
Statistica Sinica: Supplement

Partitioned Approach for High-dimensional Confidence

Intervals with Large Split Sizes

University of Science and Technology of China

Supplementary Material

S1 Proof of Proposition 1

We would like to apply a similar argument as that in the proof of Zhang and Zhang

(2014, Theorem 1) to derive the confidence intervals of βj. The fundamental difference

is that the design matrix X is now random instead of fixed. Thus, the statistics related

to X such as zj, ηj and τj are also random variables (vectors). We will derive the

properties of these statistics before deriving the confidence intervals of βj.

Part 1: Deviation bounds of ‖zj‖2
2. Recall that ηj = maxk 6=j |zTj xk|/‖zj‖2, τj =

‖zj‖2/|zTj xj|, defined in (3.5), and zj is the relaxed residual vector of regressing xj on

X−j in (3.4) such that

zj = xj −X−jγ̂j,

{γ̂j, σ̂j} = arg min
b∈Rp−1,σj∈R+

{
‖xj −X−jb‖2

2

2nσj
+
σj
2

+ λ0

∑
k 6=j

‖xk‖2√
n
|bk|
}
,

with components of γ̂j = {γ̂j,k; k = 1, · · · , p, k 6= j}, where the regularization parameter

λ0 = (1 + ε)
√

2δ log(p)/n for some δ ≥ 1 and ε > 0.

We first derive the deviation bound for ‖zj‖2
2. Note that X = (xij)n×p = (x1, · · · ,xp),
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where the rows of X are i.i.d. from N(0,Σ). Let Σ = (σij)p×p and xi,−j be the ith

row of X after taking the jth component off. Similarly, the notation Σ−1
j,−j denotes a

subvector of the jth row of Σ−1 without the jth component. Let σj = 1/Σ−1
j,j . By the

conditional distribution of multivariate normal vector, we have

xij|xi,−j = N(−σjxi,−j(Σ−1
j,−j)

T , σj),

independent over i. It follows that xij = −σjxi,−j(Σ−1
j,−j)

T + ρij, where ρij ∼ N(0, σj)

are i.i.d. over i. Denote by γj = −σj(Σ−1
j,−j)

T and ρj = (ρ1j, · · · , ρnj)T . In matrix

notation, we have

xj = X−jγj + ρj,

with components of γj = {γj,k; k = 1, · · · , p, k 6= j}, where X−j is the submatrix of X

by taking the jth column off.

Note that zj is the residual of the scaled Lasso estimator in the regression model of

xj against X−j with γj = −σj(Σ−1
j,−j)

T , and we can get the sparsity of γj through the

assumption that the rows of Σ−1 satisfy the L0 sparsity condition. Thus, by applying

the estimation error bound of the residual vector of the scaled Lasso in Ren et al. (2015,

Inequality (18)), we can get

max
1≤j≤p

P
( 1

n

∣∣‖zj‖2
2 − ‖ρj‖2

2

∣∣ > Cs
log p

n

)
≤ o(p−δ+1), (S1.1)

which gives the deviation of ‖zj‖2
2 from its population counterpart ‖ρj‖2

2.

With ‖ρj‖2
2/σj ∼ χ2

(n) for any 1 ≤ j ≤ p, applying the following tail probabili-

ty bound with t = 2
√

2δ log(p)/n for the chi-squared distribution with n degrees of
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freedom Ren et al. (2015, Inequality (93)):

P
{
|
χ2

(n)

n
− 1| ≥ t

}
≤ 2 exp

(
− nt(t ∧ 1)/8

)
(S1.2)

gives

1− 2
√

2δ log(p)/n ≤ ‖ρj‖2
2/(nσj) ≤ 1 + 2

√
2δ log(p)/n,

holding with probability at least 1− 2p−δ. This inequality together with (S1.1) entails

that with probability at least 1− o(p−δ+1),

[1− 2
√

2δ log(p)/n]σj −Cs log(p)/n ≤ ‖zj‖2
2/n ≤ [1 + 2

√
2δ log(p)/n]σj +Cs log(p)/n,

for any 1 ≤ j ≤ p. In view of s = o(n/ log p), we have s ≤ c0n/ log p with some

sufficiently small constant c0. Combining these results leads to

[1− 2
√

2δ log(p)/n]σj − Cc0 ≤ ‖zj‖2
2/n ≤ [1 + 2

√
2δ log(p)/n]σj + Cc0, (S1.3)

with probability at least 1− o(p−δ+1), which completes the proof of Part 1.

Part 2: Deviation bounds of maxk 6=j ‖xk‖2 and mink 6=j ‖xk‖2. In order to pro-

ceed, we need to construct an upper bound for maxk 6=j ‖xk‖2 and a lower bound for

mink 6=j ‖xk‖2, respectively. Since ‖xk‖2
2/σkk ∼ χ2

(n) for any 1 ≤ k ≤ p, by applying

(S1.2) with t = 4
√
δ log(p)/n for the chi-squared distribution with n degrees of free-

dom, we have

[1− 4
√
δ log(p)/n]σkk ≤ ‖xk‖2

2/n ≤ [1 + 4
√
δ log(p)/n]σkk

holding with probability at least 1− 2p−2δ. By the condition that the eigenvalues of Σ

are within [M∗,M
∗], we have M∗ ≤ σkk ≤ M∗ for any 1 ≤ k ≤ p. It follows that for

sufficiently large n, with probability at least 1− 2p−2δ,

M̃∗ ≤
√

[1 + 4
√
δ log(p)/n]M∗ ≤ ‖xk‖2/

√
n ≤

√
[1 + 4

√
δ log(p)/n]M∗ ≤ M̃,
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where M̃∗ and M̃ are some positive constants. Thus we have

P (max
k 6=j
‖xk‖2/

√
n > M̃) ≤

∑
k 6=j

P (‖xk‖2/
√
n > M̃) ≤ p · 2p−2δ = 2p1−2δ = o(p1−δ),

(S1.4)

and

P (min
k 6=j
‖xk‖2/

√
n < M̃∗) ≤

∑
k 6=j

P (‖xk‖2/
√
n < M̃∗) ≤ p · 2p−2δ = 2p1−2δ = o(p1−δ),

(S1.5)

respectively, which entail that maxk 6=j ‖xk‖2/
√
n ≤ M̃ and mink 6=j ‖xk‖2/

√
n ≥ M̃∗

hold with probability at least 1− o(p−δ+1). It completes the proof of Part 2.

Part 3: Deviation bounds of τj. Then we turn to the deviation bound of τj. In

order to proceed, it is worthwhile to notice a basic inequality that

zTj xj = ‖zj‖2
2 + (X−jγ̂j)

Tzj = ‖zj‖2
2 +
√
nσ̂jλ0

∑
k 6=j

(‖xk‖2 · |γ̂j,k|) ≥ ‖zj‖2
2, (S1.6)

where the second equality above follows from the Karush-Kuhn-Tucker (KKT) condition

for the scaled Lasso estimator, which gives xTk zj = xTk (xj −X−jγ̂j) =
√
nσ̂jλ0‖xk‖2 ·

sgn(γ̂j,k) with γ̂j,k being the kth component of γ̂j, for any k ∈ A = {k 6= j : sgn(γ̂j,k) 6=

0}.

With the aid of (S1.6), we will first establish the upper bound of τj. It follows

easily zTj xj ≥ ‖zj‖2
2 in (S1.6) that τj = ‖zj‖2/|zTj xj| ≤ 1/‖zj‖2. Since

√
log(p)/n→ 0

as n→∞ and c0 is sufficiently small, in view of (S1.3) and τj ≤ 1/‖zj‖2, we know that

when n is large enough, there exists some constant cj depending on j such that

τj ≤
1

‖zj‖2

=
1√
n

1√
‖zj‖2

2/n
≤ 1√

n

1

([1− 2
√

2δ log(p)/n]σj − Cc0)1/2
≤ cj√

n
,

(S1.7)
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holding with probability at least 1− o(p−δ+1).

It remains to find the lower bound of τj. In view of (S1.4) and the basic inequality

(S1.6), it follows that with probability at least 1− o(p−δ+1),

zTj xj = ‖zj‖2
2 +
√
nσ̂jλ0

∑
k 6=j

(‖xk‖2 · |γ̂j,k|) ≤ ‖zj‖2
2 + nM̃σ̂jλ0‖γ̂j‖1,

which yields that τj = ‖zj‖2/|zTj xj| ≥ 1/(‖zj‖2 +
nM̃σ̂jλ0‖γ̂j‖1
‖zj‖2 ). Now we need to con-

struct an upper bound for ‖γ̂j‖1.

Since γ̂j is the scaled lasso estimator with λ0 = (1 + ε)
√

2δ log(p)/n for some δ ≥ 1

and ε > 0, combining the estimator error bound of the scaled lasso estimator Ren et

al. (2015, Inequality (17)) and inequality (S1.5) yields

P
{
‖γ̂j − γj‖1 ≤

C∗1s
∗
j

√
δ log p
√
n

}
≥ 1− o(p−δ+1), (S1.8)

where C∗1 is a constant and s∗j = ‖γj‖0. Thus, it follows that with probability at least

1− o(p−δ+1),

‖γ̂j‖1 ≤ ‖γj‖1 +
C∗s∗j

√
δ log p
√
n

.

Returning to derive the lower bound of τj. In view of λ0 = (1 + ε)
√

2δ log(p)/n,√
log p/n → 0 as n → ∞ and γj = −σj(Σ−1

j,−j)
T , as well as the assumption that the

rows of Σ−1 is L0 sparse, we have

M̃λ0‖γ̂j‖1 ≤ M̃(1 + ε)
√

2δ log(p)/n(‖γj‖1 +
C∗s∗j

√
δ log p
√
n

) ≤ c′jM̃
√
s log(p)/n,

where c′j is a constant. Combining this inequality and ‖zj‖2 ≥
√
n/cj from (S1.7) along

with
√
s log(p)/n = o(1) gives that there exist some constant c′′j such that

1

‖zj‖2 +
nM̃σ̂jλ0‖γ̂j‖1
‖zj‖2

≥ 1

‖zj‖2 + cjc′jM̃σ̂j
√
s log p

≥
c′′j
‖zj‖2

.
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In view of this inequality and (S1.3), we may come to the conclusion that with proba-

bility at least 1− o(p−δ+1), there exists a constant c̃j such that

τj ≥
c′′j
‖zj‖2

≥
c′′j√
n

1

[1 + 2
√

2δ log(p)/n]σj + Cc0

≥ c̃j√
n
,

which together with (S1.7) entails that τj � n−1/2 with probability at least 1−o(p−δ+1).

Moreover, conditional on this event, it is not difficult to see from the previous proof

that

lim
n→∞

τjn
1/2 = lim

n→∞
n1/2‖zj‖2/|zTj xj| = lim

n→∞
n1/2/‖zj‖2 = lim

n→∞
n1/2/‖ρj‖2 = Σ

−1/2
j,j .

It completes the proof of Part 3.

Part 4: Deviation bounds of ηj. In this part, we continue to find the deviation

bound for ηj = maxk 6=j |zTj xk|/‖zj‖2. By the KKT condition, we have for any k 6= j,

1 ≤ k ≤ p,

|xTk zj| = |xTk (xj −X−jγ̂j)| ≤
√
nσ̂jλ0‖xk‖2.

Combining this inequality and (S1.7) along with the upper bound of maxk 6=j ‖xk‖2/
√
n

in Part 2 yields

ηj ≤
√
nσ̂jλ0 max

k 6=j
‖xk‖2/‖zj‖2 ≤ cjM̃

√
nσ̂jλ0. (S1.9)

On the other hand, in view of Ren et al. (2015, Inequality(18)), we have

P{|σ̂j/σ∗j − 1| ≥ 1/2} ≤ o(p−δ+1),

where σ∗j = ‖ρj‖2/
√
n is the oracle estimator of σj. With the aid of

n(σ∗j )2

E(σ∗j )2
∼ χ2

(n), (S1.2)

justifies the replacement of σ∗j by
√

E(σ∗j ) or a constant C∗ in the above inequality, which

entails that σ̂j ≤ 3
2
C∗ can hold with probability at least 1− o(p−δ+1).
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In view of the above fact and (S1.9), as well as λ0 = (1 + ε)
√

2δ log(p)/n, for

sufficiently large n, we get

ηj ≤ cjM̃
√
nσ̂jλ0 ≤

3

2
cjM̃C∗(1 + ε)

√
2δ log(p) = Cj

√
log(p),

holding with probability at least 1 − o(p−δ+1), where Cj = 3
2
cjM̃C∗(1 + ε)

√
2δ. It

completes the proof of Part 4.

Part 5: Confidence intervals of βj. By the definition of the LDPE estimator given in

(3.3), replacing y with Xβ+ε along with some simplification gives for any j, 1 ≤ j ≤ p,

β̂j − βj =
zTj ε

zTj xj
+

∑
k 6=j zTj xk(βk − β̂(init)

k )

zTj xj
. (S1.10)

Moving the term zTj ε/z
T
j xj to the left hand side and then dividing both sides by τj

gives

|τ−1
j (β̂j − βj)− zTj ε/‖zj‖2| ≤ (max

k 6=j
|zTj xk|/‖zj‖2)‖β̂

(init)
− β‖1 = ηj‖β̂

(init)
− β‖1.

(S1.11)

For simplicity, denote by E the probability event in Parts 1-4 such that the devi-

ation bounds of τj and ηj still hold. Then P (E) ≥ 1− o(p−δ+1). Define two new events

E1 and E2 as

E1 = {|τ−1
j (β̂j − βj)− zTj ε/‖zj‖2| ≤ σ∗ε′n},

E2 = {|σ̂/σ∗ − 1| ≤ ε′′n}.

We first derive two probability inequalities, which will be used in the next proof. First,

in view of C2s(2/n) log(p/ε) ≤ ε′′n, it follows from the Condition 1 that P (Ec2) ≤ ε.
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Second, combining inequality (S1.11) with the assumptions in Proposition 1 gives

P (Ec1 ∩ E) ≤ P (Ec1 |E) ≤ P (ηj‖β̂
(init)
− β‖1 > σ∗ε′n|E)

≤P
{
Cj
√

log(p)‖β̂
(init)
− β‖1 > σ∗C1Cjs

√
(2/n) ·

√
log(p) log(p/ε)

}
≤P
{
‖β̂

(init)
− β‖1 > σ∗C1s

√
(2/n) log(p/ε)

}
≤ ε. (S1.12)

Returning to the confidence intervals of βj. Conditional on the event E ∩ E1 ∩ E2,

we know that τ−1
j |β̂j − βj| ≥ σ̂t implies |zTj ε|/‖zj‖2 ≥ σ̂t − σ∗ε′n ≥ σ∗{(1 − ε′′n)t − ε′n}

for any t > (1 + ε′n)/(1 − ε′′n). Let x = (1 − ε′′n)t − ε′n. Since zj only depends on X,

along with the fact that X and ε ∼ N(0, σ2In) are independent, conditional on each

realization of zj, we have zTj ε/(‖zj‖2σ
∗) ∼

√
nε1/‖ε‖2 with σ∗ = ‖ε‖2/

√
n. It follows

that

P
( |zTj ε|
‖zj‖2

≥ σ∗x
∣∣zj) = P{(n− x2)ε2

1 ≥ x2(ε2
2 + · · ·+ ε2

n)} ≤ 2Φn−1(−x
√

1− n−1),

(S1.13)

where Φn−1(t) is the Student t-distribution function with n− 1 degrees of freedom.

Since the right hand side of inequality (S1.13) is independent of the realization of

zj, along with the fact that zj and ε are independent, we have P (|zTj ε|/‖zj‖2 ≥ σ∗x) ≤

2Φn−1(−x
√

1− n−1). With the aid of the analysis in previous paragraph and taking

the probabilities of the events Ec, Ec1 ∩ E and Ec2 into consideration, we conclude that

for sufficiently large n,

P (|β̂j − βj| ≥ τjσ̂t) ≤ P (|β̂j − βj| ≥ τjσ̂t|E ∩ E1 ∩ E2) + P (Ec ∪ Ec1 ∪ Ec2)

≤ P (τ−1
j |β̂j − βj| ≥ σ̂t|E ∩ E1 ∩ E2) + P (Ec) + P (Ec1 ∩ E) + P (Ec2)

≤ 2Φn−1(−x
√

1− n−1) + 2ε+ o(p−δ+1).
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Since max(ε′n, ε
′′
n)→ 0 and when n→∞, the t-distribution will converge to the normal

distribution, by letting n→∞ and t = Φ−1(1− α/2), we further have

lim
n→∞

P
{
|β̂j − βj| ≤ τjσ̂Φ−1(1− α/2)

}
= 1− α,

which completes the proof of Proposition 1.

S2 Proof of Theorem 1

The proof of Theorem 1 is to conduct delicate analysis on some events with significant

probability and we will break the communication barriers between different subsamples

by considering certain overall statistics. Similar to (3.5), the bias factor η
(l)
j and noise

factor τ
(l)
j of the lth subsample are defined as

η
(l)
j = max

k 6=j
|(z(l)

j )Tx
(l)
k |/‖z

(l)
j ‖2, τ

(l)
j = ‖z(l)

j ‖2/|(z(l)
j )Tx

(l)
j |.

The overall bias and noise factors η̃j and τ̃j are

η̃j = max
1≤l≤K

η
(l)
j and τ̃j = max

1≤l≤K
τ

(l)
j .

We will first derive the deviation bounds for τ̃j and η̃j. Since similar conditions

are imposed for each subsample as those in Proposition 1, by (S1.7), we know that for

sufficiently large ñ,

τ
(l)
j ≤ 1/‖z(l)

j ‖2 ≤ cj/
√
ñ

holds with probability at least 1− o(p−δ+1). It follows that

P (τ̃j > cj/
√
ñ) ≤

K∑
l=1

P (τ
(l)
j > cj/

√
ñ) = o(Kp−δ+1). (S2.1)
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Thus, we get τ̃j ≤ cj/
√
ñ with probability at least 1−o(Kp−δ+1). By the same argument,

τ̃j ≥ c̃j/
√
ñ with probability at least 1− o(Kp−δ+1) such that τ̃j � ñ−1/2. Similarly, we

have η̃j ≤ Cj
√

log(p) with probability at least 1− o(Kp−δ+1). Define event Ẽ such that

the deviation bounds for both τ̃j and η̃j hold. It follows that P (Ẽ) ≥ 1− o(Kp−δ+1).

Then we would like to apply an argument similar to the proof of Proposition 1

after taking the communication barriers into consideration, and derive the confidence

intervals for components of the bagging estimator β̂
(mean)

. For the LDPE estimator

β̂
(l)
j of the lth subsample, 1 ≤ l ≤ K, similar to (S1.10), by definition we have for any

coordinate j, 1 ≤ j ≤ p,

β̂
(l)
j − βj =

(z
(l)
j )Tε(l)

(z
(l)
j )Tx

(l)
j

+

∑
k 6=j(z

(l)
j )Tx

(l)
k (βk − β̂(init)

k )

(z
(l)
j )Tx

(l)
j

.

Therefore, the bagging estimator β̂
(mean)

= K−1
∑K

l=1 β̂
(l)

satisfies that

β̂
(mean)
j − βj = K−1

K∑
l=1

(z
(l)
j )Tε(l)

(z
(l)
j )Tx

(l)
j

+K−1

K∑
l=1

∑
k 6=j(z

(l)
j )Tx

(l)
k (βk − β̂(init)

k )

(z
(l)
j )Tx

(l)
j

.

So we have

∣∣∣τ̃−1
j (β̂

(mean)
j − βj)−K−1

K∑
l=1

(τ̃−1
j τ

(l)
j )

(z
(l)
j )Tε(l)

‖z(l)
j ‖2

∣∣∣
≤ K−1

K∑
l=1

(τ̃−1
j τ

(l)
j )η

(l)
j ‖β̂

(init)
− β‖1 ≤ η̃j‖β̂

(init)
− β‖1. (S2.2)

Modifying the event E1 a bit and keep E2 the same as that defined in the proof of

Proposition 1, we denote by

Ẽ1 =
{∣∣∣τ̃−1

j (β̂
(mean)
j − βj)−K−1

K∑
l=1

(τ̃−1
j τ

(l)
j ) · (z(l)

j )Tε(l)/‖z(l)
j ‖2

∣∣∣ ≤ σ∗ε′n

}
and

E2 =
{
|σ̂/σ∗ − 1| ≤ ε′′n

}
.
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By inequality (S2.2), the definition of Ẽ and conditions in Theorem 1, similar to (S1.12),

we get P (Ec2) ≤ ε and P (Ẽc1 |Ẽ) ≤ ε.

Conditioning on the event Ẽ1 ∩ E2 ∩ Ẽ , we know that
√
Kτ̃−1

j |β̂
(mean)
j − βj| ≥ σ̂t

implies

∣∣K−1/2

K∑
l=1

(z
(l)
j )Tε(l)/‖z(l)

j ‖2

∣∣ ≥ σ̂t−
√
Kσ∗ε′n ≥ σ∗{(1− ε′′n)t−

√
Kε′n}, (S2.3)

for any t >
√
Kε′n/(1− ε′′n). Since K−1/2

∑K
l=1(z

(l)
j )Tε(l)/‖z(l)

j ‖2 ∼ ε1, it follows that

P
( 1√

K

K∑
l=1

(z
(l)
j )Tε(l)

‖z(l)
j ‖2

≥ σ∗{(1− ε′′n)t−
√
Kε′n}

)
≤ P (

√
n
ε1

‖ε‖2

≥ (1− ε′′n)t−
√
Kε′n)

≤ 2Φn−1(−(1− ε′′n)t+
√
Kε′n). (S2.4)

Therefore, we get

P (
√
Kτ̃−1

j |β̂
(mean)
j − βj| ≥ σ̂t) ≤ 2Φn−1(−(1− ε′′n)t+

√
Kε′n) + 2ε+ o(Kp−δ+1).

By the same argument as that in the proof of Proposition 1, if
√
Kε′n → 0, we get

lim
n→∞

P
{
|β̂(mean)
j − βj| ≤ K−1/2τ̃jσ̂Φ−1(1− α/2)

}
= 1− α.

It completes the proof of Part (A).

For Part (B), we first derive the bounds on the key quantity Kj. On one hand, in

view of Kj = K2/
∑K

l=1(ω
(l)
j )2 and ω

(l)
j = τ̃−1

j τ
(l)
j ≤ 1, it is clear that Kj ≥ K. On the

other hand, by Proposition 1 and an argument similar to (S2.1), we know that with

probability at least 1 − o(Kp−δ+1), τ
(l)
j ≥ c̃jñ

−1/2 for any 1 ≤ l ≤ K. Thus, together

with (S2.1), there exists positive constant c∗j ≥ 1 such that minKl=1 ω
(l)
j ≥

√
c∗j and

Kj ≤ c∗jK hold with probability at least 1− o(Kp−δ+1).
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We now proceed to derive confidence intervals for the refined inference. Simi-

lar to the proof of Part (A), conditioning on the event Ẽ1 ∩ E2 ∩ Ẽ , we know that√
Kj τ̃

−1
j |β̂

(mean)
j − βj| ≥ σ̂t implies∣∣∣ 1√∑K

l=1(ω
(l)
j )2

K∑
l=1

ω
(l)
j (z

(l)
j )Tε(l)/‖z(l)

j ‖2

∣∣∣ ≥ σ̂t−
√
Kjσ

∗ε′n ≥ σ∗{(1− ε′′n)t−
√
Kjε

′
n},

for any t > (1 +
√
Kj)ε

′
n/(1 − ε′′n). Since 1√∑K

l=1(ω
(l)
j )2

∑K
l=1 ω

(l)
j (z

(l)
j )Tε(l)/‖z(l)

j ‖2 ∼ ε1,

similar to (S2.4), it follows that

P
( ∑K

l=1 ω
(l)
j (z

(l)
j )Tε(l)

‖z(l)
j ‖2

√∑K
l=1(ω

(l)
j )2

≥ σ∗{(1− ε′′n)t−
√
Kjε

′
n}
)
≤ 2Φn−1(−(1− ε′′n)t+

√
Kjε

′
n).

Therefore, we get

P (
√
Kj τ̃

−1
j |β̂

(mean)
j − βj| ≥ σ̂t) ≤ 2Φn−1(−(1− ε′′n)t+

√
Kjε

′
n) + 2ε+ o(Kp−δ+1).

If
√
Kjε

′
n → 0, similarly we have

lim
n→∞

P{|β̂(mean)
j − βj| ≤ K

−1/2
j τ̃jσ̂Φ−1(1− α/2)} = 1− α.

It concludes the proof of Theorem 1.

S3 Proof of Theorem 2

The proof of Theorem 2 can be finished by applying the union bound to some key

inequalities in the proof of Theorem 1, which is detailed as follows. In view of (S2.2),

we have

max
j∈S

∣∣∣τ̃−1
j (β̂

(mean)
j − βj)−K−1

K∑
l=1

(τ̃−1
j τ

(l)
j )

(z
(l)
j )Tε(l)

‖z(l)
j ‖2

∣∣∣ ≤ max
j∈S

η̃j‖β̂
(init)
− β‖1 ·K−1

K∑
l=1

(τ̃−1
j τ

(l)
j ).

Since the event Ẽ holds with probability at least 1 − o(Kp−δ+1) and S is a set with

finite number of elements, it is clear that maxj∈S η̃j ≤ maxj∈S Cj
√

log p also holds with
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probability at least 1− o(Kp−δ+1). Conditioning on this event (denoted by E3), under

the assumptions of Theorem 2, similar to (S1.12), we get

P{max
j∈S
|τ̃−1
j (β̂

(mean)
j − βj)−K−1

K∑
l=1

(τ̃−1
j τ

(l)
j ) · (z(l)

j )Tε(l)/‖z(l)
j ‖2| ≥ σ∗ε′n|E3} ≤ ε.

Then by arguments similar to (S2.3) and (S2.4) together with the union bound, we

know that for any t >
√
Kε′n/(1− ε′′n), maxj∈S

√
Kτ̃−1

j |β̂
(mean)
j − βj| ≥ σ̂t implies

min
j∈S

∣∣K−1/2

K∑
l=1

(z
(l)
j )Tε(l)/‖z(l)

j ‖2

∣∣ ≥ σ̂t−
√
Kσ∗ε′n ≥ σ∗{(1− ε′′n)t−

√
Kε′n},

and that

P
(

min
j∈S

1√
K

K∑
l=1

(z
(l)
j )Tε(l)

‖z(l)
j ‖2

≥ σ∗{(1− ε′′n)t−
√
Kε′n}

)
≤ |S| · 2Φn−1(−(1− ε′′n)t+

√
Kε′n).

Therefore, we have

P (max
j∈S

√
K|β̂(mean)

j − βj|/τ̃j ≥ σ̂t) ≤ |S| · 2Φn−1[−(1− ε′′n)t+
√
Kε′n] + 2ε+ o(Kp−δ+1).

Under the extra assumption in Part(B), together with minKl=1 ω
(l)
j ≥

√
c∗j with

probability at least 1 − o(Kp−δ+1) (shown in the proof of Part(B) of Theorem 1),

similarly we have

P (max
j∈S

√
Kj|β̂(mean)

j − βj|/τ̃j ≥ σ̂t) ≤
∑
j∈S

2Φn−1[−(1− ε′′n)t+
√
Kjε

′
n] + 2ε+ o(Kp−δ+1).

It completes the proof of Theorem 2.

S4 Proof of Theorem 3

We first present some definitions and three lemmas that will be used in the rest proofs.

Define ι2j = E‖ρj‖2
2/n = σj and (ι̂

(l)
j )2 =

(z(l)
j )Tx(l)

j

ñ
for 1 ≤ j ≤ p and 1 ≤ l ≤ K. Denote
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by

C =



1 −γ1,2 · · · −γ1,p

−γ2,1 1 · · · −γ2,p

...
...

. . .
...

−γp,1 −γp,2 · · · 1


,

and

Ĉ
(l)

=



1 −γ̂(l)
1,2 · · · −γ̂

(l)
1,p

−γ̂(l)
2,1 1 · · · −γ̂(l)

2,p

...
...

. . .
...

−γ̂(l)
p,1 −γ̂

(l)
p,2 · · · 1


.

Write T2 = diag{ι21, · · · , ι2p} and (T̂
(l)

)2 = diag{(ι̂(l)1 )2, · · · , (ι̂(l)p )2} as diagonal matrixes

for 1 ≤ j ≤ p and 1 ≤ l ≤ K. Let Θ = Σ−1 = T−2C. Then, the nodewise Lasso

estimator for Θ can be constructed as Θ̂
(l)

= (T̂
(l)

)−2Ĉ
(l)

. Denote the jth row of X(l)

and Θ̂
(l)

by x̃
(l)
j = (x

(l)
j1 , · · · , x

(l)
jp )T and Θ̂

(l)

j , where X(l) is the lth subsample for 1 ≤ l ≤

K. With the above definitions, we have Z(l) = X(l)(Θ̂
(l)

)T , where Z(l) = (z
(l)
1 , · · · , z

(l)
p ).

Thus the multiplier bootstrap statistic can be rewritten as

WG = max
j∈G

1√
nK

K∑
l=1

ñ∑
i=1

(Θ̂
(l)

j )T x̃
(l)
i σ̂e

(l)
i .

Lemma 1. Assume that (log(pn))7/n ≤ C3n
−c3 for some constants C3, c3 > 0. Define

ξij = 1
K

ΘT
j x̃

(l)
i ε

(l)
i . Then under the assumptions of Theorem 1, we have for any G ⊆

{1, 2, . . . , p},

sup
x∈R

∣∣∣∣∣P
(

max
j∈G

K∑
l=1

ñ∑
i=1

ξij/
√
n ≤ x

)
− P

(
max
j∈G

n∑
i=1

uij/
√
n ≤ x

)∣∣∣∣∣ . n−c
′
,
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where c′ > 0 and
{

ui = (ui1, . . . , uip)
T
}

is a sequence of mean zero independent Gaus-

sian vector with Euiu
T
i = 1

K
ΘT
j ΣΘjσ

2

Since this lemma is a direct corollary to Zhang and Cheng (2017, Lemma 1.1), we

omit the proof.

Lemma 2. Assume that maxj s(log(pñ))3(log(ñ))2/ñ = o(1). Define ξ̂ij = 1
K

(Θ̂
(l)

j )T x̃
(l)
i ε

(l)
i .

Then under the assumptions of Theorem 1, there exist ζ1, ζ2 > 0 such that

P

(
max
1≤j≤p

∣∣∣∣∣
K∑
l=1

ñ∑
i=1

ξ̂ij/
√
n−

K∑
l=1

ñ∑
i=1

ξij/
√
n

∣∣∣∣∣ ≥ ζ1

)
< ζ2,

where ζ1

√
1 ∨ log (p/ζ1) = o(1) and ζ2 = o(1).

Lemma 3. Define

Γ = max
1≤j, k≤p

∣∣∣∣∣ σ̂2

K2

K∑
l=1

(Θ̂
(l)

j )T Σ̂
(l)

Θ̂
(l)

k −
σ2

K
ΘT
j ΣΘk

∣∣∣∣∣ , Σ̂
(l)

= (X(l))TX(l)/ñ.

Then we have Γ = OP (
|σ̂2−σ2|
K2 +K

√
s log p
ñ

).

We proceed to prove the Theorem 3. Without loss of generality, we set G =

{1, 2, · · · , p}. Define

TG = max
j∈G

√
n
(
β̂

(mean)
j − βj

)
, T0,G = max

j∈G

K∑
l=1

ñ∑
i=1

ξij.

Notice that

|TG − T0,G| ≤ max
1≤j≤p

∣∣∣∣∣
K∑
l=1

ñ∑
i=1

ξ̂ij/
√
n−

K∑
l=1

ñ∑
i=1

ξij/
√
n

∣∣∣∣∣+ ‖∆‖∞,

where

‖∆‖∞ = max
j

(

√
n

K

K∑
l=1

∑
k 6=j(z

(l)
j )Tx

(l)
k (βk − β̂(init)

k )

(z
(l)
j )Tx

(l)
j

)

≤
√
n

K
‖β̂

(init)
− β‖1 max

j

K∑
l=1

τ
(l)
j η

(l)
j = OP

(
K1/2s log(p)/

√
n
)
,
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Thus by Lemma 2 and the assumption that s2(log(p))3/ñ = o(1), we have

P (|TG − T0,G| > ζ1) < ζ2 (S4.1)

for ζ1

√
1 ∨ log (p/ζ1) = o(1) and ζ2 = o(1).

Finally, with Lemmas 1-3 and (S4.1), applying the same arguments as in Zhang

and Cheng (2017, Theorem 2.2) gives

sup
α∈(0,1)

∣∣∣∣P (max
j∈G

√
n
(
β̂

(mean)
j − βj

)
> c∗G(α)

)
− α

∣∣∣∣ = o(1),

where c∗G(α) = inf{t ∈ R : P (W ∗
G ≤ t|(y,X)) ≥ 1− α} with

W ∗
G = max

j∈G

√
n

K

K∑
l=1

ñ∑
i=1

z
(l)
i,j σ̂e

(l)
i

(z
(l)
j )Tx

(l)
j

.

Since maxj∈G
√
n|β̂(mean)

j − βj| =
√
nmaxj∈G max{β̂(mean)

j − βj, βj − β̂
(mean)
j }, similar

arguments yields

sup
α∈(0,1)

∣∣∣∣P (max
j∈G

√
n
∣∣∣β̂(mean)
j − βj

∣∣∣ > cG(α)

)
− α

∣∣∣∣ = o(1),

which completes the proof of Theorem 3.

S5 Proof of Theorem 4

The proof of Theorem 4 is similar to the proof of Theorem 3 in Zhang and Zhang (2014).

Following their arguments, we immediately have the equivalence of the following two

statements:

(σ̂/σ) ∨ (σ/σ̂)− 1 + ε′nσ
∗/(σ̂ ∧ σ) ≤ {1− (σ̂/σ − 1)+} cn;

t̃j + ε′n (σ∗/σ) t̃j ≤ t̂j = (1 + cn) (σ̂/σ)t̃j, t̂j − t̃j + ε′n (σ∗/σ) t̃j ≤ 2cnt̃j. (S5.1)
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We proceed to prove the first part of Theorem 4. For any given X, let ε̃j =

K−1
∑K

l=1 τ
(l)
j

(z(l)
j )Tε(l)

‖z(l)
j ‖2

∼ N
(

0, K−2
∑K

l=1(τ
(l)
j )2σ2

)
, β̃j = βj + ε̃j and

Ωn =
{∣∣∣β̃j − β̂(mean)

j

∣∣∣ ≤ ε′n (σ∗/σ) t̃j, (S5.1) holds, ∀j ≤ p
}
.

As in the proof of Theorem 1, |β̃j − β̂(mean)
j | ≤ K−1

∑K
l=1 τ

(l)
j η

(l)
j ‖β̂

(init)
− β‖1. By the

assumption that maxj≤p η
(l)
j C1s/

√
ñ ≤ ε′n, we have |β̃j − β̂(mean)

j | ≤ ε′n (σ∗/σ) t̃j when

‖β̂(init) − β‖1 ≤ C1sσ
∗L0/
√
n, which yields P {Ωn} ≥ 1− 3ε. On the event Ωn, (S5.1)

gives

t̂j ≥ t̃j + |β̂(mean)
j − β̃j|, |β̂(mean)

j − β̃j|+ |t̂j − t̃j| ≤ 2cnt̃j.

Then by choosing ∆ = 2cnt̃j in the Lemma 1 of Zhang and Zhang (2014), we can

directly come to the conclusion that

E||β̂(t) − β‖2
2IΩn ≤

p∑
j=1

min

{
β2
j , K

−2

K∑
l=1

(τ
(l)
j )2σ2

(
L2

0 (1 + 2cn)2 + 1
)}

+K−1 (εLn/p)σ
2

p∑
j=1

τ̃ 2
j ,

where Ln = 4/L3
0 + 4cn/L0 + 12c2

nL0.

It remains to prove the second part of Theorem 4. Following the argument of Zhang

and Zhang (2014), in view of t̂j ≥ t̃j +
∣∣∣β̂j − β̃j∣∣∣, thus

∣∣∣β̂j∣∣∣ > t̂j implies |ε̃j| > t̃j for

βj = 0; in view of
∣∣∣β̂j − β̃j∣∣∣ +

∣∣t̂j − t̃j∣∣ ≤ 2cnt̃j, thus
∣∣∣β̂j∣∣∣ ≤ t̂j implies |ε̃j| > t̃j for

|βj| > (2 + 2cn) t̃j. Combining the above results gives

P
({
j : |βj| > (2 + 2cn) t̃j

}
⊆ Ŝ(t) ⊆ {j : βj 6= 0}

)
≥ P {Ωc

n}+ pP
{
|ε̃j| > t̃j

}
.

Clearly, we have

P
{
|ε̃j| > t̃j

∣∣X} ≤ P

{
|ε̃j| > K−1(

K∑
l=1

(τ
(l)
j )2)1/2σL0

∣∣X} = 2Φ(−L0) ≤ α/p.
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Thus combining the above two inequalities completes the proof of the second part of

Theorem 4.

S6 Proofs of Lemmas

S6.1 Proof of Lemma 2

With some simple algebra, we obtain∣∣∣∣∣
K∑
l=1

ñ∑
i=1

ξ̂ij/
√
n−

K∑
l=1

ñ∑
i=1

ξij/
√
n

∣∣∣∣∣ =

∣∣∣∣∣ 1

K

K∑
l=1

(
(Θ̂

(l)

j )T −ΘT
j

) ñ∑
i=1

x̃
(l)
i ε

(l)
i /
√
n

∣∣∣∣∣ (S6.1)

≤ 1

K

K∑
l=1

∥∥∥Θ̂(l)

j −Θj

∥∥∥
1

∥∥∥∥∥
ñ∑
i=1

x̃
(l)
i ε

(l)
i /
√
n

∥∥∥∥∥
∞

Since the same argument in the proof of Lemma 1.2 in Zhang and Cheng (2017) gives

E

{
max
1≤j≤p

∣∣∣∣∣
ñ∑
i=1

x
(l)
ij εi/ñ

∣∣∣∣∣
}

.
√

log(p)/ñ+ log (ñp) log ñ log(p)/ñ,

for any 1 ≤ l ≤ K, we proceed to derive the bounds of
∥∥∥Θ̂(l)

j −Θj

∥∥∥
1
.

By the definitions of Θ̂
(l)

j and Θj, it follows that

∥∥∥Θ̂(l)

j −Θj

∥∥∥
1

=
∥∥∥Ĉ(l)

j /(ι̂
(l)
j )2 − C̃j/ι

2
j

∥∥∥
1

(S6.2)

≤
∥∥∥γ̂(l)

j − γj
∥∥∥

1
/(ι̂

(l)
j )2︸ ︷︷ ︸

i

+
∥∥γj∥∥1

(
1/(ι̂

(l)
j )2 − 1/ι2j

)
︸ ︷︷ ︸

ii

,

where Ĉ
(l)

j and C̃j are the jth rows of Ĉ
(l)

and C, respectively. Moreover, we have

∣∣∣(ι̂(l)j )2 − ι2j
∣∣∣ =
∣∣∣(ρ(l)

j )Tρ
(l)
j /ñ− ι2j

∣∣∣︸ ︷︷ ︸
I

+
∣∣∣(ρ(l)

j )TX
(l)
−j

(
γ̂

(l)
j − γj

)
/ñ
∣∣∣︸ ︷︷ ︸

II

+
∣∣∣(ρ(l)

j )TX
(l)
−jγj/ñ

∣∣∣︸ ︷︷ ︸
III

+
∣∣∣(γj)T (X

(l)
−j)

TX
(l)
−j

(
γ̂ lj − γj

)
/ñ
∣∣∣︸ ︷︷ ︸

IV

,
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where ρ
(l)
j = x

(l)
j −X

(l)
−jγj.

As for i in (S6.2), by the same argument as in (S1), we have

(ι̂
(l)
j )2 =

(z
(l)
j )Tx

(l)
j

ñ
= O(1), ‖γ̂(l)

j − γj‖1 = O(
s∗j
√

log p
√
ñ

)

with probability at least 1 − o(p−δ+1) for some δ > 1, where s∗j = ‖γj‖0. As for ii in

(S6.2), since ‖ρ(l)
j ‖2

2/σj ∼ χ2
(ñ) for any 1 ≤ j ≤ p, applying the same argument as in

(S1) gives

I = O(
√

log(p)/ñ),

holding with probability at least 1− 2p−δ. Second, under the Gaussian assumption of

ρ
(l)
j , it follows that

∥∥∥(ρ
(l)
j )TX

(l)
−j

∥∥∥
∞
/ñ = O(

√
log(p)/ñ),

holding with probability at least 1− o(p−δ+1), which entails

II ≤
∥∥∥(ρ

(l)
j )TX

(l)
−j

∥∥∥
∞

∥∥∥γ̂(l)
j − γj

∥∥∥
1
/ñ = O(

s∗j log p

ñ
),

holding with probability at least 1 − o(p−δ+1). Similarly, since ‖γj‖1 ≤
√
s∗j‖γj‖2 ≤√

s∗jσjj/λmin(Σ) = O(
√
s∗j) with λmin(Σ) indicating the minimum eigenvalue of Σ, we

have

III ≤
∥∥∥(ρ

(l)
j )TX

(l)
−j

∥∥∥
∞

∥∥γj∥∥1
/ñ = O(

√
s∗j log p

ñ
),

with probability at least 1− o(p−δ+1).

As for IV , the KKT condition yields

‖(X(l)
−j)

T (x
(l)
j −X−j(γ̂

(l)
j ))‖∞/ñ ≤

maxk 6=j ‖x(l)
k ‖2√

ñ
σ̂jλ0.
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Combining the facts
∥∥∥(ρ

(l)
j )TX

(l)
−j

∥∥∥
∞
/ñ = OP (

√
log p/ñ) and

‖x(l)
k ‖2√
ñ

= OP (1) gives

IV = O(
√
s∗j log(p)/ñ)

holding with probability at least 1−o(p−δ+1). Thus with probability at least 1−o(p−δ+1),

we have

1/(ι̂
(l)
j )2 − 1/ι2j = O(

√
s∗j log(p)/ñ).

We can come to the conclusion that

i = OP (s∗j
√

log(p)/ñ), ii = OP (s∗j
√

log(p)/ñ),

which entails that

∥∥∥Θ̂(l)

j −Θj

∥∥∥
1

= OP (s∗j
√

log(p)/ñ).

Returning to the equality (S6.1), with assumption that o(Kp−δ+1) = o(1), we now have

∣∣∣∣∣
K∑
l=1

ñ∑
i=1

ξ̂ij/
√
n−

K∑
l=1

ñ∑
i=1

ξij/
√
n

∣∣∣∣∣ ≤ 1

K

K∑
l=1

∥∥∥Θ̂(l)

j −Θj

∥∥∥
1

∥∥∥∥∥
ñ∑
i=1

x̃
(l)
i ε

(l)
i /
√
n

∥∥∥∥∥
∞

= OP (

√
log(p)ñ+ log (ñp) log ñ log(p)√

nK

K∑
l=1

∥∥∥Θ̂(l)

j −Θj

∥∥∥
1
)

= OP (
s∗j log p
√
n

+
s∗j(log p)3/2 log (ñp) log ñ

n
) ≤ OP (max

j

√
s log p√
n

).

Choosing ζ1 such that maxj
√
s log(p)/ (

√
nζ1) = o(1) and ζ1

√
1 ∨ log (p/ζ1) = o(1),

then we can get the conclusion of Lemma 2 and finish the proof.
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S6.2 Proof of Lemma 3

We need to derive the bounds of ‖(Θ̂
(l)

)T Σ̂
(l)

Θ̂
(l)
−Θ‖∞. With some simple algebra,

we have

‖(Θ̂
(l)

)T Σ̂
(l)

Θ̂
(l)
−Θ‖∞ = ‖((Θ̂

(l)
)T Σ̂

(l)
− I)Θ̂

(l)
+ Θ̂

(l)
−Θ‖∞

≤ ‖((Θ̂
(l)

)T Σ̂
(l)
− I)Θ̂

(l)
‖∞ + ‖Θ̂

(l)
−Θ‖∞.

On the one hand, applying the same argument as in (S1) gives

‖γ̂(l)
j ‖1 ≤ ‖γ(l)

j ‖1 + ‖γ̂(l)
j − γ

(l)
j ‖1 = O(

√
s∗j) +O(s∗j

√
log p

ñ
) = O(

√
s∗j),

holding with probability at least 1 − o(p−δ+1), which entails that ‖Θ̂
(l)

j ‖1 = OP (
√
s∗j).

On the other hand, since ‖γ̂(l)
j − γ

(l)
j ‖2 ≤ ‖γ̂(l)

j − γ
(l)
j ‖1 = OP (s∗j

√
log p
ñ

), we have

‖Θ̂
(l)

j −Θj‖2 = O(s∗j

√
log p
ñ

) holding with probability at least 1− o(p−δ+1). Combining

these results gives

‖(Θ̂
(l)

)T Σ̂
(l)

Θ̂
(l)
−Θ‖∞ ≤ max

j

maxk 6=j ‖x(l)
k ‖2√

ñ
σ̂jλ0‖Θ̂

(l)

j ‖1 + max
j
‖Θ̂

(l)

j −Θj‖2

= O(max
j
s∗j

√
log p

ñ
),

holding with probability at least 1− o(p−δ+1), which yileds that

max
1≤j,k≤p

∣∣∣(Θ̂(l)

j )T Σ̂
(l)

Θ̂
(l)

k −ΘT
j ΣΘk

∣∣∣ = OP (max
j
s∗j

√
log p

ñ
). (S6.3)

Moreover, by the same arguments as in the proof of Zhang and Cheng (2017, The-

orem 2.2), we have

|ΘT
j ΣΘk| ≤ 1/(ιjιk) = O(1),



22 Zemin Zheng, Jiarui Zhang, Yang Li, and Yaohua Wu

uniformly for 1 ≤ j, k ≤ p. Thus, with assumption that o(Kp−δ+1) = o(1), combining

this result and inequality (S6.3) gives

Γ = OP (
|σ̂2 − σ2|
K2

+K

√
s log p

ñ
),

which completes the proof of Lemma 3.
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