∆2ξ
′
∞

(T∞ + 1)2

∥∥∥∥ ≤ 3n

π2Tγ

(T∞−Tγ)/Tγ∑
i=1

1

i2

∥∥∥∥ξ∞,iξ′∞,iTγ

∥∥∥∥ .
The Gaussian concentration inequality for the singular values of a rectan-

gular matrix with i.i.d. Gaussian entries (see Theorem II.13 of Davidson

and Szarek (2001)) implies that, for any t > 0,

P

(∥∥∥∥ξ∞,iξ′∞,iTγ

∥∥∥∥ ≥ (1 +

√
n

Tγ
+ t

)2
)
< exp

(
−Tγt

2

2

)
.

Taking t = i1/4, we then have

(T∞−Tγ)/Tγ∑
i=1

P

(∥∥∥∥ξ∞,iξ′∞,iTγ

∥∥∥∥ ≥ (1 +

√
n

Tγ
+ i1/4

)2
)
<
∞∑
i=1

exp

(
−Tγi

1/2

2

)
.

Clearly, the right hand side of the above inequality can be made arbitrarily

small by choosing sufficiently large Tγ. Therefore, with large probability,

for sufficiently large Tγ, all
∥∥∥ξ∞,iξ

′
∞,i

Tγ

∥∥∥ are smaller than

(
1 +

√
n
Tγ

+ i1/4
)2

and

∥∥∥∥n ξ∞∆2ξ
′
∞

(T∞ + 1)2

∥∥∥∥ ≤ 3n

π2Tγ

(T∞−Tγ)/Tγ∑
i=1

(
1 +

√
n
Tγ

+ i1/4
)2

i2
≤ Kγ
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for some constant K that does not depend on γ ∈ (0, 1). This completes

the proof.
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