
Statistica Sinica: Supplement

SPATIAL QUANTILE REGRESSION

WITH SMOOTH DENSITY FUNCTIONS

Halley Brantley, Montserrat Fuentes, Joseph Guinness, and Eben Thoma

NC State University, Virginia Commonwealth University, Cornell University

U.S. Environmental Protection Agency

Supplementary Material

S1 Differentiability at τU

Let Y have a quantile function as defined in (2.1) and (2.2) with an I-spline

basis order greater than q+ 1 and a density that is continuous and (q−1)th

order differentiable at Q(τU). If αU is constrained so that Eq. S1.1 does not

result in θM−q,p < 0, then Y has a density that is qth-order differentiable at

Q(τU) for any x ∈ RP
+ if and only if

θM−q,p =
1

I
(q+1)
M−q (τU)

{
σU,p

αU(τU − 1)q+1
(−αU − q)q+1 −

M∑
m=M−q+1

θm,pI
(q)
m (τU)

}
(S1.1)
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where I
(q+1)
M−q (τU) is the (q+1)th order derivative of the (M−q)th I-spline

basis function, (−αU − q)q+1 =
∏q

j=0(−αU − j).

S2 Proofs

Proof of Proposition 1

Proof. We will only prove the case for the lower tail, the proof for the upper

tail is equivalent. Given the assumptions we have already shown Q′(τ) > 0

for all τ . Thus the density exists and is given by f(y) = 1
Q′(Q−1(y))

. The

density is continuous at τL if and only if Q′(τ) is continuous at τL. By

definition only a single I-spline basis function has a non-zero derivative at

τL: I ′1(τL). Therefore, the following is a necessary and sufficient condition

for a continuous density for any value of xp ≥ 0:

Q′(τL) =
P∑
p=1

σL,pxpτ
−1
L =

M∑
m=1

P∑
p=1

θm,pxpI
′
m(τL) =

P∑
p=1

θ1,pxpI
′
1(τL) (S2.1)

Now since xp ≥ 0 is defined arbitrarily, take xp = 0 for all p 6= 1, that

is xp = 0 for all predictors other than the intercept term, x1 = 1. Then

(S2.1) is equivalent to

θ1,1 =
σL,1

τL ∗ I ′1(τL)
. (S2.2)
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Similarly, for p > 1 take xp 6= 0 for some q and xp = 0 for all p > 1 and

p 6= q. Then (S2.1) and (S2.2) are equivalent to

θ1,q =
σL,q

τL ∗ I ′1(τL)
. (S2.3)

Hence we have proved Proposition 1.

Proof of Theorem 1

Proof. Let Y have a quantile functions as defined in Eq. 2.1 (main text)

with an I-spline basis order greater than q+1 and a density that is (q−1)th

order differentiable. Given τ ≤ τL,

βp(τ) = θ1,p −
σL,p
αL

[(
τ

τL

)−αL

− 1

]

and Q(τ) =
∑p

p=1 xpβp(τ). The density of Y is qth order differentiable

if and only if Q(τ) is (q + 1)th order differentiable. By definition Q(τ) is

(q+1)th order differentiable at all points except τL and τU . Q(τ) is (q+1)th

order differentiable at τL if and only if,

P∑
p=1

xp

M∑
m=0

θm,pI
(q+1)
m (τL) =

p∑
p=1

xpβ
(q+1)
p (τL) (S2.4)

I
(q+1)
m (τL) = 0 for m = 0 and m > q + 1 so eq. S2.4 is equivalent to
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P∑
p=1

xp

q+1∑
m=1

θm,pI
(q+1)
m (τL) =

p∑
p=1

xpβ
(q+1)
p (τL) (S2.5)

Because β(τ) is a polynomial in τ we can write

β(q+1)
p (τ) =

−σL,pταL
L

αL
τ−αL−q−1

q∏
j=0

(−αL − j) (S2.6)

β(q+1)
p (τL) =

−σL,p
αLτ

q+1
L

(−αL − q)q+1 (S2.7)

Now since xp ≥ 0 is defined arbitrarily, take xp = 0 for all p 6= 1, that is

xp = 0 for all predictors other than the intercept term, x1 = 1. We further

start with the case with q = 1. By proposition 1, θ1,p can be written as a

function of σL,p and eq. S2.5 is satisfied if and only if

θ1,1I
(2)
1 (τL) + θ2,1I

(2)
2 (τL) = σL,1τ

−2
L (−αL − 1) (S2.8)

θ2,1 =
1

I
(2)
2 (τL)

[
σL,1τ

−2
L (−αL − 1)− θ1,1I

(2)
1 (τL)

]
(S2.9)

Similarly, for p > 1 take xp 6= 0 for some q and xp = 0 for all p > 1 and

p 6= q. Then (S2.5) and (S2.8) are equivalent to

θ2,p =
1

I
(2)
2 (τL)

[
σL,pτ

−2
L (−αL − 1)− θ1,pI

(2)
1 (τL)

]
(S2.10)
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We have thus shown that we can ensure 1st order differentiability of the

density function of Y at Q(τL) by constraining θ1,p and θ2,p as functions of

σL,p and αL for all p. Returning to the more general case, given a density

of Y that is (q−1)th order differentiable, we again take xp = 0 for all p 6= 1.

Then the density of Y is qth order differentiable if and only if

q+1∑
m=1

θm,1I
(q+1)
m (τL) =

−σL,1
αLτ

q+1
L

(−αL − q)q+1 (S2.11)

θq+1,1 =
1

I
(q+1)
q+1 (τL)

[
−σL,1
αLτ

q+1
L

(−αL − q)q+1 −
q∑

m=1

θm,1I
(q+1)
m (τL)

]

(S2.12)

Similarly, for p > 1 take xp 6= 0 for some q and xp = 0 for all p > 1 and

p 6= q. Then (S2.5) and (S2.11) are equivalent to

θq+1,p =
1

I
(q+1)
q+1 (τL)

[
−σL,p
αLτ

q+1
L

(−αL − q)q+1 −
q∑

m=1

θm,pI
(q+1)
m (τL)

]
(S2.13)

We have thus proved Theorem 1.
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S3 Expectation and Covariance

E[Yt(s)|Θ(s), Xt(s)]

=

∫ 1

0

QY [τ |Θ(s), Xt(s)]dτ

=
∑
m

∑
p

θm,p(s)xp,t(s)Gm

+
∑
p

(
τLθ1,p(s)xp,t(s) + (1− τU)xp,t(s)

∑
m

θm,p(s) +
σL,p(s)xp,t(s)τL
αL(s)− 1

+
(1− τU)σU,p(s)xp,t(s)

1− αU(s)

)

where Gm =
∫ τU
τL
Im(τ)dτ . As the last two terms approach zero, the

distribution of the marginal expectation of Y becomes a linear combination

of the θm,p which have log normal distributions.

The marginal expectation of Y (s), marginalizing over θm,p and σ is

E[Yt(s)|Xt(s)]

=
∑
m

∑
p

µm,pxp,t(s)Gm

+
∑
p

(
τLµ1,pxp,t(s) + (1− τU)xp,t(s)

∑
m

µm,p

)
+

+
∑
p

(
τ 2
Lµ2,pI

′
2(τL)xp,t(s)E

[
1

αL − 1

]
+ (1− τU)2µM,pI

′
M(τU)xp,t(s)E

[
1

1− αU

])

Based on the model structure, given Θ, Yt(s) and Yt(s
′) are independent.

Thus the conditional covariance is zero and

E[Yt(s)Yt(s
′)|Xt(s)Θ(s)] = E[Yt(s)|Xt(s)Θ(s)]E[Yt(s

′)|Xt(s
′)Θ(s′)]
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E[Yt(s)Yt(s
′)|Xt(s)] =EΘ

[
E
[
Yt(s)|Xt(s),Θ(s)

]
E
[
Yt(s

′)|Xt(s
′),Θ(s′)

]]
=
∑
m

G2
mxp,t(s)xp,t(s

′)[Σm,p(s, s
′) + µ2

m,p]

+
∑
m

∑
p

{xp,t(s)Gmµm,p(s)}
∑

(l,k)6=(m,p)

{xk,t(s′)Glµl,k}
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