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Supplementary Material

The supplementary material provides technical details. Section S1 provides useful lemmas

to establish the theorems. Section S2 presents the detail to prove Proposition 1. Section S3–S5

establish Theorem 1, Corollary 1, and Theorem 2 respectively. Section S6 gives a discussion

about how to select tuning parameter.

S1. Useful Lemmas

To prove the theoretical properties, three useful lemmas are established.

The detailed technical proof of Lemma 1–3 are given in this subsection.

Lemma 1. Assume X follows sub-Gaussian distribution with mean 0 and

moment generating function satisfying E{exp(tX)} ≤ exp(σ2t2/2). Then

the random variable Z = X2 − E(X2) follows sub-exponential distribution

with mean 0, and the moment generating function satisfies E{exp(tZ)} ≤
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exp(c2zt
2) for all |t| ≤ 1/cz where cz is a positive constant.

Proof: The proof can be found in Proposition 2.7.1 of Vershynin (2017).

Lemma 2. Let Xis (1 ≤ i ≤ n) and Yis (1 ≤ i ≤ n) be independent

and identically distributed sub-Gaussian random variables with mean 0 and

variances σ2
x and σ2

y respectively. In addition, assume Cov(Xi, Yi) = σxy.

Denote X = (X1, · · · , Xn)> ∈ Rn and Y = (Y1, · · · , Yn)> ∈ Rn. Then we

have

E{(X>MY )(X>WY )} ≤ c1
{

tr(M)tr(W ) + tr(W)}, (S1.1)

var(X>MX) ≤ c2{tr(M2) + tr(MM>)
}
, (S1.2)

where M ∈ Rn×n and W ∈ Rn×n are arbitrary matrices, W = MW +

MW>+MM>+WW>, and c1 = 2{E(X2
i Y

2
i )+σ2

xσ
2
y+σ2

xy}, c2 = 2 max{σ4
x,

E(X4
i )− σ4

x} are finite positive constants.

Proof: Let M = (mij) ∈ Rn×n and W = (wij) ∈ Rn×n. Then we have

X>MY =
∑

i,jmijXiYj and (X>MY )2 =
∑

i1,i2,j1,j2
mi1i2mj1j2Xi1Xi2Yj1Yj2 .

One could directly calculate that E{(X>MY )(X>WY )} =

∑
i 6=j

miiwjjE(X2
i Y

2
j ) +

∑
i 6=j

{mijwij +mijwji}{E(XiYj)}2 +
∑
i

miiwiiE(X2
i Y

2
i )

= σ2
xy{tr(MW ) + tr(MW>)}+ σ2

xσ
2
ytr(M)tr(W ) +

∑
i

miiwiicxy,
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where cxy = E(X2
i Y

2
i )− σ2

xσ
2
y − 2σ2

xy. Since we have
∑

imiiwii ≤
∑

i(m
2
ii +

w2
ii) ≤ tr(MM>) + tr(WW>), and X, Y are sub-Gaussian random vectors,

we could have (S1.1) by letting c1 = 2{E(X2
i Y

2
i ) + σ2

xσ
2
y + σ2

xy}.

Next, we have E(X>MX) = σ2
xtr(M). Hence we have {E(X>MX)}2 =

σ4
x(
∑

imii)
2. Therefore one could obtain var(X>MX) = E(X>MX)2 −

{E(X>MX)}2 = σ4
x{tr(M2) + tr(MM>)} +

∑
im

2
ii{E(X4

i ) − σ4
x}. Since∑

im
2
ii ≤ tr(MM>), by letting c2 = 2 max{σ4

x, E(X4
i ) − σ4

x} and by the

result of Lemma 1, (S1.2) can be readily obtained.

Lemma 3. Assume X = (X1, · · · , Xn)> ∈ Rn×p, where Xi = (Xi1, · · · , Xip) ∈

Rp independently follows sub-Gaussian distribution with E(Xi) = 0p with

Cov(Xi) = Σx = (σj1j2,x) ∈ Rp×p. In addition, assume that Y ∈ Rn follows

multivariate sub-Gaussian distribution with mean 0n, and Cov(Y ) = Σy ∈

Rn×n. Assume Cov(Xj, Y ) = Σj,xy ∈ Rn×n, where Xj = (X1,j, · · · , Xn,j)
> ∈

Rn. Moreover, assume λmax(Σx) ≤ cx < ∞, λmax(Σy) ≤ cy < ∞, where cx

and cy are finite positive constants. Then we have

P
{∣∣∣n−1(X>j Y )− σ(n)

j,xy

∣∣∣ ≥ δ
}
≤ C1 exp(−C2nδ

2), (S1.3)

where σ
(n)
j,xy = n−1E(X>j Y ), and C1 and C2 are non-zero positive constants,

which are only related to cx and cy.
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Proof: Let Zj = Xj +Y . We then have Σzj
def
= Cov(Zj) = σjj,xIn + (Σj,xy +

Σ>j,xy)+Σy. One can directly derive that X>j Y = 2−1(Z>j Zj−X>j Xj−Y >Y ).

Then we have

P{|n−1(X>j Y )− σ(n)
j,xy| ≥ δ} ≤ P{|n−1(Z>j Zj)− (σjj,x + σ(n)

y + 2σ
(n)
j,xy)| ≥ δ1}

+ P{|n−1(X>j Xj)− σjj,x| ≥ δ1}+ P{|n−1(Y >Y )− σ(n)
y | ≥ δ1}, (S1.4)

where δ1 = 2/3δ and σ
(n)
y = n−1tr(Σy). We then derive an upper bound

for the right hand side of (S1.4). It should be noted that X>j Xj, Y
>Y , and

Z>j Zj in the right hand side of (S1.4) are all in quadratic form and thus the

proofs are similar. For the sake of simplicity, we take Y >Y for an example

and derive the upper bound for P{|n−1(Y >Y ) − σ
(n)
y | ≥ δ1}. The same

result could be proved similarly for the other two terms in the right hand

side of (S1.4).

First we have Y >Y = Y >Σ
−1/2
y ΣyΣ

−1/2
y Y = Ỹ >ΣyỸ , where Ỹ =

Σ
−1/2
y Y follows sub-Gaussian distribution. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the

eigenvalues of Σy. Since Σy is a non-negative definite matrix, we could have

the eigenvalue decomposition as Σy = U>ΛU , where U = (U1, · · · , Un)> ∈

Rn×n is an orthogonal matrix and Λ = diag{λ1, · · · , λn}. As a conse-

quence, we have Y >Y =
∑

i λiζ
2
i , where ζi = U>i Ỹ and ζis are i.i.d.
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from the standard sub-Gaussian distribution subG(1). It can be verified

ζ2i − 1 satisfies sub-exponential distribution by Lemma 1. It can be eas-

ily verified that the sub-exponential distribution satisfies condition (P) on

page 45 of Saulis and Statulevičius (2012). Thus we have P{|n−1(Y >Y )−

σ
(n)
y | ≥ δ1} = P{

∑
i λi(ζ

2
i − 1)| ≥ nδ1} ≥ c1 exp{−c2(

∑
i λ

2
i )
−1n2δ21} =

c1 exp{−c2tr−1λ−2max(Σy)nδ
2
1} by the Theorem 3.2, on Page 45 of Saulis and

Statulevičius (2012). Similarly, there exists positive constants c1 > 0 and

c2 > 0, such that P{|n−1(X>j Xj) − σjj,x| ≥ δ1} ≤ c1 exp(−c2σ−2jj,xnδ21) and

P{|n−1(Z>j Zj)−(σjj,x+σ
(n)
y +2σ

(n)
j,xy)| ≥ δ1} ≤ c1 exp{−c2tr−1(Σ2

zj)n
2δ21}. It

can be easily derived that σjj,x ≤ λmax(Σx) ≤ cx and tr(Σ2
zj) ≤ nλ2max(Σzj).

Further we have λmax(Σzj) ≤ λmax(Σx) + 2λ
1/2
max(Σx)λ

1/2
max(Σy) + λmax(Σy) ≤

{λ1/2max(Σx) + λ
1/2
max(Σy)}2 by the Cauchy’s inequality. Lastly, by condition

(C4), condition λmax(Σx) ≤ cx < ∞, and λmax(Σy) ≤ cy < ∞, the desired

result (S1.3) can be obtained by using (S1.4).

S2. Proof of Proposition 1

In the proof of proposition 1, for convenience, we define R̂2
j =

n−3{(Y >W>WY )(X>j Y )2 − 2(X>j Y )(X>j WY )(Y >WY ) + (X>j WY )2(Y >Y )}.
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Consequently R̂2
j = n2R̂2

j

{
(Y >Y )(Y >W>WY ) − (Y >W>Y )2

}−1
. In addi-

tion, define R2
j = (κ

(n)
1 κ

(n)2
5 − 2κ

(n)
2 κ

(n)
4 κ

(n)
5 + κ

(n)
3 κ

(n)2
4 )ν0ν

2
j . It suffices to

show max |n−2{(Y >Y )(Y >W>WY )− (Y >W>Y )2} − c(n)κ | = op(1). Due to

the similarity of the proof, we only prove the first one.

To prove maxj |R̂2
j − R2

j | →p 0, it suffices to show that P{maxj |R̂2
j −

R2
j | > δ} → 0 as n→∞. By the maximum inequality, it could be concluded

that P{maxj |R̂2
j − R2

j | > δ} ≤
∑p

j=1 P{|R̂2
j − R2

j | > δ}. Next, we would

prove that

P
{
|R̂2

j −R2
j | > δ

}
≤ C1 exp(−C2nδ

2
0) (S2.1)

for 1 ≤ j ≤ p and finite constants C1, C2 > 0, where δ0 = (δ/6)1/3. To

achieve this, we first derive the inequality as P
{
|R̂2

j −R2
j | > δ

}
≤

P
{
|n−1(Y >W>WY )− κ(n)3 ν0| > δ0

}
+ 2P

{
|n−1(X>j Y )− κ(n)4 νj| > δ0

}
+ 2P

{
|n−1(X>j WY )− κ(n)5 νj| > δ0

}
+ P

{
|n−1(Y >WY )− κ(n)2 ν0| > δ0

}
+ P

{
|n−1(Y >Y )− κ(n)1 ν0| > δ0

}
. (S2.2)

To derive the upper bound for each term of (S2.2), we apply Lemma 3. It can

be derived Cov(WY ) = WΣyW
> , λmax(WΣyW

>) ≤ λmax(Σy)λmax(WW>).

By the conditions (C1)–(C4) and then applying Lemma 3, we could have

c1 exp(−c2nδ20) as an upper bound for each term in (S2.2), where c1 > 0
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and c2 > 0 are finite constants only related to κj (1 ≤ j ≤ 5) and τmax.

Therefore, (S2.1) can be proved by letting C1 = 5c1 and C2 = c2. Conse-

quently, the conclusion follows by the condition (C2) that log p = O(nξ)

with 0 ≤ ξ < 1.

S3. Proof of Theorem 1

With the definition of R̂2
j and R2

j given in the Appendix S2, we know that

the rank of R̂2
js is exactly the same with that of R̂2

j s across different js. To

prove the screening consistency, we employ the following 5 steps.

Step 1. (‖β‖2 ≤ Cβ < ∞) Recall that Y = ρWY + Xβ + E . Therefore

we have Y = (In − ρW )−1Xβ + (In − ρW )−1E . One could further derive

that n−1E(Y >Y ) = n−1 var(Y ) = n−1 var{(In−ρW )−1Xβ}+n−1 var{(In−

ρW )−1E} ≥ n−1 var{(In−ρW )−1Xβ}. By the condition that n−1E(Y >Y ) =

1, we have n−1 var{(In − ρW )−1Xβ} ≤ 1. This leads to

β>E
{
n−1X>(In − ρW>)−1(In − ρW )−1X

}
β ≤ 1. (S3.1)

By (C4), we know λmin{(In−ρW>)−1(In−ρW )−1} ≥ τmin/(β
>Σxβ+σ2) ≥

τmin/σ
2. Thus (Xβ)>(In − ρW>)−1(In − ρW )−1(Xβ) ≥ τminβ

>X>Xβ/σ2.

Then (S3.1) implies τminβ
>E(n−1X>X)β/σ2 ≤ 1. Since we haveE(n−1X>X) =
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Σ and λmin(Σ) ≥ τmin by condition (C4), then it can be further derived that

τ 2min/σ
2‖β‖2 ≤ 1. Consequently, it can be concluded ‖β‖2 ≤ Cβ by letting

Cβ = τ−2minσ
2.

Step 2. (
∑p

j=1R
2
j ≤ Cr < ∞) By the definition of R2

j , we have
∑

j R
2
j =

(κ
(n)
1 κ

(n)2
5 − 2κ

(n)
2 κ

(n)
4 κ

(n)
5 + κ

(n)
3 κ

(n)2
4 )ν0

∑p
j=1 ν

2
j . By the convergence of κ

(n)
j

(1 ≤ j ≤ 5) in condition (C3), it can be conclude that κ
(n)
j ≤ Cκ for some

positive constant Cκ. As a consequence, by Step 1 and condition (C4), one

can conclude that there exist a finite constant Cb such that

β>Σβ ≤ τmax‖β‖2 < Cb,

p∑
j=1

ν2j =

p∑
j=1

(β>Σ·j)
2 = β>Σ2β < τ 2max‖β‖2 ≤ β2

maxτ
2
max|MT |,

where βmax = maxi |βi|. Consequently, by letting Cr = c̃βτ
2
max|MT | < ∞

where c̃β = 4C3
κβ

2
max, we then have

∑p
j=1R

2
j ≤ Cr.

Step 3. (maxj |R̂2
j−R2

j | →p 0) The result can be guaranteed by Proposition

1.

Step 4. Recall R2
j = (c

(n)
κ )−1R2

j and γ∗min = minj∈MT
R2
j . DefineM∗

T = {j :

R2
j > γ∗min}. By definition, we have MT ⊂ M∗

T . Equally, we have M∗
T =

{j : R2
j > γmin}, where γmin = cκγ

∗
min and cκ = (κ1κ3 − κ2)c2β. By condition

(C5), we have γmin ≥ cγcκ > 0 as n → ∞. Recall that M̂R = {j : R̂2
j >
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γ∗min/2} =
{
j : R̂2

j > 2−1γminzn
}

, where zn = c−1κ n−2{(Y >Y )(Y >W>WY )−

(Y >WY )2}. In this step, we want to show that M̂R should uniformly cover

M∗
T with probability tending to one. Otherwise, there must exist at least

one j∗ ∈ M∗
T which is not covered by M̂R. By the definition of M̂R, we

know that we must have R̂2
j∗ ≤ 2−1γminzn. However, due to the definition

of M∗
T , if j∗ ∈ M∗

T , R2
j∗ > γmin. Both of these imply that |R̂2

j − R2
j | >

2−1γmin|2−zn|. As a consequence, ifM∗
T 6⊂ M̂R, we must have, maxj |R̂2

j −

R2
j | > 2−1γmin|2− zn|. Therefore we have P (M∗

T 6⊂ M̂R) ≤ P (maxj |R̂2
j −

R2
j ||2− zn|

−1 > γmin/2) ≤ P (maxj |R̂2
j −R2

j ||1− |1− zn||−1 > γmin/2) =

P
(

max
j
|R̂2

j −R2
j ||1− |1− zn||−1 > γmin/2

∣∣∣|1− zn| ≤ ε
)
P
(
|1− zn| ≤ ε

)
+ P

(
max
j
|R̂2

j −R2
j ||1− |1− zn||−1 > γmin/2

∣∣∣|1− zn| > ε
)
P
(
|1− zn| > ε

)
≤ P (|1− zn| > ε) + P (max

j
|R̂2

j −R2
j | > 2−1|1− ε|γmin).

By similar technique as in Step 3, we have P (|zn−1| > ε) ≤ P
(
|n−1(Y >Y )−

κ
(n)
1 (β>Σβ + σ2)| > ε0

)
+ P

(
|n−1(Y >W>WY )− κ(n)3 (β>Σβ + σ2)| > ε0

)
+

P
(
|n−1(Y >WY )− κ(n)2 (β>Σβ + σ2)| > ε0

)
, where ε0 = (2−1cκε)

1/2. Conse-

quently, by Lemma 3, we have P (|zn−1| > ε) ≤ 3c1 exp(−c2nε20)→ 0. Next,

by letting δ = 2−1|1− ε|γmin, we have P (maxj |R̂2
j−R2

j | > 2−1|1− ε|γmin)→

0 as n→∞. This suggests P (M∗
T ⊂ M̂R)→p 1 as n→∞.
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Step 5. We next verify that the size of M̂R could be uniformly bounded.

First, by Step 2, we have
∑p

j=1R
2
j ≤ Cr. Define M∗ = {j : R2

j > γ∗min/4},

which can be equivalent spelled as M∗ = {j : R2
j > γmin/4}. Then we have

Cr ≥
∑

j∈M∗ R2
j ≥ |M∗|γmin/4. Then we have |M∗| ≤ 4Crγ

−1
min=̇mmax,

where mmax = cβτ
2
maxγ

−1
min|MT |. By condition (C5) and Step 2 we have

mmax < ∞. If |M̂R| > |M∗|, we must have M̂R 6⊂ M∗. This means there

must exist at least one j ∈ M̂R with R̂2
j > γminzn/2, but j /∈ M∗ with

R2
j ≤ γmin/4. We immediately know that maxj |R̂2

j −R2
j |≥4−1γmin|2zn − 1|.

Then we have, P (|M̂R| > mmax) ≤ P (maxj |R̂2
j −R2

j ||2zn−1|−1≥γmin/4) ≤

P (maxj |R̂2
j −R2

j ||1−2|zn − 1||−1 ≥ γmin/4) =

P
(

max
j
|R̂2

j −R2
j ||1− 2|1− zn||−1 ≥ γmin/4

∣∣∣|1− zn| ≤ ε
)
P
(
|1− zn| ≤ ε

)
+ P

(
max
j
|R̂2

j −R2
j ||1− 2|1− zn||−1 ≥ γmin/4

∣∣∣|1− zn| > ε
)
P
(
|1− zn| > ε

)
≤ P (|1− zn| > ε) + P (max

j
|R̂2

j −R2
j | > |1− 2ε|γmin/4).

Consequently, by the similar technique in the previous step, P (|zn − 1| >

ε)→ 0 and P (maxj |R̂2
j−R2

j | > |1−2ε|γmin/4)→ 0 as n→∞. This suggest

that P (|M̂R| ≤ mmax)→ 1 as n→∞.
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S4. Corollary from Theorem 1

Corollary 1. Let γ
∗(k)
min be the kth smallest element in {R2

j : j ∈ MT} and

hence γ∗min = γ
∗(1)
min . Accordingly let M(k)

T = {j ∈ MT : R2
j ≥ γ

∗(k)
min } and

m
(k)
max = cβ(γ

∗(k)
min )−1τ 2max|M

(k)
T |. Assume Conditions (C1)–(C4) and γ

∗(k)
min =

2cγ, we then have

P (M(k)
T ∈ M̂

R)→ 1, P (|M̂R| ≤ m(k)
max)→ 1.

It implies that we are still able to have a compact model size m
(k)
max which

detects |MT | − k + 1 important features consistently if these important

features have relatively large signal.

The proof is similar to Theorem 1 but slightly different in Step 4 and

5. In Step 4 and 5, one could replace γ∗min, MT , and mmax by γ
∗(k)
min , M(k)

T ,

and m
(k)
max to obtain the result. The rest are the same with the proof of

Theorem 1.

S5. Proof of Theorem 2

In this part we aim to establish the parameter consistency. For convenience

we define s = |M| in the following. Following Fan and Li (2001), it is

sufficient to show that for any ε > 0, there exists a constant C > 0 such
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that

lim
N→∞

P
{

sup
|u|=C

`1(ρ+N−1/2u) < `1(ρ)
}
> 1− ε. (S5.1)

Then, by (S5.1), with probability at least 1−ε, there exists a local optimizer

ρ̂ in the ball {ρ + N−1/2uC : |u| ≤ 1}. As a result, we have |ρ̂ − ρ| =

Op(n
−1/2). To show (S5.1), we applies Taylor’s expansion to obtain that

sup‖u‖=1

{
`1(ρ+ n−1/2uC)− `1(ρ)

}
=

sup
‖u‖=1

{
Cn−1/2`′1(ρ)u+ 2−1C2n−1`′′1(ρ)u2 + op(1)

}
≤ C|n−1/2`′1(ρ)| − 2−1C2

{
− n−1`′′1(ρ)

}
+ op(1). (S5.2)

We next show that (S5.2) is negative asymptotically with probability tend-

ing to 1. To this end, we consider `′1(ρ) and `′′1(ρ) separately in the following

two steps. For convenience, define α = E(ε4i )− σ4.

Step 1. (Proof of |n−1/2`′1(ρ)| = Op(1)). First it can be proved,

`′1(ρ) = −tr
{

(In − ρW )−1W
}

+ σ̂−2Y >(In − ρW>)(In − PX)WY, (S5.3)

where σ̂2 = n−1Y >(In−ρW>)(In−PX)(In−ρW )Y . Let S1 = σ−2{Y >(In−

ρW>)(In − PX)WY } and s1 = tr
{

(In − ρW )−1W
}

. We next show that

σ̂2 →p σ
2 and n−1/2(S1 − s1) = Op(1).
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Step 1.1 (σ̂2 →p σ
2) First it can be derived σ̂2 = E>(In − PX)E . One

could verify that E(σ̂2) = (1 − s/n)σ2 → σ2 by the condition in Theorem

2. Next we have var(σ̂2) ≤ n−2σ4 var{tr(In − PX)} + n−2σ42c2E{tr(In −

PX)2} = 2σ4c2n
−2(n − s) → 0 by condition (C1) and (S1.2) of Lemma 2.

This completes the proof of Step 1.1.

Step 1.2 (n−1/2(S1 − s1) = Op(1)) It can be written that S1 =

σ−2E>(In−PX)W (In−ρW )−1E = σ−2E>W (In−ρW )−1E−σ−2E>PXW (In−

ρW )−1E . Define the first part to be S11 and the second to be S12. Without

loss of generality, we assume σ2 = 1. Next we prove n−1/2(S11−s1) = Op(1)

and n−1/2S12 = op(1). For the first result, one could verify that E(S11−s1) =

0 and n−1 var(S11) ≤

2−1c2

(
n−1tr

[
{W (In−ρW )−1}2

]
+n−1tr

{
W (In−ρW )−1(In−ρW>)−1W>})

→ 2−1c2(κ6 + κ3) by (S1.2) of Lemma 2. Hence we have n−1/2(S11 − s1) =

Op(1). Next, we have S12 = tr[(X>MXM)−1{X>MW (In − ρW )−1EE>XM}].

By the trace inequality, we have,

|S12| ≤ λ−1min(Σ̂M)|n−1tr{X>MW (In − ρW )−1EE>XM}|,
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where Σ̂M = n−1X>MXM. It can be concluded that λmin(Σ̂M) ≥ τmin >

0 with probability tending to 1 as n → ∞ by condition (C4) and s =

o(n(1−ξ)/3), where the proof is similar to Wang (2009) and ignored here.

Then it leads to show n−1/2[n−1{E>XMX>MW (In−ρW )−1E}] = op(1). First

n−1E{E>XMX>MW (In − ρW )−1E} = σ2κ
(n)
5 tr(ΣM) ≤ sσ2κ

(n)
5 λmax(ΣM).

Next, by Lemma (S1.1) in 2, var
{
E>XMX>MW (In − ρW )−1E

}
≤

c1E
[
tr{(X>MMXM)2}+tr{(X>MMM>XM)(X>MXM)}

]
+var

[
tr
(
X>MMXM

)]
,

def
= V1 + V2 + V3, where M = W (In − ρW )−1. Note tr{(X>MMXM)2} =∑

j,k∈M(X>j MXk)(X>j M>Xk). Then we have V1 ≤ c1s
2{tr(M)2 + tr(M2) +

tr(MM>)} by condition (C1) and (S1.1) of Lemma 2. Further we have

n−2tr(M)2 → κ5 by condition (C3) and n−2{tr(M2) + tr(MM>)} → 0

by the (5.3) of Lemma 2 in Zhu et al. (2017). As a consequence, we have

n−3V1 → 0 by conditions in Theorem 2. By similar techniques, one could

have n−3V2 → 0. Next, it can be derived by Cauchy’s inequality, V3 ≤

∑
j,k∈M

E{(X>j MXj)(X>kM>Xk)} ≤
∑
j,k∈M

[{E(X>j MXj)
2E(X>kM>Xk)

2}]1/2.

As a result, by (S1.1) of Lemma 2, we have V3 ≤ c1s
2{tr(M)2 + tr(M2) +

tr(MM>). Similarly, by condition (C4) and (5.3) of Lemma 2 in Zhu et al.
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(2017), we have n−3V3 → 0. Therefore, it can be concluded that n−1/2S12 →p

0.

Step 2. (Proof of −n−1`′′1(ρ)→p σ
2
2ρ) It can be derived that

`′′(ρ) = −tr
{

(In − ρW )−1W (In − ρW )−1W
}

−σ̂−2Y >W>(In − PX)WY + 2(nσ̂4)−1σ4S2
1 .

By the previous step, we have n−1S1−s1 = op(1). Next, let the second term

be S2 = σ−2{Y >W>(In−PX)WY } and s2 = n−1tr{(In−ρW )−1WW>(In−

ρW>)−1}. We then show that n−1S2−s2 = op(1). Let M = (In−ρW )−1W .

Then we have S2 =

σ−2[tr(E>M>ME)− tr(E>M>PXME) + 2tr{E>M>(In − PX)M(XMβM)}

+tr{(XMβM)>M>(In − PX)M(XMβM)}] def
= σ−2(S21 − S22 + S23 + S24).

By similar techniques in Step 1, one could verify that n−1σ−2S21−s2 = op(1)

and n−1σ−2S2j = op(1) for 2 ≤ j ≤ 4. Let M1 = M + M>, then one could

verify that −n−1`′′1(ρ) − σ2
2ρ = op(1), where σ2

2ρ = 2−1 limn→∞ n
−1tr[{M −

n−1tr(M)In}2] = κ3 + κ6 − 2κ25.

By the results of Step 1 and Step 2, it can be concluded that the

quadratic term will dominate the linear term in (S5.2) as long as a suf-
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ficiently large C is chosen. Then with probability tending to 1, we have

`1(ρ+ n−1/2u) < `1(ρ) as n→∞. This completes the proof of (S5.2).

S6. Selection of Tuning Parameter

For practical implementation, the selection of the tuning parameter cγ is

important. Different cγ may lead to different selected model. Under a classi-

cal regression setup with p < n, this problem has been extensively studied.

A number of selection criterions, such as AIC (Akaike, 1973), BIC (Schwarz,

1978), and EBIC (Chen and Chen, 2008; Wang, 2009), are proposed and

carefully investigated. Practically, we could set the maximum number of

features to be selected as p′, with p′ < n. For example, p′ = [n/ log(n)],

where [m] is the maximum integer, which is no larger than m.

Thus, in this case, the tuning parameter could be selected in the fol-

lowing steps. First, the features are sorted according to the value of R̂2
j .

Second, M̂j could be defined containing the first j features with the largest

R̂2
js. Third, the model could be selected via AIC, BIC, or EBIC methods.

For example, for EBIC method, we define for 1 ≤ j ≤ p′,

EBICj
τ = −2`j(θ̂j) + j log(n) + 2τ log{P (M̂j)}, (S6.1)
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where `j(θ) is the log likelihood of the model M̂j, θ̂j is the maximum

likelihood estimator of θj = (ρ, β>
M̂j

)>, P (M̂j) = 1/p′ and τ is a constant

between 0 and 1. When τ = 0, the method is the same with the original

BIC. As a result, the model with the smallest EBICj
τ could be selected.

Practically, the computation of log likelihood `j(θ̂j) is intensive, since

the determinant of a high dimensional matrix (I − ρW ) is involved. Al-

ternatively, we use another method to save computational cost here. It is

shown that it works well in numerical studies. Define RSSM̂j
= Y >(In −

Hj)Y and σ2
M̂j

= n−1RSSM̂j
, where Hj = X>ρ,j(X>ρ,jXρ,j)

−1Xρ,j and Xρ,j =

(WY,XM̂j
) ∈ Rn×(j+1). Thus−2`j(θ̂j) in (S6.1) could be replaced by n log(σ2

M̂j
)

as an approximation, which leads to

ẼBIC
j

τ = n log(σ2
M̂j

) + j log(n) + 2τ log{P (M̂j)}. (S6.2)

Then cγ and M̂R could be selected based on the value of ẼBIC
j

τ (1 ≤ j ≤ p′)

similarly. In this way, we do not need to obtain the maximum likelihood es-

timator for the SAR model with different js. We illustrate the performance

of the method by numerical studies.
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