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S1 Derivation of DR linear space

The observed data likelihood is given by

L(O) = f(R|V ; η)

{∫
f(Y |V, L; θ)dF (L|V ;α)

}R
f(L|V ;α)1−Rf(V ; ε),
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where we consider α and ε to be possibly infinite-dimensional nuisance

parameters and O = (R,RY, (1 − R)L, V ). The nuisance tangent space is

Λη ⊕ Λα ⊕ Λε, where

Λε = {B1Sε(V ) : E[Sε(V )] = 0}

Λα = {B2E[Sα(V, L)|O] = B2 {RE[Sα(V, L)|Y, V ] + (1−R)Sα(V, L)} :

E[Sα(V, L)|V ] = 0}

Λη =

{
B3

[
∂

∂η
log f(R|V ; η)

]}
.

Let Λ⊥ be the observed-data linear space that is orthogonal to Λε ⊕ Λα.

Then for given h(O) ∈ Λ⊥ε,α we have

E [h(O)Sε(V )] = 0 ∀Sε(V ) ∈ Λε,

E {h(O)E[Sα(V, L)|O]} = E {E[h(O)Sα(V, L)|O]}

= E {h(O)Sα(V, L)} = 0 ∀Sα(V, L).

From the results of Robins et al. (1995) and Hasminskii and Ibragimov

(1983), Λ⊥ε,α is given by

Λ⊥ε,α = {Bh(O) : E[h(R, V )|V ] = 0 or E[h(O)|L, V ] = 0}

=

{
B

[
R

π(V )
[g(Y, V ) + k(V )]− 1−R

1− π(V )
E[g(Y, V ) + k(V )|V, L]

]
:

g, k arbitrary, g(0, x) = 0} .
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Therefore, when the data source process is modeled, a typical element in

the ortho-complement Λ⊥ to the nuisance tangent space is given by

{
h(O)− Π [h(O)|Λη] : h(O) ∈ Λ⊥ε,α

}
,

where Π denotes the projection operator. For a fixed choice of function

g(Y, V ), the space of elements in Λ⊥ is a translation of a linear space away

from the origin. Specifically, this linear space is given by V (g) = x0 + M ,

with the element

x0 =

{
R

π(V )
g(Y, V )− 1−R

1− π(V )
E[g(Y, V )|V, L]

}
− Π [{·}|Λη]

and linear subspace

M =

{[
R

π(V )
− 1−R

1− π(V )

]
k(V )

}
− Π [{·}|Λη] = Π[Ω(V )|Λ⊥η ].

It is clear that Λη ⊂ Ω(V ). By Theorem 10.1 of (Tsiatis, 2007), the optimal

influence function (in terms of smallest variance) for fixed g(Y, V ) is given

by

IF∗(g) =

{
R

π(V )
g(Y, V )− 1−R

1− π(V )
E[g(Y, V )|V, L]

}
− Π [{·}|Ω(V )] .

Let [
R

π(V )
− 1−R

1− π(V )

]
k0(V ) ∈ Ω(V )
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be the projection Π [{·}|Ω(V )]. Then k0(V ) needs to satisfy

E

{{
R

π(V )

[
g(Y, V )− k0(V )

]
− 1−R

1− π(V )

[
k0(V )− E[g(Y, V )|V, L]

]}
×{[

R

π(V )
− 1−R

1− π(V )

]
k(V )

}}
= E

{
k(V )

{
1

π(V )

[
E[g(Y, V )|V ]− k0(V )

]
+

1

1− π(V )

[
k0(V )− E[g(Y, V )|V ]

]}}
= 0 ∀k(V ).

By assumption (A2), since δ < π(V ) < 1 − δ almost surely, k0(V ) =

E[g(Y, V )|V ] and the DR linear space is given by

LDR = {IF∗(g) : g(Y, V ) arbitrary} ,

where

IF∗(g) =

{
R

π(V )
[g(Y, V )− E[g(Y, V )|V ]]

+
1−R

1− π(V )
[E[g(Y, V )|V ]− E[g(Y, V )|V, L]]

}
.

S2 Proofs of Results

In the following, expectations are evaluated at the true parameter values.

Proof of Result 1.

Eη,θ

{
Ug(θ; η)

∣∣∣∣V, L} =Eη,θ

{
R

π(V )
g(Y, V )− 1−R

1− π(V )
Eθ[g(Y, V )|V, L]

∣∣∣∣V, L}
=Eθ[g(Y, V )|V, L]− Eθ[g(Y, V )|V, L] = 0.
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Proof of Result 2 (DR property). Case 1: π(V ) is correct but t̃(L|V ) is

incorrect

Unbiasedness of DR estimating function follows from Result 1 by taking

g′(V, L) = g(V, L) + k(V ); the proof does not involve t̃(L|V ).

Case 2: π̃(V ) is incorrect but t(L|V ) is correct

Eθ,η,α

{
UDR
g (θ; η, α)

∣∣∣∣V} = Eθ,η,α

{
R

π̃(V )
{g(Y, V )− Eθ,α[g(Y, V )|V ]}

+
1−R

1− π̃(V )
{Eθ,α[g(Y, V )|V ]− Eθ[g(Y, V )|V, L]}

∣∣∣∣V}
=
π(V )

π̃(V )
{Eθ,α[g(Y, V )|V ]− Eθ,α[g(Y, V )|V ]}

+
1− π(V )

1− π̃(V )
{Eθ,α[g(Y, V )|V ]− Eθ,α[g(Y, V )|V ]} = 0.

Proof of Result 3. The proof is based on the following lemma which is part

of Theorem 5.3 in Newey and McFadden (1994).

Lemma S1.

If ∃h̃(V ) satisfying

−E [h(V )∇θM(θ)] = E
[
M2(θ)h(V )h̃(V )T

]
∀h(V ),

then the estimator indexed by h̃(V ) is most efficient.
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Proof of Lemma S1. If h(V ) and h̃(V ) satisfy the equality in lemma S1

then the difference of the asymptotic variances of the respective estimators

indexed by them is as follows:

E
[
M2(θ)h(V )h̃(V )T

]−1
E
[
M2(θ)h(V )h(V )T

]
E
[
M2(θ)h̃(V )h(V )T

]−1
− E

[
M2(θ)h̃(V )h̃(V )T

]−1
=E

[
M2(θ)h(V )h̃(V )T

]−1
E
[
UUT

]
E
[
M2(θ)h̃(V )h(V )T

]−1
,

where U = h(V )−E
[
M2(θ)h(V )h̃(V )T

]
E
[
M2(θ)h̃(V )h̃(V )T

]−1
h̃(V ) and

E
[
UUT

]
is positive semi-definite.

We show that if h̃(V ) satisfies the equality in lemma S1 then h̃(V ) =

hopt(V ).

− E [h(V )∇θM(θ)] = E
[
M2(θ)h(V )hopt(V )T

]
∀h(V ),

⇐⇒ E
{
h(V )

[
M2(θ)hopt(V ) +∇θM(θ)

]T}
= 0 ∀h(V ),

⇐⇒ E

{
h(V )E

[
M2(θ)hopt(V ) +∇θM(θ)

∣∣∣∣V ]T
}

= 0 ∀h(V ),

=⇒ E

{
E

[
M2(θ)hopt(V ) +∇θM(θ)

∣∣∣∣V ]⊗2
}

= 0,

=⇒ E

[
M2(θ)hopt(V ) +∇θM(θ)

∣∣∣∣V ] = 0,

⇐⇒ hopt(V ) = −E [∇θM(θ)|V ]E
[
M2(θ)|V

]−1
.

Due to Hájek’s representation theorem (Hájek, 1970), the most efficient
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regular estimator is asymptotically linear and so the existence condition in

lemma S1 holds when we consider only RAL estimators.

S3 Additional Simulation Results

Figure 1: Boxplots of inverse probability weighted (IPW), imputation-based (IMP) and

doubly-robust (DR) estimators of the regression coefficient β0, whose true value of 0.5

is marked by the horizontal line, when α3 = 2.
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Figure 2: Boxplots of inverse probability weighted (IPW), imputation-based (IMP) and

doubly-robust (DR) estimators of the regression coefficient β1, whose true value of -0.5

is marked by the horizontal line, when α3 = 2.
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Figure 3: Boxplots of inverse probability weighted (IPW), imputation-based (IMP) and

doubly-robust (DR) estimators of the regression coefficient β2, whose true value of 1.0

is marked by the horizontal line, when α3 = 2.
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Figure 4: Boxplots of inverse probability weighted (IPW), imputation-based (IMP) and

doubly-robust (DR) estimators of the regression coefficient β0, whose true value of 0.5

is marked by the horizontal line, when α3 = 0.5.
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Figure 5: Boxplots of inverse probability weighted (IPW), imputation-based (IMP) and

doubly-robust (DR) estimators of the regression coefficient β1, whose true value of -0.5

is marked by the horizontal line, when α3 = 0.5.



Doubly robust data fusion

Figure 6: Boxplots of inverse probability weighted (IPW), imputation-based (IMP) and

doubly-robust (DR) estimators of the regression coefficient β2, whose true value of 1.0

is marked by the horizontal line, when α3 = 0.5.
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Figure 7: Boxplots of inverse probability weighted (IPW), imputation-based (IMP) and

doubly-robust (DR) estimators of the regression coefficient β3, whose true value of 1.5

is marked by the horizontal line, when α3 = 0.5.
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