SPECTRAL DISTRIBUTION OF THE SAMPLE COVARIANCE OF HIGH-DIMENSIONAL TIME SERIES WITH UNIT ROOTS

Alexei Onatski* and Chen Wang^\dagger

*Faculty of Economics, University of Cambridge.
[†]Department of Statistics and Actuarial Science, University of Hong Kong.

Supplementary Material

This note contains proofs of Lemma 1,2,3 and convergence of $\mathcal{L}(H_{\Gamma}, H)$ in Onatski and Wang (2020) (OW in what follows).

S1 Proof of Lemma 1

The definition of \boldsymbol{C} yields

$$\|\mathbf{\Gamma} - \mathbf{C}\|_{F}^{2} = 2\sum_{k=1}^{T-1} (T-k) (c_{k} - \gamma_{k})^{2}$$
$$= 2\sum_{k=1}^{T-1} \frac{(T-k) k^{2}}{T^{2}} (\gamma_{k} - \gamma_{k-T})^{2} \le 8\sum_{k=1}^{T-1} k \gamma_{k}^{2}$$

Recall that γ_k are the Fourier coefficients of the spectral density $f(\omega)$, and that $f(\omega)$ in our case is continuous, and thus bounded and L^2 , on $[0, 2\pi]$. Hence, for any $\delta > 0$, there exists K > 0 such that $\sum_{k>K} \gamma_k^2 \leq \delta/16$. Therefore,

$$\|\boldsymbol{\Gamma} - \boldsymbol{C}\|_F^2 \le 8K \sum_{k=1}^K \gamma_k^2 + \delta T/2 \le \delta T$$

for all sufficiently large T. Since $\delta > 0$ is arbitrary, we obtain $\|\mathbf{\Gamma} - \mathbf{C}\|_F^2 = o(T)$.

S2 Proof of convergence of $\mathcal{L}(H_{\Gamma}, H)$

The rank inequality together with (A.1) of OW yield

$$\mathcal{L}\left(H_{\Gamma}, \bar{H}_{\Gamma}\right) \leq 1/\left(2\sqrt{u}\right).$$
 (S2.1)

Further, inequality (A.2) and Lemma 1 of OW imply that

$$\left\|\bar{A}^{1/2}\Gamma\bar{A}^{1/2} - \bar{A}^{1/2}C\bar{A}^{1/2}\right\|_{F}^{2} \le u^{2}\left\|\Gamma - C\right\|_{F}^{2} = o\left(T\right)$$
(S2.2)

for any fixed u. By Corollary A.41 of Bai and Silverstein (2010),

$$\mathcal{L}\left(\bar{H}_{\boldsymbol{\Gamma}},\bar{H}_{\boldsymbol{C}}\right)^{3} \leq \frac{1}{T} \left\| \bar{\boldsymbol{A}}^{1/2} \boldsymbol{\Gamma} \bar{\boldsymbol{A}}^{1/2} - \bar{\boldsymbol{A}}^{1/2} \boldsymbol{C} \bar{\boldsymbol{A}}^{1/2} \right\|_{F}^{2}.$$

Hence, (S2.2) yields

$$\mathcal{L}\left(\bar{H}_{\Gamma}, \bar{H}_{C}\right) = o(1) \tag{S2.3}$$

for any fixed u, as $T \to \infty$.

To bound $\mathcal{L}(\bar{H}_{C}, H_{u})$, note that \bar{H}_{C} is the ESD of $\bar{A}C$ because the eigenvalues of $\bar{A}C$ and $\bar{A}^{1/2}C\bar{A}^{1/2}$ coincide. On the other hand, both \bar{A} and C are circulant matrices. Therefore, they are simultaneously diagonalizable by multiplication from the right by \mathcal{F}^{*}/\sqrt{T} and from the left by \mathcal{F}/\sqrt{T} . Consider the spectral decomposition $C = \mathcal{F}^{*}D_{C}\mathcal{F}/T$ with

$$D_C = \text{diag}(d_0, d_1, ..., d_{T-1})$$

Then,

$$\bar{A}C = \mathcal{F}^* \bar{D}_C \mathcal{F}/T$$

with \bar{D}_{C} being a diagonal matrix with the first diagonal element 0 and the t + 1-th diagonal element $(1 - \cos_{u} \omega_{t})^{-1} d_{t}/2$.

Recall that $f(\omega)$ can be written as

$$f(\omega) = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \gamma_k \exp(ik\omega).$$
 (S2.4)

Denote by $\sigma_T(\omega)$ the Cesàro sum of this Fourier series

$$\sigma_{T}(\omega) = \frac{1}{T} \sum_{k=0}^{T-1} f_{k}(\omega),$$

where $f_k(\omega) \equiv \frac{1}{2\pi} \sum_{s=-k}^k \gamma_s \exp(is\omega)$ are the partial sums of (S2.4). As shown by Lemma 4.3 of Tyrtyshnikov (1996), $d_s = 2\pi\sigma_T(\omega_s)$ for s = 0, ..., T - 1. On the other hand, by Fejér's theorem (e.g. p.91 of Rudin (1987)) Cesàro sums uniformly converge to $f(\omega)$ as $T \to \infty$ (because $f(\omega)$ is continuous under our assumptions). Therefore,

$$\max_{s=0,\dots,T-1} |d_s - 2\pi f(\omega_s)| = o(1)$$

and

$$\max_{s=1,\dots,T-1} \left| \bar{\boldsymbol{D}}_{\boldsymbol{C},ss} - \frac{\pi f(\omega_s)}{1 - \cos_u \omega_s} \right| = o(1).$$
(S2.5)

To establish the weak convergence of \overline{H}_{C} to H_{u} , it is sufficient to show that, for any continuous function g with bounded support

$$\lim_{T \to \infty} \frac{1}{T} \sum_{s=0}^{T-1} g\left(\bar{\boldsymbol{D}}_{\boldsymbol{C},ss}\right) = \int g(x) \mathrm{d}H_u(x) \,.$$

But for any such function, (S2.5) yields

$$\frac{1}{T}\sum_{s=0}^{T-1}g\left(\bar{\boldsymbol{D}}_{\boldsymbol{C},ss}\right) = \frac{1}{T}\sum_{s=0}^{T-1}g\left(\frac{\pi f\left(\omega_{s}\right)}{1-\cos_{u}\omega_{s}}\right) + o(1).$$

Furthermore, $g\left(\frac{\pi f(\omega_s)}{1-\cos_u \omega_s}\right)$, being a continuous function of ω , is Riemann integrable, and thus,

$$\lim_{T \to \infty} \frac{1}{T} \sum_{s=0}^{T-1} g\left(\bar{\boldsymbol{D}}_{\boldsymbol{C},ss}\right) = \lim_{T \to \infty} \frac{1}{T} \sum_{s=0}^{T-1} g\left(\frac{\pi f\left(\omega_{s}\right)}{1 - \cos_{u}\omega_{s}}\right)$$
$$= \int_{0}^{2\pi} g\left(\frac{\pi f\left(\omega\right)}{1 - \cos_{u}\omega}\right) d\omega = \int g(x) dH_{u}(x) dx.$$

Thus, \overline{H}_{C} is indeed weakly converging to H_{u} as $T \to \infty$, and hence,

$$\mathcal{L}\left(\bar{H}_{\boldsymbol{C}}, H_{\boldsymbol{u}}\right) = o(1) \tag{S2.6}$$

for any fixed u, as $T \to \infty$.

Finally, by definition,

$$H_{u}(x) = \frac{1}{2\pi} \mu \left(\omega \in (0, 2\pi) : \frac{\pi f(\omega)}{1 - \cos_{u} \omega} \le x \right)$$

and

$$H(x) = \frac{1}{2\pi} \mu \left(\omega \in (0, 2\pi) : \frac{\pi f(\omega)}{1 - \cos \omega} \le x \right).$$

But $\cos_u \omega \neq \cos \omega$ may only hold for

$$\omega \leq \pi / (2\sqrt{u})$$
 or $\omega \geq 2\pi - \pi / (2\sqrt{u})$.

Hence,

$$\mathcal{L}(H_u, H) \le \sup_{x} |H(x) - H_u(x)| \le 1/(2\sqrt{u}).$$
(S2.7)

Combining (S2.1), (S2.3), (S2.6), and (S2.7), and noting that u > 0 can be arbitrarily large, we conclude that $\mathcal{L}(H_{\Gamma}, H) \to 0$ as $T \to \infty$.

S3 Proof of Lemma 2

Let us show that Lemma 2 follows from Theorem 1.1 of Bai and Zhou (2008).

Let $\boldsymbol{W} = \bar{\boldsymbol{A}}^{1/2} \Gamma^{1/2}$, and let Z_k be the k-th column of $\boldsymbol{W} \boldsymbol{\eta}'$. Then,

$$\mathbb{E}Z_{ik}Z_{lk} = Cov\left(Z_{ik}, Z_{lk}\right) = \left(\bar{\boldsymbol{A}}^{1/2}\boldsymbol{\Gamma}\bar{\boldsymbol{A}}^{1/2}\right)_{il} \equiv t_{il},$$

which is independent from k. Moreover,

$$\left\|\bar{\boldsymbol{A}}^{1/2}\boldsymbol{\Gamma}\bar{\boldsymbol{A}}^{1/2}\right\| \leq u \left\|\boldsymbol{\Gamma}\right\| \leq 2u \left(\sum_{j=0}^{\infty} |\theta_j|\right)^2 < \infty$$

(see, e.g. p. 434 of Bai and Zhou (2008)). By (S2.3) and (S2.6), the ESD of $\bar{A}^{1/2}\Gamma\bar{A}^{1/2}$ (which is the same as that of $\Gamma^{1/2}\bar{A}\Gamma^{1/2}$) converges to H_u . The only assumption of Theorem 1.1 of Bai and Zhou (2008) left to verify is that for any non-random $T \times T$ matrix **B** with bounded norm,

$$\mathbb{E}\left(Z_k' \boldsymbol{B} Z_k - \operatorname{tr}\left(\boldsymbol{B} ar{\boldsymbol{A}}^{1/2} \boldsymbol{\Gamma} ar{\boldsymbol{A}}^{1/2}
ight)
ight)^2 = o\left(T^2
ight).$$

Let $\bar{B} = \bar{A}^{1/2} B \bar{A}^{1/2}$. Clearly, for any fixed u > 0, \bar{B} has a bounded norm as long as B has a bounded norm. On the other hand, $Z_k = \bar{A}^{1/2} \varepsilon_k$, where ε_k is the transpose of the k-th row of ε . Hence, it is sufficient to show that

$$\mathbb{E}\left(\varepsilon_{k}^{\prime}\bar{\boldsymbol{B}}\varepsilon_{k}-\operatorname{tr}\left(\bar{\boldsymbol{B}}\boldsymbol{\Gamma}\right)\right)^{2}=o\left(T^{2}\right).$$

But this fact was established in Bai and Zhou (2008, p. 435). To summarize, all conditions of Theorem 1.1 Bai and Zhou (2008) are satisfied and thus, $\bar{F}_{n,T}$ a.s. weakly converges to F_u as $n, T \rightarrow_c \infty$. This completes the proof.

S4 Proof of Lemma 3

Recall that T_{γ} is defined as the smallest integer s.t. $n/T_{\gamma} \leq \gamma$. Let $T = T_{\infty} > T_{\gamma}$ and let $\boldsymbol{\xi}$ be an $n \times T$ matrix with i.i.d. N(0, 1) entries. Consider a partition $\boldsymbol{\xi} = [\boldsymbol{\xi}_{\gamma}, \boldsymbol{\xi}_{\infty}]$, where $\boldsymbol{\xi}_{\gamma}$ and $\boldsymbol{\xi}_{\infty}$ are $n \times T_{\gamma}$ and $n \times (T_{\infty} - T_{\gamma})$ respectively. Further, let $\boldsymbol{\Delta}$ be defined similarly to $\boldsymbol{\Delta}_{\gamma}$ with T_{γ} replaced by T and partition $\mathbf{\Delta} = \text{diag}[\mathbf{\Delta}_1, \mathbf{\Delta}_2]$, where $\mathbf{\Delta}_1$ is $T_{\gamma} \times T_{\gamma}$. Then we have

$$\boldsymbol{M}_{n,T_{\gamma}} = rac{n}{(T_{\gamma}+1)^2} \boldsymbol{\xi}_{\gamma} \boldsymbol{\Delta}_{\gamma} \boldsymbol{\xi}_{\gamma}' ext{ and } \boldsymbol{M}_{n,T_{\infty}} = rac{n}{(T_{\infty}+1)^2} (\boldsymbol{\xi}_{\gamma} \boldsymbol{\Delta}_1 \boldsymbol{\xi}_{\gamma}' + \boldsymbol{\xi}_{\infty} \boldsymbol{\Delta}_2 \boldsymbol{\xi}_{\infty}').$$

Hence,

$$\boldsymbol{M}_{n,T_{\infty}} - \boldsymbol{M}_{n,T_{\gamma}} = n\boldsymbol{\xi}_{\gamma} \left(\frac{\boldsymbol{\Delta}_{1}}{(T_{\infty}+1)^{2}} - \frac{\boldsymbol{\Delta}_{\gamma}}{(T_{\gamma}+1)^{2}} \right) \boldsymbol{\xi}_{\gamma}' + n \frac{\boldsymbol{\xi}_{\infty} \boldsymbol{\Delta}_{2} \boldsymbol{\xi}_{\infty}'}{(T_{\infty}+1)^{2}}.$$

First, consider $n \boldsymbol{\xi}_{\gamma} \left(\frac{\boldsymbol{\Delta}_1}{(T_{\infty}+1)^2} - \frac{\boldsymbol{\Delta}_{\gamma}}{(T_{\gamma}+1)^2} \right) \boldsymbol{\xi}_{\gamma}'$. Recall that the diagonal elements of $\boldsymbol{\Delta}_1$ have form $\frac{1}{2}(1 - \cos \pi j/(T_{\infty}+1))^{-1}$ for $j \leq T_{\gamma}$. The diagonal elements of $\boldsymbol{\Delta}_{\gamma}$ have a similar form with T_{∞} replaced by T_{γ} . Since

$$\cos x = 1 - \frac{1}{2}x^2 + \frac{1}{4!}x^4 \cos t$$

for some $t \in [0, x]$, we have

$$\frac{1}{2(T_{\infty}+1)^2} \left(1 - \cos \pi j / (T_{\infty}+1)\right)^{-1} = \frac{1}{(\pi j)^2} \left(1 - \frac{\cos t}{12} \frac{(\pi j)^2}{(T_{\infty}+1)^2}\right)^{-1}$$

for some $t \in [0, \pi]$ and hence

$$\frac{1}{2(T_{\infty}+1)^2} \left(1 - \cos \pi j / (T_{\infty}+1)\right)^{-1} - \frac{1}{(\pi j)^2} = \frac{\cos t}{12(T_{\infty}+1)^2} \left(1 - \frac{\cos t}{12} \frac{(\pi j)^2}{(T_{\infty}+1)^2}\right)^{-1}.$$

Since $j \leq T_{\gamma} < T_{\infty}$, we have

$$1 - \frac{\cos t}{12} \frac{(\pi j)^2}{(T_\infty + 1)^2} > 1 - \frac{\pi^2}{12} > \frac{1}{12},$$

and thus

$$\left|\frac{1}{2(T_{\infty}+1)^2}\left(1-\cos \pi j/(T_{\infty}+1)\right)^{-1}-\frac{1}{(\pi j)^2}\right|<\frac{1}{T_{\infty}^2}.$$

The inequality holds similarly for the elements of Δ_{γ} ,

$$\left|\frac{1}{2(T_{\gamma}+1)^2}\left(1-\cos \pi j/(T_{\gamma}+1)\right)^{-1}-\frac{1}{(\pi j)^2}\right|<\frac{1}{T_{\gamma}^2}.$$

Therefore, we have

$$\left|\frac{1}{2(T_{\infty}+1)^{2}}\left(1-\cos \pi j/(T_{\infty}+1)\right)^{-1}-\frac{1}{2(T_{\gamma}+1)^{2}}\left(1-\cos \pi j/(T_{\gamma}+1)\right)^{-1}\right|<\frac{2}{T_{\gamma}^{2}}.$$

To summarize,

$$\left\|n\frac{\boldsymbol{\xi}_{\gamma}\boldsymbol{\Delta}_{1}\boldsymbol{\xi}_{\gamma}'}{\left(1+T_{\infty}\right)^{2}}-n\frac{\boldsymbol{\xi}_{\gamma}\boldsymbol{\Delta}_{\gamma}\boldsymbol{\xi}_{\gamma}}{\left(1+T_{\gamma}\right)^{2}}\right\| < \left\|2\frac{n}{T_{\gamma}}\frac{\boldsymbol{\xi}_{\gamma}\boldsymbol{\xi}_{\gamma}'}{T_{\gamma}}\right\| < 4\gamma.$$

with high probability for sufficiently small γ . The last inequality is due to the fact that the largest eigenvalue of $\frac{\boldsymbol{\xi}_{\gamma}\boldsymbol{\xi}_{\gamma}'}{T_{\gamma}}$ a.s. converges to $(1+\sqrt{\gamma})^2$.

Next consider the component $n \frac{\boldsymbol{\xi}_{\infty} \boldsymbol{\Delta}_2 \boldsymbol{\xi}'_{\infty}}{(T_{\infty}+1)^2}$. Since $1 - \cos x > x^2/6$ for $x \in [0, \pi]$, we have

$$2(T_{\infty}+1)^2(1-\cos \pi j/(T_{\infty}+1)) > (\pi j)^2/3.$$

Partition Δ_2 as diag $[\Delta_{2,1}, \cdots, \Delta_{2,(T_{\infty}-T_{\gamma})/T_{\gamma}}]$ where each $\Delta_{2,i}$ is T_{γ} -dimensional. (We can choose T_{∞} so that $(T_{\infty}-T_{\gamma})/T_{\gamma}$ is an integer, so such a representation is possible.) Using the fact that the diagonal elements of $\Delta_{2,i}/(T_{\infty}+1)^2$ have form

$$\frac{1}{2(T_{\infty}+1)^2(1-\cos \pi j/(T_{\infty}+1))}$$

with $j = iT_{\gamma} + 1, \cdots, (i+1)T_{\gamma} - 1$, we find that the upper bound on the

diagonal elements of $\mathbf{\Delta}_{2,i}/(T_{\infty}+1)^2$ equals

$$\frac{1}{2(T_{\infty}+1)^2(1-\cos iT_{\gamma}\pi/(T_{\infty}+1))},$$

which is no larger than $3/(i\pi T_{\gamma})^2$.

Partition $\boldsymbol{\xi}_{\infty}$ conformably with $\boldsymbol{\Delta}_{2}$ so that $\boldsymbol{\xi}_{\infty} = [\boldsymbol{\xi}_{\infty,1}, \cdots, \boldsymbol{\xi}_{\infty,(T_{\infty}-T_{\gamma})/T_{\gamma}}].$

Then, from the above, we have

$$\left\| n \frac{\boldsymbol{\xi}_{\infty} \boldsymbol{\Delta}_{2} \boldsymbol{\xi}_{\infty}'}{(T_{\infty}+1)^{2}} \right\| \leq \frac{3n}{\pi^{2} T_{\gamma}} \sum_{i=1}^{(T_{\infty}-T_{\gamma})/T_{\gamma}} \frac{1}{i^{2}} \left\| \frac{\boldsymbol{\xi}_{\infty,i} \boldsymbol{\xi}_{\infty,i}'}{T_{\gamma}} \right\|$$

The Gaussian concentration inequality for the singular values of a rectangular matrix with i.i.d. Gaussian entries (see Theorem II.13 of Davidson and Szarek (2001)) implies that, for any t > 0,

$$\mathbb{P}\left(\left\|\frac{\boldsymbol{\xi}_{\infty,i}\boldsymbol{\xi}_{\infty,i}'}{T_{\gamma}}\right\| \ge \left(1+\sqrt{\frac{n}{T_{\gamma}}}+t\right)^{2}\right) < \exp\left(-\frac{T_{\gamma}t^{2}}{2}\right).$$

Taking $t = i^{1/4}$, we then have

$$\sum_{i=1}^{(T_{\infty}-T_{\gamma})/T_{\gamma}} \mathbb{P}\left(\left\|\frac{\boldsymbol{\xi}_{\infty,i}\boldsymbol{\xi}_{\infty,i}'}{T_{\gamma}}\right\| \ge \left(1+\sqrt{\frac{n}{T_{\gamma}}}+i^{1/4}\right)^{2}\right) < \sum_{i=1}^{\infty} \exp\left(-\frac{T_{\gamma}i^{1/2}}{2}\right).$$

Clearly, the right hand side of the above inequality can be made arbitrarily small by choosing sufficiently large T_{γ} . Therefore, with large probability, for sufficiently large T_{γ} , all $\left\|\frac{\boldsymbol{\xi}_{\infty,i}\boldsymbol{\xi}'_{\infty,i}}{T_{\gamma}}\right\|$ are smaller than $\left(1+\sqrt{\frac{n}{T_{\gamma}}}+i^{1/4}\right)^2$ and

$$\left\|n\frac{\boldsymbol{\xi}_{\infty}\Delta_{2}\boldsymbol{\xi}_{\infty}'}{(T_{\infty}+1)^{2}}\right\| \leq \frac{3n}{\pi^{2}T_{\gamma}}\sum_{i=1}^{(T_{\infty}-T_{\gamma})/T_{\gamma}}\frac{\left(1+\sqrt{\frac{n}{T_{\gamma}}}+i^{1/4}\right)^{2}}{i^{2}} \leq K\gamma$$

for some constant K that does not depend on $\gamma \in (0, 1)$. This completes the proof.

References

- Bai, Z. and Silverstein, J. W. (2010) Spectral Analysis of Large Matrices, (second ed.). Springer.
- Bai, Z. and Zhou, W. (2008) Large sample covariance matrices without independence structures in columns. *Statistica Sinica* 18, 425–442.
- Davidson, K. R. and S. J. Szarek (2001) Local operator theory, random matrices and Banach spaces. In *Handbook of the Geometry of Banach Spaces* (Edited by W.B. Johnson and J. Lindenstrauss), Handbook of the Geometry of Banach Spaces, Vol. I, 317–366. North-Holland, Amsterdam.
- Onatski, A. and Wang, C. (2020) Spectral distribution of the sample covariance of highdimensional time series with unit roots. *manuscript*, Faculty of Economics, University of Cambridge.
- Rudin, W. (1987) Real and Complex Analysis, 3rd edition, McGrow-Hill, Inc.
- Tyrtyshnikov, E. E. (1996) A Unifying Approach to Some Old and New Theorems on Distribution and Clustering. *Linear Algebra and Its Applications* 232, 1–43.