Partitioned Approach for High-dimensional Confidence
 Intervals with Large Split Sizes

University of Science and Technology of China

Supplementary Material

S1 Proof of Proposition 1

We would like to apply a similar argument as that in the proof of Zhang and Zhang (2014, Theorem 1) to derive the confidence intervals of β_{j}. The fundamental difference is that the design matrix \mathbf{X} is now random instead of fixed. Thus, the statistics related to \mathbf{X} such as \mathbf{z}_{j}, η_{j} and τ_{j} are also random variables (vectors). We will derive the properties of these statistics before deriving the confidence intervals of β_{j}.

Part 1: Deviation bounds of $\left\|\mathbf{z}_{j}\right\|_{2}^{2}$. Recall that $\eta_{j}=\max _{k \neq j}\left|\mathbf{z}_{j}^{T} \mathbf{x}_{k}\right| /\left\|\mathbf{z}_{j}\right\|_{2}, \tau_{j}=$ $\left\|\mathbf{z}_{j}\right\|_{2} /\left|\mathbf{z}_{j}^{T} \mathbf{x}_{j}\right|$, defined in (3.5), and \mathbf{z}_{j} is the relaxed residual vector of regressing \mathbf{x}_{j} on \mathbf{X}_{-j} in (3.4) such that

$$
\begin{aligned}
& \mathbf{z}_{j}=\mathbf{x}_{j}-\mathbf{X}_{-j} \widehat{\gamma}_{j}, \\
& \left\{\widehat{\gamma}_{j}, \hat{\sigma}_{j}\right\}=\underset{\mathbf{b} \in \mathbb{R}^{p-1}, \sigma_{j} \in \mathbb{R}^{+}}{\arg \min }\left\{\frac{\left\|\mathbf{x}_{j}-\mathbf{X}_{-j} \mathbf{b}\right\|_{2}^{2}}{2 n \sigma_{j}}+\frac{\sigma_{j}}{2}+\lambda_{0} \sum_{k \neq j} \frac{\left\|\mathbf{x}_{k}\right\|_{2}}{\sqrt{n}}\left|b_{k}\right|\right\}
\end{aligned}
$$

with components of $\widehat{\gamma}_{j}=\left\{\hat{\gamma}_{j, k} ; k=1, \cdots, p, k \neq j\right\}$, where the regularization parameter $\lambda_{0}=(1+\varepsilon) \sqrt{2 \delta \log (p) / n}$ for some $\delta \geq 1$ and $\varepsilon>0$.

We first derive the deviation bound for $\left\|\mathbf{z}_{j}\right\|_{2}^{2}$. Note that $\mathbf{X}=\left(x_{i j}\right)_{n \times p}=\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{p}\right)$,
where the rows of \mathbf{X} are i.i.d. from $N(\mathbf{0}, \boldsymbol{\Sigma})$. Let $\boldsymbol{\Sigma}=\left(\sigma_{i j}\right)_{p \times p}$ and $\mathbf{x}_{i,-j}$ be the i th row of \mathbf{X} after taking the j th component off. Similarly, the notation $\boldsymbol{\Sigma}_{j,-j}^{-1}$ denotes a subvector of the j th row of $\boldsymbol{\Sigma}^{-1}$ without the j th component. Let $\sigma_{j}=1 / \Sigma_{j, j}^{-1}$. By the conditional distribution of multivariate normal vector, we have

$$
x_{i j} \mid \mathbf{x}_{i,-j}=N\left(-\sigma_{j} \mathbf{x}_{i,-j}\left(\boldsymbol{\Sigma}_{j,-j}^{-1}\right)^{T}, \sigma_{j}\right),
$$

independent over i. It follows that $x_{i j}=-\sigma_{j} \mathbf{x}_{i,-j}\left(\boldsymbol{\Sigma}_{j,-j}^{-1}\right)^{T}+\rho_{i j}$, where $\rho_{i j} \sim N\left(0, \sigma_{j}\right)$ are i.i.d. over i. Denote by $\gamma_{j}=-\sigma_{j}\left(\boldsymbol{\Sigma}_{j,-j}^{-1}\right)^{T}$ and $\boldsymbol{\rho}_{j}=\left(\rho_{1 j}, \cdots, \rho_{n j}\right)^{T}$. In matrix notation, we have

$$
\mathbf{x}_{j}=\mathbf{X}_{-j} \boldsymbol{\gamma}_{j}+\boldsymbol{\rho}_{j}
$$

with components of $\gamma_{j}=\left\{\gamma_{j, k} ; k=1, \cdots, p, k \neq j\right\}$, where \mathbf{X}_{-j} is the submatrix of \mathbf{X} by taking the j th column off.

Note that \mathbf{z}_{j} is the residual of the scaled Lasso estimator in the regression model of \mathbf{x}_{j} against \mathbf{X}_{-j} with $\boldsymbol{\gamma}_{j}=-\sigma_{j}\left(\boldsymbol{\Sigma}_{j,-j}^{-1}\right)^{T}$, and we can get the sparsity of $\boldsymbol{\gamma}_{j}$ through the assumption that the rows of $\boldsymbol{\Sigma}^{-1}$ satisfy the L_{0} sparsity condition. Thus, by applying the estimation error bound of the residual vector of the scaled Lasso in Ren et al. (2015, Inequality (18)), we can get

$$
\begin{equation*}
\max _{1 \leq j \leq p} P\left(\frac{1}{n}\left|\left\|\mathbf{z}_{j}\right\|_{2}^{2}-\left\|\boldsymbol{\rho}_{j}\right\|_{2}^{2}\right|>C s \frac{\log p}{n}\right) \leq o\left(p^{-\delta+1}\right) \tag{S1.1}
\end{equation*}
$$

which gives the deviation of $\left\|\mathbf{z}_{j}\right\|_{2}^{2}$ from its population counterpart $\left\|\boldsymbol{\rho}_{j}\right\|_{2}^{2}$.
With $\left\|\boldsymbol{\rho}_{j}\right\|_{2}^{2} / \sigma_{j} \sim \chi_{(n)}^{2}$ for any $1 \leq j \leq p$, applying the following tail probability bound with $t=2 \sqrt{2 \delta \log (p) / n}$ for the chi-squared distribution with n degrees of
freedom Ren et al. (2015, Inequality (93)):

$$
\begin{equation*}
P\left\{\left|\frac{\chi_{(n)}^{2}}{n}-1\right| \geq t\right\} \leq 2 \exp (-n t(t \wedge 1) / 8) \tag{S1.2}
\end{equation*}
$$

gives

$$
1-2 \sqrt{2 \delta \log (p) / n} \leq\left\|\boldsymbol{\rho}_{j}\right\|_{2}^{2} /\left(n \sigma_{j}\right) \leq 1+2 \sqrt{2 \delta \log (p) / n}
$$

holding with probability at least $1-2 p^{-\delta}$. This inequality together with S1.1 entails that with probability at least $1-o\left(p^{-\delta+1}\right)$,
$[1-2 \sqrt{2 \delta \log (p) / n}] \sigma_{j}-C s \log (p) / n \leq\left\|\mathbf{z}_{j}\right\|_{2}^{2} / n \leq[1+2 \sqrt{2 \delta \log (p) / n}] \sigma_{j}+C s \log (p) / n$, for any $1 \leq j \leq p$. In view of $s=o(n / \log p)$, we have $s \leq c_{0} n / \log p$ with some sufficiently small constant c_{0}. Combining these results leads to

$$
\begin{equation*}
[1-2 \sqrt{2 \delta \log (p) / n}] \sigma_{j}-C c_{0} \leq\left\|\mathbf{z}_{j}\right\|_{2}^{2} / n \leq[1+2 \sqrt{2 \delta \log (p) / n}] \sigma_{j}+C c_{0} \tag{S1.3}
\end{equation*}
$$

with probability at least $1-o\left(p^{-\delta+1}\right)$, which completes the proof of Part 1.
Part 2: Deviation bounds of $\max _{k \neq j}\left\|\mathbf{x}_{k}\right\|_{2}$ and $\min _{k \neq j}\left\|\mathbf{x}_{k}\right\|_{2}$. In order to proceed, we need to construct an upper bound for $\max _{k \neq j}\left\|\mathbf{x}_{k}\right\|_{2}$ and a lower bound for $\min _{k \neq j}\left\|\mathbf{x}_{k}\right\|_{2}$, respectively. Since $\left\|\mathbf{x}_{k}\right\|_{2}^{2} / \sigma_{k k} \sim \chi_{(n)}^{2}$ for any $1 \leq k \leq p$, by applying S1.2 with $t=4 \sqrt{\delta \log (p) / n}$ for the chi-squared distribution with n degrees of freedom, we have

$$
[1-4 \sqrt{\delta \log (p) / n}] \sigma_{k k} \leq\left\|\mathbf{x}_{k}\right\|_{2}^{2} / n \leq[1+4 \sqrt{\delta \log (p) / n}] \sigma_{k k}
$$

holding with probability at least $1-2 p^{-2 \delta}$. By the condition that the eigenvalues of $\boldsymbol{\Sigma}$ are within $\left[M_{*}, M^{*}\right.$], we have $M_{*} \leq \sigma_{k k} \leq M^{*}$ for any $1 \leq k \leq p$. It follows that for sufficiently large n, with probability at least $1-2 p^{-2 \delta}$,

$$
\widetilde{M}^{*} \leq \sqrt{[1+4 \sqrt{\delta \log (p) / n}] M_{*}} \leq\left\|\mathbf{x}_{k}\right\|_{2} / \sqrt{n} \leq \sqrt{[1+4 \sqrt{\delta \log (p) / n}] M^{*}} \leq \widetilde{M}
$$

where \widetilde{M}^{*} and \widetilde{M} are some positive constants. Thus we have

$$
\begin{equation*}
P\left(\max _{k \neq j}\left\|\mathbf{x}_{k}\right\|_{2} / \sqrt{n}>\widetilde{M}\right) \leq \sum_{k \neq j} P\left(\left\|\mathbf{x}_{k}\right\|_{2} / \sqrt{n}>\widetilde{M}\right) \leq p \cdot 2 p^{-2 \delta}=2 p^{1-2 \delta}=o\left(p^{1-\delta}\right) \tag{S1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(\min _{k \neq j}\left\|\mathbf{x}_{k}\right\|_{2} / \sqrt{n}<\widetilde{M}^{*}\right) \leq \sum_{k \neq j} P\left(\left\|\mathbf{x}_{k}\right\|_{2} / \sqrt{n}<\widetilde{M}^{*}\right) \leq p \cdot 2 p^{-2 \delta}=2 p^{1-2 \delta}=o\left(p^{1-\delta}\right), \tag{S1.5}
\end{equation*}
$$

respectively, which entail that $\max _{k \neq j}\left\|\mathbf{x}_{k}\right\|_{2} / \sqrt{n} \leq \widetilde{M}$ and $\min _{k \neq j}\left\|\mathbf{x}_{k}\right\|_{2} / \sqrt{n} \geq \widetilde{M}^{*}$ hold with probability at least $1-o\left(p^{-\delta+1}\right)$. It completes the proof of Part 2.

Part 3: Deviation bounds of τ_{j}. Then we turn to the deviation bound of τ_{j}. In order to proceed, it is worthwhile to notice a basic inequality that

$$
\begin{equation*}
\mathbf{z}_{j}^{T} \mathbf{x}_{j}=\left\|\mathbf{z}_{j}\right\|_{2}^{2}+\left(\mathbf{X}_{-j} \widehat{\gamma}_{j}\right)^{T} \mathbf{z}_{j}=\left\|\mathbf{z}_{j}\right\|_{2}^{2}+\sqrt{n} \hat{\sigma}_{j} \lambda_{0} \sum_{k \neq j}\left(\left\|\mathbf{x}_{k}\right\|_{2} \cdot\left|\widehat{\gamma}_{j, k}\right|\right) \geq\left\|\mathbf{z}_{j}\right\|_{2}^{2} \tag{S1.6}
\end{equation*}
$$

where the second equality above follows from the Karush-Kuhn-Tucker (KKT) condition for the scaled Lasso estimator, which gives $\mathbf{x}_{k}^{T} \mathbf{z}_{j}=\mathbf{x}_{k}^{T}\left(\mathbf{x}_{j}-\mathbf{X}_{-j} \widehat{\gamma}_{j}\right)=\sqrt{n} \hat{\sigma}_{j} \lambda_{0}\left\|\mathbf{x}_{k}\right\|_{2}$. $\operatorname{sgn}\left(\widehat{\gamma}_{j, k}\right)$ with $\widehat{\gamma}_{j, k}$ being the k th component of $\widehat{\gamma}_{j}$, for any $k \in A=\left\{k \neq j: \operatorname{sgn}\left(\widehat{\gamma}_{j, k}\right) \neq\right.$ $0\}$.

With the aid of (S1.6), we will first establish the upper bound of τ_{j}. It follows easily $\mathbf{z}_{j}^{T} \mathbf{x}_{j} \geq\left\|\mathbf{z}_{j}\right\|_{2}^{2}$ in S1.6 that $\tau_{j}=\left\|\mathbf{z}_{j}\right\|_{2} /\left|\mathbf{z}_{j}^{T} \mathbf{x}_{j}\right| \leq 1 /\left\|\mathbf{z}_{j}\right\|_{2}$. Since $\sqrt{\log (p) / n} \rightarrow 0$ as $n \rightarrow \infty$ and c_{0} is sufficiently small, in view of (S1.3) and $\tau_{j} \leq 1 /\left\|\mathbf{z}_{j}\right\|_{2}$, we know that when n is large enough, there exists some constant c_{j} depending on j such that

$$
\begin{equation*}
\tau_{j} \leq \frac{1}{\left\|\mathbf{z}_{j}\right\|_{2}}=\frac{1}{\sqrt{n}} \frac{1}{\sqrt{\left\|\mathbf{z}_{j}\right\|_{2}^{2} / n}} \leq \frac{1}{\sqrt{n}} \frac{1}{\left([1-2 \sqrt{2 \delta \log (p) / n}] \sigma_{j}-C c_{0}\right)^{1 / 2}} \leq \frac{c_{j}}{\sqrt{n}} \tag{S1.7}
\end{equation*}
$$

holding with probability at least $1-o\left(p^{-\delta+1}\right)$.
It remains to find the lower bound of τ_{j}. In view of $(S 1.4$ and the basic inequality (S1.6), it follows that with probability at least $1-o\left(p^{-\delta+1}\right)$,

$$
\mathbf{z}_{j}^{T} \mathbf{x}_{j}=\left\|\mathbf{z}_{j}\right\|_{2}^{2}+\sqrt{n} \hat{\sigma}_{j} \lambda_{0} \sum_{k \neq j}\left(\left\|\mathbf{x}_{k}\right\|_{2} \cdot\left|\widehat{\gamma}_{j, k}\right|\right) \leq\left\|\mathbf{z}_{j}\right\|_{2}^{2}+n \widetilde{M} \hat{\sigma}_{j} \lambda_{0}\left\|\widehat{\gamma}_{j}\right\|_{1}
$$

which yields that $\tau_{j}=\left\|\mathbf{z}_{j}\right\|_{2} /\left|\mathbf{z}_{j}^{T} \mathbf{x}_{j}\right| \geq 1 /\left(\left\|\mathbf{z}_{j}\right\|_{2}+\frac{n \widetilde{M} \hat{\sigma}_{j} \lambda_{0}\left\|\widehat{\gamma}_{j}\right\|_{1}}{\left\|\mathbf{Z}_{j}\right\|_{2}}\right)$. Now we need to construct an upper bound for $\left\|\widehat{\gamma}_{j}\right\|_{1}$.

Since $\widehat{\gamma}_{j}$ is the scaled lasso estimator with $\lambda_{0}=(1+\varepsilon) \sqrt{2 \delta \log (p) / n}$ for some $\delta \geq 1$ and $\varepsilon>0$, combining the estimator error bound of the scaled lasso estimator Ren et al. (2015, Inequality (17)) and inequality (S1.5) yields

$$
\begin{equation*}
P\left\{\left\|\widehat{\gamma}_{j}-\gamma_{j}\right\|_{1} \leq \frac{C_{1}^{*} s_{j}^{*} \sqrt{\delta \log p}}{\sqrt{n}}\right\} \geq 1-o\left(p^{-\delta+1}\right) \tag{S1.8}
\end{equation*}
$$

where C_{1}^{*} is a constant and $s_{j}^{*}=\left\|\gamma_{j}\right\|_{0}$. Thus, it follows that with probability at least $1-o\left(p^{-\delta+1}\right)$,

$$
\left\|\widehat{\gamma}_{j}\right\|_{1} \leq\left\|\gamma_{j}\right\|_{1}+\frac{C^{*} s_{j}^{*} \sqrt{\delta \log p}}{\sqrt{n}}
$$

Returning to derive the lower bound of τ_{j}. In view of $\lambda_{0}=(1+\varepsilon) \sqrt{2 \delta \log (p) / n}$, $\sqrt{\log p / n} \rightarrow 0$ as $n \rightarrow \infty$ and $\boldsymbol{\gamma}_{j}=-\sigma_{j}\left(\boldsymbol{\Sigma}_{j,-j}^{-1}\right)^{T}$, as well as the assumption that the rows of $\boldsymbol{\Sigma}^{-1}$ is L_{0} sparse, we have

$$
\widetilde{M} \lambda_{0}\left\|\widehat{\gamma}_{j}\right\|_{1} \leq \widetilde{M}(1+\varepsilon) \sqrt{2 \delta \log (p) / n}\left(\left\|\gamma_{j}\right\|_{1}+\frac{C^{*} s_{j}^{*} \sqrt{\delta \log p}}{\sqrt{n}}\right) \leq c_{j}^{\prime} \widetilde{M} \sqrt{s \log (p) / n}
$$

where c_{j}^{\prime} is a constant. Combining this inequality and $\left\|\mathbf{z}_{j}\right\|_{2} \geq \sqrt{n} / c_{j}$ from S1.7) along with $\sqrt{s \log (p) / n}=o(1)$ gives that there exist some constant $c_{j}^{\prime \prime}$ such that

$$
\frac{1}{\left\|\mathbf{z}_{j}\right\|_{2}+\frac{n \widetilde{M} \hat{\sigma}_{j} \lambda_{0}\left\|\hat{\gamma}_{j}\right\|_{1}}{\left\|\mathbf{Z}_{j}\right\|_{2}}} \geq \frac{1}{\left\|\mathbf{z}_{j}\right\|_{2}+c_{j} c_{j}^{\prime} \widetilde{M} \hat{\sigma}_{j} \sqrt{s \log p}} \geq \frac{c_{j}^{\prime \prime}}{\left\|\mathbf{z}_{j}\right\|_{2}}
$$

In view of this inequality and (S1.3), we may come to the conclusion that with probability at least $1-o\left(p^{-\delta+1}\right)$, there exists a constant \widetilde{c}_{j} such that

$$
\tau_{j} \geq \frac{c_{j}^{\prime \prime}}{\left\|\mathbf{z}_{j}\right\|_{2}} \geq \frac{c_{j}^{\prime \prime}}{\sqrt{n}} \frac{1}{[1+2 \sqrt{2 \delta \log (p) / n}] \sigma_{j}+C c_{0}} \geq \frac{\widetilde{c}_{j}}{\sqrt{n}}
$$

which together with S1.7) entails that $\tau_{j} \asymp n^{-1 / 2}$ with probability at least $1-o\left(p^{-\delta+1}\right)$.
Moreover, conditional on this event, it is not difficult to see from the previous proof that

$$
\lim _{n \rightarrow \infty} \tau_{j} n^{1 / 2}=\lim _{n \rightarrow \infty} n^{1 / 2}\left\|\mathbf{z}_{j}\right\|_{2} /\left|\mathbf{z}_{j}^{T} \mathbf{x}_{j}\right|=\lim _{n \rightarrow \infty} n^{1 / 2} /\left\|\mathbf{z}_{j}\right\|_{2}=\lim _{n \rightarrow \infty} n^{1 / 2} /\left\|\boldsymbol{\rho}_{j}\right\|_{2}=\boldsymbol{\Sigma}_{j, j}^{-1 / 2}
$$

It completes the proof of Part 3.
Part 4: Deviation bounds of η_{j}. In this part, we continue to find the deviation bound for $\eta_{j}=\max _{k \neq j}\left|\mathbf{z}_{j}^{T} \mathbf{x}_{k}\right| /\left\|\mathbf{z}_{j}\right\|_{2}$. By the KKT condition, we have for any $k \neq j$, $1 \leq k \leq p$,

$$
\left|\mathbf{x}_{k}^{T} \mathbf{z}_{j}\right|=\left|\mathbf{x}_{k}^{T}\left(\mathbf{x}_{j}-\mathbf{X}_{-j} \widehat{\gamma}_{j}\right)\right| \leq \sqrt{n} \hat{\sigma}_{j} \lambda_{0}\left\|\mathbf{x}_{k}\right\|_{2}
$$

Combining this inequality and (S1.7) along with the upper bound of $\max _{k \neq j}\left\|\mathrm{x}_{k}\right\|_{2} / \sqrt{n}$ in Part 2 yields

$$
\begin{equation*}
\eta_{j} \leq \sqrt{n} \hat{\sigma}_{j} \lambda_{0} \max _{k \neq j}\left\|\mathbf{x}_{k}\right\|_{2} /\left\|\mathbf{z}_{j}\right\|_{2} \leq c_{j} \widetilde{M} \sqrt{n} \hat{\sigma}_{j} \lambda_{0} . \tag{S1.9}
\end{equation*}
$$

On the other hand, in view of Ren et al. (2015, Inequality(18)), we have

$$
P\left\{\left|\widehat{\sigma}_{j} / \sigma_{j}^{*}-1\right| \geq 1 / 2\right\} \leq o\left(p^{-\delta+1}\right),
$$

where $\sigma_{j}^{*}=\left\|\boldsymbol{\rho}_{j}\right\|_{2} / \sqrt{n}$ is the oracle estimator of σ_{j}. With the aid of $\frac{n\left(\sigma_{j}^{*}\right)^{2}}{\mathbb{E}\left(\sigma_{j}^{*}\right)^{2}} \sim \chi_{(n)}^{2}$, S1.2 justifies the replacement of σ_{j}^{*} by $\sqrt{\mathbb{E}\left(\sigma_{j}^{*}\right)}$ or a constant C^{*} in the above inequality, which entails that $\widehat{\sigma}_{j} \leq \frac{3}{2} C^{*}$ can hold with probability at least $1-o\left(p^{-\delta+1}\right)$.

In view of the above fact and S1.9, as well as $\lambda_{0}=(1+\varepsilon) \sqrt{2 \delta \log (p) / n}$, for sufficiently large n, we get

$$
\eta_{j} \leq c_{j} \widetilde{M} \sqrt{n} \hat{\sigma}_{j} \lambda_{0} \leq \frac{3}{2} c_{j} \widetilde{M} C^{*}(1+\varepsilon) \sqrt{2 \delta \log (p)}=C_{j} \sqrt{\log (p)}
$$

holding with probability at least $1-o\left(p^{-\delta+1}\right)$, where $C_{j}=\frac{3}{2} c_{j} \widetilde{M} C^{*}(1+\varepsilon) \sqrt{2 \delta}$. It completes the proof of Part 4.

Part 5: Confidence intervals of β_{j}. By the definition of the LDPE estimator given in (3.3), replacing \mathbf{y} with $\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$ along with some simplification gives for any $j, 1 \leq j \leq p$,

$$
\begin{equation*}
\widehat{\beta}_{j}-\beta_{j}=\frac{\mathbf{z}_{j}^{T} \varepsilon}{\mathbf{z}_{j}^{T} \mathbf{x}_{j}}+\frac{\sum_{k \neq j} \mathbf{z}_{j}^{T} \mathbf{x}_{k}\left(\beta_{k}-\widehat{\beta}_{k}^{\text {(init })}\right)}{\mathbf{z}_{j}^{T} \mathbf{x}_{j}} \tag{S1.10}
\end{equation*}
$$

Moving the term $\mathbf{z}_{j}^{T} \varepsilon / \mathbf{z}_{j}^{T} \mathbf{x}_{j}$ to the left hand side and then dividing both sides by τ_{j} gives

$$
\begin{equation*}
\left|\tau_{j}^{-1}\left(\widehat{\beta}_{j}-\beta_{j}\right)-\mathbf{z}_{j}^{T} \boldsymbol{\varepsilon} /\left\|\mathbf{z}_{j}\right\|_{2}\right| \leq\left(\max _{k \neq j}\left|\mathbf{z}_{j}^{T} \mathbf{x}_{k}\right| /\left\|\mathbf{z}_{j}\right\|_{2}\right)\left\|\widehat{\boldsymbol{\beta}}^{(\text {init })}-\boldsymbol{\beta}\right\|_{1}=\eta_{j}\left\|\widehat{\boldsymbol{\beta}}^{\text {(init })}-\boldsymbol{\beta}\right\|_{1} . \tag{S1.11}
\end{equation*}
$$

For simplicity, denote by \mathcal{E} the probability event in Parts $\mathbf{1 - 4}$ such that the deviation bounds of τ_{j} and η_{j} still hold. Then $P(\mathcal{E}) \geq 1-o\left(p^{-\delta+1}\right)$. Define two new events \mathcal{E}_{1} and \mathcal{E}_{2} as

$$
\begin{aligned}
\mathcal{E}_{1} & =\left\{\left|\tau_{j}^{-1}\left(\widehat{\beta}_{j}-\beta_{j}\right)-\mathbf{z}_{j}^{T} \varepsilon /\left\|\mathbf{z}_{j}\right\|_{2}\right| \leq \sigma^{*} \epsilon_{n}^{\prime}\right\} \\
\mathcal{E}_{2} & =\left\{\left|\widehat{\sigma} / \sigma^{*}-1\right| \leq \epsilon_{n}^{\prime \prime}\right\}
\end{aligned}
$$

We first derive two probability inequalities, which will be used in the next proof. First, in view of $C_{2} s(2 / n) \log (p / \epsilon) \leq \epsilon_{n}^{\prime \prime}$, it follows from the Condition 1 that $P\left(\mathcal{E}_{2}^{c}\right) \leq \epsilon$.

Second, combining inequality (S1.11) with the assumptions in Proposition 1 gives

$$
\begin{align*}
& P\left(\mathcal{E}_{1}^{c} \cap \mathcal{E}\right) \leq P\left(\mathcal{E}_{1}^{c} \mid \mathcal{E}\right) \leq P\left(\eta_{j}\left\|\widehat{\boldsymbol{\beta}}^{(\text {init })}-\boldsymbol{\beta}\right\|_{1}>\sigma^{*} \epsilon_{n}^{\prime} \mid \mathcal{E}\right) \\
\leq & P\left\{C_{j} \sqrt{\log (p)}\left\|\widehat{\boldsymbol{\beta}}^{(\text {init })}-\boldsymbol{\beta}\right\|_{1}>\sigma^{*} C_{1} C_{j} s \sqrt{(2 / n)} \cdot \sqrt{\log (p) \log (p / \epsilon)}\right\} \\
\leq & P\left\{\left\|\widehat{\boldsymbol{\beta}}^{\text {(init) }}-\boldsymbol{\beta}\right\|_{1}>\sigma^{*} C_{1} s \sqrt{(2 / n) \log (p / \epsilon)}\right\} \leq \epsilon \tag{S1.12}
\end{align*}
$$

Returning to the confidence intervals of β_{j}. Conditional on the event $\mathcal{E} \cap \mathcal{E}_{1} \cap \mathcal{E}_{2}$, we know that $\tau_{j}^{-1}\left|\widehat{\beta}_{j}-\beta_{j}\right| \geq \widehat{\sigma} t$ implies $\left|\mathbf{z}_{j}^{T} \varepsilon\right| /\left\|\mathbf{z}_{j}\right\|_{2} \geq \widehat{\sigma} t-\sigma^{*} \epsilon_{n}^{\prime} \geq \sigma^{*}\left\{\left(1-\epsilon_{n}^{\prime \prime}\right) t-\epsilon_{n}^{\prime}\right\}$ for any $t>\left(1+\epsilon_{n}^{\prime}\right) /\left(1-\epsilon_{n}^{\prime \prime}\right)$. Let $x=\left(1-\epsilon_{n}^{\prime \prime}\right) t-\epsilon_{n}^{\prime}$. Since \mathbf{z}_{j} only depends on \mathbf{X}, along with the fact that \mathbf{X} and $\varepsilon \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{n}\right)$ are independent, conditional on each realization of \mathbf{z}_{j}, we have $\mathbf{z}_{j}^{T} \varepsilon /\left(\left\|\mathbf{z}_{j}\right\|_{2} \sigma^{*}\right) \sim \sqrt{n} \varepsilon_{1} /\|\varepsilon\|_{2}$ with $\sigma^{*}=\|\varepsilon\|_{2} / \sqrt{n}$. It follows that

$$
\begin{equation*}
P\left(\left.\frac{\left|\mathbf{z}_{j}^{T} \varepsilon\right|}{\left\|\mathbf{z}_{j}\right\|_{2}} \geq \sigma^{*} x \right\rvert\, \mathbf{z}_{j}\right)=P\left\{\left(n-x^{2}\right) \varepsilon_{1}^{2} \geq x^{2}\left(\varepsilon_{2}^{2}+\cdots+\varepsilon_{n}^{2}\right)\right\} \leq 2 \Phi_{n-1}\left(-x \sqrt{1-n^{-1}}\right) \tag{S1.13}
\end{equation*}
$$

where $\Phi_{n-1}(t)$ is the Student t-distribution function with $n-1$ degrees of freedom.
Since the right hand side of inequality (S1.13) is independent of the realization of \mathbf{z}_{j}, along with the fact that \mathbf{z}_{j} and $\boldsymbol{\varepsilon}$ are independent, we have $P\left(\left|\mathbf{z}_{j}^{T} \boldsymbol{\varepsilon}\right| /\left\|\mathbf{z}_{j}\right\|_{2} \geq \sigma^{*} x\right) \leq$ $2 \Phi_{n-1}\left(-x \sqrt{1-n^{-1}}\right)$. With the aid of the analysis in previous paragraph and taking the probabilities of the events $\mathcal{E}^{c}, \mathcal{E}_{1}^{c} \cap \mathcal{E}$ and \mathcal{E}_{2}^{c} into consideration, we conclude that for sufficiently large n,

$$
\begin{aligned}
& P\left(\left|\widehat{\beta}_{j}-\beta_{j}\right| \geq \tau_{j} \widehat{\sigma} t\right) \leq P\left(\left|\widehat{\beta}_{j}-\beta_{j}\right| \geq \tau_{j} \widehat{\sigma} t \mid \mathcal{E} \cap \mathcal{E}_{1} \cap \mathcal{E}_{2}\right)+P\left(\mathcal{E}^{c} \cup \mathcal{E}_{1}^{c} \cup \mathcal{E}_{2}^{c}\right) \\
\leq & P\left(\tau_{j}^{-1}\left|\widehat{\beta}_{j}-\beta_{j}\right| \geq \widehat{\sigma} t \mid \mathcal{E} \cap \mathcal{E}_{1} \cap \mathcal{E}_{2}\right)+P\left(\mathcal{E}^{c}\right)+P\left(\mathcal{E}_{1}^{c} \cap \mathcal{E}\right)+P\left(\mathcal{E}_{2}^{c}\right) \\
\leq & 2 \Phi_{n-1}\left(-x \sqrt{1-n^{-1}}\right)+2 \epsilon+o\left(p^{-\delta+1}\right)
\end{aligned}
$$

Since $\max \left(\epsilon_{n}^{\prime}, \epsilon_{n}^{\prime \prime}\right) \rightarrow 0$ and when $n \rightarrow \infty$, the t-distribution will converge to the normal distribution, by letting $n \rightarrow \infty$ and $t=\Phi^{-1}(1-\alpha / 2)$, we further have

$$
\lim _{n \rightarrow \infty} P\left\{\left|\widehat{\beta}_{j}-\beta_{j}\right| \leq \tau_{j} \widehat{\sigma} \Phi^{-1}(1-\alpha / 2)\right\}=1-\alpha
$$

which completes the proof of Proposition 1.

S2 Proof of Theorem 1

The proof of Theorem 1 is to conduct delicate analysis on some events with significant probability and we will break the communication barriers between different subsamples by considering certain overall statistics. Similar to (3.5), the bias factor $\eta_{j}^{(l)}$ and noise factor $\tau_{j}^{(l)}$ of the l th subsample are defined as

$$
\eta_{j}^{(l)}=\max _{k \neq j}\left|\left(\mathbf{z}_{j}^{(l)}\right)^{T} \mathbf{x}_{k}^{(l)}\right| /\left\|\mathbf{z}_{j}^{(l)}\right\|_{2}, \tau_{j}^{(l)}=\left\|\mathbf{z}_{j}^{(l)}\right\|_{2} /\left|\left(\mathbf{z}_{j}^{(l)}\right)^{T} \mathbf{x}_{j}^{(l)}\right| .
$$

The overall bias and noise factors $\widetilde{\eta}_{j}$ and $\widetilde{\tau}_{j}$ are

$$
\widetilde{\eta}_{j}=\max _{1 \leq l \leq K} \eta_{j}^{(l)} \quad \text { and } \quad \widetilde{\tau}_{j}=\max _{1 \leq l \leq K} \tau_{j}^{(l)}
$$

We will first derive the deviation bounds for $\widetilde{\tau}_{j}$ and $\widetilde{\eta}_{j}$. Since similar conditions are imposed for each subsample as those in Proposition 1, by (S1.7), we know that for sufficiently large \widetilde{n},

$$
\tau_{j}^{(l)} \leq 1 /\left\|\mathbf{z}_{j}^{(l)}\right\|_{2} \leq c_{j} / \sqrt{\widetilde{n}}
$$

holds with probability at least $1-o\left(p^{-\delta+1}\right)$. It follows that

$$
\begin{equation*}
P\left(\widetilde{\tau}_{j}>c_{j} / \sqrt{\widetilde{n}}\right) \leq \sum_{l=1}^{K} P\left(\tau_{j}^{(l)}>c_{j} / \sqrt{\widetilde{n}}\right)=o\left(K p^{-\delta+1}\right) \tag{S2.1}
\end{equation*}
$$

Thus, we get $\widetilde{\tau}_{j} \leq c_{j} / \sqrt{\widetilde{n}}$ with probability at least $1-o\left(K p^{-\delta+1}\right)$. By the same argument, $\widetilde{\tau}_{j} \geq \widetilde{c}_{j} / \sqrt{\widetilde{n}}$ with probability at least $1-o\left(K p^{-\delta+1}\right)$ such that $\widetilde{\tau}_{j} \asymp \widetilde{n}^{-1 / 2}$. Similarly, we have $\widetilde{\eta}_{j} \leq C_{j} \sqrt{\log (p)}$ with probability at least $1-o\left(K p^{-\delta+1}\right)$. Define event $\widetilde{\mathcal{E}}$ such that the deviation bounds for both $\widetilde{\tau}_{j}$ and $\widetilde{\eta}_{j}$ hold. It follows that $P(\widetilde{\mathcal{E}}) \geq 1-o\left(K p^{-\delta+1}\right)$.

Then we would like to apply an argument similar to the proof of Proposition 1 after taking the communication barriers into consideration, and derive the confidence intervals for components of the bagging estimator $\widehat{\boldsymbol{\beta}}^{(\text {mean })}$. For the LDPE estimator $\widehat{\beta}_{j}^{(l)}$ of the l th subsample, $1 \leq l \leq K$, similar to S 1.10 , by definition we have for any coordinate $j, 1 \leq j \leq p$,

$$
\widehat{\beta}_{j}^{(l)}-\beta_{j}=\frac{\left(\mathbf{z}_{j}^{(l)}\right)^{T} \varepsilon^{(l)}}{\left(\mathbf{z}_{j}^{(l)}\right)^{T} \mathbf{x}_{j}^{(l)}}+\frac{\sum_{k \neq j}\left(\mathbf{z}_{j}^{(l)}\right)^{T} \mathbf{x}_{k}^{(l)}\left(\beta_{k}-\widehat{\beta}_{k}^{\text {(init })}\right)}{\left(\mathbf{z}_{j}^{(l)}\right)^{T} \mathbf{x}_{j}^{(l)}}
$$

Therefore, the bagging estimator $\widehat{\boldsymbol{\beta}}^{(\text {mean })}=K^{-1} \sum_{l=1}^{K} \widehat{\boldsymbol{\beta}}^{(l)}$ satisfies that

$$
\widehat{\beta}_{j}^{(\text {mean })}-\beta_{j}=K^{-1} \sum_{l=1}^{K} \frac{\left(\mathbf{z}_{j}^{(l)}\right)^{T} \boldsymbol{\varepsilon}^{(l)}}{\left(\mathbf{z}_{j}^{(l)}\right)^{T} \mathbf{x}_{j}^{(l)}}+K^{-1} \sum_{l=1}^{K} \frac{\sum_{k \neq j}\left(\mathbf{z}_{j}^{(l)}\right)^{T} \mathbf{x}_{k}^{(l)}\left(\beta_{k}-\widehat{\beta}_{k}^{(\text {init })}\right)}{\left(\mathbf{z}_{j}^{(l)}\right)^{T} \mathbf{x}_{j}^{(l)}} .
$$

So we have

$$
\begin{align*}
& \left|\widetilde{\tau}_{j}^{-1}\left(\widehat{\beta}_{j}^{(\text {mean })}-\beta_{j}\right)-K^{-1} \sum_{l=1}^{K}\left(\widetilde{\tau}_{j}^{-1} \tau_{j}^{(l)}\right) \frac{\left(\mathbf{z}_{j}^{(l)}\right)^{T} \boldsymbol{\varepsilon}^{(l)}}{\left\|\mathbf{z}_{j}^{(l)}\right\|_{2}}\right| \\
\leq & K^{-1} \sum_{l=1}^{K}\left(\widetilde{\tau}_{j}^{-1} \tau_{j}^{(l)}\right) \eta_{j}^{(l)}\left\|\widehat{\boldsymbol{\beta}}^{(\text {init })}-\boldsymbol{\beta}\right\|_{1} \leq \widetilde{\eta}_{j}\left\|\widehat{\boldsymbol{\beta}}^{(\text {init })}-\boldsymbol{\beta}\right\|_{1} . \tag{S2.2}
\end{align*}
$$

Modifying the event \mathcal{E}_{1} a bit and keep \mathcal{E}_{2} the same as that defined in the proof of Proposition 1, we denote by

$$
\begin{aligned}
& \widetilde{\mathcal{E}}_{1}=\left\{\left|\widetilde{\tau}_{j}^{-1}\left(\widehat{\beta}_{j}^{\text {(mean) }}-\beta_{j}\right)-K^{-1} \sum_{l=1}^{K}\left(\widetilde{\tau}_{j}^{-1} \tau_{j}^{(l)}\right) \cdot\left(\mathbf{z}_{j}^{(l)}\right)^{T} \boldsymbol{\varepsilon}^{(l)} /\left\|\mathbf{z}_{j}^{(l)}\right\|_{2}\right| \leq \sigma^{*} \epsilon_{n}^{\prime}\right\} \text { and } \\
& \mathcal{E}_{2}=\left\{\left|\widehat{\sigma} / \sigma^{*}-1\right| \leq \epsilon_{n}^{\prime \prime}\right\} .
\end{aligned}
$$

By inequality $(\mathrm{S} 2.2$, the definition of $\widetilde{\mathcal{E}}$ and conditions in Theorem 1, similar to S 1.12 , we get $P\left(\mathcal{E}_{2}^{c}\right) \leq \epsilon$ and $P\left(\widetilde{\mathcal{E}}_{1}^{c} \mid \widetilde{\mathcal{E}}\right) \leq \epsilon$.

Conditioning on the event $\widetilde{\mathcal{E}}_{1} \cap \mathcal{E}_{2} \cap \widetilde{\mathcal{E}}$, we know that $\sqrt{K} \widetilde{\tau}_{j}^{-1}\left|\widehat{\beta}_{j}^{\text {(mean) }}-\beta_{j}\right| \geq \widehat{\sigma} t$ implies

$$
\begin{equation*}
\left|K^{-1 / 2} \sum_{l=1}^{K}\left(\mathbf{z}_{j}^{(l)}\right)^{T} \boldsymbol{\varepsilon}^{(l)} /\left\|\mathbf{z}_{j}^{(l)}\right\|_{2}\right| \geq \widehat{\sigma} t-\sqrt{K} \sigma^{*} \epsilon_{n}^{\prime} \geq \sigma^{*}\left\{\left(1-\epsilon_{n}^{\prime \prime}\right) t-\sqrt{K} \epsilon_{n}^{\prime}\right\} \tag{S2.3}
\end{equation*}
$$

for any $t>\sqrt{K} \epsilon_{n}^{\prime} /\left(1-\epsilon_{n}^{\prime \prime}\right)$. Since $K^{-1 / 2} \sum_{l=1}^{K}\left(\mathbf{z}_{j}^{(l)}\right)^{T} \boldsymbol{\varepsilon}^{(l)} /\left\|\mathbf{z}_{j}^{(l)}\right\|_{2} \sim \varepsilon_{1}$, it follows that

$$
\begin{align*}
& P\left(\frac{1}{\sqrt{K}} \sum_{l=1}^{K} \frac{\left(\mathbf{z}_{j}^{(l)}\right)^{T} \boldsymbol{\varepsilon}^{(l)}}{\left\|\mathbf{z}_{j}^{(l)}\right\|_{2}} \geq \sigma^{*}\left\{\left(1-\epsilon_{n}^{\prime \prime}\right) t-\sqrt{K} \epsilon_{n}^{\prime}\right\}\right) \leq P\left(\sqrt{n} \frac{\varepsilon_{1}}{\|\varepsilon\|_{2}} \geq\left(1-\epsilon_{n}^{\prime \prime}\right) t-\sqrt{K} \epsilon_{n}^{\prime}\right) \\
\leq & 2 \Phi_{n-1}\left(-\left(1-\epsilon_{n}^{\prime \prime}\right) t+\sqrt{K} \epsilon_{n}^{\prime}\right) . \tag{S2.4}
\end{align*}
$$

Therefore, we get

$$
P\left(\sqrt{K} \widetilde{\tau}_{j}^{-1}\left|\widehat{\beta}_{j}^{(\text {mean })}-\beta_{j}\right| \geq \widehat{\sigma} t\right) \leq 2 \Phi_{n-1}\left(-\left(1-\epsilon_{n}^{\prime \prime}\right) t+\sqrt{K} \epsilon_{n}^{\prime}\right)+2 \epsilon+o\left(K p^{-\delta+1}\right)
$$

By the same argument as that in the proof of Proposition 1 , if $\sqrt{K} \epsilon_{n}^{\prime} \rightarrow 0$, we get

$$
\lim _{n \rightarrow \infty} P\left\{\left|\widehat{\beta}_{j}^{(\text {mean })}-\beta_{j}\right| \leq K^{-1 / 2} \widetilde{\tau}_{j} \widehat{\sigma} \Phi^{-1}(1-\alpha / 2)\right\}=1-\alpha
$$

It completes the proof of Part (A).
For Part (B), we first derive the bounds on the key quantity K_{j}. On one hand, in view of $K_{j}=K^{2} / \sum_{l=1}^{K}\left(\omega_{j}^{(l)}\right)^{2}$ and $\omega_{j}^{(l)}=\widetilde{\tau}_{j}^{-1} \tau_{j}^{(l)} \leq 1$, it is clear that $K_{j} \geq K$. On the other hand, by Proposition 1 and an argument similar to (S2.1), we know that with probability at least $1-o\left(K p^{-\delta+1}\right), \tau_{j}^{(l)} \geq \widetilde{c}_{j} \widetilde{n}^{-1 / 2}$ for any $1 \leq l \leq K$. Thus, together with S2.1., there exists positive constant $c_{j}^{*} \geq 1$ such that $\min _{l=1}^{K} \omega_{j}^{(l)} \geq \sqrt{c_{j}^{*}}$ and $K_{j} \leq c_{j}^{*} K$ hold with probability at least $1-o\left(K p^{-\delta+1}\right)$.

We now proceed to derive confidence intervals for the refined inference. Similar to the proof of $\operatorname{Part}(\mathbf{A})$, conditioning on the event $\widetilde{\mathcal{E}}_{1} \cap \mathcal{E}_{2} \cap \widetilde{\mathcal{E}}$, we know that $\sqrt{K_{j}} \widetilde{\tau}_{j}^{-1}\left|\widehat{\beta}_{j}^{(\text {mean })}-\beta_{j}\right| \geq \widehat{\sigma} t$ implies

$$
\left|\frac{1}{\sqrt{\sum_{l=1}^{K}\left(\omega_{j}^{(l)}\right)^{2}}} \sum_{l=1}^{K} \omega_{j}^{(l)}\left(\mathbf{z}_{j}^{(l)}\right)^{T} \varepsilon^{(l)} /\left\|\mathbf{z}_{j}^{(l)}\right\|_{2}\right| \geq \widehat{\sigma} t-\sqrt{K_{j}} \sigma^{*} \epsilon_{n}^{\prime} \geq \sigma^{*}\left\{\left(1-\epsilon_{n}^{\prime \prime}\right) t-\sqrt{K_{j}} \epsilon_{n}^{\prime}\right\}
$$

for any $t>\left(1+\sqrt{K_{j}}\right) \epsilon_{n}^{\prime} /\left(1-\epsilon_{n}^{\prime \prime}\right)$. Since $\frac{1}{\sqrt{\sum_{l=1}^{K}\left(\omega_{j}^{(l)}\right)^{2}}} \sum_{l=1}^{K} \omega_{j}^{(l)}\left(\mathbf{z}_{j}^{(l)}\right)^{T} \boldsymbol{\varepsilon}^{(l)} /\left\|\mathbf{z}_{j}^{(l)}\right\|_{2} \sim \varepsilon_{1}$, similar to (S2.4), it follows that

$$
P\left(\frac{\sum_{l=1}^{K} \omega_{j}^{(l)}\left(\mathbf{z}_{j}^{(l)}\right)^{T} \varepsilon^{(l)}}{\left\|\mathbf{z}_{j}^{(l)}\right\|_{2} \sqrt{\sum_{l=1}^{K}\left(\omega_{j}^{(l)}\right)^{2}}} \geq \sigma^{*}\left\{\left(1-\epsilon_{n}^{\prime \prime}\right) t-\sqrt{K_{j}} \epsilon_{n}^{\prime}\right\}\right) \leq 2 \Phi_{n-1}\left(-\left(1-\epsilon_{n}^{\prime \prime}\right) t+\sqrt{K_{j}} \epsilon_{n}^{\prime}\right)
$$

Therefore, we get

$$
P\left(\sqrt{K_{j}} \widetilde{\tau}_{j}^{-1}\left|\widehat{\beta}_{j}^{\text {(mean) }}-\beta_{j}\right| \geq \widehat{\sigma} t\right) \leq 2 \Phi_{n-1}\left(-\left(1-\epsilon_{n}^{\prime \prime}\right) t+\sqrt{K_{j}} \epsilon_{n}^{\prime}\right)+2 \epsilon+o\left(K p^{-\delta+1}\right)
$$

If $\sqrt{K_{j}} \epsilon_{n}^{\prime} \rightarrow 0$, similarly we have

$$
\lim _{n \rightarrow \infty} P\left\{\left|\widehat{\beta}_{j}^{(\text {mean })}-\beta_{j}\right| \leq K_{j}^{-1 / 2} \widetilde{\tau}_{j} \widehat{\sigma} \Phi^{-1}(1-\alpha / 2)\right\}=1-\alpha
$$

It concludes the proof of Theorem 1.

S3 Proof of Theorem 2

The proof of Theorem 2 can be finished by applying the union bound to some key inequalities in the proof of Theorem 1, which is detailed as follows. In view of (S2.2), we have
$\max _{j \in S}\left|\widetilde{\tau}_{j}^{-1}\left(\widehat{\beta}_{j}^{(\text {mean })}-\beta_{j}\right)-K^{-1} \sum_{l=1}^{K}\left(\widetilde{\tau}_{j}^{-1} \tau_{j}^{(l)}\right) \frac{\left(\mathbf{z}_{j}^{(l)}\right)^{T} \boldsymbol{\varepsilon}^{(l)}}{\left\|\mathbf{z}_{j}^{(l)}\right\|_{2}}\right| \leq \max _{j \in S} \widetilde{\eta}_{j}\left\|\widehat{\boldsymbol{\beta}}^{(\text {init })}-\boldsymbol{\beta}\right\|_{1} \cdot K^{-1} \sum_{l=1}^{K}\left(\widetilde{\tau}_{j}^{-1} \tau_{j}^{(l)}\right)$.
Since the event $\widetilde{\mathcal{E}}$ holds with probability at least $1-o\left(K p^{-\delta+1}\right)$ and S is a set with finite number of elements, it is clear that $\max _{j \in S} \widetilde{\eta}_{j} \leq \max _{j \in S} C_{j} \sqrt{\log p}$ also holds with
probability at least $1-o\left(K p^{-\delta+1}\right)$. Conditioning on this event (denoted by \mathcal{E}_{3}), under the assumptions of Theorem 2, similar to S1.12, we get

$$
P\left\{\max _{j \in S}\left|\widetilde{\tau}_{j}^{-1}\left(\widehat{\beta}_{j}^{(\text {mean })}-\beta_{j}\right)-K^{-1} \sum_{l=1}^{K}\left(\widetilde{\tau}_{j}^{-1} \tau_{j}^{(l)}\right) \cdot\left(\mathbf{z}_{j}^{(l)}\right)^{T} \varepsilon^{(l)} /\left\|\mathbf{z}_{j}^{(l)}\right\|_{2}\right| \geq \sigma^{*} \epsilon_{n}^{\prime} \mid \mathcal{E}_{3}\right\} \leq \epsilon
$$

Then by arguments similar to (S2.3) and (S2.4) together with the union bound, we know that for any $t>\sqrt{K} \epsilon_{n}^{\prime} /\left(1-\epsilon_{n}^{\prime \prime}\right), \max _{j \in S} \sqrt{K} \widetilde{\tau}_{j}^{-1}\left|\widehat{\beta}_{j}^{(\text {mean })}-\beta_{j}\right| \geq \widehat{\sigma} t$ implies

$$
\min _{j \in S}\left|K^{-1 / 2} \sum_{l=1}^{K}\left(\mathbf{z}_{j}^{(l)}\right)^{T} \boldsymbol{\varepsilon}^{(l)} /\left\|\mathbf{z}_{j}^{(l)}\right\|_{2}\right| \geq \widehat{\sigma} t-\sqrt{K} \sigma^{*} \epsilon_{n}^{\prime} \geq \sigma^{*}\left\{\left(1-\epsilon_{n}^{\prime \prime}\right) t-\sqrt{K} \epsilon_{n}^{\prime}\right\}
$$

and that

$$
P\left(\min _{j \in S} \frac{1}{\sqrt{K}} \sum_{l=1}^{K} \frac{\left(\mathbf{z}_{j}^{(l)}\right)^{T} \varepsilon^{(l)}}{\left\|\mathbf{z}_{j}^{(l)}\right\|_{2}} \geq \sigma^{*}\left\{\left(1-\epsilon_{n}^{\prime \prime}\right) t-\sqrt{K} \epsilon_{n}^{\prime}\right\}\right) \leq|S| \cdot 2 \Phi_{n-1}\left(-\left(1-\epsilon_{n}^{\prime \prime}\right) t+\sqrt{K} \epsilon_{n}^{\prime}\right)
$$

Therefore, we have
$P\left(\max _{j \in S} \sqrt{K}\left|\widehat{\beta}_{j}^{(\text {mean })}-\beta_{j}\right| / \widetilde{\tau}_{j} \geq \widehat{\sigma} t\right) \leq|S| \cdot 2 \Phi_{n-1}\left[-\left(1-\epsilon_{n}^{\prime \prime}\right) t+\sqrt{K} \epsilon_{n}^{\prime}\right]+2 \epsilon+o\left(K p^{-\delta+1}\right)$.
Under the extra assumption in $\operatorname{Part}(\mathbf{B})$, together with $\min _{l=1}^{K} \omega_{j}^{(l)} \geq \sqrt{c_{j}^{*}}$ with probability at least $1-o\left(K p^{-\delta+1}\right)$ (shown in the proof of $\operatorname{Part}(\mathbf{B})$ of Theorem 1), similarly we have
$P\left(\max _{j \in S} \sqrt{K_{j}}\left|\widehat{\beta}_{j}^{(\text {mean })}-\beta_{j}\right| / \widetilde{\tau}_{j} \geq \widehat{\sigma} t\right) \leq \sum_{j \in S} 2 \Phi_{n-1}\left[-\left(1-\epsilon_{n}^{\prime \prime}\right) t+\sqrt{K_{j}} \epsilon_{n}^{\prime}\right]+2 \epsilon+o\left(K p^{-\delta+1}\right)$.
It completes the proof of Theorem 2.

S4 Proof of Theorem 3

We first present some definitions and three lemmas that will be used in the rest proofs.
Define $\iota_{j}^{2}=\mathbb{E}\left\|\boldsymbol{\rho}_{j}\right\|_{2}^{2} / n=\sigma_{j}$ and $\left(\widehat{\iota}_{j}^{(l)}\right)^{2}=\frac{\left(\mathbf{Z}_{j}^{(l)}\right)^{T} \mathbf{X}_{j}^{(l)}}{\tilde{n}}$ for $1 \leq j \leq p$ and $1 \leq l \leq K$. Denote
by

$$
\mathbf{C}=\left(\begin{array}{cccc}
1 & -\gamma_{1,2} & \cdots & -\gamma_{1, p} \\
-\gamma_{2,1} & 1 & \cdots & -\gamma_{2, p} \\
\vdots & \vdots & \ddots & \vdots \\
-\gamma_{p, 1} & -\gamma_{p, 2} & \cdots & 1
\end{array}\right)
$$

and

$$
\widehat{\mathbf{C}}^{(l)}=\left(\begin{array}{cccc}
1 & -\widehat{\gamma}_{1,2}^{(l)} & \cdots & -\widehat{\gamma}_{1, p}^{(l)} \\
-\widehat{\gamma}_{2,1}^{(l)} & 1 & \cdots & -\widehat{\gamma}_{2, p}^{(l)} \\
\vdots & \vdots & \ddots & \vdots \\
-\widehat{\gamma}_{p, 1}^{(l)} & -\widehat{\gamma}_{p, 2}^{(l)} & \cdots & 1
\end{array}\right)
$$

Write $\mathbf{T}^{2}=\operatorname{diag}\left\{\iota_{1}^{2}, \cdots, \iota_{p}^{2}\right\}$ and $\left(\widehat{\mathbf{T}}^{(l)}\right)^{2}=\operatorname{diag}\left\{\left(\hat{\iota}_{1}^{(l)}\right)^{2}, \cdots,\left(\hat{\iota}_{p}^{(l)}\right)^{2}\right\}$ as diagonal matrixes for $1 \leq j \leq p$ and $1 \leq l \leq K$. Let $\boldsymbol{\Theta}=\boldsymbol{\Sigma}^{-1}=\mathbf{T}^{-2} \mathbf{C}$. Then, the nodewise Lasso estimator for Θ can be constructed as $\widehat{\boldsymbol{\Theta}}^{(l)}=\left(\widehat{\mathbf{T}}^{(l)}\right)^{-2} \widehat{\mathbf{C}}^{(l)}$. Denote the j th row of $\mathbf{X}^{(l)}$ and $\widehat{\boldsymbol{\Theta}}^{(l)}$ by $\widetilde{\mathbf{x}}_{j}^{(l)}=\left(x_{j 1}^{(l)}, \cdots, x_{j p}^{(l)}\right)^{T}$ and $\widehat{\boldsymbol{\Theta}}_{j}^{(l)}$, where $\mathbf{X}^{(l)}$ is the l th subsample for $1 \leq l \leq$ K. With the above definitions, we have $\mathbf{Z}^{(l)}=\mathbf{X}^{(l)}\left(\widehat{\boldsymbol{\Theta}}^{(l)}\right)^{T}$, where $\mathbf{Z}^{(l)}=\left(\mathbf{z}_{1}^{(l)}, \cdots, \mathbf{z}_{p}^{(l)}\right)$. Thus the multiplier bootstrap statistic can be rewritten as

$$
W_{G}=\max _{j \in G} \frac{1}{\sqrt{n} K} \sum_{l=1}^{K} \sum_{i=1}^{\tilde{n}}\left(\widehat{\boldsymbol{\Theta}}_{j}^{(l)}\right)^{T} \widetilde{\mathbf{x}}_{i}^{(l)} \widehat{\sigma} e_{i}^{(l)} .
$$

Lemma 1. Assume that $(\log (p n))^{7} / n \leq C_{3} n^{-c_{3}}$ for some constants $C_{3}, c_{3}>0$. Define $\xi_{i j}=\frac{1}{K} \Theta_{j}^{T} \widetilde{\mathbf{x}}_{i}^{(l)} \varepsilon_{i}^{(l)}$. Then under the assumptions of Theorem 1, we have for any $G \subseteq$ $\{1,2, \ldots, p\}$,

$$
\sup _{x \in \mathbb{R}}\left|P\left(\max _{j \in G} \sum_{l=1}^{K} \sum_{i=1}^{\widetilde{n}} \xi_{i j} / \sqrt{n} \leq x\right)-P\left(\max _{j \in G} \sum_{i=1}^{n} u_{i j} / \sqrt{n} \leq x\right)\right| \lesssim n^{-c^{\prime}}
$$

where $c^{\prime}>0$ and $\left\{\mathbf{u}_{i}=\left(u_{i 1}, \ldots, u_{i p}\right)^{T}\right\}$ is a sequence of mean zero independent Gaussian vector with $\mathbb{E} \mathbf{u}_{i} \mathbf{u}_{i}^{T}=\frac{1}{K} \boldsymbol{\Theta}_{j}^{T} \boldsymbol{\Sigma} \boldsymbol{\Theta}_{j} \sigma^{2}$

Since this lemma is a direct corollary to Zhang and Cheng 2017, Lemma 1.1), we omit the proof.

Lemma 2. Assume that $\max _{j} s(\log (p \widetilde{n}))^{3}(\log (\widetilde{n}))^{2} / \widetilde{n}=o(1)$. Define $\widehat{\xi}_{i j}=\frac{1}{K}\left(\widehat{\boldsymbol{\Theta}}_{j}^{(l)}\right)^{T} \widetilde{\mathbf{x}}_{i}^{(l)} \varepsilon_{i}^{(l)}$.
Then under the assumptions of Theorem 1, there exist $\zeta_{1}, \zeta_{2}>0$ such that

$$
P\left(\max _{1 \leq j \leq p}\left|\sum_{l=1}^{K} \sum_{i=1}^{\tilde{n}} \widehat{\xi}_{i j} / \sqrt{n}-\sum_{l=1}^{K} \sum_{i=1}^{\tilde{n}} \xi_{i j} / \sqrt{n}\right| \geq \zeta_{1}\right)<\zeta_{2},
$$

where $\zeta_{1} \sqrt{1 \vee \log \left(p / \zeta_{1}\right)}=o(1)$ and $\zeta_{2}=o(1)$.
Lemma 3. Define

$$
\Gamma=\max _{1 \leq j, k \leq p}\left|\frac{\widehat{\sigma}^{2}}{K^{2}} \sum_{l=1}^{K}\left(\widehat{\boldsymbol{\Theta}}_{j}^{(l)}\right)^{T} \widehat{\boldsymbol{\Sigma}}^{(l)} \widehat{\boldsymbol{\Theta}}_{k}^{(l)}-\frac{\sigma^{2}}{K} \mathbf{\Theta}_{j}^{T} \boldsymbol{\Sigma} \boldsymbol{\Theta}_{k}\right|, \quad \widehat{\boldsymbol{\Sigma}}^{(l)}=\left(\mathbf{X}^{(l)}\right)^{T} \mathbf{X}^{(l)} / \widetilde{n}
$$

Then we have $\Gamma=O_{P}\left(\frac{\left|\widehat{\sigma}^{2}-\sigma^{2}\right|}{K^{2}}+K \sqrt{\frac{s \log p}{\tilde{n}}}\right)$.
We proceed to prove the Theorem 3. Without loss of generality, we set $G=$ $\{1,2, \cdots, p\}$. Define

$$
T_{G}=\max _{j \in G} \sqrt{n}\left(\hat{\beta}_{j}^{(\text {mean })}-\beta_{j}\right), \quad T_{0, G}=\max _{j \in G} \sum_{l=1}^{K} \sum_{i=1}^{\tilde{n}} \xi_{i j} .
$$

Notice that

$$
\left|T_{G}-T_{0, G}\right| \leq \max _{1 \leq j \leq p}\left|\sum_{l=1}^{K} \sum_{i=1}^{\tilde{n}} \widehat{\xi}_{i j} / \sqrt{n}-\sum_{l=1}^{K} \sum_{i=1}^{\tilde{n}} \xi_{i j} / \sqrt{n}\right|+\|\Delta\|_{\infty}
$$

where

$$
\begin{aligned}
\|\Delta\|_{\infty} & =\max _{j}\left(\frac{\sqrt{n}}{K} \sum_{l=1}^{K} \frac{\sum_{k \neq j}\left(\mathbf{z}_{j}^{(l)}\right)^{T} \mathbf{x}_{k}^{(l)}\left(\beta_{k}-\widehat{\beta}_{k}^{(\text {init })}\right)}{\left(\mathbf{z}_{j}^{(l)}\right)^{T} \mathbf{x}_{j}^{(l)}}\right) \\
& \leq \frac{\sqrt{n}}{K}\left\|\widehat{\boldsymbol{\beta}}^{(\text {init })}-\boldsymbol{\beta}\right\|_{1} \max _{j} \sum_{l=1}^{K} \tau_{j}^{(l)} \eta_{j}^{(l)}=O_{P}\left(K^{1 / 2} s \log (p) / \sqrt{n}\right)
\end{aligned}
$$

Thus by Lemma 2 and the assumption that $s^{2}(\log (p))^{3} / \widetilde{n}=o(1)$, we have

$$
\begin{equation*}
P\left(\left|T_{G}-T_{0, G}\right|>\zeta_{1}\right)<\zeta_{2} \tag{S4.1}
\end{equation*}
$$

for $\zeta_{1} \sqrt{1 \vee \log \left(p / \zeta_{1}\right)}=o(1)$ and $\zeta_{2}=o(1)$.
Finally, with Lemmas 1.3 and S4.1, applying the same arguments as in Zhang and Cheng (2017, Theorem 2.2) gives

$$
\sup _{\alpha \in(0,1)}\left|P\left(\max _{j \in G} \sqrt{n}\left(\widehat{\beta}_{j}^{(\text {mean })}-\beta_{j}\right)>c_{G}^{*}(\alpha)\right)-\alpha\right|=o(1)
$$

where $c_{G}^{*}(\alpha)=\inf \left\{t \in \mathbb{R}: P\left(W_{G}^{*} \leq t \mid(\mathbf{y}, \mathbf{X})\right) \geq 1-\alpha\right\}$ with

$$
W_{G}^{*}=\max _{j \in G} \frac{\sqrt{n}}{K} \sum_{l=1}^{K} \sum_{i=1}^{\tilde{n}} \frac{z_{i, j}^{(l)} \widehat{\sigma} e_{i}^{(l)}}{\left(\mathbf{z}_{j}^{(l)}\right)^{T} \mathbf{x}_{j}^{(l)}}
$$

Since $\max _{j \in G} \sqrt{n}\left|\widehat{\beta}_{j}^{\text {(mean })}-\beta_{j}\right|=\sqrt{n} \max _{j \in G} \max \left\{\widehat{\beta}_{j}^{(\text {mean })}-\beta_{j}, \beta_{j}-\widehat{\beta}_{j}^{(\text {mean })}\right\}$, similar arguments yields

$$
\sup _{\alpha \in(0,1)}\left|P\left(\max _{j \in G} \sqrt{n}\left|\widehat{\beta}_{j}^{(\text {mean })}-\beta_{j}\right|>c_{G}(\alpha)\right)-\alpha\right|=o(1)
$$

which completes the proof of Theorem 3.

S5 Proof of Theorem 4

The proof of Theorem 4 is similar to the proof of Theorem 3 in Zhang and Zhang (2014). Following their arguments, we immediately have the equivalence of the following two statements:

$$
\begin{array}{r}
(\widehat{\sigma} / \sigma) \vee(\sigma / \widehat{\sigma})-1+\epsilon_{n}^{\prime} \sigma^{*} /(\widehat{\sigma} \wedge \sigma) \leq\left\{1-(\widehat{\sigma} / \sigma-1)_{+}\right\} c_{n} \\
\widetilde{t}_{j}+\epsilon_{n}^{\prime}\left(\sigma^{*} / \sigma\right) \widetilde{t}_{j} \leq \widehat{t}_{j}=\left(1+c_{n}\right)(\widehat{\sigma} / \sigma) \tilde{t}_{j}, \widehat{t}_{j}-\widetilde{t}_{j}+\epsilon_{n}^{\prime}\left(\sigma^{*} / \sigma\right) \widetilde{t}_{j} \leq 2 c_{n} \widetilde{t}_{j} \tag{S5.1}
\end{array}
$$

We proceed to prove the first part of Theorem 4. For any given \mathbf{X}, let $\widetilde{\varepsilon}_{j}=$ $K^{-1} \sum_{l=1}^{K} \tau_{j}^{(l)} \frac{\left(\mathbf{Z}_{j}^{(l)}\right)^{T} \boldsymbol{\varepsilon}^{(l)}}{\| \mathbf{Z}_{j}^{l\left(\|_{2}\right.}} \sim N\left(0, K^{-2} \sum_{l=1}^{K}\left(\tau_{j}^{(l)}\right)^{2} \sigma^{2}\right), \widetilde{\beta}_{j}=\beta_{j}+\widetilde{\varepsilon}_{j}$ and

$$
\Omega_{n}=\left\{\left|\widetilde{\beta}_{j}-\widehat{\beta}_{j}^{(\text {mean })}\right| \leq \epsilon_{n}^{\prime}\left(\sigma^{*} / \sigma\right) \widetilde{t}_{j}, \quad \text { (S5.1) holds, } \forall j \leq p\right\}
$$

As in the proof of Theorem 1, $\left|\widetilde{\beta}_{j}-\widehat{\beta}_{j}^{(\text {mean })}\right| \leq K^{-1} \sum_{l=1}^{K} \tau_{j}^{(l)} \eta_{j}^{(l)}\left\|\widehat{\boldsymbol{\beta}}^{\text {(init })}-\boldsymbol{\beta}\right\|_{1}$. By the assumption that $\max _{j \leq p} \eta_{j}^{(l)} C_{1} s / \sqrt{\tilde{n}} \leq \epsilon_{n}^{\prime}$, we have $\left|\widetilde{\beta}_{j}-\widehat{\beta}_{j}^{(\text {mean })}\right| \leq \epsilon_{n}^{\prime}\left(\sigma^{*} / \sigma\right) \widetilde{t}_{j}$ when $\left\|\widehat{\boldsymbol{\beta}}^{(\text {init })}-\boldsymbol{\beta}\right\|_{1} \leq C_{1} s \sigma^{*} L_{0} / \sqrt{n}$, which yields $P\left\{\Omega_{n}\right\} \geq 1-3 \epsilon$. On the event Ω_{n}, S5.1 gives

$$
\widehat{t}_{j} \geq \widetilde{t}_{j}+\left|\widehat{\beta}_{j}^{(\text {mean })}-\widetilde{\beta}_{j}\right|, \quad\left|\widehat{\beta}_{j}^{\text {(mean })}-\widetilde{\beta}_{j}\right|+\left|\widehat{t_{j}}-\widetilde{t}_{j}\right| \leq 2 c_{n} \tilde{t}_{j}
$$

Then by choosing $\Delta=2 c_{n} \tilde{t}_{j}$ in the Lemma 1 of Zhang and Zhang (2014), we can directly come to the conclusion that

$$
\begin{aligned}
E\left\|\widehat{\boldsymbol{\beta}}^{(\mathrm{t})}-\boldsymbol{\beta}\right\|_{2}^{2} I_{\Omega_{n}} \leq & \sum_{j=1}^{p} \min \left\{\beta_{j}^{2}, K^{-2} \sum_{l=1}^{K}\left(\tau_{j}^{(l)}\right)^{2} \sigma^{2}\left(L_{0}^{2}\left(1+2 c_{n}\right)^{2}+1\right)\right\} \\
& +K^{-1}\left(\epsilon L_{n} / p\right) \sigma^{2} \sum_{j=1}^{p} \widetilde{\tau}_{j}^{2}
\end{aligned}
$$

where $L_{n}=4 / L_{0}^{3}+4 c_{n} / L_{0}+12 c_{n}^{2} L_{0}$.
It remains to prove the second part of Theorem 4. Following the argument of Zhang and Zhang (2014, in view of $\widehat{t}_{j} \geq \widetilde{t}_{j}+\left|\widehat{\beta}_{j}-\widetilde{\beta}_{j}\right|$, thus $\left|\widehat{\beta}_{j}\right|>\widehat{t}_{j}$ implies $\left|\widetilde{\varepsilon}_{j}\right|>\widetilde{t}_{j}$ for $\beta_{j}=0$; in view of $\left|\widehat{\beta}_{j}-\widetilde{\beta}_{j}\right|+\left|\widehat{t}_{j}-\widetilde{t}_{j}\right| \leq 2 c_{n} \widetilde{t}_{j}$, thus $\left|\widehat{\beta}_{j}\right| \leq \widehat{t}_{j}$ implies $\left|\widetilde{\varepsilon}_{j}\right|>\widetilde{t}_{j}$ for $\left|\beta_{j}\right|>\left(2+2 c_{n}\right) \widetilde{t}_{j}$. Combining the above results gives

$$
P\left(\left\{j:\left|\beta_{j}\right|>\left(2+2 c_{n}\right) \widetilde{t}_{j}\right\} \subseteq \widehat{S}^{(\mathrm{t})} \subseteq\left\{j: \beta_{j} \neq 0\right\}\right) \geq P\left\{\Omega_{n}^{c}\right\}+p P\left\{\left|\widetilde{\varepsilon}_{j}\right|>\widetilde{t}_{j}\right\}
$$

Clearly, we have

$$
P\left\{\left|\widetilde{\varepsilon}_{j}\right|>\widetilde{t}_{j} \mid \mathbf{X}\right\} \leq P\left\{\left|\widetilde{\varepsilon}_{j}\right|>K^{-1}\left(\sum_{l=1}^{K}\left(\tau_{j}^{(l)}\right)^{2}\right)^{1 / 2} \sigma L_{0} \mid \mathbf{X}\right\}=2 \Phi\left(-L_{0}\right) \leq \alpha / p
$$

Thus combining the above two inequalities completes the proof of the second part of Theorem 4.

S6 Proofs of Lemmas

S6.1 Proof of Lemma 2

With some simple algebra, we obtain

$$
\begin{align*}
\left|\sum_{l=1}^{K} \sum_{i=1}^{\widetilde{n}} \widehat{\xi}_{i j} / \sqrt{n}-\sum_{l=1}^{K} \sum_{i=1}^{\widetilde{n}} \xi_{i j} / \sqrt{n}\right| & =\left|\frac{1}{K} \sum_{l=1}^{K}\left(\left(\widehat{\boldsymbol{\Theta}}_{j}^{(l)}\right)^{T}-\boldsymbol{\Theta}_{j}^{T}\right) \sum_{i=1}^{\widetilde{n}} \widetilde{\mathbf{x}}_{i}^{(l)} \varepsilon_{i}^{(l)} / \sqrt{n}\right| \tag{S6.1}\\
& \leq \frac{1}{K} \sum_{l=1}^{K}\left\|\widehat{\boldsymbol{\Theta}}_{j}^{(l)}-\boldsymbol{\Theta}_{j}\right\|_{1}\left\|\sum_{i=1}^{\widetilde{n}} \widetilde{\mathbf{x}}_{i}^{(l)} \varepsilon_{i}^{(l)} / \sqrt{n}\right\|_{\infty}
\end{align*}
$$

Since the same argument in the proof of Lemma 1.2 in Zhang and Cheng (2017) gives

$$
\mathbb{E}\left\{\max _{1 \leq j \leq p}\left|\sum_{i=1}^{\tilde{n}} x_{i j}^{(l)} \varepsilon_{i} / \widetilde{n}\right|\right\} \lesssim \sqrt{\log (p) / \widetilde{n}}+\log (\widetilde{n} p) \log \widetilde{n} \log (p) / \widetilde{n},
$$

for any $1 \leq l \leq K$, we proceed to derive the bounds of $\left\|\widehat{\boldsymbol{\Theta}}_{j}^{(l)}-\boldsymbol{\Theta}_{j}\right\|_{1}$.
By the definitions of $\widehat{\boldsymbol{\Theta}}_{j}^{(l)}$ and $\boldsymbol{\Theta}_{j}$, it follows that

$$
\begin{align*}
\left\|\widehat{\boldsymbol{\Theta}}_{j}^{(l)}-\boldsymbol{\Theta}_{j}\right\|_{1} & =\left\|\widehat{\mathbf{C}}_{j}^{(l)} /\left(\hat{\iota}_{j}^{(l)}\right)^{2}-\widetilde{\mathbf{C}}_{j} / \iota_{j}^{2}\right\|_{1} \tag{S6.2}\\
& \leq \underbrace{\left\|\widehat{\boldsymbol{\gamma}}_{j}^{(l)}-\gamma_{j}\right\|_{1} /\left(\hat{\iota}_{j}^{(l)}\right)^{2}}_{i}+\underbrace{\left\|\gamma_{j}\right\|_{1}\left(1 /\left(\widehat{\iota}_{j}^{(l)}\right)^{2}-1 / \iota_{j}^{2}\right)}_{i i},
\end{align*}
$$

where $\widehat{\mathbf{C}}_{j}^{(l)}$ and $\widetilde{\mathbf{C}}_{j}$ are the j th rows of $\widehat{\mathbf{C}}^{(l)}$ and \mathbf{C}, respectively. Moreover, we have

$$
\begin{aligned}
\left|\left(\widehat{\iota}_{j}^{(l)}\right)^{2}-\iota_{j}^{2}\right|= & \underbrace{\left|\left(\boldsymbol{\rho}_{j}^{(l)}\right)^{T} \boldsymbol{\rho}_{j}^{(l)} / \widetilde{n}-\iota_{j}^{2}\right|}_{I}+\underbrace{\left|\left(\boldsymbol{\rho}_{j}^{(l)}\right)^{T} \mathbf{X}_{-j}^{(l)}\left(\widehat{\boldsymbol{\gamma}}_{j}^{(l)}-\gamma_{j}\right) / \widetilde{n}\right|}_{I I} \\
& +\underbrace{\left|\left(\boldsymbol{\rho}_{j}^{(l)}\right)^{T} \mathbf{X}_{-j}^{(l)} \boldsymbol{\gamma}_{j} / \widetilde{n}\right|}_{I I I}+\underbrace{\left|\left(\boldsymbol{\gamma}_{j}\right)^{T}\left(\mathbf{X}_{-j}^{(l)}\right)^{T} \mathbf{X}_{-j}^{(l)}\left(\widehat{\gamma}_{j}^{l}-\gamma_{j}\right) / \widetilde{n}\right|}_{I V},
\end{aligned}
$$

where $\boldsymbol{\rho}_{j}^{(l)}=\mathbf{x}_{j}^{(l)}-\mathbf{X}_{-j}^{(l)} \boldsymbol{\gamma}_{j}$.
As for i in (S6.2), by the same argument as in (S1), we have

$$
\left(\widehat{\iota}_{j}^{(l)}\right)^{2}=\frac{\left(\mathbf{z}_{j}^{(l)}\right)^{T} \mathbf{x}_{j}^{(l)}}{\widetilde{n}}=O(1), \quad\left\|\widehat{\gamma}_{j}^{(l)}-\gamma_{j}\right\|_{1}=O\left(\frac{s_{j}^{*} \sqrt{\log p}}{\sqrt{\widetilde{n}}}\right)
$$

with probability at least $1-o\left(p^{-\delta+1}\right)$ for some $\delta>1$, where $s_{j}^{*}=\left\|\gamma_{j}\right\|_{0}$. As for $i i$ in S6.2), since $\left\|\boldsymbol{\rho}_{j}^{(l)}\right\|_{2}^{2} / \sigma_{j} \sim \chi_{(\tilde{n})}^{2}$ for any $1 \leq j \leq p$, applying the same argument as in (S1) gives

$$
I=O(\sqrt{\log (p) / \widetilde{n}})
$$

holding with probability at least $1-2 p^{-\delta}$. Second, under the Gaussian assumption of $\boldsymbol{\rho}_{j}^{(l)}$, it follows that

$$
\left\|\left(\boldsymbol{\rho}_{j}^{(l)}\right)^{T} \mathbf{X}_{-j}^{(l)}\right\|_{\infty} / \widetilde{n}=O(\sqrt{\log (p) / \widetilde{n}}),
$$

holding with probability at least $1-o\left(p^{-\delta+1}\right)$, which entails

$$
I I \leq\left\|\left(\boldsymbol{\rho}_{j}^{(l)}\right)^{T} \mathbf{X}_{-j}^{(l)}\right\|_{\infty}\left\|\widehat{\gamma}_{j}^{(l)}-\gamma_{j}\right\|_{1} / \widetilde{n}=O\left(\frac{s_{j}^{*} \log p}{\widetilde{n}}\right)
$$

holding with probability at least $1-o\left(p^{-\delta+1}\right)$. Similarly, since $\left\|\gamma_{j}\right\|_{1} \leq \sqrt{s_{j}^{*}}\left\|\gamma_{j}\right\|_{2} \leq$ $\sqrt{s_{j}^{*} \sigma_{j j}} / \lambda_{\min }(\boldsymbol{\Sigma})=O\left(\sqrt{s_{j}^{*}}\right)$ with $\lambda_{\min }(\boldsymbol{\Sigma})$ indicating the minimum eigenvalue of $\boldsymbol{\Sigma}$, we have

$$
I I I \leq\left\|\left(\boldsymbol{\rho}_{j}^{(l)}\right)^{T} \mathbf{X}_{-j}^{(l)}\right\|_{\infty}\left\|\gamma_{j}\right\|_{1} / \widetilde{n}=O\left(\sqrt{\frac{s_{j}^{*} \log p}{\widetilde{n}}}\right)
$$

with probability at least $1-o\left(p^{-\delta+1}\right)$.
As for $I V$, the KKT condition yields

$$
\left\|\left(\mathbf{X}_{-j}^{(l)}\right)^{T}\left(\mathbf{x}_{j}^{(l)}-\mathbf{X}_{-j}\left(\widehat{\gamma}_{j}^{(l)}\right)\right)\right\|_{\infty} / \widetilde{n} \leq \frac{\max _{k \neq j}\left\|\mathbf{x}_{k}^{(l)}\right\|_{2}}{\sqrt{\widetilde{n}}} \widehat{\sigma}_{j} \lambda_{0}
$$

Combining the facts $\left\|\left(\boldsymbol{\rho}_{j}^{(l)}\right)^{T} \mathbf{X}_{-j}^{(l)}\right\|_{\infty} / \widetilde{n}=O_{P}(\sqrt{\log p / \widetilde{n}})$ and $\frac{\left\|\mathbf{X}_{k}^{(l)}\right\|_{2}}{\sqrt{n}}=O_{P}(1)$ gives

$$
I V=O\left(\sqrt{s_{j}^{*} \log (p) / \widetilde{n}}\right)
$$

holding with probability at least $1-o\left(p^{-\delta+1}\right)$. Thus with probability at least $1-o\left(p^{-\delta+1}\right)$, we have

$$
1 /\left(\widehat{\iota}_{j}^{(l)}\right)^{2}-1 / \iota_{j}^{2}=O\left(\sqrt{s_{j}^{*} \log (p) / \widetilde{n}}\right) .
$$

We can come to the conclusion that

$$
i=O_{P}\left(s_{j}^{*} \sqrt{\log (p) / \widetilde{n}}\right), \quad i i=O_{P}\left(s_{j}^{*} \sqrt{\log (p) / \widetilde{n}}\right)
$$

which entails that

$$
\left\|\widehat{\boldsymbol{\Theta}}_{j}^{(l)}-\boldsymbol{\Theta}_{j}\right\|_{1}=O_{P}\left(s_{j}^{*} \sqrt{\log (p) / \widetilde{n}}\right)
$$

Returning to the equality (S6.1), with assumption that $o\left(K p^{-\delta+1}\right)=o(1)$, we now have

$$
\begin{aligned}
& \left|\sum_{l=1}^{K} \sum_{i=1}^{\tilde{n}} \widehat{\xi}_{i j} / \sqrt{n}-\sum_{l=1}^{K} \sum_{i=1}^{\tilde{n}} \xi_{i j} / \sqrt{n}\right| \leq \frac{1}{K} \sum_{l=1}^{K}\left\|\widehat{\boldsymbol{\Theta}}_{j}^{(l)}-\boldsymbol{\Theta}_{j}\right\|_{1}\left\|\sum_{i=1}^{\tilde{n}} \widetilde{\mathbf{x}}_{i}^{(l)} \varepsilon_{i}^{(l)} / \sqrt{n}\right\|_{\infty} \\
& =O_{P}\left(\frac{\sqrt{\log (p) \widetilde{n}}+\log (\widetilde{n} p) \log \widetilde{n} \log (p)}{\sqrt{n} K} \sum_{l=1}^{K}\left\|\widehat{\boldsymbol{\Theta}}_{j}^{(l)}-\boldsymbol{\Theta}_{j}\right\|_{1}\right) \\
& =O_{P}\left(\frac{s_{j}^{*} \log p}{\sqrt{n}}+\frac{s_{j}^{*}(\log p)^{3 / 2} \log (\widetilde{n} p) \log \widetilde{n}}{n}\right) \leq O_{P}\left(\max _{j} \frac{\sqrt{s} \log p}{\sqrt{n}}\right) .
\end{aligned}
$$

Choosing ζ_{1} such that $\max _{j} \sqrt{s} \log (p) /\left(\sqrt{n} \zeta_{1}\right)=o(1)$ and $\zeta_{1} \sqrt{1 \vee \log \left(p / \zeta_{1}\right)}=o(1)$, then we can get the conclusion of Lemma 2 and finish the proof.

S6.2 Proof of Lemma 3

We need to derive the bounds of $\left\|\left(\widehat{\boldsymbol{\Theta}}^{(l)}\right)^{T} \widehat{\boldsymbol{\Sigma}}^{(l)} \widehat{\boldsymbol{\Theta}}^{(l)}-\boldsymbol{\Theta}\right\|_{\infty}$. With some simple algebra, we have

$$
\begin{aligned}
\left\|\left(\widehat{\boldsymbol{\Theta}}^{(l)}\right)^{T} \widehat{\boldsymbol{\Sigma}}^{(l)} \widehat{\boldsymbol{\Theta}}^{(l)}-\boldsymbol{\Theta}\right\|_{\infty} & =\left\|\left(\left(\widehat{\boldsymbol{\Theta}}^{(l)}\right)^{T} \widehat{\boldsymbol{\Sigma}}^{(l)}-\mathbf{I}\right) \widehat{\boldsymbol{\Theta}}^{(l)}+\widehat{\boldsymbol{\Theta}}^{(l)}-\boldsymbol{\Theta}\right\|_{\infty} \\
& \leq\left\|\left(\left(\widehat{\boldsymbol{\Theta}}^{(l)}\right)^{T} \widehat{\boldsymbol{\Sigma}}^{(l)}-\mathbf{I}\right) \widehat{\boldsymbol{\Theta}}^{(l)}\right\|_{\infty}+\left\|\widehat{\boldsymbol{\Theta}}^{(l)}-\boldsymbol{\Theta}\right\|_{\infty}
\end{aligned}
$$

On the one hand, applying the same argument as in (S1) gives

$$
\left\|\widehat{\boldsymbol{\gamma}}_{j}^{(l)}\right\|_{1} \leq\left\|\boldsymbol{\gamma}_{j}^{(l)}\right\|_{1}+\left\|\widehat{\boldsymbol{\gamma}}_{j}^{(l)}-\boldsymbol{\gamma}_{j}^{(l)}\right\|_{1}=O\left(\sqrt{s_{j}^{*}}\right)+O\left(s_{j}^{*} \sqrt{\frac{\log p}{\widetilde{n}}}\right)=O\left(\sqrt{s_{j}^{*}}\right)
$$

holding with probability at least $1-o\left(p^{-\delta+1}\right)$, which entails that $\left\|\widehat{\boldsymbol{\Theta}}_{j}^{(l)}\right\|_{1}=O_{P}\left(\sqrt{s_{j}^{*}}\right)$. On the other hand, since $\left\|\widehat{\boldsymbol{\gamma}}_{j}^{(l)}-\gamma_{j}^{(l)}\right\|_{2} \leq\left\|\widehat{\boldsymbol{\gamma}}_{j}^{(l)}-\gamma_{j}^{(l)}\right\|_{1}=O_{P}\left(s_{j}^{*} \sqrt{\frac{\log p}{\tilde{n}}}\right)$, we have $\left\|\widehat{\boldsymbol{\Theta}}_{j}^{(l)}-\boldsymbol{\Theta}_{j}\right\|_{2}=O\left(s_{j}^{*} \sqrt{\frac{\log p}{\tilde{n}}}\right)$ holding with probability at least $1-o\left(p^{-\delta+1}\right)$. Combining these results gives

$$
\begin{aligned}
\left\|\left(\widehat{\boldsymbol{\Theta}}^{(l)}\right)^{T} \widehat{\boldsymbol{\Sigma}}^{(l)} \widehat{\boldsymbol{\Theta}}^{(l)}-\boldsymbol{\Theta}\right\|_{\infty} & \leq \max _{j} \frac{\max _{k \neq j}\left\|\mathbf{x}_{k}^{(l)}\right\|_{2}}{\sqrt{\widetilde{n}}} \widehat{\sigma}_{j} \lambda_{0}\left\|\widehat{\boldsymbol{\Theta}}_{j}^{(l)}\right\|_{1}+\max _{j}\left\|\widehat{\boldsymbol{\Theta}}_{j}^{(l)}-\boldsymbol{\Theta}_{j}\right\|_{2} \\
& =O\left(\max _{j} s_{j}^{*} \sqrt{\frac{\log p}{\widetilde{n}}}\right),
\end{aligned}
$$

holding with probability at least $1-o\left(p^{-\delta+1}\right)$, which yileds that

$$
\begin{equation*}
\max _{1 \leq j, k \leq p}\left|\left(\widehat{\boldsymbol{\Theta}}_{j}^{(l)}\right)^{T} \widehat{\boldsymbol{\Sigma}}^{(l)} \widehat{\boldsymbol{\Theta}}_{k}^{(l)}-\boldsymbol{\Theta}_{j}^{T} \boldsymbol{\Sigma} \boldsymbol{\Theta}_{k}\right|=O_{P}\left(\max _{j} s_{j}^{*} \sqrt{\frac{\log p}{\widetilde{n}}}\right) . \tag{S6.3}
\end{equation*}
$$

Moreover, by the same arguments as in the proof of Zhang and Cheng (2017, Theorem 2.2), we have

$$
\left|\boldsymbol{\Theta}_{j}^{T} \boldsymbol{\Sigma} \boldsymbol{\Theta}_{k}\right| \leq 1 /\left(\iota_{j} \iota_{k}\right)=O(1)
$$

uniformly for $1 \leq j, k \leq p$. Thus, with assumption that $o\left(K p^{-\delta+1}\right)=o(1)$, combining this result and inequality (S6.3) gives

$$
\Gamma=O_{P}\left(\frac{\left|\widehat{\sigma}^{2}-\sigma^{2}\right|}{K^{2}}+K \sqrt{\frac{s \log p}{\widetilde{n}}}\right),
$$

which completes the proof of Lemma 3.

References

Ren, Z., Sun, T., Zhang, C.-H. and Zhou, H. (2015). Asymptotic normality and optimalities in estimation of large Gaussian graphical model. Ann. Statist. 43, 991-1026.

Zhang, X. and Cheng, G. (2017). Simultaneous inference for high-dimensional linear models. J. Amer. Statist. Assoc. 112, 757-768.

Zhang, S. and Zhang, C.-H. (2014). Confidence intervals for low dimensional parameters in high dimensional linear models. J. R. Statist. Soc. Ser. B 76, 217-242.

