Hypothesis Testing for the Covariance Matrix in High-Dimensional Transposable Data with Kronecker Product Dependence Structure

Anestis Touloumis, John C. Marioni and Simon Tavaré

University of Brighton, University of Cambridge and EMBL-EBI, and Columbia University

Supplementary Material

It contains useful identities (S1), moment derivations (S2), computationally cheap expressions for the proposed test statistics (S3), proofs or sketches of proofs for Theorems 1-7 of the manuscript (S4–S8), additional simulation results (S9) and R code to run the analysis in Section 5 of the manuscript (S11). Herein, we assume that $\mathbf{M} = \mathbf{0}$ because the proposed test statistics are invariant to location transformations.

S1 Useful identities

We list six identities (P1-P6) that hold under the matrix-valued nonparametric model (2.1). It is further assumed that the matrices \mathbf{B}_1 , \mathbf{B}_2 and \mathbf{B}_3 in P1-P6 are symmetric whose dimensions are meaningful for each of the operations considered.

P1: $E(\mathbf{Z}'_{i}\mathbf{B}_{1}\mathbf{Z}_{i}) = \operatorname{tr}(\mathbf{B}_{1})\mathbf{I}_{c}$

P2: $E(\mathbf{Z}_i \mathbf{B}_2 \mathbf{Z}'_i) = \operatorname{tr}(\mathbf{B}_2) \mathbf{I}_r$

$$P3: E[tr^{2}(\mathbf{B}_{1}\mathbf{Z}_{i}\mathbf{B}_{2}\mathbf{Z}_{j}')] = tr(\mathbf{B}_{1}^{2})tr(\mathbf{B}_{2}^{2})$$

$$P4: E[tr(\mathbf{Z}_{i}'\mathbf{B}_{1}\mathbf{Z}_{i}\mathbf{B}_{2}\mathbf{Z}_{i}'\mathbf{B}_{1}\mathbf{Z}_{i}\mathbf{B}_{3})] = tr^{2}(\mathbf{B}_{1})tr(\mathbf{B}_{2}\mathbf{B}_{3}) + tr(\mathbf{B}_{1}^{2})tr(\mathbf{B}_{2})tr(\mathbf{B}_{2})$$

$$+ tr(\mathbf{B}_{1}^{2})tr(\mathbf{B}_{2}\mathbf{B}_{3}) + Btr(\mathbf{\Delta}_{\mathbf{B}_{1}}^{2})tr(\mathbf{B}_{2} \circ \mathbf{B}_{3})$$

$$P5: E\{tr[(\mathbf{B}_{1}\mathbf{Z}_{i}\mathbf{B}_{2}\mathbf{Z}_{i}'\mathbf{B}_{1}) \circ (\mathbf{B}_{1}\mathbf{Z}_{i}\mathbf{B}_{2}\mathbf{Z}_{i}'\mathbf{B}_{1})]\} = Btr(\mathbf{\Delta}_{\mathbf{B}_{2}}^{2})tr[(\mathbf{B}_{1} \circ \mathbf{B}_{1})^{2}]$$

$$+ [2tr(\mathbf{B}_{2}^{2}) + tr^{2}(\mathbf{B}_{2})]tr(\mathbf{\Delta}_{\mathbf{B}_{1}}^{2})$$

P6: $E(X_{ir_1c_1}X_{ir_2c_2}X_{ir_3c_3}X_{ir_4c_4})$

$$= (\Sigma_{\rm R})_{r_1 r_2} (\Sigma_{\rm R})_{r_3 r_4} (\Sigma_{\rm C})_{c_1 c_2} (\Sigma_{\rm C})_{c_3 c_4} + (\Sigma_{\rm R})_{r_1 r_3} (\Sigma_{\rm R})_{r_2 r_4} (\Sigma_{\rm C})_{c_1 c_3} (\Sigma_{\rm C})_{c_2 c_4} + (\Sigma_{\rm R})_{r_1 r_4} (\Sigma_{\rm R})_{r_2 r_3} (\Sigma_{\rm C})_{c_1 c_4} (\Sigma_{\rm C})_{c_2 c_3} + B \sum_{r_5=1}^r \left(\Sigma_{\rm R}^{1/2}\right)_{r_1 r_5} \left(\Sigma_{\rm R}^{1/2}\right)_{r_2 r_5} \left(\Sigma_{\rm R}^{1/2}\right)_{r_3 r_5} \left(\Sigma_{\rm R}^{1/2}\right)_{r_4 r_5} \times \sum_{c_5=1}^c \left(\Sigma_{\rm C}^{1/2}\right)_{c_1 c_5} \left(\Sigma_{\rm C}^{1/2}\right)_{c_2 c_5} \left(\Sigma_{\rm C}^{1/2}\right)_{c_3 c_5} \left(\Sigma_{\rm C}^{1/2}\right)_{c_4 c_5}$$

Properties of the trace of the Kronecker and Hadamard product and of the matrix product of two or more matrices were also employed. These properties can be found, for example, in Harville (1997) and Seber (2008).

S2 Derivation of moments

It can be shown that
$$E(Y_{1N}) = \operatorname{tr}(\Sigma_{\mathrm{R}}), \ E(Y_{2N}) = \operatorname{tr}(\Sigma_{\mathrm{R}}^{2}), \ E(Y_{3N}) = \operatorname{tr}(\Delta_{\Sigma_{\mathrm{R}}}^{2})$$
 and $E(Y_{4N}) = E(Y_{5N}) = E(Y_{6N}) = E(Y_{7N}) = E(Y_{8N}) = 0.$

For the variances, it can be shown that

$$\begin{split} \mathrm{Var}(Y_{1N}) &= \frac{2}{N} \frac{\mathrm{tr}(\Sigma_{C}^{2})}{c^{2}} \mathrm{tr}(\Sigma_{R}^{2}) + \frac{B}{N} \frac{\mathrm{tr}\left(\Delta_{\Sigma_{R}}^{2}\right)}{c^{2}} \mathrm{tr}\left(\Delta_{\Sigma_{R}}^{2}\right), \\ \mathrm{Var}(Y_{2N}) &= \frac{8}{N} \frac{\mathrm{tr}(\Sigma_{C}^{2})}{c^{2}} \mathrm{tr}\left(\Sigma_{R}^{4}\right) + \frac{4}{N(N-1)} \frac{\mathrm{tr}^{2}(\Sigma_{C}^{2})}{c^{4}} \left[\mathrm{tr}^{2}(\Sigma_{R}^{2}) + \mathrm{tr}(\Sigma_{R}^{4})\right] \\ &+ \frac{4B}{N} \frac{\mathrm{tr}\left(\Delta_{\Sigma_{C}}^{2}\right)}{c^{2}} \mathrm{tr}\left(\Delta_{\Sigma_{R}}^{2}\right) \mathrm{tr}\left[\left(\Sigma_{R} \circ \Sigma_{R}\right)^{2}\right] \\ &+ \frac{2B^{2}}{N(N-1)} \frac{\mathrm{tr}^{2}\left(\Delta_{\Sigma_{C}}^{2}\right)}{c^{4}} \mathrm{tr}\left[\left(\Sigma_{R} \circ \Sigma_{R}\right)^{2}\right], \\ \mathrm{Var}\left(Y_{3N}\right) &= \frac{8}{N} \frac{\mathrm{tr}\left(\Sigma_{C}^{2}\right)}{c^{2}} \mathrm{tr}\left(\Sigma_{R} \Delta_{\Sigma_{R}} \Sigma_{R} \Delta_{\Sigma_{R}}\right) \\ &+ \frac{8N}{N(N-1)} \frac{\mathrm{tr}^{2}\left(\Sigma_{C}^{2}\right)}{c^{4}} \mathrm{tr}\left[\left(\Sigma_{R} \circ \Sigma_{R}\right)^{2}\right] \\ &+ \frac{4B}{N} \frac{\mathrm{tr}\left(\Delta_{\Sigma_{C}}^{2}\right)}{c^{2}} \mathrm{tr}\left[\left(\Sigma_{R}^{1/2} \Delta_{\Sigma_{R}} \Sigma_{R}^{1/2}\right) \circ \left(\Sigma_{R}^{1/2} \Delta_{\Sigma_{R}} \Sigma_{R}^{1/2}\right)\right] \\ &+ \frac{8B}{N(N-1)} \frac{\mathrm{tr}\left(\Delta_{\Sigma_{C}}^{2}\right)}{c^{2}} \mathrm{tr}\left[\left(\Sigma_{R} \circ \Sigma_{R}\right)\left(\Sigma_{R}^{1/2} \circ \Sigma_{R}^{1/2}\right)^{2}\right] \\ &+ \frac{2B^{2}}{N(N-1)} \frac{\mathrm{tr}\left(\Delta_{\Sigma_{C}}^{2}\right)}{c^{2}} \mathrm{tr}\left(\Sigma_{C}^{2}\right)} \mathrm{tr}\left[\left(\Sigma_{R} \circ \Sigma_{R}\right)\left(\Sigma_{R}^{1/2} \circ \Sigma_{R}^{1/2}\right)^{2}\right] \\ &+ \frac{2B^{2}}{N(N-1)} \frac{\mathrm{tr}\left(\Sigma_{C}^{2}\right)}{c^{2}} \mathrm{tr}\left(\Sigma_{R}^{2} \circ \Sigma_{R}^{1/2}\right)^{4}\right], \\ \mathrm{Var}(Y_{4N}) &= \frac{2}{N(N-1)} \frac{\mathrm{tr}\left(\Sigma_{C}^{2}\right)}{c^{2}} \mathrm{tr}\left(\Sigma_{R}^{2}\right) \mathrm{tr}\left(\Sigma_{R}^{2}\right) \mathrm{tr}\left(\Sigma_{R}^{2}\right) \mathrm{tr}\left(\Sigma_{R}^{2}\right) \mathrm{tr}\left(\Delta_{\Sigma_{R}}^{2}\right) \mathrm{tr}\left(\Delta_{\Sigma_{R}}^{2}\right) \mathrm{tr}\left(\Delta_{\Sigma_{R}}^{2}\right), \\ \mathrm{Var}(Y_{5N}) &= \frac{2}{N(N-1)} \frac{\mathrm{tr}\left(\Sigma_{C}^{2}\right)}{c^{2}} \mathrm{tr}\left(\Sigma_{R}^{2}\right) + \mathrm{tr}\left(\Sigma_{R}^{2}\right) \mathrm{tr}\left(\Delta_{\Sigma_{R}}^{2}\right)} \mathrm{tr}\left(\Sigma_{R}^{2}\right) \mathrm{tr}\left(\Sigma_{R}^{2}\right), \\ \mathrm{Var}(Y_{6N}) &= \frac{\left[\mathrm{tr}^{2}(\Sigma_{C}^{2}) + \mathrm{tr}\left(\Sigma_{C}^{2}\right)] \mathrm{tr}\left(\Sigma_{R}^{2}\right) \mathrm{tr}\left(\Sigma_{R}^{2}\right) \mathrm{tr}\left(\Sigma_{R}^{2}\right) \mathrm{tr}\left(\Sigma_{R}^{2}\right) \mathrm{tr}\left(\Sigma_{R}^{2}\right), \\ \mathrm{Var}(Y_{7N}) &= \frac{2}{N(N-1)} \frac{\mathrm{tr}\left(\Sigma_{C}^{2}\right)}{c^{2}} \mathrm{tr}\left(\Sigma_{R} \Delta_{\Sigma_{R}} \Sigma_{R}\right) \mathrm{tr}\left(\Sigma_{R}^{2}\right) \mathrm{tr}\left(\Sigma_{R}^{2} \circ \Sigma_{R}^{2}\right)^{2} \mathrm{tr}\left(\Sigma_{R}^{2} \circ \Sigma_{R}^{2}\right)^{2} \mathrm{tr}\left(\Sigma_{R}^{2}\right) \mathrm{tr}\left(\Sigma_{R}^{2} \circ \Sigma_{R}^{2}\right)^{2} \mathrm{tr}\left(\Sigma_{R}^{2} \circ \Sigma_{R}^{2}\right) \mathrm{tr}\left(\Sigma_{R}^{2} \circ \Sigma_{R}^{2}\right)^{2} \mathrm{tr}\left(\Sigma_{R}^{2} \circ \Sigma_{R}^{2}\right)^{2} \mathrm{tr}\left(\Sigma_{R}^{2} \simeq$$

For the covariances, it can be shown that

$$\begin{split} & \operatorname{Cov}(Y_{1N}, Y_{4N}) = \operatorname{Cov}(Y_{1N}, Y_{5N}) = \operatorname{Cov}(Y_{1N}, Y_{6N}) = 0, \\ & \operatorname{Cov}(Y_{2N}, Y_{5N}) = \operatorname{Cov}(Y_{2N}, Y_{6N}) = \operatorname{Cov}(Y_{2N}, Y_{7N}) = \operatorname{Cov}(Y_{2N}, Y_{8N}) = 0, \\ & \operatorname{Cov}(Y_{3N}, Y_{5N}) = \operatorname{Cov}(Y_{3N}, Y_{6N}) = \operatorname{Cov}(Y_{3N}, Y_{7N}) = \operatorname{Cov}(Y_{3N}, Y_{8N}) = 0, \\ & \operatorname{Cov}(Y_{5N}, Y_{6N}) = \operatorname{Cov}(Y_{5N}, Y_{8N}) = \operatorname{Cov}(Y_{6N}, Y_{7N}) = \operatorname{Cov}(Y_{7N}, Y_{8N}) = 0, \\ & \operatorname{Cov}(Y_{1N}, Y_{2N}) = \frac{4}{N} \frac{\operatorname{tr}(\Sigma_{C}^{2})}{c^{2}} \operatorname{tr}(\Sigma_{R}^{3}) + \frac{2B}{N} \frac{\operatorname{tr}(\Delta_{\Sigma_{C}}^{2})}{c^{2}} \operatorname{tr}(\Sigma_{R}^{2} \circ \Sigma_{R}), \\ & \operatorname{Cov}(Y_{2N}, Y_{3N}) = \frac{8}{N(N-1)} \frac{\operatorname{tr}^{2}(\Sigma_{C}^{2})}{c^{4}} \operatorname{tr}(\Delta_{\Sigma_{R}}^{2}) \\ & + \frac{8}{N} \frac{\operatorname{tr}(\Delta_{\Sigma_{C}}^{2})}{c^{2}} \operatorname{tr}(\Sigma_{R}^{2} \Delta_{\Sigma_{R}}) \\ & + \frac{4B}{N} \frac{\operatorname{tr}(\Delta_{\Sigma_{C}}^{2})}{c^{2}} \operatorname{tr}(\Sigma_{R}^{2} \Delta_{\Sigma_{R}}) \\ & + \frac{2B^{2}}{N(N-1)} \frac{\operatorname{tr}^{2}(\Delta_{\Sigma_{C}}^{2})}{c^{2}} \operatorname{tr}\left[\left(\Sigma_{R}^{1/2} \circ \Sigma_{R}^{3/2}\right)\left(\Sigma_{R}^{1/2} \circ \Sigma_{R}^{1/2}\right)\right], \\ & \operatorname{Cov}(Y_{2N}, Y_{4N}) = \frac{\left[E(Z_{1r,c_{1}}^{3})\right]^{2}}{N(N-1)} \frac{\operatorname{tr}(\Delta_{\Sigma_{C}}^{2})}{c^{2}} \operatorname{tr}^{2} (\Delta_{\Sigma_{R}} \Sigma_{R}^{1/2}) \\ & + \frac{4B}{N(N-1)} \frac{\operatorname{tr}(\Sigma_{C}^{2})}{c^{2}} \operatorname{tr}\left(\Sigma_{\Sigma_{R}}^{3} \circ \Sigma_{R}^{3/2}\right)\left(\Sigma_{R}^{1/2} \circ \Sigma_{R}^{1/2}\right)\right], \\ & \operatorname{Cov}(Y_{2N}, Y_{4N}) = \frac{\left[E(Z_{1r,c_{1}}^{3})\right]^{2}}{N(N-1)} \frac{\operatorname{tr}(\Sigma_{C}^{2})}{c^{2}} \operatorname{tr}(\Sigma_{C}^{3} \Delta_{\Sigma_{R}}) \\ & + \frac{4B}{N(N-1)(N-2)} \frac{\operatorname{tr}(\Delta_{\Sigma_{C}} \Sigma_{C}^{1/2})}{c^{2}} \operatorname{tr}\left(\Sigma_{R}^{2} \circ \Sigma_{R}^{2}\right) \\ & + \frac{2B}{N(N-1)(N-2)} \frac{\operatorname{tr}(\Delta_{\Sigma_{C}}^{2})}{c^{2}} \operatorname{tr}\left(\Sigma_{R}^{2} \circ \Sigma_{R}^{2}\right) \\ & + \frac{2B}{N(N-1)(N-2)} \frac{\operatorname{tr}^{2}(\Sigma_{C}^{2})}{c^{2}} \operatorname{tr}\left(\Sigma_{R}^{2} \circ \Sigma_{R}^{2}\right) \\ & + \frac{2B}{N(N-1)(N-2)} \frac{\operatorname{tr}^{2}(\Sigma_{C}^{2})}{c^{2}} \operatorname{tr}\left(\Sigma_{R}^{2} \circ \Sigma_{R}^{2}\right) \\ & + \frac{16}{N(N-1)(N-2)(N-3)} \frac{\operatorname{tr}^{2}(\Sigma_{C}^{2})}{c^{2}} \operatorname{tr}(\Sigma_{R}^{2} \circ \Sigma_{R}^{2}) \\ \end{array}$$

S3 Alternative formulae

Some algebraic manipulation shows that

$$\begin{split} T_{2N} = & Y_{2N} - 2Y_{5N} + Y_{6N} \\ = & \frac{1}{c^2 P_2^N} \sum_{i,j}^* \operatorname{tr}(\boldsymbol{X}_i \boldsymbol{X}_i' \boldsymbol{X}_j \boldsymbol{X}_j') - 2 \frac{1}{c^2 P_3^N} \sum_{i,j,k}^* \operatorname{tr}(\boldsymbol{X}_i \boldsymbol{X}_i' \boldsymbol{X}_j \boldsymbol{X}_k') \\ & + \frac{1}{c^2 P_4^N} \sum_{i,j,k,l}^* \operatorname{tr}(\boldsymbol{X}_i \boldsymbol{X}_j' \boldsymbol{X}_k \boldsymbol{X}_l') \\ = & \frac{1}{c^2 P_2^N} Y_{2N}^{\star} - 2 \frac{1}{c^2 P_3^N} Y_{5N}^{\star} + \frac{1}{c^2 P_4^N} Y_{6N}^{\star} \,, \end{split}$$

$$\begin{split} T_{3N} = & Y_{3N} - 2Y_{7N} + Y_{8N} \\ = & \frac{1}{c^2 P_2^N} \sum_{i,j}^* \operatorname{tr} \left[(\boldsymbol{X}_i \boldsymbol{X}'_i) \circ (\boldsymbol{X}_j \boldsymbol{X}'_j) \right] - 2 \frac{1}{c^2 P_3^N} \sum_{i,j,k}^* \operatorname{tr} \left[(\boldsymbol{X}_i \boldsymbol{X}'_i) \circ (\boldsymbol{X}_j \boldsymbol{X}'_k) \right] \\ & + \frac{1}{c^2 P_4^N} \operatorname{tr} \sum_{i,j,k,l}^* \left[(\boldsymbol{X}_i \boldsymbol{X}'_j) \circ (\boldsymbol{X}_k \boldsymbol{X}'_l) \right] \\ = & \frac{1}{c^2 P_2^N} Y_{3N}^* - 2 \frac{1}{c^2 P_3^N} Y_{7N}^* + \frac{1}{c^2 P_4^N} Y_{8N}^* \end{split}$$

and

$$T_{4N} = \frac{1}{P_2^N} \sum_{i,j}^* (\boldsymbol{x}_i' \boldsymbol{x}_j)^2 - 2 \frac{1}{P_3^N} \sum_{i,j,k}^* \boldsymbol{x}_i' \boldsymbol{x}_j \boldsymbol{x}_i' \boldsymbol{x}_k + \frac{1}{P_4^N} \sum_{i,j,k,l}^* \boldsymbol{x}_i' \boldsymbol{x}_j \boldsymbol{x}_k' \boldsymbol{x}_l$$
$$= \frac{N-1}{N(N-2)(N-3)} \left[(N-1)(N-2) \operatorname{tr}(\boldsymbol{S}^2) + \operatorname{tr}^2(\boldsymbol{S}) - NQ \right]$$

where $\boldsymbol{x}_{i} = \operatorname{vec}(\boldsymbol{X}_{i}), Q = \sum_{i=1}^{N} \left[(\boldsymbol{x}_{i} - \bar{\boldsymbol{x}})' (\boldsymbol{x}_{i} - \bar{\boldsymbol{x}}) \right]^{2} / (N-1), \bar{\boldsymbol{x}} = \sum_{i=1}^{N} \boldsymbol{x}_{i} / N,$

 $oldsymbol{S}$ is the sample covariance matrix of $oldsymbol{x}_1,\ldots,oldsymbol{x}_N,$ and where

$$\begin{split} Y_{2N}^{*} &= \sum_{i,j}^{*} \operatorname{tr}(\boldsymbol{X}_{i}\boldsymbol{X}_{j}^{*}\boldsymbol{X}_{j}), \\ Y_{5N}^{*} &= N^{2}Y_{51N}^{*} - (N-1)^{2}Y_{52N}^{*} - Y_{2N}^{*} + 2(N-1)Y_{53N}^{*}, \\ Y_{51N}^{*} &= \sum_{i} \operatorname{tr}\left[(\boldsymbol{X}_{i} - \bar{\boldsymbol{X}})(\boldsymbol{X}_{i} - \bar{\boldsymbol{X}})'\boldsymbol{X}_{i}\boldsymbol{X}_{i}'\right], \\ \bar{\boldsymbol{X}} &= \sum_{i} \operatorname{tr}\left[(\boldsymbol{X}_{i} - \bar{\boldsymbol{X}})(\boldsymbol{X}_{i} - \bar{\boldsymbol{X}})'\boldsymbol{X}_{i}\boldsymbol{X}_{i}'\right], \\ Y_{52N}^{*} &= \sum_{i} \operatorname{tr}(\boldsymbol{X}_{i}\boldsymbol{X}_{i}'\boldsymbol{X}_{i}\boldsymbol{X}_{i}'), \\ Y_{52N}^{*} &= \sum_{i,j} \operatorname{tr}(\boldsymbol{X}_{i}\boldsymbol{X}_{i}'\boldsymbol{X}_{i}\boldsymbol{X}_{j}'), \\ Y_{53N}^{*} &= \sum_{i,j}^{*} \operatorname{tr}(\boldsymbol{X}_{i}\boldsymbol{X}_{i}'\boldsymbol{X}_{i}\boldsymbol{X}_{j}'), \\ Y_{53N}^{*} &= \sum_{i,j}^{*} \operatorname{tr}(\boldsymbol{X}_{i}\boldsymbol{X}_{i}'\boldsymbol{X}_{i}\boldsymbol{X}_{j}'), \\ Y_{6N}^{*} &= \frac{1}{3} \left[(N-1)(N^{2} - 3N + 3)Y_{52N}^{*} + (2N - 3)(Y_{2N}^{*} + Y_{62N}^{*} + Y_{63N}^{*}) \\ &\quad + 2(N - 3)(Y_{5N}^{*} + Y_{64N}^{*} + Y_{65N}^{*}) - 4(N^{2} - 3N + 3)Y_{53N}^{*} - N^{3}Y_{61N}^{*} \right], \\ Y_{61N}^{*} &= \sum_{i} \operatorname{tr} \left[(\boldsymbol{X}_{i} - \bar{\boldsymbol{X}})(\boldsymbol{X}_{i} - \bar{\boldsymbol{X}})'(\boldsymbol{X}_{i} - \bar{\boldsymbol{X}})(\boldsymbol{X}_{i} - \bar{\boldsymbol{X}})' \right], \\ Y_{62N}^{*} &= \sum_{i,j}^{*} \operatorname{tr}(\boldsymbol{X}_{i}\boldsymbol{X}_{j}'\boldsymbol{X}_{j}\boldsymbol{X}_{j}'), \\ Y_{63N}^{*} &= \sum_{i,j}^{*} \operatorname{tr}(\boldsymbol{X}_{i}\boldsymbol{X}_{j}'\boldsymbol{X}_{i}\boldsymbol{X}_{j}'), \\ Y_{64N}^{*} &= \sum_{i,j,k}^{*} \operatorname{tr}(\boldsymbol{X}_{i}\boldsymbol{X}_{j}'\boldsymbol{X}_{k}\boldsymbol{X}_{i}') \\ &= N^{2}Y_{641N}^{*} + 2(N - 1)Y_{53N}^{*} - (N - 1)^{2}Y_{52N}^{*} - Y_{62N}^{*}, \\ Y_{65N}^{*} &= \sum_{i,j,k}^{*} \operatorname{tr}(\boldsymbol{X}_{i}\boldsymbol{X}_{j}'\boldsymbol{X}_{k}\boldsymbol{X}_{k}) \\ &= N^{2}Y_{651N}^{*} + 2(N - 1)Y_{53N}^{*} - (N - 1)^{2}Y_{52N}^{*} - Y_{63N}^{*}, \\ Y_{651N}^{*} &= \sum_{i,j,k}^{*} \operatorname{tr}(\boldsymbol{X}_{i}\boldsymbol{X}_{j}'\boldsymbol{X}_{k}\boldsymbol{X}_{k}) \\ &= N^{2}Y_{651N}^{*} + 2(N - 1)Y_{53N}^{*} - (N - 1)^{2}Y_{52N}^{*} - Y_{63N}^{*}, \\ Y_{651N}^{*} &= \sum_{i,j,k}^{*} \operatorname{tr}\left[\boldsymbol{X}_{i}(\boldsymbol{X}_{i} - \bar{\boldsymbol{X}})'\boldsymbol{X}_{i}(\boldsymbol{X}_{i} - \bar{\boldsymbol{X}})'\right], \end{split}$$

and where

$$\begin{split} & \mathbf{Y}_{3N}^{\star} = \sum_{i,j}^{\star} \operatorname{tr} \left[(\mathbf{X}_{i}\mathbf{X}_{i}') \circ (\mathbf{X}_{j}\mathbf{X}_{j}') \right], \\ & \mathbf{Y}_{7N}^{\star} = N^{2}Y_{71N}^{\star} - (N-1)^{2}Y_{72N}^{\star} - Y_{3N}^{\star} + 2(N-1)Y_{73N}^{\star}, \\ & \mathbf{Y}_{71N}^{\star} = \sum_{i} \operatorname{tr} \left\{ \left[(\mathbf{X}_{i} - \bar{\mathbf{X}})(\mathbf{X}_{i} - \bar{\mathbf{X}})' \right] \circ (\mathbf{X}_{i}\mathbf{X}_{i}') \right\}, \\ & \mathbf{Y}_{72N}^{\star} = \sum_{i} \operatorname{tr} \left[(\mathbf{X}_{i}\mathbf{X}_{i}') \circ (\mathbf{X}_{i}\mathbf{X}_{i}') \right], \\ & \mathbf{Y}_{73N}^{\star} = \sum_{i,j}^{\star} \operatorname{tr} \left[(\mathbf{X}_{i}\mathbf{X}_{i}') \circ (\mathbf{X}_{i}\mathbf{X}_{j}') \right], \\ & \mathbf{Y}_{73N}^{\star} = \sum_{i,j}^{\star} \operatorname{tr} \left[(\mathbf{X}_{i}\mathbf{X}_{i}') \circ (\mathbf{X}_{i}\mathbf{X}_{j}') \right], \\ & \mathbf{Y}_{8N}^{\star} = \frac{1}{3} \left[(N-1)(N^{2} - 3N + 3)Y_{72N}^{\star} + (2N - 3)(Y_{3N}^{\star} + 2Y_{82N}^{\star}) \right. \\ & \left. + 2(N - 3)(Y_{7N}^{\star} + 2Y_{83N}^{\star}) - 4(N^{2} - 3N + 3)Y_{73N}^{\star} - N^{3}Y_{81N}^{\star} \right], \\ & \mathbf{Y}_{81N}^{\star} = \sum_{i} \operatorname{tr} \left\{ \left[(\mathbf{X}_{i} - \bar{\mathbf{X}})(\mathbf{X}_{i} - \bar{\mathbf{X}})' \right] \circ \left[(\mathbf{X}_{i} - \bar{\mathbf{X}})(\mathbf{X}_{i} - \bar{\mathbf{X}})' \right] \right\}, \\ & \mathbf{Y}_{82N}^{\star} = \sum_{i,j}^{\star} \operatorname{tr} \left[(\mathbf{X}_{i}\mathbf{X}_{j}') \circ (\mathbf{X}_{j}\mathbf{X}_{i}') \right], \\ & \mathbf{Y}_{83N}^{\star} = \sum_{i,j}^{\star} \operatorname{tr} \left[(\mathbf{X}_{i}\mathbf{X}_{j}') \circ (\mathbf{X}_{j}\mathbf{X}_{i}') \right] \\ & = N^{2}Y_{831N}^{\star} + 2(N - 1)Y_{73N}^{\star} - (N - 1)^{2}Y_{72N}^{\star} - Y_{82N}^{\star}, \\ & \mathbf{Y}_{831N}^{\star} = \sum_{i} \operatorname{tr} \left\{ \left[(\mathbf{X}_{i} - \bar{\mathbf{X}})\mathbf{X}_{i}' \right] \circ \left[\mathbf{X}_{i}(\mathbf{X}_{i} - \bar{\mathbf{X}})' \right] \right\}. \end{split}$$

S4 Proof of Theorem 1

Proof. From the moment derivations in S2, note that $E(T_{1N}) = tr(\mathbf{\Sigma}_{\mathbf{R}})$ and

$$\operatorname{Var}\left[\frac{T_{1N}}{\operatorname{tr}(\boldsymbol{\Sigma}_{\mathrm{R}})}\right] = \frac{\operatorname{Var}(Y_{1N})}{\operatorname{tr}^{2}(\boldsymbol{\Sigma}_{\mathrm{R}})} + \frac{\operatorname{Var}(Y_{4N})}{\operatorname{tr}^{2}(\boldsymbol{\Sigma}_{\mathrm{R}})} \to 0\,.$$

Hence, it follows that

$$\frac{T_{1N}}{\operatorname{tr}(\boldsymbol{\Sigma}_{\mathrm{R}})} \xrightarrow{P} 1 \,.$$

Similarly, it can be shown that

$$\frac{T_{2N}}{\operatorname{tr}(\boldsymbol{\Sigma}_{\mathrm{R}}^2)} \xrightarrow{P} 1 \text{ and } \frac{T_{4N}}{\operatorname{tr}(\boldsymbol{\Sigma}^2)} \xrightarrow{P} 1.$$

Combined these two results also prove the ratio-consistency of T_{5N} . Finally, using the variance and covariance expressions that involve Y_{3N} , Y_{7N} and Y_{8N} it can be shown that

$$\frac{\operatorname{Var}\left(T_{3N}\right)}{\operatorname{tr}^{2}(\boldsymbol{\Sigma}_{\mathrm{R}}^{2})} \to 0 \,.$$

S5 Proof of Theorem 2

Proof. The essential step is to show

$$\frac{G_N - E(G_N)}{\operatorname{Var}(G_N)} \xrightarrow{d} \mathcal{N}(0, 1)$$

where $G_N = Y_{2N}/\text{tr}(\Sigma_R^2) - 2Y_{1N}/\text{tr}(\Sigma_R)$. To accomplish this, the martingale central limit theorem will be used. Let $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_k = \sigma\{X_1, \ldots, X_k\}$ for $k = 1, \ldots, N$. Also let E_k be the conditional expectation given \mathcal{F}_k , $D_{Nk} = E_k(G_N) - E_{k-1}(G_N)$ and $S_{Nm} = \sum_{k=1}^m D_{Nk} =$

$$\begin{split} E_m(G_N) &- E(G_N). \text{ Then} \\ D_{Nk} = & \frac{2}{cN} \left[\operatorname{tr} \left(\mathbf{Z}'_k \mathbf{\Lambda} \mathbf{Z}_k \mathbf{\Sigma}_{\mathcal{C}} \right) - \operatorname{tr} \left(\mathbf{\Sigma}_{\mathcal{C}} \otimes \mathbf{\Lambda} \right) \right] \\ &+ \frac{2}{c^2 N(N-1)} \frac{1}{\operatorname{tr}(\mathbf{\Sigma}_{\mathcal{R}}^2)} \left[\operatorname{tr} \left(\mathbf{Z}'_k \mathbf{R}_{k-1} \mathbf{Z}_k \mathbf{\Sigma}_{\mathcal{C}} \right) - \operatorname{tr} \left(\mathbf{\Sigma}_{\mathcal{C}} \otimes \mathbf{R}_{k-1} \right) \right] \\ \text{where } \mathbf{\Lambda} = & \mathbf{\Sigma}_{\mathcal{R}}^2 / \operatorname{tr}(\mathbf{\Sigma}_{\mathcal{R}}^2) - \mathbf{\Sigma}_{\mathcal{R}} / \operatorname{tr}(\mathbf{\Sigma}_{\mathcal{R}}), \ \mathbf{Q}_k = \sum_{i=1}^k (\mathbf{X}_i \mathbf{X}'_i - c \mathbf{\Sigma}_{\mathcal{R}}) \text{ and } \mathbf{R}_k = \end{split}$$

 $\boldsymbol{\Sigma}_{\mathrm{R}}^{1/2} \boldsymbol{Q}_k \boldsymbol{\Sigma}_{\mathrm{R}}^{1/2}$. We need the following three lemmata:

Lemma 1. For any N, $\{D_{Nk}, 1 \leq k \leq N\}$ is a martingale difference sequence with respect to the σ -fields $\{\mathcal{F}_k, 1 \leq k \leq N\}$.

Proof. Note that $E(D_{Nk}) = 0$ and write $S_{Nq} = S_{Nm} + E_q(G_N) - E_m(G_N)$ for q > m. Then it can be shown that $E(S_{Nq}|\mathcal{F}_m) = S_{Nm}$ as desired. \Box

Lemma 2. Let $\sigma_{Nk}^2 = E_{k-1}(D_{Nk}^2)$. Then

$$\frac{\sum_{k=1}^N \sigma_{Nk}^2}{\operatorname{Var}(G_N)} \xrightarrow{P} 1.$$

Proof. First note that

$$\begin{split} \sum_{k=1}^{N} \sigma_{Nk}^{2} &= \frac{8 \text{tr}(\boldsymbol{\Sigma}_{\mathrm{C}}^{2})}{c^{4} N^{2} (N-1)^{2} \text{tr}^{2} (\boldsymbol{\Sigma}_{\mathrm{R}}^{2})} \sum_{k=1}^{N} \text{tr}(\boldsymbol{R}_{k-1}^{2}) \\ &+ \frac{4 B \text{tr}(\boldsymbol{\Delta}_{\boldsymbol{\Sigma}_{\mathrm{C}}}^{2})}{c^{4} N^{2} (N-1)^{2} \text{tr}^{2} (\boldsymbol{\Sigma}_{\mathrm{R}}^{2})} \sum_{k=1}^{N} \text{tr}(\boldsymbol{\Delta}_{\boldsymbol{R}_{k-1}}^{2}) \\ &+ \frac{16 \text{tr}(\boldsymbol{\Sigma}_{\mathrm{C}}^{2})}{c^{3} N^{2} (N-1) \text{tr}(\boldsymbol{\Sigma}_{\mathrm{R}}^{2})} \sum_{k=1}^{N} \left[\frac{\text{tr}(\boldsymbol{Q}_{k-1} \boldsymbol{\Sigma}_{\mathrm{R}}^{3})}{\text{tr}(\boldsymbol{\Sigma}_{\mathrm{R}}^{2})} - \frac{\text{tr}(\boldsymbol{Q}_{k-1} \boldsymbol{\Sigma}_{\mathrm{R}}^{2})}{\text{tr}(\boldsymbol{\Sigma}_{\mathrm{R}})} \right] \\ &+ \frac{8 B \text{tr}(\boldsymbol{\Delta}_{\boldsymbol{\Sigma}_{\mathrm{C}}}^{2})}{c^{3} N^{2} (N-1) \text{tr}(\boldsymbol{\Sigma}_{\mathrm{R}}^{2})} \sum_{k=1}^{N} \text{tr}(\boldsymbol{R}_{k-1} \circ \boldsymbol{\Lambda}) + H \\ &= H_{1N} + H_{2N} + H_{3N} + H_{4N} + H \,, \end{split}$$

where H is a finite constant. To complete the proof, we need to show that $\operatorname{Var}(H_{mN}) = o\{[\operatorname{Var}(G_N)]^2\}$ for m = 1, 2, 3, 4. We will prove it for m = 1since the arguments for m = 2, 3, 4 are similar. In this direction, first note

that

$$\begin{aligned} \operatorname{Var}(G_N) = & 4 \frac{\operatorname{Var}(Y_{1N})}{\operatorname{tr}^2(\boldsymbol{\Sigma}_{\mathrm{R}})} + \frac{\operatorname{Var}(Y_{2N})}{\operatorname{tr}^2(\boldsymbol{\Sigma}_{\mathrm{R}}^2)} - 4 \frac{\operatorname{Cov}(Y_{1N}, Y_{2N})}{\operatorname{tr}(\boldsymbol{\Sigma}_{\mathrm{R}})\operatorname{tr}(\boldsymbol{\Sigma}_{\mathrm{R}}^2)} \\ = & \frac{8\operatorname{tr}(\boldsymbol{\Sigma}_{\mathrm{C}}^2)}{Nc^2} \operatorname{tr}(\boldsymbol{\Lambda}^2) + \frac{4B\operatorname{tr}\left(\boldsymbol{\Delta}_{\boldsymbol{\Sigma}_{\mathrm{C}}}^2\right)}{Nc^2} \operatorname{tr}\left(\boldsymbol{\Delta}_{\boldsymbol{\Lambda}}^2\right) + \frac{4\operatorname{tr}^2(\boldsymbol{\Sigma}_{\mathrm{C}}^2)}{N^2c^4} \left\{1 + O(N^{-1})\right\} \end{aligned}$$

and hence for large N, there exists a constant λ_1 such that

$$\left[\operatorname{Var}(G_N)\right]^2 \ge \lambda_1 \max\left\{\frac{\operatorname{tr}^3(\boldsymbol{\Sigma}_{\mathrm{C}}^2)}{N^3 c^6} \operatorname{tr}(\boldsymbol{\Lambda}^2), \frac{\operatorname{tr}^4(\boldsymbol{\Sigma}_{\mathrm{C}}^2)}{N^4 c^8}, \frac{\operatorname{tr}^2(\boldsymbol{\Sigma}_{\mathrm{C}}^2)}{N^2 c^4} \operatorname{tr}^2(\boldsymbol{\Lambda}^2)\right\}.$$

Write

$$\operatorname{tr} \left(\boldsymbol{R}_{k-1}^{2} \right) = \sum_{i=1}^{k-1} \sum_{j=1}^{k-1} \operatorname{tr} \left[\left(\boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\prime} - c \boldsymbol{\Sigma}_{\mathrm{R}} \right) \boldsymbol{\Sigma}_{\mathrm{R}} \left(\boldsymbol{X}_{j} \boldsymbol{X}_{j}^{\prime} - c \boldsymbol{\Sigma}_{\mathrm{R}} \right) \boldsymbol{\Sigma}_{\mathrm{R}} \right]$$
$$= \sum_{i,j}^{*} \operatorname{tr} \left[\left(\boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\prime} - c \boldsymbol{\Sigma}_{\mathrm{R}} \right) \boldsymbol{\Sigma}_{\mathrm{R}} \left(\boldsymbol{X}_{j} \boldsymbol{X}_{j}^{\prime} - c \boldsymbol{\Sigma}_{\mathrm{R}} \right) \boldsymbol{\Sigma}_{\mathrm{R}} \right]$$
$$+ \sum_{i=1}^{k-1} \operatorname{tr} \left[\left(\boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\prime} - c \boldsymbol{\Sigma}_{\mathrm{R}} \right) \boldsymbol{\Sigma}_{\mathrm{R}} \left(\boldsymbol{X}_{i} \boldsymbol{X}_{j}^{\prime} - c \boldsymbol{\Sigma}_{\mathrm{R}} \right) \boldsymbol{\Sigma}_{\mathrm{R}} \right]$$

and note that

$$\operatorname{Var}\left[\operatorname{tr}\left(\boldsymbol{R}_{k-1}^{2}\right)\right] = (k-1)(k-2)\operatorname{Var}\left\{\operatorname{tr}\left[\left(\boldsymbol{X}_{i}\boldsymbol{X}_{i}^{\prime}-c\boldsymbol{\Sigma}_{\mathrm{R}}\right)\boldsymbol{\Sigma}_{\mathrm{R}}\left(\boldsymbol{X}_{j}\boldsymbol{X}_{j}^{\prime}-c\boldsymbol{\Sigma}_{\mathrm{R}}\right)\boldsymbol{\Sigma}_{\mathrm{R}}\right]\right\} + (k-1)\operatorname{Var}\left\{\operatorname{tr}\left[\left(\boldsymbol{X}_{i}\boldsymbol{X}_{i}^{\prime}-c\boldsymbol{\Sigma}_{\mathrm{R}}\right)\boldsymbol{\Sigma}_{\mathrm{R}}\left(\boldsymbol{X}_{i}\boldsymbol{X}_{i}^{\prime}-c\boldsymbol{\Sigma}_{\mathrm{R}}\right)\boldsymbol{\Sigma}_{\mathrm{R}}\right]\right\}.$$

Next, algebraic manipulation shows that

$$\begin{aligned} &\operatorname{Var}\left\{\operatorname{tr}\left[\left(\boldsymbol{X}_{i}\boldsymbol{X}_{i}^{\prime}-c\boldsymbol{\Sigma}_{\mathrm{R}}\right)\boldsymbol{\Sigma}_{\mathrm{R}}\left(\boldsymbol{X}_{j}\boldsymbol{X}_{j}^{\prime}-c\boldsymbol{\Sigma}_{\mathrm{R}}\right)\boldsymbol{\Sigma}_{\mathrm{R}}\right]\right\}\\ &=&2\operatorname{tr}^{2}(\boldsymbol{\Sigma}_{\mathrm{C}}^{2})\operatorname{tr}^{2}(\boldsymbol{\Sigma}_{\mathrm{R}}^{4})+2\operatorname{tr}^{2}(\boldsymbol{\Sigma}_{\mathrm{C}}^{2})\operatorname{tr}(\boldsymbol{\Sigma}_{\mathrm{R}}^{8})+4B\operatorname{tr}^{2}(\boldsymbol{\Sigma}_{\mathrm{C}}^{2})\operatorname{tr}(\boldsymbol{\Delta}_{\boldsymbol{\Sigma}_{\mathrm{C}}}^{2})\operatorname{tr}(\boldsymbol{\Delta}_{\boldsymbol{\Sigma}_{\mathrm{R}}}^{2})\\ &+B^{2}\operatorname{tr}^{2}(\boldsymbol{\Delta}_{\boldsymbol{\Sigma}_{\mathrm{C}}}^{2})\operatorname{tr}\left[(\boldsymbol{\Sigma}_{\mathrm{R}}^{2}\circ\boldsymbol{\Sigma}_{\mathrm{R}}^{2})^{2}\right]\end{aligned}$$

which implies that for large N there exists constant λ_2 such that

$$\operatorname{Var}\left\{\operatorname{tr}\left[\left(\boldsymbol{X}_{i}\boldsymbol{X}_{i}^{\prime}-c\boldsymbol{\Sigma}_{\mathrm{R}}\right)\boldsymbol{\Sigma}_{\mathrm{R}}\left(\boldsymbol{X}_{j}\boldsymbol{X}_{j}^{\prime}-c\boldsymbol{\Sigma}_{\mathrm{R}}\right)\boldsymbol{\Sigma}_{\mathrm{R}}\right]\right\} \leq \lambda_{2}\operatorname{tr}^{2}(\boldsymbol{\Sigma}_{\mathrm{C}}^{2})\operatorname{tr}^{2}(\boldsymbol{\Sigma}_{\mathrm{R}}^{4}).$$

Also for large N there exists constant λ_3 such that

$$\begin{split} & E\left\{\left[\sum_{r_1,r_2,r_3,r_4} \left(\boldsymbol{X}_i \boldsymbol{X}'_i - c\boldsymbol{\Sigma}_{\mathrm{R}}\right)_{r_1 r_2} \left(\boldsymbol{\Sigma}_{\mathrm{R}}\right)_{r_2 r_3} \left(\boldsymbol{X}_i \boldsymbol{X}'_i - c\boldsymbol{\Sigma}_{\mathrm{R}}\right)_{r_3 r_4} \left(\boldsymbol{\Sigma}_{\mathrm{R}}\right)_{r_4 r_1}\right]^2\right\} \\ & \leq \lambda_3 \sum_{r_1,r_2} \left[E\left(\boldsymbol{X}_i \boldsymbol{X}'_i - c\boldsymbol{\Sigma}_{\mathrm{R}}\right)^2_{r_1 r_2}\right] \sum_{r_1,r_2} \left(\boldsymbol{\Sigma}_{\mathrm{R}}\right)^4_{r_1 r_2} \\ & \leq \lambda_3 \mathrm{tr}^2(\boldsymbol{\Sigma}_{\mathrm{C}}^2) \mathrm{tr}^2(\boldsymbol{\Sigma}_{\mathrm{R}}^2) \mathrm{tr}(\boldsymbol{\Sigma}_{\mathrm{R}}^4) \,. \end{split}$$

Therefore for large ${\cal N}$

$$\operatorname{Var}(H_{1N}) = \frac{64\operatorname{tr}^{2}(\boldsymbol{\Sigma}_{\mathrm{C}}^{2})}{c^{8}N^{4}(N-1)^{4}\operatorname{tr}^{4}(\boldsymbol{\Sigma}_{\mathrm{R}}^{2})} \sum_{k=1}^{N} \operatorname{Var}\left[\operatorname{tr}\left(\boldsymbol{R}_{k-1}^{2}\right)\right]$$
$$\leq \frac{64\lambda_{2}\operatorname{tr}^{4}(\boldsymbol{\Sigma}_{\mathrm{C}}^{2})\operatorname{tr}^{2}(\boldsymbol{\Sigma}_{\mathrm{R}}^{4})}{c^{8}N^{4}\operatorname{tr}^{4}(\boldsymbol{\Sigma}_{\mathrm{R}}^{2})} + \frac{64\lambda_{3}\operatorname{tr}^{4}(\boldsymbol{\Sigma}_{\mathrm{C}}^{2})\operatorname{tr}(\boldsymbol{\Sigma}_{\mathrm{R}}^{4})}{c^{8}N^{6}\operatorname{tr}^{2}(\boldsymbol{\Sigma}_{\mathrm{R}}^{2})}$$

and hence

$$\frac{\operatorname{Var}(H_{1N})}{[\operatorname{Var}(G_N)]^2} \le \frac{64\lambda_2}{\lambda_1} \frac{\operatorname{tr}^2(\boldsymbol{\Sigma}_{\mathrm{R}}^4)}{\operatorname{tr}^2(\boldsymbol{\Sigma}_{\mathrm{R}}^2)} + \frac{64\lambda_3}{\lambda_1 N^2} \frac{\operatorname{tr}(\boldsymbol{\Sigma}_{\mathrm{R}}^4)}{\operatorname{tr}^2(\boldsymbol{\Sigma}_{\mathrm{R}}^2)} \to 0$$

as desired.

Lemma 3. It holds that

$$\frac{\sum_{k=1}^{N} E(D_{Nk}^4)}{[\operatorname{Var}(G_N)]^2} \to 0\,.$$

Proof. There exists a constant λ_4 such that for large N,

$$\begin{split} E(D_{Nk}^{4}) \leq &\lambda_{4} \left\{ \frac{1}{c^{4}N^{3}} E[\operatorname{tr}\left(\boldsymbol{Z}_{k}^{\prime}\boldsymbol{\Lambda}\boldsymbol{Z}_{k}\boldsymbol{\Sigma}_{\mathrm{C}}\right) - \operatorname{tr}\left(\boldsymbol{\Sigma}_{\mathrm{C}}\otimes\boldsymbol{\Lambda}\right)]^{4} \\ &+ \frac{2}{c^{8}N^{4}(N-1)^{4}} \frac{1}{\operatorname{tr}^{4}(\boldsymbol{\Sigma}_{\mathrm{R}}^{2})} \sum_{k=1}^{N} E[\operatorname{tr}\left(\boldsymbol{Z}_{k}^{\prime}\boldsymbol{R}_{k-1}\boldsymbol{Z}_{k}\boldsymbol{\Sigma}_{\mathrm{C}}\right) - \operatorname{tr}\left(\boldsymbol{\Sigma}_{\mathrm{C}}\otimes\boldsymbol{R}_{k-1}\right)]^{4} \right\} \\ \leq &\lambda_{4} \left\{ \frac{1}{N^{3}} \frac{\operatorname{tr}^{2}(\boldsymbol{\Sigma}_{\mathrm{C}}^{2})}{c^{4}} \operatorname{tr}^{2}(\boldsymbol{\Lambda}^{2}) + \frac{2}{N^{6}} \frac{\operatorname{tr}^{4}(\boldsymbol{\Sigma}_{\mathrm{C}}^{2})}{c^{8}} \left[\frac{\operatorname{tr}(\boldsymbol{\Sigma}_{\mathrm{R}}^{4})}{\operatorname{tr}^{2}(\boldsymbol{\Sigma}_{\mathrm{R}}^{2})} \right]^{2} \right\} \end{split}$$

Therefore,

$$\frac{\sum_{k=1}^{N} E(D_{Nk}^{4})}{[\operatorname{Var}(G_{N})]^{2}} \leq \frac{\lambda_{4}}{\lambda_{1}} \left\{ \frac{1}{N} + \left[\frac{\operatorname{tr}(\boldsymbol{\Sigma}_{\mathrm{R}}^{4})}{\operatorname{tr}^{2}(\boldsymbol{\Sigma}_{\mathrm{R}}^{2})} \right]^{2} \right\} \to 0.$$

Combining the three lemmata it follows that

$$\frac{G_N - E(G_N)}{\operatorname{Var}(G_N)} \stackrel{d}{\to} \mathcal{N}(0, 1) \,.$$

Next write

$$\frac{\operatorname{tr}^{2}(\boldsymbol{\Sigma}_{\mathrm{R}})}{\operatorname{tr}(\boldsymbol{\Sigma}_{\mathrm{R}}^{2})}\frac{U_{N}+1}{r} - 1 = \frac{G_{N} - \tilde{T}_{1N}^{2}}{\left(1 + \tilde{T}_{1N}\right)^{2}}$$

where

$$\tilde{T}_{1N} = \frac{T_{1N} - \operatorname{tr}(\boldsymbol{\Sigma}_{\mathrm{R}})}{\operatorname{tr}(\boldsymbol{\Sigma}_{\mathrm{R}})}.$$

By Theorem 1, it follows that $\tilde{T}_{1N} \xrightarrow{P} 0$ and $\sigma_{U_N}^{-1} \tilde{T}_{1N} \xrightarrow{P} 0$. Finally, moment derivations in S2 imply that $\operatorname{Var}(G_N) = \sigma_{U_N}^2 \{1 + o(1)\}$. It therefore holds that $\sigma_{U_N}^{-1} G_N \xrightarrow{d} N(0, 1)$, and hence

$$\sigma_{U_N}^{-1} \left[\frac{\operatorname{tr}^2(\boldsymbol{\Sigma}_{\mathrm{R}})}{\operatorname{tr}(\boldsymbol{\Sigma}_{\mathrm{R}}^2)} \frac{U_N + 1}{r} - 1 \right] \stackrel{d}{\to} \mathcal{N}(0, 1)$$

as desired.

S6 Sketch of the Proof of Theorem 4

Sketch of the Proof. The essential step is to show that

$$\frac{G_N - E(G_N)}{\operatorname{Var}(G_N)} \xrightarrow{d} \mathcal{N}(0,1)$$

where now $G_N = Y_{2N} - 2Y_{1N}$. Since G_N is again a linear combination of Y_{1N} and Y_{2N} , the proof of this fact is similar to that of the asymptotic normality of G_N in the proof of Theorem 2. For this reason, we skip the details. Next write $V_N = G_N + 2Y_{3N} - 2Y_{4N} + Y_{5N}$ and note that $E(V_N) = \text{tr} [(\Sigma_R - \mathbf{I}_r)^2]$. Moment derivations in S2 imply that $\text{Var}(V_N) = \sigma_{V_N}^2 \{1 + o(1)\}$. Therefore

$$\frac{V_N - \operatorname{tr}\left[(\boldsymbol{\Sigma}_{\mathrm{R}} - \mathbf{I}_r)^2\right]}{\sigma_{V_N}} \stackrel{d}{\to} \mathrm{N}(0, 1)$$

as desired.

S7 Proof of Theorem 6

Proof. The essential step is to show that

$$\frac{G_N - E(G_N)}{\operatorname{Var}(G_N)} \xrightarrow{d} \mathcal{N}(0, 1)$$

where now $G_N = Y_{2N} - Y_{3N}$. Although the proof of this fact is similar to that in Theorems 2 and 4, we provide some details because G_N is no longer a linear combination of Y_{1N} and Y_{2N} . Let $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_k =$

$$\begin{aligned} \sigma\{\boldsymbol{X}_{1},\ldots,\boldsymbol{X}_{k}\} \text{ for } k &= 1,\ldots,N. \text{ Let} \\ D_{Nk} = & E_{k}(G_{N}) - E_{k-1}(G_{N}) \\ &= \frac{2}{c^{2}N(N-1)} \left[\operatorname{tr}\left(\boldsymbol{Z}_{k}^{\prime}\boldsymbol{R}_{k-1}\boldsymbol{Z}_{k}\boldsymbol{\Sigma}_{\mathrm{C}}\right) - \operatorname{tr}\left(\boldsymbol{\Sigma}_{\mathrm{C}}\otimes\boldsymbol{R}_{k-1}\right) \right] \\ &+ \frac{2}{c^{2}N(N-1)} \left\{ \operatorname{tr}\left(\boldsymbol{Z}_{k}^{\prime}\boldsymbol{\Sigma}_{\mathrm{R}}^{1/2}\boldsymbol{\Delta}_{\boldsymbol{Q}_{k-1}}\boldsymbol{\Sigma}_{\mathrm{R}}^{1/2}\boldsymbol{Z}_{k}\boldsymbol{\Sigma}_{\mathrm{C}}\right) - \operatorname{tr}\left[\boldsymbol{\Sigma}_{\mathrm{C}}\otimes\left(\boldsymbol{\Sigma}_{\mathrm{R}}\boldsymbol{\Delta}_{\boldsymbol{Q}_{k-1}}\right) \right] \right\} \\ &+ \frac{2}{cN} \left[\operatorname{tr}\left(\boldsymbol{Z}_{k}^{\prime}\boldsymbol{\Sigma}_{\mathrm{R}}^{2}\boldsymbol{Z}_{k}\boldsymbol{\Sigma}_{\mathrm{C}}\right) - \operatorname{tr}\left(\boldsymbol{\Sigma}_{\mathrm{C}}\otimes\boldsymbol{\Sigma}_{\mathrm{R}}^{2}\right) \right] \\ &+ \frac{2}{cN} \left\{ \operatorname{tr}\left(\boldsymbol{Z}_{k}^{\prime}\boldsymbol{\Sigma}_{\mathrm{R}}^{1/2}\boldsymbol{\Delta}_{\boldsymbol{\Sigma}_{\mathrm{R}}}\boldsymbol{\Sigma}_{\mathrm{R}}^{1/2}\boldsymbol{Z}_{k}\boldsymbol{\Sigma}_{\mathrm{C}}\right) - \operatorname{tr}\left[\boldsymbol{\Sigma}_{\mathrm{C}}\otimes\left(\boldsymbol{\Sigma}_{\mathrm{R}}\boldsymbol{\Delta}_{\boldsymbol{\Sigma}_{\mathrm{R}}}\right) \right] \right\}. \end{aligned}$$

It can be shown that for any N, $\{D_{Nk}, 1 \le k \le N\}$ is a martingale difference sequence with respect to the σ -fields $\{\mathcal{F}_k, 1 \le k \le N\}$. Next let $\sigma_{Nk}^2 = E_{k-1}(D_{Nk}^2)$ and write

$$\begin{split} \sum_{k=1}^{N} \sigma_{Nk}^{2} &= \frac{8 \text{tr}(\boldsymbol{\Sigma}_{\mathrm{C}}^{2})}{c^{4} N^{2} (N-1)^{2}} \sum_{k=1}^{N} \text{tr} \left[\boldsymbol{\Sigma}_{\mathrm{R}} \left(\boldsymbol{Q}_{k-1} - \boldsymbol{\Delta}_{\boldsymbol{Q}_{k-1}} \right) \boldsymbol{\Sigma}_{\mathrm{R}} \left(\boldsymbol{Q}_{k-1} - \boldsymbol{\Delta}_{\boldsymbol{Q}_{k-1}} \right) \right] \\ &+ \frac{4B \text{tr}(\boldsymbol{\Delta}_{\boldsymbol{\Sigma}_{\mathrm{C}}}^{2})}{c^{4} N^{2} (N-1)^{2}} \sum_{k=1}^{N} \text{tr} \left[\left(\boldsymbol{R}_{k-1} - \boldsymbol{\Sigma}_{\mathrm{R}}^{1/2} \boldsymbol{\Delta}_{\boldsymbol{Q}_{k-1}} \boldsymbol{\Sigma}_{\mathrm{R}}^{1/2} \right) \circ \left(\boldsymbol{R}_{k-1} - \boldsymbol{\Sigma}_{\mathrm{R}}^{1/2} \boldsymbol{\Delta}_{\boldsymbol{Q}_{k-1}} \boldsymbol{\Sigma}_{\mathrm{R}}^{1/2} \right) \right] \\ &+ \frac{16 \text{tr}(\boldsymbol{\Sigma}_{\mathrm{C}}^{2})}{c^{3} N^{2} (N-1)} \sum_{k=1}^{N} \text{tr} \left[\boldsymbol{\Sigma}_{\mathrm{R}} \left(\boldsymbol{Q}_{k-1} - \boldsymbol{\Delta}_{\boldsymbol{Q}_{k-1}} \right) \boldsymbol{\Sigma}_{\mathrm{R}} \left(\boldsymbol{\Sigma}_{\mathrm{R}} - \boldsymbol{\Delta}_{\boldsymbol{\Sigma}_{\mathrm{R}}} \right) \right] \\ &+ \frac{8B \text{tr}(\boldsymbol{\Delta}_{\boldsymbol{\Sigma}_{\mathrm{C}}}^{2})}{c^{3} N^{2} (N-1)} \sum_{k=1}^{N} \text{tr} \left[\left(\boldsymbol{R}_{k-1} - \boldsymbol{\Sigma}_{\mathrm{R}}^{1/2} \boldsymbol{\Delta}_{\boldsymbol{Q}_{k-1}} \boldsymbol{\Sigma}_{\mathrm{R}}^{1/2} \right) \circ \left(\boldsymbol{\Sigma}_{\mathrm{R}}^{2} - \boldsymbol{\Sigma}_{\mathrm{R}}^{1/2} \boldsymbol{\Delta}_{\boldsymbol{\Sigma}_{\mathrm{R}}} \boldsymbol{\Sigma}_{\mathrm{R}}^{1/2} \right) \right] \\ &+ F \\ &= F_{1N} + F_{2N} + F_{3N} + F_{4N} + F \,, \end{split}$$

where F is a finite constant. To prove that $\sum_{k=1}^{N} \sigma_{Nk}^2 / \operatorname{Var}(G_N) \xrightarrow{P} 1$ it suffices to show that $\operatorname{Var}(F_{mN}) / [\operatorname{Var}(G_N)]^2 \to 0$ for all m = 1, 2, 3, 4. In this direction, note that

$$\begin{aligned} \operatorname{Var}(G_N) = &\operatorname{Var}(Y_{2N}) + \operatorname{Var}(Y_{3N}) - 2\operatorname{Cov}(Y_{2N}, Y_{3N}) \\ = & \frac{4}{N^2} \left[\frac{\operatorname{tr}(\boldsymbol{\Sigma}_{\mathrm{C}}^2)}{c^2} \right]^2 \operatorname{tr}^2(\boldsymbol{\Sigma}_{\mathrm{R}}^2) + \frac{8}{N} \frac{\operatorname{tr}(\boldsymbol{\Sigma}_{\mathrm{C}}^2)}{c^2} \operatorname{tr} \left[\boldsymbol{\Sigma}_{\mathrm{R}}(\boldsymbol{\Sigma}_{\mathrm{R}} - \boldsymbol{\Delta}_{\boldsymbol{\Sigma}_{\mathrm{R}}}) \boldsymbol{\Sigma}_{\mathrm{R}}(\boldsymbol{\Sigma}_{\mathrm{R}} - \boldsymbol{\Delta}_{\boldsymbol{\Sigma}_{\mathrm{R}}}) \right] \\ & + \frac{4B}{N} \frac{\operatorname{tr}(\boldsymbol{\Delta}_{\boldsymbol{\Sigma}_{\mathrm{C}}}^2)}{c^2} \operatorname{tr} \left\{ \left[\boldsymbol{\Sigma}_{\mathrm{R}}^{1/2} (\boldsymbol{\Sigma}_{\mathrm{R}} - \boldsymbol{\Delta}_{\boldsymbol{\Sigma}_{\mathrm{R}}}) \boldsymbol{\Sigma}_{\mathrm{R}}^{1/2} \right] \circ \left[\boldsymbol{\Sigma}_{\mathrm{R}}^{1/2} (\boldsymbol{\Sigma}_{\mathrm{R}} - \boldsymbol{\Delta}_{\boldsymbol{\Sigma}_{\mathrm{R}}}) \boldsymbol{\Sigma}_{\mathrm{R}}^{1/2} \right] \right\} \\ & \times \left\{ 1 + O(1) \right\} \end{aligned}$$

and hence for large N, there exists a constant λ_5 such that

$$\left[\operatorname{Var}(G_N)\right]^2 \ge \frac{\lambda_5}{N^4} \left[\frac{\operatorname{tr}(\boldsymbol{\Sigma}_{\mathrm{C}}^2)}{c^2}\right]^4 \operatorname{tr}^4(\boldsymbol{\Sigma}_{\mathrm{R}}^2).$$

Expanding F_{1N} , we have that

$$\sum_{k=1}^{N} \operatorname{tr} \left[\Sigma_{\mathrm{R}} \left(\boldsymbol{Q}_{k-1} - \boldsymbol{\Delta}_{\boldsymbol{Q}_{k-1}} \right) \Sigma_{\mathrm{R}} \left(\boldsymbol{Q}_{k-1} - \boldsymbol{\Delta}_{\boldsymbol{Q}_{k-1}} \right) \right]$$
$$= \sum_{k=1}^{N} \operatorname{tr} \left(\boldsymbol{R}_{k-1}^{2} \right) + \sum_{k=1}^{N} \operatorname{tr} \left[\left(\Sigma_{\mathrm{R}} \boldsymbol{\Delta}_{\boldsymbol{Q}_{k-1}} \right)^{2} \right] - 2 \sum_{k=1}^{N} \operatorname{tr} \left(\boldsymbol{\Delta}_{\boldsymbol{Q}_{k-1}} \boldsymbol{Q}_{k-1} \right)$$
$$= F_{11N} + F_{12N} + F_{13N} .$$

From the proof in S5, it follows that for large N there exist constants λ_6 and λ_7 such that

$$\operatorname{Var}\left[\frac{8\operatorname{tr}(\boldsymbol{\Sigma}_{\mathrm{C}}^{2})}{c^{4}N^{2}(N-1)^{2}}\sum_{k=1}^{N}\operatorname{tr}\left(\boldsymbol{R}_{k-1}^{2}\right)\right] \\ \leq \frac{64\lambda_{6}\operatorname{tr}^{4}(\boldsymbol{\Sigma}_{\mathrm{C}}^{2})\operatorname{tr}^{2}(\boldsymbol{\Sigma}_{\mathrm{R}}^{4})}{c^{8}N^{4}} + \frac{64\lambda_{7}\operatorname{tr}^{4}(\boldsymbol{\Sigma}_{\mathrm{C}}^{2})\operatorname{tr}^{2}(\boldsymbol{\Sigma}_{\mathrm{R}}^{2})\operatorname{tr}(\boldsymbol{\Sigma}_{\mathrm{R}}^{4})}{c^{8}N^{6}}$$

and therefore

$$\frac{\operatorname{Var}\left[\frac{8\operatorname{tr}(\boldsymbol{\Sigma}_{\mathrm{C}}^2)}{c^4N^2(N-1)^2}F_{11N}\right]}{\left[\operatorname{Var}(G_N)\right]^2} \to 0\,.$$

Similarly, we can prove that

$$\frac{\operatorname{Var}\left[\frac{8\operatorname{tr}(\boldsymbol{\Sigma}_{\mathrm{C}}^{2})}{c^{4}N^{2}(N-1)^{2}}F_{1tN}\right]}{\left[\operatorname{Var}(G_{N})\right]^{2}} \to 0.$$

for t = 2, 3. The above strategy can be used to prove $\operatorname{Var}(F_{mN})/[\operatorname{Var}(G_N)]^2 \to$

0 for m = 2, 3, 4.

Next, note that there exists a constant λ_8 such that

$$\begin{split} E(D_{Nk}^{4}) \leq &\lambda_{8} \left\{ \frac{1}{c^{8}N^{4}(N-1)^{4}} \sum_{k=1}^{N} E\left[\operatorname{tr}\left(\boldsymbol{Z}_{k}^{\prime}\boldsymbol{R}_{k-1}\boldsymbol{Z}_{k}\boldsymbol{\Sigma}_{\mathrm{C}}\right) - \operatorname{tr}\left(\boldsymbol{\Sigma}_{\mathrm{C}}\otimes\boldsymbol{R}_{k-1}\right)\right]^{4} \\ &+ \frac{1}{c^{8}N^{4}(N-1)^{4}} \sum_{k=1}^{N} E\left[\operatorname{tr}\left(\boldsymbol{Z}_{k}^{\prime}\boldsymbol{\Sigma}_{\mathrm{R}}^{1/2}\boldsymbol{\Delta}_{\boldsymbol{Q}_{k-1}}\boldsymbol{\Sigma}_{\mathrm{R}}^{1/2}\boldsymbol{Z}_{k}\boldsymbol{\Sigma}_{\mathrm{C}}\right) - \operatorname{tr}\left(\boldsymbol{\Sigma}_{\mathrm{C}}\otimes\boldsymbol{\Sigma}_{\mathrm{R}}\boldsymbol{\Delta}_{\boldsymbol{Q}_{k-1}}\right)\right]^{4} \\ &+ \frac{1}{c^{4}N^{2}} \sum_{k=1}^{N} E\left[\operatorname{tr}\left(\boldsymbol{Z}_{k}^{\prime}\boldsymbol{\Sigma}_{\mathrm{R}}^{2}\boldsymbol{Z}_{k}\boldsymbol{\Sigma}_{\mathrm{C}}\right) - \operatorname{tr}\left(\boldsymbol{\Sigma}_{\mathrm{C}}\otimes\boldsymbol{\Sigma}_{\mathrm{R}}^{2}\right)\right]^{4} \\ &+ \frac{1}{c^{4}N^{2}} \sum_{k=1}^{N} E\left[\operatorname{tr}\left(\boldsymbol{Z}_{k}^{\prime}\boldsymbol{\Sigma}_{\mathrm{R}}^{1/2}\boldsymbol{\Delta}_{\boldsymbol{\Sigma}_{\mathrm{R}}}\boldsymbol{\Sigma}_{\mathrm{R}}^{1/2}\boldsymbol{Z}_{k}\boldsymbol{\Sigma}_{\mathrm{C}}\right) - \operatorname{tr}\left(\boldsymbol{\Sigma}_{\mathrm{C}}\otimes\boldsymbol{\Delta}_{\boldsymbol{\Sigma}_{\mathrm{R}}}^{2}\right)\right]^{4} \end{split}$$

Similar operations as in S5 imply that

$$\frac{\sum_{k=1}^{N} E(D_{Nk}^4)}{[\operatorname{Var}(G_N)]^2} \to 0\,.$$

Therefore, the martingale central limit theorem holds and

$$\frac{G_N - E(G_N)}{\operatorname{Var}(G_N)} \xrightarrow{d} \mathcal{N}(0, 1) \,.$$

Next write $W_N = G_N - 2(Y_{5N} - Y_{7N}) + (Y_{6N} - Y_{8N})$. The results in S2 imply that $Var(W_N) = \sigma_{W_N}^2 \{1 + o(1)\}$ and

$$\frac{W_N - \operatorname{tr}\left[(\boldsymbol{\Sigma}_{\mathrm{R}} - \boldsymbol{\Delta}_{\boldsymbol{\Sigma}_{\mathrm{R}}})^2\right]}{\sigma_{W_N}} \stackrel{d}{\to} \mathrm{N}(0, 1) \,.$$

S8 Sketch of the Proof of Theorems 3, 5 and 7

Sketch of the Proofs. The asymptotic power in Theorems 3, 5 and 7 follows from the inequalities for $\sigma_{U_N}^2$, $\sigma_{V_N}^2$ and $\sigma_{W_N}^2$ respectively and the results in Theorem 1.

S9 Simulation Tables

This section contains tables that display the simulation results for the proposed sphericity (Tables 1–5) and diagonality (Tables 6–10) test in the main manuscript. Each reported result comes from 1000 simulations.

It is worth mentioning that due to lack of alternative tests, we also checked whether estimation of $tr(\Sigma_{C}^{2})$ by T_{5N} affected the performance of the proposed test statistics. To this end, we considered three alternative test statistics, one for each of the three hypotheses, calculated in the same manner as the corresponding proposed test statistic except that $tr(\Sigma_{C}^{2})$ was replaced by its true value (Tables 11–15 for the sphericity test and Tables 16–20 for the diagonality test). As desired, we did not observe any substantial difference in the empirical sizes and powers with those of the corresponding proposed testing procedures. This provides some assurance that T_{5N} is an efficient estimator of $tr(\Sigma_{C}^{2})$ and does not lead to distorted sizes or to power losses.

Ν	V 20			40			60			100		200			
с	10	100	600	10	100	600	10	100	600	10	100	600	10	100	600
r							Norr	nal Insta	ances						
10	0.048	0.076	0.056	0.041	0.059	0.055	0.055	0.063	0.058	0.060	0.053	0.059	0.053	0.056	0.046
50	0.037	0.061	0.058	0.047	0.062	0.062	0.060	0.057	0.047	0.060	0.044	0.053	0.056	0.053	0.051
100	0.059	0.061	0.065	0.047	0.050	0.054	0.068	0.051	0.052	0.057	0.054	0.049	0.047	0.055	0.056
300	0.052	0.055	0.058	0.046	0.054	0.050	0.047	0.060	0.058	0.046	0.050	0.043	0.051	0.045	0.042
600	0.043	0.048	0.059	0.048	0.056	0.047	0.054	0.045	0.051	0.053	0.049	0.054	0.045	0.051	0.054
r							Gam	na Insta	nces I						
10	0.074	0.073	0.082	0.070	0.062	0.070	0.081	0.075	0.069	0.066	0.076	0.053	0.072	0.079	0.056
50	0.058	0.066	0.067	0.056	0.068	0.043	0.050	0.062	0.052	0.049	0.064	0.060	0.057	0.054	0.058
100	0.050	0.067	0.061	0.049	0.049	0.071	0.060	0.043	0.059	0.063	0.044	0.057	0.060	0.055	0.050
300	0.052	0.043	0.067	0.061	0.051	0.057	0.063	0.049	0.059	0.053	0.056	0.047	0.042	0.045	0.054
600	0.053	0.055	0.071	0.051	0.069	0.059	0.052	0.067	0.059	0.055	0.055	0.048	0.061	0.054	0.055
r							Gamn	na Instai	nces II						
10	0.076	0.058	0.074	0.079	0.070	0.060	0.065	0.076	0.088	0.070	0.067	0.068	0.062	0.078	0.094
50	0.062	0.051	0.075	0.068	0.066	0.052	0.065	0.076	0.063	0.072	0.060	0.059	0.073	0.052	0.046
100	0.056	0.055	0.054	0.056	0.048	0.059	0.058	0.049	0.059	0.054	0.043	0.064	0.058	0.056	0.052
300	0.051	0.053	0.056	0.050	0.050	0.062	0.053	0.043	0.062	0.058	0.055	0.046	0.054	0.056	0.042
600	0.061	0.058	0.056	0.045	0.051	0.047	0.053	0.044	0.060	0.053	0.057	0.066	0.055	0.060	0.044
r							Gamm	a Instar	ices III						
10	0.092	0.095	0.115	0.104	0.084	0.095	0.126	0.096	0.092	0.116	0.096	0.099	0.104	0.102	0.099
50	0.067	0.082	0.069	0.086	0.070	0.072	0.074	0.063	0.075	0.080	0.064	0.056	0.101	0.071	0.066
100	0.062	0.055	0.062	0.055	0.055	0.061	0.066	0.054	0.053	0.069	0.056	0.066	0.063	0.062	0.052
300	0.045	0.051	0.057	0.044	0.062	0.063	0.046	0.056	0.055	0.048	0.063	0.053	0.059	0.058	0.062
600	0.059	0.053	0.060	0.055	0.057	0.066	0.049	0.056	0.056	0.057	0.055	0.048	0.049	0.054	0.056

Table 1: Empirical sizes of the sphericity test when $\Sigma_{\mathrm{R}} = \mathbf{I}_{r}$ and $\alpha = 0.05$.

Table 2: Empirical powers of the sphericity test when $\Sigma_{\rm R}$ is a diagonal matrix with diagonal elements $(\Sigma_{\rm R})_{r_1r_1} \sim U(0.5, 1.5)$ and $\alpha = 0.05$.

N	V20			40			60			100		200			
с	10	100	600	10	100	600	10	100	600	10	100	600	10	100	600
r							Norr	nal Insta	ances						
10	0.482	1.000	1.000	0.951	1.000	1.000	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
50	0.355	1.000	1.000	0.932	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
100	0.568	1.000	1.000	0.984	1.000	1.000	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
300	0.513	1.000	1.000	0.979	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
600	0.532	1.000	1.000	0.979	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
r							Gamr	na Insta	nces I						
10	0.472	1.000	1.000	0.903	1.000	1.000	0.990	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
50	0.388	1.000	1.000	0.920	1.000	1.000	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
100	0.578	1.000	1.000	0.977	1.000	1.000	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
300	0.542	1.000	1.000	0.978	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
600	0.527	1.000	1.000	0.967	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
r							Gamn	na Insta	nces II						
10	0.243	0.989	1.000	0.834	1.000	1.000	0.986	1.000	1.000	0.992	1.000	1.000	1.000	1.000	1.000
50	0.460	1.000	1.000	0.951	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
100	0.628	1.000	1.000	0.942	1.000	1.000	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
300	0.459	1.000	1.000	0.979	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
600	0.526	1.000	1.000	0.973	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
r							Gamm	a Instar	ices III						
10	0.157	0.726	1.000	0.551	1.000	1.000	0.960	1.000	1.000	0.998	1.000	1.000	1.000	1.000	1.000
50	0.385	1.000	1.000	0.819	1.000	1.000	0.989	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
100	0.414	1.000	1.000	0.930	1.000	1.000	0.998	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
300	0.509	1.000	1.000	0.973	1.000	1.000	0.997	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
600	0.498	1.000	1.000	0.969	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

20

Table 3:	Empirical powers	of the sphericity tes	t when $\Sigma_{ m R}$	is a diagonal m	atrix with diag	onal elements	$(\mathbf{\Sigma}_{\mathrm{R}})_{r_1r_1}$	$= 1 + I(r_1$	$\leq 0.9r)$
and $\alpha =$	0.05.								

Ν		20			40			60			100			200	
c	10	100	600	10	100	600	10	100	600	10	100	600	10	100	600
r							Norr	nal Insta	ances						
10	0.124	0.978	1.000	0.245	1.000	1.000	0.455	1.000	1.000	0.813	1.000	1.000	0.998	1.000	1.000
50	0.120	0.981	1.000	0.289	1.000	1.000	0.510	1.000	1.000	0.846	1.000	1.000	1.000	1.000	1.000
100	0.133	0.988	1.000	0.271	1.000	1.000	0.513	1.000	1.000	0.870	1.000	1.000	1.000	1.000	1.000
300	0.135	0.993	1.000	0.276	1.000	1.000	0.492	1.000	1.000	0.898	1.000	1.000	1.000	1.000	1.000
600	0.132	0.990	1.000	0.313	1.000	1.000	0.521	1.000	1.000	0.889	1.000	1.000	1.000	1.000	1.000
r							Gamr	na Insta	nces I						
10	0.151	0.927	1.000	0.292	1.000	1.000	0.443	1.000	1.000	0.746	1.000	1.000	0.994	1.000	1.000
50	0.143	0.980	1.000	0.292	1.000	1.000	0.503	1.000	1.000	0.843	1.000	1.000	1.000	1.000	1.000
100	0.147	0.972	1.000	0.294	1.000	1.000	0.495	1.000	1.000	0.845	1.000	1.000	0.999	1.000	1.000
300	0.133	0.988	1.000	0.306	1.000	1.000	0.504	1.000	1.000	0.883	1.000	1.000	1.000	1.000	1.000
600	0.145	0.983	1.000	0.289	1.000	1.000	0.507	1.000	1.000	0.889	1.000	1.000	1.000	1.000	1.000
r							Gamn	na Instai	nces II						
10	0.146	0.917	1.000	0.249	1.000	1.000	0.408	1.000	1.000	0.693	1.000	1.000	0.990	1.000	1.000
50	0.146	0.978	1.000	0.282	1.000	1.000	0.502	1.000	1.000	0.846	1.000	1.000	0.999	1.000	1.000
100	0.145	0.986	1.000	0.319	1.000	1.000	0.505	1.000	1.000	0.865	1.000	1.000	1.000	1.000	1.000
300	0.120	0.984	1.000	0.286	1.000	1.000	0.493	1.000	1.000	0.844	1.000	1.000	1.000	1.000	1.000
600	0.119	0.976	1.000	0.293	1.000	1.000	0.490	1.000	1.000	0.854	1.000	1.000	1.000	1.000	1.000
r							Gamm	a Instar	nces III						
10	0.161	0.863	1.000	0.268	0.999	1.000	0.391	1.000	1.000	0.619	1.000	1.000	0.962	1.000	1.000
50	0.148	0.965	1.000	0.312	1.000	1.000	0.463	1.000	1.000	0.778	1.000	1.000	0.999	1.000	1.000
100	0.156	0.973	1.000	0.296	1.000	1.000	0.514	1.000	1.000	0.828	1.000	1.000	0.999	1.000	1.000
300	0.124	0.979	1.000	0.271	1.000	1.000	0.470	1.000	1.000	0.846	1.000	1.000	1.000	1.000	1.000
600	0.143	0.985	1.000	0.270	1.000	1.000	0.508	1.000	1.000	0.867	1.000	1.000	1.000	1.000	1.000

Table 4:	Empirical powers of the sphericity test v	when $\boldsymbol{\Sigma}_{\mathrm{R}}$ is a tridia	agonal matrix with elemen	ts $(\Sigma_{\rm R})_{r_1 r_2} = 0.1^{ r_1 - r_2 }$	$ r_2 I(r_1-r_2)$
and $\alpha =$	0.05.				

N	20			40			60			100			200		
c	10	100	600	10	100	600	10	100	600	10	100	600	10	100	600
r							Norn	nal Insta	ances						
10	0.094	0.782	1.000	0.183	0.987	1.000	0.296	1.000	1.000	0.557	1.000	1.000	0.928	1.000	1.000
50	0.105	0.900	1.000	0.219	1.000	1.000	0.375	1.000	1.000	0.682	1.000	1.000	0.993	1.000	1.000
100	0.112	0.907	1.000	0.202	1.000	1.000	0.386	1.000	1.000	0.693	1.000	1.000	0.996	1.000	1.000
300	0.125	0.947	1.000	0.215	1.000	1.000	0.362	1.000	1.000	0.729	1.000	1.000	0.997	1.000	1.000
600	0.115	0.915	1.000	0.244	1.000	1.000	0.395	1.000	1.000	0.732	1.000	1.000	0.997	1.000	1.000
r							Gamr	na Insta	nces I						
10	0.136	0.758	1.000	0.228	0.992	1.000	0.318	1.000	1.000	0.557	1.000	1.000	0.918	1.000	1.000
50	0.124	0.886	1.000	0.214	1.000	1.000	0.380	1.000	1.000	0.698	1.000	1.000	0.992	1.000	1.000
100	0.130	0.909	1.000	0.208	1.000	1.000	0.365	1.000	1.000	0.705	1.000	1.000	0.994	1.000	1.000
300	0.112	0.921	1.000	0.242	1.000	1.000	0.386	1.000	1.000	0.730	1.000	1.000	0.995	1.000	1.000
600	0.124	0.919	1.000	0.218	1.000	1.000	0.394	1.000	1.000	0.723	1.000	1.000	0.998	1.000	1.000
r							Gamm	na Instai	nces II						
10	0.126	0.731	1.000	0.179	0.984	1.000	0.276	1.000	1.000	0.482	1.000	1.000	0.912	1.000	1.000
50	0.121	0.893	1.000	0.217	1.000	1.000	0.361	1.000	1.000	0.677	1.000	1.000	0.988	1.000	1.000
100	0.118	0.886	1.000	0.236	1.000	1.000	0.385	1.000	1.000	0.704	1.000	1.000	0.996	1.000	1.000
300	0.105	0.920	1.000	0.213	1.000	1.000	0.363	1.000	1.000	0.687	1.000	1.000	0.997	1.000	1.000
600	0.098	0.907	1.000	0.217	1.000	1.000	0.370	1.000	1.000	0.705	1.000	1.000	0.997	1.000	1.000
r							Gamm	a Instar	nces III						
10	0.144	0.676	1.000	0.225	0.980	1.000	0.314	1.000	1.000	0.474	1.000	1.000	0.847	1.000	1.000
50	0.141	0.876	1.000	0.247	1.000	1.000	0.360	1.000	1.000	0.649	1.000	1.000	0.982	1.000	1.000
100	0.118	0.883	1.000	0.237	1.000	1.000	0.389	1.000	1.000	0.670	1.000	1.000	0.993	1.000	1.000
300	0.108	0.930	1.000	0.205	1.000	1.000	0.348	1.000	1.000	0.704	1.000	1.000	0.997	1.000	1.000
600	0.126	0.921	1.000	0.206	1.000	1.000	0.388	1.000	1.000	0.670	1.000	1.000	0.995	1.000	1.000

Table 5: Emp	irical powers of the sphericity	v test when Σ_{R} is a tridia	gonal matrix with elements	$(\mathbf{\Sigma}_{\rm R})_{r_1r_2} = 0.15^{ r_1-1 }$	$ r_2 I(r_1-r_2)$
and $\alpha = 0.05$.					

							60			100			200		
Ν		20			40			60			100			200	
с	10	100	600	10	100	600	10	100	600	10	100	600	10	100	600
r							Norn	nal Insta	ances						
0	0.190	0.996	1.000	0.458	1.000	1.000	0.726	1.000	1.000	0.970	1.000	1.000	1.000	1.000	1.000
50	0.231	1.000	1.000	0.588	1.000	1.000	0.865	1.000	1.000	0.999	1.000	1.000	1.000	1.000	1.000
100	0.212	1.000	1.000	0.581	1.000	1.000	0.896	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
300	0.265	1.000	1.000	0.620	1.000	1.000	0.909	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
600	0.258	1.000	1.000	0.645	1.000	1.000	0.908	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
r							Gamr	na Insta	nces I						
10	0.242	0.996	1.000	0.480	1.000	1.000	0.715	1.000	1.000	0.946	1.000	1.000	1.000	1.000	1.000
50	0.258	1.000	1.000	0.598	1.000	1.000	0.883	1.000	1.000	0.997	1.000	1.000	1.000	1.000	1.000
100	0.250	1.000	1.000	0.622	1.000	1.000	0.882	1.000	1.000	0.999	1.000	1.000	1.000	1.000	1.000
300	0.246	1.000	1.000	0.626	1.000	1.000	0.908	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
600	0.254	1.000	1.000	0.613	1.000	1.000	0.898	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
r							Gamm	na Instai	nces II						
10	0.211	0.995	1.000	0.425	1.000	1.000	0.662	1.000	1.000	0.930	1.000	1.000	1.000	1.000	1.000
50	0.233	1.000	1.000	0.574	1.000	1.000	0.854	1.000	1.000	0.994	1.000	1.000	1.000	1.000	1.000
100	0.248	1.000	1.000	0.623	1.000	1.000	0.881	1.000	1.000	0.998	1.000	1.000	1.000	1.000	1.000
300	0.235	1.000	1.000	0.619	1.000	1.000	0.901	1.000	1.000	0.995	1.000	1.000	1.000	1.000	1.000
600	0.230	1.000	1.000	0.606	1.000	1.000	0.891	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
r							Gamm	a Instar	ices III						
10	0.230	0.990	1.000	0.449	1.000	1.000	0.630	1.000	1.000	0.906	1.000	1.000	0.999	1.000	1.000
50	0.256	1.000	1.000	0.587	1.000	1.000	0.836	1.000	1.000	0.989	1.000	1.000	1.000	1.000	1.000
100	0.248	1.000	1.000	0.598	1.000	1.000	0.886	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
300	0.237	1.000	1.000	0.598	1.000	1.000	0.877	1.000	1.000	0.998	1.000	1.000	1.000	1.000	1.000
600	0.253	1.000	1.000	0.627	1.000	1.000	0.924	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Table 6: Empirical sizes o	f the	diagonality	test when	$\Sigma_{\mathrm{R}} = \mathbf{I}_r$	and $\alpha = 0.05$.
----------------------------	-------	-------------	-----------	--------------------------------------	-----------------------

N		20		40				60		_	100			200	
с	10	100	600	10	100	600	10	100	600	10	100	600	10	100	600
r							Norr	nal Insta	ances						
10	0.042	0.058	0.050	0.038	0.053	0.043	0.052	0.064	0.059	0.064	0.049	0.048	0.050	0.048	0.050
50	0.037	0.053	0.054	0.042	0.066	0.056	0.062	0.055	0.044	0.060	0.047	0.038	0.054	0.055	0.050
100	0.057	0.055	0.066	0.047	0.049	0.053	0.062	0.059	0.048	0.052	0.052	0.048	0.037	0.053	0.058
300	0.051	0.058	0.060	0.045	0.054	0.052	0.045	0.063	0.059	0.047	0.048	0.047	0.049	0.051	0.040
600	0.044	0.047	0.056	0.047	0.060	0.045	0.056	0.045	0.050	0.052	0.050	0.050	0.045	0.051	0.052
r							Gam	na Insta	nces I						
10	0.047	0.054	0.049	0.047	0.054	0.057	0.054	0.056	0.052	0.062	0.046	0.049	0.052	0.054	0.049
50	0.045	0.053	0.071	0.057	0.063	0.052	0.050	0.057	0.048	0.050	0.058	0.058	0.048	0.050	0.064
100	0.050	0.059	0.054	0.050	0.048	0.071	0.055	0.038	0.060	0.054	0.041	0.052	0.057	0.047	0.049
300	0.050	0.045	0.064	0.058	0.045	0.057	0.056	0.047	0.058	0.055	0.055	0.044	0.041	0.047	0.058
600	0.046	0.056	0.071	0.049	0.067	0.059	0.046	0.063	0.059	0.053	0.054	0.050	0.054	0.050	0.053
r							Gamn	na Insta	nces II						
10	0.039	0.044	0.056	0.049	0.052	0.051	0.048	0.055	0.048	0.041	0.049	0.061	0.044	0.058	0.058
50	0.052	0.046	0.061	0.054	0.057	0.042	0.053	0.063	0.058	0.060	0.058	0.044	0.051	0.052	0.043
100	0.048	0.055	0.055	0.053	0.051	0.052	0.056	0.045	0.048	0.057	0.038	0.057	0.053	0.045	0.048
300	0.044	0.053	0.060	0.054	0.043	0.056	0.055	0.044	0.060	0.064	0.052	0.050	0.055	0.049	0.042
600	0.061	0.058	0.064	0.043	0.050	0.047	0.050	0.046	0.057	0.047	0.057	0.062	0.051	0.061	0.040
r							Gamm	a Instar	ices III						
10	0.043	0.037	0.051	0.048	0.043	0.046	0.050	0.047	0.049	0.046	0.043	0.049	0.038	0.045	0.052
50	0.049	0.071	0.057	0.052	0.054	0.046	0.047	0.054	0.057	0.058	0.048	0.050	0.057	0.058	0.049
100	0.053	0.051	0.050	0.043	0.052	0.056	0.049	0.050	0.040	0.053	0.051	0.057	0.041	0.051	0.053
300	0.048	0.053	0.062	0.044	0.052	0.058	0.037	0.052	0.059	0.044	0.062	0.047	0.048	0.054	0.054
600	0.047	0.054	0.064	0.060	0.059	0.052	0.044	0.054	0.044	0.054	0.057	0.047	0.052	0.050	0.052

$\alpha =$	0.05.														
N		20			40			60			100			200	
c	10	100	600	10	100	600	10	100	600	10	100	600	10	100	600
r							Norr	nal Insta	ances						
10	0.041	0.059	0.056	0.042	0.054	0.041	0.054	0.052	0.050	0.061	0.046	0.053	0.053	0.048	0.048
50	0.032	0.061	0.049	0.043	0.058	0.046	0.055	0.051	0.038	0.057	0.044	0.049	0.051	0.057	0.056
100	0.051	0.062	0.063	0.044	0.065	0.058	0.052	0.056	0.049	0.048	0.058	0.052	0.040	0.048	0.057
300	0.054	0.062	0.060	0.042	0.056	0.047	0.043	0.050	0.048	0.052	0.053	0.048	0.049	0.044	0.044
600	0.040	0.053	0.060	0.049	0.044	0.056	0.057	0.048	0.042	0.052	0.042	0.064	0.041	0.053	0.064
r							Gam	na Insta	nces I						
10	0.052	0.047	0.054	0.048	0.050	0.053	0.051	0.047	0.045	0.061	0.047	0.047	0.055	0.052	0.043
50	0.048	0.054	0.064	0.049	0.063	0.036	0.052	0.046	0.044	0.050	0.054	0.055	0.049	0.044	0.059
100	0.057	0.051	0.055	0.043	0.046	0.062	0.054	0.051	0.060	0.061	0.052	0.055	0.055	0.048	0.049
300	0.050	0.046	0.067	0.055	0.045	0.055	0.057	0.038	0.063	0.051	0.050	0.051	0.049	0.052	0.052
600	0.048	0.037	0.074	0.058	0.072	0.058	0.057	0.065	0.060	0.040	0.057	0.044	0.050	0.046	0.039
r							Gamn	na Instai	nces II						
10	0.040	0.048	0.054	0.044	0.048	0.057	0.048	0.059	0.047	0.041	0.052	0.054	0.047	0.057	0.056
50	0.045	0.049	0.055	0.058	0.063	0.047	0.053	0.061	0.056	0.056	0.047	0.041	0.053	0.048	0.039
100	0.053	0.056	0.046	0.057	0.047	0.053	0.054	0.050	0.048	0.054	0.054	0.044	0.053	0.044	0.055
300	0.049	0.046	0.052	0.053	0.045	0.064	0.053	0.047	0.059	0.052	0.051	0.042	0.056	0.059	0.046
600	0.047	0.063	0.065	0.044	0.047	0.053	0.050	0.055	0.060	0.051	0.061	0.050	0.061	0.053	0.048
r							Gamm	a Instar	nces III						
10	0.050	0.042	0.052	0.041	0.043	0.042	0.037	0.045	0.051	0.038	0.042	0.046	0.047	0.050	0.046
50	0.041	0.061	0.055	0.059	0.050	0.047	0.042	0.049	0.056	0.064	0.055	0.053	0.055	0.061	0.056
100	0.062	0.060	0.044	0.041	0.048	0.050	0.048	0.038	0.049	0.053	0.062	0.056	0.056	0.047	0.057
300	0.037	0.060	0.064	0.037	0.054	0.050	0.042	0.054	0.048	0.044	0.059	0.055	0.049	0.045	0.054
600	0.050	0.061	0.056	0.062	0.055	0.060	0.055	0.052	0.060	0.046	0.054	0.050	0.058	0.048	0.060

Table 7: Empirical sizes of the diagonality test when $\Sigma_{\rm R}$ is a diagonal matrix with diagonal elements $(\Sigma_{\rm R})_{r_1r_1} \sim U(0.5, 1.5)$ and $\alpha = 0.05$

Table 8: Empirical sizes of the diagonality test when $\Sigma_{\rm R}$ is a diagonal matrix with the diagonal elements $(\Sigma_{\rm R})_{r_1r_1} = 1 + I(r_1 \le 0.94)$	r)
and $\alpha = 0.05$.	

N		20			40			60			100			200	
с	10	100	600	10	100	600	10	100	600	10	100	600	10	100	600
r							Norr	nal Insta	ances						
10	0.045	0.050	0.055	0.045	0.060	0.044	0.049	0.059	0.056	0.060	0.048	0.056	0.060	0.051	0.046
50	0.038	0.048	0.056	0.046	0.062	0.056	0.062	0.055	0.043	0.050	0.043	0.043	0.054	0.056	0.048
100	0.055	0.059	0.061	0.051	0.047	0.050	0.060	0.047	0.056	0.053	0.054	0.050	0.045	0.046	0.063
300	0.055	0.060	0.057	0.044	0.055	0.048	0.050	0.059	0.057	0.047	0.057	0.041	0.050	0.046	0.048
600	0.045	0.051	0.061	0.045	0.057	0.056	0.050	0.046	0.051	0.050	0.047	0.062	0.048	0.052	0.046
r							Gamr	na Insta	nces I						
10	0.049	0.048	0.045	0.048	0.051	0.056	0.054	0.053	0.051	0.049	0.041	0.052	0.053	0.053	0.049
50	0.046	0.059	0.068	0.066	0.056	0.056	0.050	0.057	0.046	0.054	0.057	0.059	0.055	0.056	0.061
100	0.051	0.059	0.061	0.051	0.049	0.066	0.056	0.042	0.059	0.057	0.060	0.058	0.059	0.048	0.053
300	0.051	0.051	0.066	0.056	0.048	0.061	0.059	0.053	0.055	0.050	0.046	0.043	0.039	0.048	0.050
600	0.040	0.059	0.075	0.051	0.062	0.062	0.045	0.063	0.055	0.057	0.059	0.046	0.048	0.051	0.048
r							Gamn	na Insta	nces II						
10	0.045	0.043	0.056	0.039	0.048	0.049	0.046	0.053	0.054	0.044	0.058	0.063	0.041	0.055	0.058
50	0.047	0.061	0.064	0.057	0.063	0.048	0.056	0.062	0.059	0.055	0.048	0.049	0.055	0.056	0.049
100	0.054	0.053	0.058	0.060	0.051	0.052	0.049	0.041	0.054	0.051	0.044	0.051	0.053	0.045	0.045
300	0.052	0.048	0.054	0.047	0.047	0.057	0.053	0.047	0.057	0.059	0.055	0.050	0.046	0.055	0.044
600	0.045	0.051	0.060	0.041	0.048	0.047	0.052	0.045	0.050	0.048	0.056	0.060	0.064	0.060	0.052
r							Gamm	ia Instar	ices III						
10	0.047	0.046	0.054	0.042	0.048	0.046	0.044	0.038	0.048	0.046	0.038	0.047	0.044	0.048	0.051
50	0.044	0.065	0.055	0.060	0.048	0.050	0.051	0.054	0.057	0.049	0.040	0.049	0.056	0.060	0.048
100	0.053	0.055	0.056	0.043	0.051	0.048	0.053	0.039	0.051	0.050	0.052	0.058	0.044	0.055	0.057
300	0.036	0.041	0.056	0.048	0.048	0.055	0.046	0.052	0.057	0.051	0.064	0.063	0.057	0.056	0.048
600	0.049	0.050	0.056	0.047	0.056	0.044	0.045	0.052	0.044	0.056	0.060	0.058	0.048	0.048	0.060

26

N		20			40			60			100			200	
c	10	100	600	10	100	600	10	100	600	10	100	600	10	100	600
r							Norr	nal Insta	ances						
10	0.093	0.821	1.000	0.177	0.991	1.000	0.317	1.000	1.000	0.586	1.000	1.000	0.945	1.000	1.000
50	0.101	0.908	1.000	0.215	1.000	1.000	0.366	1.000	1.000	0.690	1.000	1.000	0.995	1.000	1.000
100	0.111	0.908	1.000	0.202	1.000	1.000	0.382	1.000	1.000	0.703	1.000	1.000	0.996	1.000	1.000
300	0.126	0.949	1.000	0.218	1.000	1.000	0.357	1.000	1.000	0.731	1.000	1.000	0.997	1.000	1.000
600	0.110	0.917	1.000	0.241	1.000	1.000	0.399	1.000	1.000	0.732	1.000	1.000	0.997	1.000	1.000
r							Gamr	na Insta	nces I						
10	0.102	0.808	1.000	0.223	0.996	1.000	0.338	1.000	1.000	0.605	1.000	1.000	0.952	1.000	1.000
50	0.114	0.904	1.000	0.216	1.000	1.000	0.388	1.000	1.000	0.720	1.000	1.000	0.994	1.000	1.000
100	0.128	0.919	1.000	0.225	1.000	1.000	0.381	1.000	1.000	0.699	1.000	1.000	0.995	1.000	1.000
300	0.110	0.923	1.000	0.241	1.000	1.000	0.382	1.000	1.000	0.733	1.000	1.000	0.995	1.000	1.000
600	0.123	0.916	1.000	0.226	1.000	1.000	0.394	1.000	1.000	0.723	1.000	1.000	0.997	1.000	1.000
r							Gamn	na Instai	nces II						
10	0.100	0.807	1.000	0.202	0.996	1.000	0.315	1.000	1.000	0.573	1.000	1.000	0.957	1.000	1.000
50	0.103	0.898	1.000	0.236	1.000	1.000	0.373	1.000	1.000	0.687	1.000	1.000	0.991	1.000	1.000
100	0.115	0.896	1.000	0.238	1.000	1.000	0.377	1.000	1.000	0.705	1.000	1.000	0.996	1.000	1.000
300	0.106	0.927	1.000	0.217	1.000	1.000	0.361	1.000	1.000	0.689	1.000	1.000	0.997	1.000	1.000
600	0.098	0.903	1.000	0.209	1.000	1.000	0.371	1.000	1.000	0.711	1.000	1.000	0.998	1.000	1.000
r							Gamm	a Instan	ices III						
10	0.107	0.814	1.000	0.212	0.996	1.000	0.324	1.000	1.000	0.585	1.000	1.000	0.956	1.000	1.000
50	0.107	0.904	1.000	0.238	1.000	1.000	0.376	1.000	1.000	0.710	1.000	1.000	0.995	1.000	1.000
100	0.113	0.908	1.000	0.203	1.000	1.000	0.375	1.000	1.000	0.690	1.000	1.000	0.996	1.000	1.000
300	0.101	0.929	1.000	0.212	1.000	1.000	0.356	1.000	1.000	0.708	1.000	1.000	0.997	1.000	1.000
600	0.113	0.919	1.000	0.212	1.000	1.000	0.387	1.000	1.000	0.640	1.000	1.000	0.996	1.000	1.000

Table 9: Empirical powers of the diagonality test when $\Sigma_{\rm R}$ is a tridiagonal matrix with elements $(\Sigma_{\rm R})_{r_1r_2} = 0.10^{|r_1 - r_2|}I(|r_1 - r_2|).$

N		20			40			60			100			200	
c	10	100	600	10	100	600	10	100	600	10	100	600	10	100	600
r							Norr	nal Insta	ances						
10	0.203	0.997	1.000	0.493	1.000	1.000	0.774	1.000	1.000	0.975	1.000	1.000	1.000	1.000	1.000
50	0.231	1.000	1.000	0.602	1.000	1.000	0.876	1.000	1.000	0.999	1.000	1.000	1.000	1.000	1.000
100	0.211	1.000	1.000	0.590	1.000	1.000	0.894	1.000	1.000	0.999	1.000	1.000	1.000	1.000	1.000
300	0.270	1.000	1.000	0.628	1.000	1.000	0.905	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
600	0.253	1.000	1.000	0.653	1.000	1.000	0.908	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
r							Gamr	na Insta	nces I						
10	0.233	0.996	1.000	0.520	1.000	1.000	0.767	1.000	1.000	0.979	1.000	1.000	1.000	1.000	1.000
50	0.245	1.000	1.000	0.612	1.000	1.000	0.908	1.000	1.000	0.998	1.000	1.000	1.000	1.000	1.000
100	0.259	1.000	1.000	0.628	1.000	1.000	0.881	1.000	1.000	0.999	1.000	1.000	1.000	1.000	1.000
300	0.248	1.000	1.000	0.636	1.000	1.000	0.905	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
600	0.248	1.000	1.000	0.614	1.000	1.000	0.902	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
r							Gamn	na Instai	nces II						
10	0.209	0.998	1.000	0.493	1.000	1.000	0.765	1.000	1.000	0.979	1.000	1.000	1.000	1.000	1.000
50	0.235	1.000	1.000	0.602	1.000	1.000	0.886	1.000	1.000	0.996	1.000	1.000	1.000	1.000	1.000
100	0.246	1.000	1.000	0.624	1.000	1.000	0.895	1.000	1.000	0.998	1.000	1.000	1.000	1.000	1.000
300	0.230	1.000	1.000	0.628	1.000	1.000	0.899	1.000	1.000	0.995	1.000	1.000	1.000	1.000	1.000
600	0.230	1.000	1.000	0.607	1.000	1.000	0.889	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
r							Gamm	a Instan	ices III						
10	0.224	0.999	1.000	0.517	1.000	1.000	0.771	1.000	1.000	0.974	1.000	1.000	1.000	1.000	1.000
50	0.234	1.000	1.000	0.632	1.000	1.000	0.876	1.000	1.000	0.998	1.000	1.000	1.000	1.000	1.000
100	0.231	1.000	1.000	0.627	1.000	1.000	0.922	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
300	0.240	1.000	1.000	0.606	1.000	1.000	0.883	1.000	1.000	0.998	1.000	1.000	1.000	1.000	1.000
600	0.249	1.000	1.000	0.638	1.000	1.000	0.932	1.000	1.000	1.000	1.000	0.998	1.000	1.000	1.000

Table 10: Empirical powers of the diagonality test when $\Sigma_{\rm R}$ is a tridiagonal matrix with elements $(\Sigma_{\rm R})_{r_1r_2} = 0.15^{|r_1-r_2|}I(|r_1-r_2|).$

Ν		20			40			60			100			200	
c	10	100	600	10	100	600	10	100	600	10	100	600	10	100	600
r							Norr	nal Insta	ances						
10	0.051	0.066	0.050	0.045	0.055	0.054	0.059	0.059	0.056	0.060	0.053	0.058	0.053	0.057	0.045
50	0.052	0.060	0.053	0.053	0.063	0.059	0.064	0.055	0.048	0.066	0.042	0.052	0.056	0.053	0.050
100	0.068	0.060	0.060	0.050	0.054	0.051	0.069	0.058	0.056	0.060	0.058	0.050	0.047	0.056	0.057
300	0.066	0.058	0.056	0.054	0.054	0.050	0.055	0.060	0.057	0.049	0.050	0.045	0.052	0.046	0.040
600	0.056	0.051	0.048	0.051	0.055	0.045	0.056	0.047	0.051	0.056	0.051	0.054	0.047	0.051	0.049
r							Gamr	na Insta	nces I						
10	0.084	0.075	0.073	0.077	0.063	0.070	0.087	0.076	0.069	0.071	0.074	0.054	0.071	0.077	0.057
50	0.064	0.059	0.061	0.060	0.065	0.043	0.054	0.059	0.052	0.052	0.063	0.059	0.058	0.054	0.057
100	0.060	0.061	0.056	0.057	0.047	0.071	0.064	0.045	0.058	0.066	0.043	0.056	0.063	0.056	0.051
300	0.059	0.047	0.057	0.068	0.054	0.052	0.066	0.050	0.056	0.053	0.059	0.045	0.044	0.046	0.052
600	0.060	0.054	0.063	0.056	0.070	0.059	0.052	0.067	0.058	0.057	0.058	0.046	0.062	0.054	0.049
r							Gamn	na Instai	nces II						
10	0.084	0.063	0.075	0.084	0.073	0.064	0.070	0.073	0.087	0.073	0.069	0.072	0.064	0.078	0.095
50	0.067	0.053	0.075	0.075	0.065	0.052	0.071	0.075	0.065	0.075	0.060	0.061	0.074	0.052	0.048
100	0.067	0.051	0.047	0.062	0.044	0.060	0.060	0.048	0.059	0.057	0.044	0.065	0.059	0.058	0.052
300	0.057	0.057	0.053	0.055	0.051	0.061	0.057	0.039	0.063	0.063	0.059	0.047	0.056	0.055	0.042
600	0.071	0.059	0.068	0.050	0.051	0.047	0.057	0.044	0.060	0.053	0.057	0.064	0.056	0.062	0.046
r							Gamm	ia Instar	ices III						
10	0.098	0.096	0.118	0.105	0.085	0.096	0.126	0.100	0.089	0.115	0.096	0.098	0.102	0.102	0.099
50	0.080	0.086	0.073	0.093	0.071	0.068	0.077	0.064	0.081	0.082	0.064	0.059	0.102	0.071	0.067
100	0.073	0.054	0.062	0.061	0.058	0.062	0.070	0.055	0.053	0.068	0.058	0.064	0.065	0.061	0.054
300	0.064	0.052	0.059	0.050	0.059	0.060	0.051	0.057	0.059	0.051	0.065	0.054	0.059	0.058	0.060
600	0.066	0.059	0.064	0.058	0.059	0.058	0.055	0.057	0.056	0.058	0.055	0.049	0.050	0.054	0.050

Table 11: Empirical sizes of the sphericity test when $\Sigma_{\rm R} = \mathbf{I}_r$ and $\alpha = 0.05$ and $tr(\Sigma_{\rm R}^2)$ is replaced by its true value.

S9. SIMULATION TABLES₂₉

Table 12: Empirical powers of the sphericity test when $\Sigma_{\rm R}$ is a diagonal matrix with diagonal elements $(\Sigma_{\rm R})_{r_1r_1} \sim U(0.5, 1.5)$ and tr $(\Sigma_{\rm R}^2)$ is replaced by its true value.

N		20			40			60			100			200	
c	10	100	600	10	100	600	10	100	600	10	100	600	10	100	600
r							Norr	nal Insta	inces						
10	0.474	1.000	1.000	0.945	1.000	1.000	0.997	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
50	0.367	1.000	1.000	0.929	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
100	0.562	1.000	1.000	0.976	1.000	1.000	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
300	0.506	1.000	1.000	0.976	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
600	0.518	1.000	1.000	0.973	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
r							Gamr	na Insta	nces I						
10	0.462	1.000	1.000	0.893	1.000	1.000	0.991	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
50	0.391	1.000	1.000	0.917	1.000	1.000	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
100	0.574	1.000	1.000	0.976	1.000	1.000	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
300	0.539	1.000	1.000	0.975	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
600	0.512	1.000	1.000	0.962	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
r							Gamn	na Instai	nces II						
10	0.237	0.989	1.000	0.827	1.000	1.000	0.985	1.000	1.000	0.991	1.000	1.000	1.000	1.000	1.000
50	0.464	1.000	1.000	0.945	1.000	1.000	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
100	0.619	1.000	1.000	0.941	1.000	1.000	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
300	0.454	1.000	1.000	0.973	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
600	0.527	1.000	1.000	0.971	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
r							Gamm	a Instan	ces III						
10	0.155	0.729	1.000	0.548	1.000	1.000	0.960	1.000	1.000	0.998	1.000	1.000	1.000	1.000	1.000
50	0.387	1.000	1.000	0.812	1.000	1.000	0.987	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
100	0.424	1.000	1.000	0.928	1.000	1.000	0.998	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
300	0.488	1.000	1.000	0.971	1.000	1.000	0.997	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
600	0.506	1.000	1.000	0.965	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Table 13: Empirical powers of the sphericity test when $\Sigma_{\rm R}$ is a diagonal matrix with diagonal elements $(\Sigma_{\rm R})_{r_1r_1} = 1 + I(r_1 \le 0.9r)$ and tr $(\Sigma_{\rm R}^2)$ is replaced by its true value.

N		20			40			60			100			200	
c	10	100	600	10	100	600	10	100	600	10	100	600	10	100	600
r							Norm	nal Insta	ances						
10	0.135	0.976	1.000	0.242	1.000	1.000	0.451	1.000	1.000	0.802	1.000	1.000	0.998	1.000	1.000
50	0.139	0.982	1.000	0.289	1.000	1.000	0.504	1.000	1.000	0.845	1.000	1.000	1.000	1.000	1.000
100	0.146	0.989	1.000	0.278	1.000	1.000	0.512	1.000	1.000	0.866	1.000	1.000	1.000	1.000	1.000
300	0.142	0.994	1.000	0.285	1.000	1.000	0.491	1.000	1.000	0.893	1.000	1.000	1.000	1.000	1.000
600	0.143	0.990	1.000	0.314	1.000	1.000	0.522	1.000	1.000	0.889	1.000	1.000	1.000	1.000	1.000
r							Gamr	na Insta	nces I						
10	0.159	0.925	1.000	0.297	1.000	1.000	0.445	1.000	1.000	0.747	1.000	1.000	0.994	1.000	1.000
50	0.156	0.982	1.000	0.302	1.000	1.000	0.502	1.000	1.000	0.840	1.000	1.000	1.000	1.000	1.000
100	0.157	0.979	1.000	0.296	1.000	1.000	0.500	1.000	1.000	0.842	1.000	1.000	0.999	1.000	1.000
300	0.144	0.986	1.000	0.316	1.000	1.000	0.500	1.000	1.000	0.883	1.000	1.000	1.000	1.000	1.000
600	0.160	0.984	1.000	0.291	1.000	1.000	0.503	1.000	1.000	0.884	1.000	1.000	1.000	1.000	1.000
r							Gamm	na Instai	nces II						
10	0.157	0.915	1.000	0.253	1.000	1.000	0.405	1.000	1.000	0.692	1.000	1.000	0.990	1.000	1.000
50	0.161	0.982	1.000	0.290	1.000	1.000	0.502	1.000	1.000	0.845	1.000	1.000	0.999	1.000	1.000
100	0.149	0.986	1.000	0.318	1.000	1.000	0.505	1.000	1.000	0.860	1.000	1.000	1.000	1.000	1.000
300	0.131	0.982	1.000	0.296	1.000	1.000	0.491	1.000	1.000	0.841	1.000	1.000	1.000	1.000	1.000
600	0.134	0.979	1.000	0.302	1.000	1.000	0.491	1.000	1.000	0.850	1.000	1.000	1.000	1.000	1.000
r							Gamm	a Instar	ices III						
10	0.169	0.872	1.000	0.264	0.999	1.000	0.393	1.000	1.000	0.611	1.000	1.000	0.963	1.000	1.000
50	0.161	0.965	1.000	0.314	1.000	1.000	0.462	1.000	1.000	0.780	1.000	1.000	0.999	1.000	1.000
100	0.172	0.976	1.000	0.300	1.000	1.000	0.504	1.000	1.000	0.826	1.000	1.000	0.999	1.000	1.000
300	0.135	0.974	1.000	0.279	1.000	1.000	0.476	1.000	1.000	0.844	1.000	1.000	1.000	1.000	1.000
600	0.157	0.984	1.000	0.268	1.000	1.000	0.508	1.000	1.000	0.860	1.000	1.000	1.000	1.000	1.000

Table 14: Empirical powers of the sphericity test when $\Sigma_{\rm R}$ is a tridiagonal matrix with elements $(\Sigma_{\rm R})_{r_1r_2} = 0.1^{|r_1-r_2|}I(|r_1-r_2|)$ and tr $(\Sigma_{\rm R}^2)$ is replaced by its true value.

N		20			40			60			100			200	
c	10	100	600	10	100	600	10	100	600	10	100	600	10	100	600
r							Norn	nal Insta	inces						
10	0.102	0.786	1.000	0.189	0.988	1.000	0.298	1.000	1.000	0.551	1.000	1.000	0.924	1.000	1.000
50	0.125	0.888	1.000	0.226	1.000	1.000	0.374	1.000	1.000	0.677	1.000	1.000	0.993	1.000	1.000
100	0.121	0.907	1.000	0.210	1.000	1.000	0.382	1.000	1.000	0.695	1.000	1.000	0.996	1.000	1.000
300	0.131	0.944	1.000	0.222	1.000	1.000	0.359	1.000	1.000	0.725	1.000	1.000	0.997	1.000	1.000
600	0.126	0.920	1.000	0.250	1.000	1.000	0.398	1.000	1.000	0.728	1.000	1.000	0.997	1.000	1.000
r							Gamr	na Insta	nces I						
10	0.141	0.756	1.000	0.226	0.990	1.000	0.315	1.000	1.000	0.553	1.000	1.000	0.917	1.000	1.000
50	0.140	0.894	1.000	0.230	1.000	1.000	0.388	1.000	1.000	0.694	1.000	1.000	0.992	1.000	1.000
100	0.142	0.903	1.000	0.223	1.000	1.000	0.365	1.000	1.000	0.696	1.000	1.000	0.993	1.000	1.000
300	0.123	0.922	1.000	0.247	1.000	1.000	0.389	1.000	1.000	0.731	1.000	1.000	0.995	1.000	1.000
600	0.144	0.919	1.000	0.227	1.000	1.000	0.397	1.000	1.000	0.720	1.000	1.000	0.997	1.000	1.000
r							Gamm	na Instai	nces II						
10	0.127	0.735	1.000	0.184	0.984	1.000	0.277	1.000	1.000	0.488	1.000	1.000	0.911	1.000	1.000
50	0.131	0.891	1.000	0.225	1.000	1.000	0.364	1.000	1.000	0.673	1.000	1.000	0.988	1.000	1.000
100	0.131	0.886	1.000	0.234	1.000	1.000	0.382	1.000	1.000	0.702	1.000	1.000	0.995	1.000	1.000
300	0.121	0.923	1.000	0.218	1.000	1.000	0.364	1.000	1.000	0.686	1.000	1.000	0.997	1.000	1.000
600	0.111	0.904	1.000	0.218	1.000	1.000	0.372	1.000	1.000	0.703	1.000	1.000	0.995	1.000	1.000
r							Gamm	a Instan	ces III						
10	0.150	0.680	1.000	0.228	0.981	1.000	0.309	1.000	1.000	0.475	1.000	1.000	0.845	1.000	1.000
50	0.146	0.869	1.000	0.257	1.000	1.000	0.366	1.000	1.000	0.645	1.000	1.000	0.981	1.000	1.000
100	0.132	0.886	1.000	0.247	1.000	1.000	0.390	1.000	1.000	0.668	1.000	1.000	0.993	1.000	1.000
300	0.113	0.926	1.000	0.211	1.000	1.000	0.351	1.000	1.000	0.699	1.000	1.000	0.996	1.000	1.000
600	0.136	0.915	1.000	0.216	1.000	1.000	0.393	1.000	1.000	0.660	1.000	1.000	0.995	1.000	1.000

Table 15: Empirical powers of the sphericity test when $\Sigma_{\rm R}$ is a tridiagonal matrix with elements $(\Sigma_{\rm R})_{r_1r_2} = 0.15^{|r_1-r_2|}I(|r_1-r_2|)$ and tr $(\Sigma_{\rm R}^2)$ is replaced by its true value.

Ν		20			40			60			100			200	
c	10	100	600	10	100	600	10	100	600	10	100	600	10	100	600
r							Norn	nal Insta	ances						
10	0.193	0.995	1.000	0.455	1.000	1.000	0.724	1.000	1.000	0.967	1.000	1.000	1.000	1.000	1.000
50	0.244	1.000	1.000	0.583	1.000	1.000	0.862	1.000	1.000	0.999	1.000	1.000	1.000	1.000	1.000
100	0.221	1.000	1.000	0.582	1.000	1.000	0.892	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
300	0.275	1.000	1.000	0.618	1.000	1.000	0.907	1.000	1.000	0.999	1.000	1.000	1.000	1.000	1.000
600	0.272	1.000	1.000	0.639	1.000	1.000	0.900	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
r							Gamr	na Insta	nces I						
10	0.246	0.997	1.000	0.481	1.000	1.000	0.712	1.000	1.000	0.944	1.000	1.000	1.000	1.000	1.000
50	0.262	1.000	1.000	0.599	1.000	1.000	0.874	1.000	1.000	0.997	1.000	1.000	1.000	1.000	1.000
100	0.262	1.000	1.000	0.618	1.000	1.000	0.881	1.000	1.000	0.999	1.000	1.000	1.000	1.000	1.000
300	0.250	1.000	1.000	0.621	1.000	1.000	0.904	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
600	0.261	1.000	1.000	0.606	1.000	1.000	0.894	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
r							Gamn	na Instai	nces II						
10	0.215	0.995	1.000	0.417	1.000	1.000	0.664	1.000	1.000	0.926	1.000	1.000	1.000	1.000	1.000
50	0.241	1.000	1.000	0.571	1.000	1.000	0.849	1.000	1.000	0.994	1.000	1.000	1.000	1.000	1.000
100	0.265	1.000	1.000	0.617	1.000	1.000	0.876	1.000	1.000	0.998	1.000	1.000	1.000	1.000	1.000
300	0.249	1.000	1.000	0.614	1.000	1.000	0.895	1.000	1.000	0.995	1.000	1.000	1.000	1.000	1.000
600	0.243	1.000	1.000	0.606	1.000	1.000	0.883	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
r							Gamm	a Instar	ices III						
10	0.235	0.989	1.000	0.440	1.000	1.000	0.624	1.000	1.000	0.906	1.000	1.000	0.999	1.000	1.000
50	0.268	1.000	1.000	0.582	1.000	1.000	0.833	1.000	1.000	0.989	1.000	1.000	1.000	1.000	1.000
100	0.258	1.000	1.000	0.589	1.000	1.000	0.884	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
300	0.238	1.000	1.000	0.598	1.000	1.000	0.873	1.000	1.000	0.998	1.000	1.000	1.000	1.000	1.000
600	0.261	1.000	1.000	0.619	1.000	1.000	0.915	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Ν		20			40			60			100			200	
c	10	100	600	10	100	600	10	100	600	10	100	600	10	100	600
r							Norn	nal Insta	ances						
10	0.049	0.060	0.042	0.039	0.054	0.044	0.055	0.061	0.057	0.064	0.051	0.050	0.050	0.049	0.050
50	0.050	0.051	0.056	0.048	0.068	0.055	0.065	0.057	0.043	0.063	0.049	0.042	0.055	0.056	0.051
100	0.070	0.055	0.062	0.053	0.050	0.052	0.068	0.059	0.051	0.053	0.054	0.048	0.041	0.053	0.059
300	0.059	0.055	0.055	0.054	0.056	0.050	0.046	0.063	0.057	0.050	0.048	0.048	0.050	0.051	0.038
600	0.053	0.050	0.049	0.048	0.058	0.045	0.058	0.046	0.050	0.055	0.049	0.052	0.045	0.052	0.049
r							Gamr	na Insta	nces I						
10	0.049	0.051	0.045	0.052	0.055	0.058	0.055	0.059	0.052	0.064	0.045	0.048	0.054	0.054	0.049
50	0.058	0.055	0.061	0.058	0.061	0.048	0.054	0.055	0.046	0.053	0.057	0.058	0.049	0.050	0.063
100	0.060	0.058	0.055	0.052	0.053	0.073	0.057	0.043	0.061	0.058	0.040	0.052	0.057	0.046	0.048
300	0.056	0.050	0.059	0.071	0.051	0.057	0.060	0.049	0.057	0.056	0.057	0.043	0.042	0.047	0.060
600	0.054	0.055	0.064	0.052	0.067	0.058	0.051	0.065	0.056	0.057	0.055	0.052	0.054	0.050	0.049
r							Gamm	na Instai	nces II						
10	0.051	0.050	0.055	0.051	0.053	0.052	0.049	0.055	0.049	0.044	0.051	0.063	0.046	0.058	0.057
50	0.061	0.049	0.060	0.063	0.060	0.044	0.057	0.061	0.058	0.063	0.058	0.044	0.051	0.052	0.044
100	0.063	0.049	0.046	0.056	0.048	0.052	0.063	0.047	0.048	0.061	0.037	0.058	0.053	0.045	0.048
300	0.057	0.058	0.051	0.058	0.048	0.054	0.059	0.045	0.059	0.066	0.052	0.050	0.057	0.049	0.044
600	0.068	0.055	0.072	0.050	0.049	0.047	0.053	0.045	0.060	0.049	0.056	0.060	0.052	0.063	0.047
r							Gamm	a Instan	ices III						
10	0.051	0.044	0.054	0.049	0.048	0.047	0.051	0.046	0.052	0.046	0.043	0.051	0.038	0.046	0.051
50	0.054	0.071	0.054	0.056	0.057	0.048	0.051	0.051	0.056	0.060	0.050	0.052	0.058	0.058	0.048
100	0.063	0.051	0.045	0.048	0.049	0.055	0.056	0.050	0.040	0.055	0.052	0.056	0.041	0.050	0.054
300	0.055	0.060	0.054	0.052	0.055	0.055	0.041	0.051	0.062	0.046	0.065	0.046	0.050	0.055	0.054
600	0.058	0.053	0.068	0.066	0.059	0.052	0.048	0.056	0.044	0.055	0.057	0.049	0.052	0.052	0.048

Table 16: Empirical sizes of the diagonality test when $\Sigma_{\rm R} = \mathbf{I}_r$ and $\alpha = 0.05$ and $tr(\Sigma_{\rm R}^2)$ is replaced by its true value.

Table 17: Empirical sizes of the diagonality test when $\Sigma_{\rm R}$ is a diagonal matrix with diagonal elements $(\Sigma_{\rm R})_{r_1r_1} \sim U(0.5, 1.5)$ and $\alpha = 0.05$ and tr $(\Sigma_{\rm R}^2)$ is replaced by its true value.

N		20			40			60			100			200	
c	10	100	600	10	100	600	10	100	600	10	100	600	10	100	600
r							Norn	nal Insta	inces						
10	0.047	0.053	0.050	0.045	0.057	0.044	0.060	0.053	0.049	0.060	0.049	0.053	0.053	0.048	0.047
50	0.046	0.056	0.048	0.051	0.059	0.047	0.056	0.052	0.039	0.058	0.046	0.052	0.051	0.057	0.057
100	0.058	0.056	0.064	0.048	0.061	0.058	0.055	0.056	0.049	0.052	0.059	0.053	0.040	0.048	0.057
300	0.060	0.064	0.054	0.053	0.053	0.047	0.047	0.050	0.045	0.054	0.053	0.047	0.051	0.044	0.044
600	0.051	0.057	0.056	0.057	0.043	0.053	0.063	0.048	0.043	0.053	0.042	0.064	0.042	0.052	0.052
r							Gamr	na Insta	nces I						
10	0.056	0.048	0.051	0.047	0.053	0.052	0.053	0.049	0.044	0.058	0.047	0.045	0.055	0.052	0.041
50	0.059	0.050	0.058	0.056	0.061	0.034	0.055	0.043	0.043	0.052	0.056	0.055	0.050	0.044	0.061
100	0.068	0.049	0.056	0.048	0.045	0.063	0.057	0.046	0.060	0.064	0.051	0.051	0.058	0.048	0.046
300	0.054	0.045	0.063	0.060	0.043	0.053	0.063	0.041	0.061	0.053	0.051	0.052	0.048	0.053	0.053
600	0.058	0.040	0.062	0.061	0.071	0.058	0.060	0.065	0.060	0.045	0.057	0.050	0.050	0.046	0.049
r							Gamm	na Instai	nces II						
10	0.044	0.047	0.053	0.050	0.054	0.057	0.052	0.058	0.048	0.041	0.054	0.052	0.047	0.056	0.055
50	0.056	0.054	0.049	0.067	0.065	0.048	0.060	0.056	0.056	0.059	0.050	0.043	0.054	0.048	0.040
100	0.063	0.058	0.043	0.064	0.044	0.050	0.057	0.049	0.046	0.056	0.050	0.045	0.053	0.045	0.054
300	0.054	0.054	0.053	0.056	0.045	0.062	0.055	0.045	0.056	0.055	0.050	0.040	0.059	0.059	0.044
600	0.059	0.063	0.064	0.048	0.053	0.047	0.055	0.054	0.060	0.059	0.060	0.078	0.062	0.054	0.045
r							Gamm	a Instan	ces III						
10	0.058	0.044	0.056	0.046	0.044	0.043	0.038	0.045	0.052	0.039	0.043	0.047	0.047	0.051	0.046
50	0.053	0.061	0.049	0.064	0.058	0.051	0.048	0.048	0.059	0.070	0.055	0.054	0.055	0.063	0.060
100	0.072	0.057	0.043	0.047	0.052	0.053	0.050	0.037	0.049	0.057	0.061	0.056	0.056	0.047	0.056
300	0.045	0.065	0.069	0.045	0.055	0.050	0.048	0.054	0.050	0.047	0.060	0.053	0.050	0.045	0.054
600	0.056	0.056	0.052	0.068	0.060	0.040	0.056	0.052	0.070	0.049	0.050	0.050	0.059	0.049	0.060

Table 18: Empirical sizes of the diagonality test when $\Sigma_{\rm R}$ is a diagonal matrix with the diagonal elements $(\Sigma_{\rm R})_{r_1r_1} = 1 + I(r_1 \le 0.9r)$ and $\alpha = 0.05$ and tr $(\Sigma_{\rm R}^2)$ is replaced by its true value.

N		20			40			60			100			200	
c	10	100	600	10	100	600	10	100	600	10	100	600	10	100	600
r							Norr	nal Insta	ances						
10	0.047	0.051	0.046	0.045	0.060	0.045	0.050	0.062	0.055	0.058	0.049	0.054	0.060	0.052	0.046
50	0.048	0.049	0.055	0.048	0.061	0.057	0.066	0.055	0.045	0.051	0.042	0.043	0.055	0.056	0.049
100	0.065	0.057	0.063	0.057	0.049	0.048	0.063	0.050	0.056	0.055	0.056	0.051	0.047	0.045	0.064
300	0.063	0.053	0.059	0.046	0.054	0.044	0.051	0.061	0.052	0.050	0.054	0.041	0.051	0.046	0.048
600	0.056	0.049	0.055	0.050	0.057	0.058	0.053	0.046	0.051	0.051	0.047	0.060	0.047	0.052	0.047
r							Gamr	na Insta	nces I						
10	0.053	0.056	0.041	0.055	0.050	0.057	0.059	0.055	0.051	0.054	0.043	0.052	0.053	0.053	0.049
50	0.060	0.050	0.063	0.070	0.055	0.051	0.055	0.055	0.047	0.056	0.057	0.058	0.055	0.058	0.060
100	0.066	0.056	0.060	0.053	0.050	0.067	0.059	0.045	0.056	0.061	0.059	0.056	0.060	0.050	0.052
300	0.061	0.056	0.060	0.061	0.055	0.063	0.067	0.050	0.054	0.054	0.050	0.044	0.041	0.049	0.048
600	0.057	0.058	0.060	0.053	0.061	0.060	0.047	0.059	0.055	0.057	0.058	0.048	0.051	0.053	0.048
r							Gamn	na Insta	nces II						
10	0.048	0.041	0.057	0.039	0.046	0.047	0.046	0.055	0.056	0.046	0.055	0.063	0.040	0.057	0.056
50	0.050	0.062	0.067	0.058	0.064	0.046	0.061	0.061	0.057	0.056	0.051	0.048	0.054	0.056	0.050
100	0.064	0.052	0.055	0.064	0.048	0.050	0.055	0.043	0.053	0.052	0.046	0.051	0.055	0.045	0.044
300	0.060	0.053	0.053	0.053	0.048	0.057	0.056	0.044	0.057	0.058	0.057	0.052	0.047	0.052	0.044
600	0.053	0.056	0.068	0.046	0.050	0.047	0.054	0.046	0.070	0.048	0.056	0.060	0.065	0.060	0.047
r							Gamm	a Instar	ices III						
10	0.053	0.050	0.053	0.045	0.046	0.048	0.047	0.038	0.047	0.047	0.038	0.049	0.044	0.050	0.052
50	0.049	0.067	0.052	0.064	0.049	0.047	0.055	0.054	0.059	0.048	0.039	0.048	0.057	0.060	0.048
100	0.059	0.056	0.043	0.051	0.053	0.049	0.056	0.042	0.047	0.055	0.052	0.059	0.045	0.054	0.057
300	0.043	0.046	0.050	0.055	0.049	0.049	0.048	0.053	0.057	0.054	0.065	0.064	0.057	0.056	0.048
600	0.065	0.049	0.058	0.052	0.059	0.054	0.046	0.052	0.044	0.055	0.060	0.056	0.048	0.051	0.060

Table 19: Empirical powers of the diagonality test when $\Sigma_{\rm R}$ is a tridiagonal matrix with elements $(\Sigma_{\rm R})_{r_1r_2} = 0.1^{|r_1-r_2|}I(|r_1-r_2|)$ and tr $(\Sigma_{\rm R}^2)$ is replaced by its true value.

Ν		20			40			60			100			200	
с	10	100	600	10	100	600	10	100	600	10	100	600	10	100	600
r							Norr	nal Insta	ances						
10	0.098	0.818	1.000	0.185	0.992	1.000	0.319	1.000	1.000	0.574	1.000	1.000	0.945	1.000	1.000
50	0.116	0.900	1.000	0.222	1.000	1.000	0.368	1.000	1.000	0.688	1.000	1.000	0.994	1.000	1.000
100	0.115	0.911	1.000	0.205	1.000	1.000	0.380	1.000	1.000	0.700	1.000	1.000	0.996	1.000	1.000
300	0.132	0.947	1.000	0.219	1.000	1.000	0.365	1.000	1.000	0.731	1.000	1.000	0.997	1.000	1.000
600	0.129	0.920	1.000	0.248	1.000	1.000	0.402	1.000	1.000	0.730	1.000	1.000	0.997	1.000	1.000
r							Gamr	na Insta	nces I						
10	0.110	0.810	1.000	0.230	0.997	1.000	0.339	1.000	1.000	0.604	1.000	1.000	0.953	1.000	1.000
50	0.123	0.901	1.000	0.226	1.000	1.000	0.388	1.000	1.000	0.719	1.000	1.000	0.994	1.000	1.000
100	0.139	0.912	1.000	0.228	1.000	1.000	0.379	1.000	1.000	0.699	1.000	1.000	0.995	1.000	1.000
300	0.119	0.921	1.000	0.248	1.000	1.000	0.388	1.000	1.000	0.728	1.000	1.000	0.995	1.000	1.000
600	0.143	0.920	1.000	0.232	1.000	1.000	0.391	1.000	1.000	0.719	1.000	1.000	0.997	1.000	1.000
r							Gamm	na Instai	nces II						
10	0.105	0.807	1.000	0.205	0.995	1.000	0.319	1.000	1.000	0.568	1.000	1.000	0.956	1.000	1.000
50	0.116	0.903	1.000	0.241	1.000	1.000	0.371	1.000	1.000	0.681	1.000	1.000	0.991	1.000	1.000
100	0.132	0.892	1.000	0.244	1.000	1.000	0.381	1.000	1.000	0.702	1.000	1.000	0.996	1.000	1.000
300	0.121	0.929	1.000	0.221	1.000	1.000	0.363	1.000	1.000	0.688	1.000	1.000	0.997	1.000	1.000
600	0.117	0.907	1.000	0.223	1.000	1.000	0.374	1.000	1.000	0.711	1.000	1.000	0.997	1.000	1.000
r							Gamm	a Instan	ices III						
10	0.116	0.820	1.000	0.220	0.996	1.000	0.326	1.000	1.000	0.577	1.000	1.000	0.956	1.000	1.000
50	0.119	0.905	1.000	0.243	1.000	1.000	0.388	1.000	1.000	0.708	1.000	1.000	0.995	1.000	1.000
100	0.121	0.903	1.000	0.210	1.000	1.000	0.377	1.000	1.000	0.685	1.000	1.000	0.994	1.000	1.000
300	0.109	0.924	1.000	0.218	1.000	1.000	0.360	1.000	1.000	0.707	1.000	1.000	0.996	1.000	1.000
600	0.134	0.917	1.000	0.221	1.000	1.000	0.390	1.000	1.000	0.630	1.000	1.000	0.996	1.000	1.000

Table 20: Empirical powers of the diagonality test when $\Sigma_{\rm R}$ is a tridiagonal matrix with elements $(\Sigma_{\rm R})_{r_1r_2} = 0.15^{|r_1-r_2|}I(|r_1-r_2|)$ and tr $(\Sigma_{\rm R}^2)$ is replaced by its true value.

N	20		40				60			100			200		
c	10	100	600	10	100	600	10	100	600	10	100	600	10	100	600
r	r Normal Instances														
10	0.198	0.996	1.000	0.485	1.000	1.000	0.764	1.000	1.000	0.975	1.000	1.000	1.000	1.000	1.000
50	0.250	1.000	1.000	0.602	1.000	1.000	0.868	1.000	1.000	0.999	1.000	1.000	1.000	1.000	1.000
100	0.222	1.000	1.000	0.584	1.000	1.000	0.888	1.000	1.000	0.999	1.000	1.000	1.000	1.000	1.000
300	0.279	1.000	1.000	0.614	1.000	1.000	0.904	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
600	0.264	1.000	1.000	0.641	1.000	1.000	0.899	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
r	r Gamma Instances I														
10	0.246	0.997	1.000	0.481	1.000	1.000	0.712	1.000	1.000	0.944	1.000	1.000	1.000	1.000	1.000
50	0.262	1.000	1.000	0.599	1.000	1.000	0.874	1.000	1.000	0.997	1.000	1.000	1.000	1.000	1.000
100	0.262	1.000	1.000	0.618	1.000	1.000	0.881	1.000	1.000	0.999	1.000	1.000	1.000	1.000	1.000
300	0.250	1.000	1.000	0.621	1.000	1.000	0.904	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
600	0.261	1.000	1.000	0.606	1.000	1.000	0.894	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
r							Gamm	na Instai	nces II						
10	0.211	0.999	1.000	0.486	1.000	1.000	0.762	1.000	1.000	0.980	1.000	1.000	1.000	1.000	1.000
50	0.258	1.000	1.000	0.595	1.000	1.000	0.885	1.000	1.000	0.996	1.000	1.000	1.000	1.000	1.000
100	0.258	1.000	1.000	0.623	1.000	1.000	0.890	1.000	1.000	0.998	1.000	1.000	1.000	1.000	1.000
300	0.241	1.000	1.000	0.620	1.000	1.000	0.895	1.000	1.000	0.995	1.000	1.000	1.000	1.000	1.000
600	0.237	1.000	1.000	0.606	1.000	1.000	0.884	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
r	Gamma Instances III														
10	0.220	0.999	1.000	0.518	1.000	1.000	0.762	1.000	1.000	0.973	1.000	1.000	1.000	1.000	1.000
50	0.260	1.000	1.000	0.628	1.000	1.000	0.874	1.000	1.000	0.997	1.000	1.000	1.000	1.000	1.000
100	0.242	1.000	1.000	0.625	1.000	1.000	0.922	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
300	0.240	1.000	1.000	0.602	1.000	1.000	0.877	1.000	1.000	0.998	1.000	1.000	1.000	1.000	1.000
600	0.260	1.000	1.000	0.633	1.000	1.000	0.929	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

38

S10 Vector-Based Simulations

This section contains tables that display the simulation results for the sphericity test (Table 21) and the identity test (Table 22) proposed by Srivastava, Yanagihara, and Kubokawa (2014) when the correlation between the column features is ignored and each subject specific matrix response is treated as c independent r-dimensional vectors.

We simulated X_1, \ldots, X_N under four matrix-variate normal scenarios with matrix parameters:

- 1. $\mathbf{M} = \mathbf{0}, \ \mathbf{\Sigma}_{\mathrm{R}} = \mathbf{I}_r \text{ and } \mathbf{\Sigma}_{\mathrm{C}} = \mathbf{I}_c.$
- 2. M with elements $(\mathbf{M})_{r_1c_1} = r_1c_1/(rc), \ \mathbf{\Sigma}_{\mathrm{R}} = \mathbf{I}_r \text{ and } \mathbf{\Sigma}_{\mathrm{C}} = \mathbf{I}_c.$
- 3. $\mathbf{M} = \mathbf{0}, \ \mathbf{\Sigma}_{\mathrm{R}} = \mathbf{I}_{r} \text{ and } \mathbf{\Sigma}_{\mathrm{C}} \text{ with elements } (\mathbf{\Sigma}_{\mathrm{C}})_{c_{1}c_{2}} = 0.85^{|c_{1}-c_{2}|}.$
- 4. **M** with elements $(\mathbf{M})_{r_1c_1} = r_1c_1/(rc)$, $\Sigma_{\mathbf{R}} = \mathbf{I}_r$ and $\Sigma_{\mathbf{C}}$ with elements $(\Sigma_{\mathbf{C}})_{c_1c_2} = 0.85^{|c_1-c_2|}$.

To reflect high-dimensional settings, we considered N = 20, 40, 60, r = 10, 50, 100, 300, 600 and c = 10, 100, 600. In each simulation scheme, we used 1000 replicates and we calculated the proportions of rejections at a 5% nominal significance level.

Table 21: Empirical size of the spericity test when $\Sigma_R = I$, $\alpha = 0.05$ and the columns are treated as independent.

N	20				40			60			
с	10	100	600	10	100	600	10	100	600		
r				Cor	figuratio	on 1					
10	0.054	0.060	0.050	0.063	0.055	0.046	0.058	0.059	0.044		
50	0.055	0.052	0.058	0.049	0.062	0.058	0.055	0.055	0.057		
100	0.050	0.057	0.055	0.062	0.048	0.066	0.046	0.060	0.058		
300	0.049	0.045	0.050	0.057	0.042	0.056	0.053	0.041	0.058		
600	0.054	0.041	0.056	0.046	0.053	0.047	0.062	0.056	0.042		
r	Configuration 2										
10	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
50	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
100	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
300	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
600	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
r				Configuration 3.							
10	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
50	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
100	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
300	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
600	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
r				Cor	figuratio	on 4					
10	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
50	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
100	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
300	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
600	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		

Table 22: Empirical size of the identity test when $\Sigma_{\rm R} = I$, $\alpha = 0.05$ and the columns are treated as independent.

N	20				40			60			
с	10	100	600	10	100	600	10	100	600		
r				Cor	nfiguratio	on 1					
10	0.068	0.065	0.062	0.075	0.068	0.055	0.067	0.068	0.055		
50	0.058	0.054	0.061	0.051	0.062	0.062	0.057	0.057	0.059		
100	0.049	0.058	0.055	0.065	0.050	0.066	0.049	0.062	0.058		
300	0.050	0.045	0.051	0.057	0.042	0.057	0.053	0.044	0.058		
600	0.054	0.041	0.056	0.046	0.053	0.050	0.062	0.056	0.043		
r	Configuration 2										
10	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
50	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
100	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
300	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
600	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
r				Cor	nfiguratio	on 3					
10	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
50	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
100	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
300	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
600	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
r				Cor	nfiguratio	on 4					
10	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
50	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
100	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
300	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
600	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		

S11 R code

The R code to run the analysis in the mouse example in Section 5 is

```
## Loading required R packages
library(covsep)
library(HDTD)
## Loading data
data(VEGFmouse)
## Assessing the Kronecker Product Assumption
VEGFmouse_arrays <- array(data.matrix(VEGFmouse), c(46, 9, 40))</pre>
VEGFmouse_arrays <- aperm(VEGFmouse_arrays, c(3, 1, 2))</pre>
set.seed(1)
empirical_bootstrap_test(VEGFmouse_arrays, L1 = 46, L2 = 9)
## Estimating the tissue correlation matrix
Sigma_tissues <- covmat.hat(data = VEGFmouse, N = 40, voi = "columns",
                             shrink = "both")$cols.covmat
Cor_tissues <- cov2cor(Sigma_tissues)</pre>
round(Cor_tissues, 4)
## Covariance tests
covmat.ts(data = VEGFmouse, N = 40, voi = "columns")
and below are also the details of the R session
> sessionInfo()
R version 3.5.0 (2018-04-23)
Platform: x86_64-w64-mingw32/x64 (64-bit)
```

Running under: Windows 7 x64 (build 7601) Service Pack 1

```
Matrix products: default
locale:
[1] LC_COLLATE=English_United Kingdom.1252 LC_CTYPE=English_United Kingdom.1252
LC_MONETARY=English_United Kingdom.1252
[4] LC_NUMERIC=C
                                          LC_TIME=English_United Kingdom.1252
attached base packages:
[1] stats
             graphics grDevices utils datasets methods
                                                              base
other attached packages:
                        covsep_1.1.0 BiocInstaller_1.30.0
[1] HDTD_1.14.0
loaded via a namespace (and not attached):
[1] compiler_3.5.0 tools_3.5.0 yaml_2.1.19
                                               Rcpp_0.12.17 tinytex_0.5
```

The R code to run the analysis in the EEG example in Section 5 is

```
## Load the necessary packages
library(R.matlab)
library(HDTD)
```

Read the data. The data files can be downloaded from ## the supplementary material of Xia and Chen (2017). alcoholic_group <- readMat('./RcodeExamples/X1_t256.mat') control_group <- readMat('./RcodeExamples/X0_t256.mat')</pre>

Create the data matrices
alcoholic_group <- transposedata(matrix(unlist(alcoholic_group),</pre>

nrow = 256, ncol = 77 * 64), N = 77)

covmat.ts(datamat = control_group, N = 45, voi="columns")

Test the covariance matrices of the electrodes
covmat.ts(datamat = alcoholic_group, N = 77, voi="rows")
covmat.ts(datamat = control_group, N = 45, voi="rows")

Assess the bandness for the alcoholic group alcoholic_group <- transposedata(alcoholic_group, N=77) covmat.ts(datamat = alcoholic_group[seq(1, 256, 4),], N = 77, voi="rows") covmat.ts(datamat = alcoholic_group[seq(2, 256, 4),], N = 77, voi="rows") covmat.ts(datamat = alcoholic_group[seq(3, 256, 4),], N = 77, voi="rows")

```
## Assess the bandness for the control group
control_group <- transposedata(control_group, N=45)
covmat.ts(datamat = control_group[seq(1, 256, 4), ], N = 45, voi="rows")
covmat.ts(datamat = control_group[seq(2, 256, 4), ], N = 45, voi="rows")
covmat.ts(datamat = control_group[seq(3, 256, 4), ], N = 45, voi="rows")
```

and below are also the details of the R session

sessionInfo()

R version 3.6.0 (2019-04-26) Platform: x86_64-w64-mingw32/x64 (64-bit) Running under: Windows 7 x64 (build 7601) Service Pack 1

Matrix products: default

Random number generation:

RNG: Mersenne-Twister Normal: Inversion Sample: Rounding

locale:

[1] LC_COLLATE=English_United Kingdom.1252 LC_CTYPE=English_United Kingdom.1252

[3] LC_MONETARY=English_United Kingdom.1252 LC_NUMERIC=C

[5] LC_TIME=English_United Kingdom.1252

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] HDTD_1.14.0 R.matlab_3.6.2

loaded via a namespace (and not attached):
[1] compiler_3.6.0 tools_3.6.0 yaml_2.2.0 Rcpp_1.0.1
R.methodsS3_1.7.1

[6] R.utils_2.8.0 pacman_0.5.1 R.oo_1.22.0

Bibliography

- Harville, D. A. (1997). Matrix Algebra from a Statistician's Perspective. Springer.
- Seber, G. A. F. (2008). A Matrix Handbook for Statisticians. John Wiley & Sons.
- Srivastava, M. S., Yanagihara, H. and Kubokawa, T. (2014). Tests for covariance matrices in high dimension with less sample size. *Journal of Multivariate Analysis* 130, 289–309.