EFFICIENT DESIGNS FOR THE ESTIMATION OF MIXED AND SELF CARRYOVER EFFECTS

Joachim Kunert, Johanna Mielke

Department of Statistics, TU Dortmund, Germany Novartis Pharma AG, Basel, Switzerland

Supplementary Material

S1 Proof of Proposition 1

For given $\lambda_2 \geq \lambda_3 > 0$, we have that $\lambda_1 \leq L - \lambda_2 - \lambda_3$. Hence,

$$\varphi_A(d) = \frac{1}{\frac{1}{\lambda_1} + \frac{1}{\lambda_2} + \frac{1}{\lambda_3}} \le \frac{1}{\frac{1}{L - \lambda_2 - \lambda_3} + \frac{1}{\lambda_2} + \frac{1}{\lambda_3}}.$$

Holding λ_3 fixed, this bound is maximal if $\lambda_2 = L - \lambda_2 - \lambda_3$, i.e. if $\lambda_2 = (L - \lambda_3)/2$. This implies that

$$\varphi_A(d) \le \frac{1}{\frac{2}{L-\lambda_3} + \frac{2}{L-\lambda_3} + \frac{1}{\lambda_3}}.$$

This bound, however, gets maximal if λ_3 gets as near to $(L - \lambda_3)/2$ as possible, which means that $\lambda_3 = q$. This gives

$$\varphi_A(d) \le \frac{1}{\frac{2}{L-q} + \frac{2}{L-q} + \frac{1}{q}}.$$

If $\lambda_3 = 0$ we get $\varphi_A(d) = 0$, which completes the proof.

S2 Proof of Proposition 2

In our notation, the equation at the bottom of page 75 of Pukelsheim (1993) becomes

$$\begin{bmatrix} \mathbf{C}_{d11} & \mathbf{C}_{d12} \\ \mathbf{C}_{d12}^T & \mathbf{C}_{d22} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_2 & \mathbf{C}_{d12}\mathbf{C}_{d22}^+ \\ \mathbf{0} & \mathbf{I}_4 \end{bmatrix} \begin{bmatrix} \tilde{\mathbf{C}}_d & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_{d22} \end{bmatrix} \begin{bmatrix} \mathbf{I}_2 & \mathbf{0} \\ \mathbf{C}_{d22}^+\mathbf{C}_{d12}^T & \mathbf{I}_4 \end{bmatrix}.$$

Multiplying this by $\begin{bmatrix} \mathbf{I}_2 & -\mathbf{X}^T \end{bmatrix}$ from the left and by $\begin{bmatrix} \mathbf{I}_2 \\ -\mathbf{X} \end{bmatrix}$ from the right, we get

$$\begin{split} \mathbf{C}_{d11} &- \mathbf{C}_{d12} \mathbf{X} - \mathbf{X}^T \mathbf{C}_{d12}^T + \mathbf{X}^T \mathbf{C}_{d22} \mathbf{X} \\ &= \begin{bmatrix} \mathbf{I}_2 & \mathbf{C}_{d12} \mathbf{C}_{d22}^+ - \mathbf{X}^T \end{bmatrix} \begin{bmatrix} \tilde{\mathbf{C}}_d & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_{d22} \end{bmatrix} \begin{bmatrix} \mathbf{I}_2 & \mathbf{C}_{d22}^+ \mathbf{C}_{d12}^T - \mathbf{X} \end{bmatrix} \\ &= \tilde{\mathbf{C}}_d + \left(\mathbf{C}_{d12} \mathbf{C}_{d22}^+ - \mathbf{X}^T \right) \mathbf{C}_{d22} \left(\mathbf{C}_{d22}^+ \mathbf{C}_{d12}^T - \mathbf{X} \right). \end{split}$$

This is almost the same as (5.2) in Kushner (1997), except that \mathbf{X} is not square. Since $(\mathbf{C}_{d12}\mathbf{C}_{d22}^+ - \mathbf{X}^T)\mathbf{C}_{d22}(\mathbf{C}_{d22}^+\mathbf{C}_{d12}^T - \mathbf{X}) \ge 0$, it follows that

$$\mathbf{C}_{d11} - \mathbf{C}_{d12}\mathbf{X} - \mathbf{X}^T\mathbf{C}_{d12}^T + \mathbf{X}^T\mathbf{C}_{d22}\mathbf{X} \ge \tilde{\mathbf{C}}_d,$$

with equality for $\mathbf{X} = \mathbf{C}_{d22}^{+} \mathbf{C}_{d12}^{T}$.

S3 Proof of Proposition 3

Define $Q(x) = \mathbf{k}^T \mathbf{C}_{d11} \mathbf{k} - 2\mathbf{k}^T \mathbf{C}_{d12} \mathbf{b}_2 x + \mathbf{b}_2^T \mathbf{C}_{d22} \mathbf{b}_2 x^2.$

Case 1: $\mathbf{k}^T \mathbf{C}_{d12} \mathbf{b}_2 \neq 0.$

Consider the matrix

$$\mathbf{X} = \mathbf{C}_{d12}^T \frac{x}{\mathbf{k}^T \mathbf{C}_{d12}^T \mathbf{b}_2} \in \mathbb{R}^{2 \times 4}.$$

Then $\mathbf{k}^T \mathbf{X}^T \mathbf{b}_2 = x.$

It follows from Proposition 2 that

$$\mathbf{k}^{T} \tilde{C}_{d} \mathbf{k} \leq \mathbf{k}^{T} \mathbf{C}_{d11} \mathbf{k} - \mathbf{k}^{T} \mathbf{C}_{d12} \mathbf{X} \mathbf{k} - \mathbf{k}^{T} \mathbf{X}^{T} \mathbf{C}_{d12}^{T} \mathbf{k} + \mathbf{k}^{T} \mathbf{X}^{T} \mathbf{C}_{d22} \mathbf{X} \mathbf{k}$$

Since \mathbf{C}_{d12} has row-sums 0, we have $\mathbf{C}_{d12}\mathbf{b}_2\mathbf{b}_2^T = \mathbf{C}_{d12}$. Since \mathbf{C}_{d22} has both row- and column-sums 0, we even have $\mathbf{b}_2\mathbf{b}_2^T\mathbf{C}_{d22}\mathbf{b}_2\mathbf{b}_2^T = \mathbf{C}_{d22}$. Hence

$$\mathbf{k}^{T} \tilde{C}_{d} \mathbf{k} \leq \mathbf{k}^{T} \mathbf{C}_{d11} \mathbf{k} - \mathbf{k}^{T} \mathbf{C}_{d12} \mathbf{b}_{2} \mathbf{b}_{2}^{T} \mathbf{X} \mathbf{k}$$
$$-\mathbf{k}^{T} \mathbf{X}^{T} \mathbf{b}_{2} \mathbf{b}_{2}^{T} \mathbf{C}_{d12}^{T} \mathbf{k} + \mathbf{k}^{T} \mathbf{X}^{T} \mathbf{b}_{2} \mathbf{b}_{2}^{T} \mathbf{C}_{d22} \mathbf{b}_{2} \mathbf{b}_{2}^{T} \mathbf{X} \mathbf{k}$$
$$= \mathbf{k}^{T} \mathbf{C}_{d11} \mathbf{k} - \mathbf{k}^{T} \mathbf{C}_{d12} \mathbf{b}_{2} x - x \mathbf{b}_{2}^{T} \mathbf{C}_{d12}^{T} \mathbf{k} + x \mathbf{b}_{2}^{T} \mathbf{C}_{d22} \mathbf{b}_{2} x$$
$$= Q(x).$$

Because of Proposition 2, we get equality for $\mathbf{X} = \mathbf{X}_d = \mathbf{C}_{d22}^+ \mathbf{C}_{d12}^T$, i.e., for

$$x = \mathbf{b}_2^T \mathbf{C}_{d22}^+ \mathbf{C}_{d12}^T \mathbf{k} = x_d.$$

Case 2: $\mathbf{k}^T \mathbf{C}_{d12} \mathbf{b}_2 = 0.$

Then $Q(x) = \mathbf{k}^T \mathbf{C}_{d11} \mathbf{k} + \mathbf{b}_2^T \mathbf{C}_{d22} \mathbf{b}_2 x^2 \ge \mathbf{k}^T \mathbf{C}_{d11} \mathbf{k}$ with equality for x = 0. On the other hand, it follows from $\mathbf{k}^T \mathbf{C}_{d12} \mathbf{b}_2 = 0$ that $\mathbf{k}^T \mathbf{C}_{d12} \mathbf{b}_2 \mathbf{b}_2^T = 0$, and, therefore, that $\mathbf{k}^T \mathbf{C}_{d12} = \mathbf{0}$. Hence, $\mathbf{k}^T \mathbf{C}_{d11} \mathbf{k} = \mathbf{k}^T \tilde{\mathbf{C}}_d \mathbf{k}$. Furthermore, $x_d = \mathbf{k}^T \mathbf{C}_{d12} \mathbf{C}_{d22}^+ \mathbf{b}_2 = \mathbf{k}^T \mathbf{C}_{d12} \mathbf{b}_2 \mathbf{b}_2^T \mathbf{C}_{d22}^+ \mathbf{b}_2 = 0$. This completes the proof.

S4 Proof of Proposition 4

It follows from Proposition 3 and Equation (3.6) that

$$\frac{1}{n}\mathbf{k}^{T}\tilde{\mathbf{C}}_{d}\mathbf{k} \leq \sum_{z\in Z_{p}}\pi_{d}(z)\{\mathbf{k}^{T}\mathbf{C}_{11}(z)\mathbf{k}-2\mathbf{k}^{T}\mathbf{C}_{12}(z)\mathbf{b}_{2}x+\mathbf{b}_{2}^{T}\mathbf{C}_{22}(z)\mathbf{b}_{2}x^{2}\}$$

$$\leq \max_{z\in Z_{p}}\{\mathbf{k}^{T}\mathbf{C}_{11}(z)\mathbf{k}-2\mathbf{k}^{T}\mathbf{C}_{12}(z)\mathbf{b}_{2}x+\mathbf{b}_{2}^{T}\mathbf{C}_{22}(z)\mathbf{b}_{2}x^{2}\}.$$

From the Courant-Fischer Theorem it follows that

$$\lambda_3(ilde{\mathbf{C}}_d) = \min_{\mathbf{h}:\mathbf{h}^T\mathbf{1}_4=0}rac{1}{\mathbf{h}^T\mathbf{h}}\mathbf{h}^T ilde{\mathbf{C}}_d\mathbf{h}$$

and since

$$\lambda_3(\mathbf{C}_d) \le \lambda_3(\mathbf{C}_d),$$

the desired inequality follows.

S5 Proof of Proposition 5

Since $tr(\tilde{\mathbf{C}}_d) \ge tr(\mathbf{C}_d)$, it follows directly from Proposition 2 and Equation (3.6) that

$$tr(\mathbf{C}_{d})/n$$

$$\leq tr\left(\sum_{z\in Z_{p}}\pi_{d}(z)\left(\mathbf{C}_{11}(z)-\mathbf{C}_{12}(z)\mathbf{X}-\mathbf{X}^{T}\mathbf{C}_{12}^{T}(z)+\mathbf{X}^{T}\mathbf{C}_{22}(z)\mathbf{X}\right)\right)$$

$$\leq \max_{z\in Z_{p}}\left(tr(\mathbf{C}_{11}(z))-2tr(\mathbf{C}_{12}(z)\mathbf{X})+tr(\mathbf{X}^{T}\mathbf{C}_{22}(z)\mathbf{X})\right).$$

This completes the proof.

S6 Proof of Proposition 6

Choosing $\mathbf{X} = \mathbf{X}_f$, it follows from (3.7) for any design $d \in \Delta_{2,n,p}$ that $tr(\mathbf{C}_d) \leq \max_{z \in Z_p} L_z(\mathbf{X}_f)$. The conditions of Proposition 6 imply that $\max_{z \in Z_p} L_z(\mathbf{X}_f) \leq tr(\mathbf{C}_f)$ and, hence, that $tr(\mathbf{C}_d) \leq tr(\mathbf{C}_f)$.

S7 Proof of Proposition 7

The design d has weights $\pi_d(z)$, $z \in Z_p$. Consider the dual design $\bar{d} \in \Delta_{2,n,p}$ with weights $\pi_{\bar{d}}(z)$, $z \in Z_p$, where for each $z \in Z_p$ the dual design \bar{d} allots the weight that d has allotted to the dual sequence \bar{z} , i.e. $\pi_{\bar{d}}(z) = \pi_d(\bar{z})$. If we define

$$\mathbf{H}_2 = \left[\begin{array}{cc} 0 & 1 \\ & \\ 1 & 0 \end{array} \right],$$

then $\mathbf{S}_{\bar{d}} = \mathbf{S}_d \mathbf{H}_2$, $\mathbf{M}_{\bar{d}} = \mathbf{M}_d \mathbf{H}_2$ and $\mathbf{T}_{\bar{d}} = \mathbf{T}_d \mathbf{H}_2$. Therefore,

$$\mathbf{C}_{\bar{d}11} = \begin{bmatrix} \mathbf{H}_2 & \mathbf{0} \\ \mathbf{0} & \mathbf{H}_2 \end{bmatrix} \mathbf{C}_{d11} \begin{bmatrix} \mathbf{H}_2 & \mathbf{0} \\ \mathbf{0} & \mathbf{H}_2 \end{bmatrix}, \ \mathbf{C}_{\bar{d}12} = \begin{bmatrix} \mathbf{H}_2 & \mathbf{0} \\ \mathbf{0} & \mathbf{H}_2 \end{bmatrix} \mathbf{C}_{d12} \mathbf{H}_2$$

and

$$\mathbf{C}_{\bar{d}22} = \mathbf{H}_2 \mathbf{C}_{d22} \mathbf{H}_2.$$

This implies that

$$\begin{split} \tilde{\mathbf{C}}_{\bar{d}} &= \begin{bmatrix} \mathbf{H}_2 & \mathbf{0} \\ \mathbf{0} & \mathbf{H}_2 \end{bmatrix} \mathbf{C}_{d11} \begin{bmatrix} \mathbf{H}_2 & \mathbf{0} \\ \mathbf{0} & \mathbf{H}_2 \end{bmatrix} \\ &- \begin{bmatrix} \mathbf{H}_2 & \mathbf{0} \\ \mathbf{0} & \mathbf{H}_2 \end{bmatrix} \mathbf{C}_{d12} \mathbf{H}_2 (\mathbf{H}_2 \mathbf{C}_{d22}^+ \mathbf{H}_2) \mathbf{H}_2 \mathbf{C}_{d12}^T \begin{bmatrix} \mathbf{H}_2 & \mathbf{0} \\ \mathbf{0} & \mathbf{H}_2 \end{bmatrix} \\ &= \begin{bmatrix} \mathbf{H}_2 & \mathbf{0} \\ \mathbf{0} & \mathbf{H}_2 \end{bmatrix} \tilde{\mathbf{C}}_d \begin{bmatrix} \mathbf{H}_2 & \mathbf{0} \\ \mathbf{0} & \mathbf{H}_2 \end{bmatrix}. \end{split}$$

It follows that $\tilde{C}_{\bar{d}}$ has the same eigenvalues as \tilde{C}_d and, consequently, that $\tilde{\varphi}_A(\bar{d}) = \tilde{\varphi}_A(d).$

Now consider the dual balanced design f which allots to each sequence z the weight $\pi_f(z) = \frac{1}{2}\pi_d(z) + \frac{1}{2}\pi_{\bar{d}}(z)$. It then follows from Proposition 1

of Kunert and Martin (2000) that

$$\tilde{\mathbf{C}}_f \ge \frac{1}{2}\tilde{\mathbf{C}}_d + \frac{1}{2}\tilde{\mathbf{C}}_{\bar{d}},$$

which implies that

$$\tilde{\varphi}_A(f) \ge \frac{1}{2}\tilde{\varphi}_A(d) + \frac{1}{2}\tilde{\varphi}_A(\bar{d}) = \tilde{\varphi}_A(d),$$

since the A-criterion is concave and increasing.

S8 Proof of Proposition 8

The first row of both \mathbf{S}_z and \mathbf{M}_z is [0,0]. The first row of \mathbf{T}_z is either [1,0] or [0,1], depending on whether the sequence z starts with R or T. Therefore, the first element of $\mathbf{S}_z \mathbf{b}_2 - \mathbf{M}_z \mathbf{b}_2 - \mathbf{T}_z \mathbf{b}_2$ is either 1 or -1.

Now consider the *i*-th element, for $i \ge 2$.

Case 1: The preceding treatment was R, the current treatment is R. Then the *i*-th row of \mathbf{S}_z is [1,0], the *i*-th row of \mathbf{M}_z is [0,0], and the *i*-th row of \mathbf{T}_z is [1,0]. Hence, the *i*-th element of $\mathbf{S}_z\mathbf{b}_2 - \mathbf{M}_z\mathbf{b}_2 - \mathbf{T}_z\mathbf{b}_2$ equals 0.

Case 2: The preceding treatment was R, the current treatment is T. Then the *i*-th row of \mathbf{S}_z is [0,0], the *i*-th row of \mathbf{M}_z is [1,0], and the *i*-th row of \mathbf{T}_z is [0,1]. Hence, the *i*-th element of $\mathbf{S}_z\mathbf{b}_2 - \mathbf{M}_z\mathbf{b}_2 - \mathbf{T}_z\mathbf{b}_2$ equals 0.

Case 3: The preceding treatment was T, the current treatment is R. Then the *i*-th row of \mathbf{S}_z is [0,0], the *i*-th row of \mathbf{M}_z is [0,1], and the *i*-th row of \mathbf{T}_{z} is [0, 1]. Again, the *i*-th element of $\mathbf{S}_{z}\mathbf{b}_{2} - \mathbf{M}_{z}\mathbf{b}_{2} - \mathbf{T}_{z}\mathbf{b}_{2}$ equals 0. Case 4: The preceding treatment was *T*, the current treatment is *T*. Then the *i*-th row of \mathbf{S}_{z} is [0, 1], the *i*-th row of \mathbf{M}_{z} is [0, 0], and the *i*-th row of \mathbf{T}_{z} is [0, 1]. So also in this case, the *i*-th element of $\mathbf{S}_{z}\mathbf{b}_{2} - \mathbf{M}_{z}\mathbf{b}_{2} - \mathbf{T}_{z}\mathbf{b}_{2}$ equals 0.

This completes the proof.

S9 Proof of Proposition 9

Observing that

$$\mathbf{k} = \frac{1}{\sqrt{2}} \begin{bmatrix} \mathbf{b}_2 \\ -\mathbf{b}_2 \end{bmatrix}$$

we get

e

$$\begin{split} J_{z}(\frac{1}{\sqrt{2}}) &= \frac{1}{2} \begin{bmatrix} \mathbf{b}_{2}^{T}, -\mathbf{b}_{2}^{T} \end{bmatrix} \mathbf{C}_{11}(z) \begin{bmatrix} \mathbf{b}_{2} \\ -\mathbf{b}_{2} \end{bmatrix} - \frac{1}{2} \begin{bmatrix} \mathbf{b}_{2}^{T}, -\mathbf{b}_{2}^{T} \end{bmatrix} \mathbf{C}_{12}(z) \mathbf{b}_{2} \\ &- \frac{1}{2} \mathbf{b}_{2}^{T} \mathbf{C}_{12}^{T}(z) \begin{bmatrix} \mathbf{b}_{2} \\ -\mathbf{b}_{2} \end{bmatrix} + \mathbf{b}_{2}^{T} \mathbf{C}_{22}(z) \mathbf{b}_{2} \\ &= \frac{1}{2} \begin{bmatrix} \mathbf{b}_{2}^{T}, -\mathbf{b}_{2}^{T}, -\mathbf{b}_{2}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{C}_{11}(z) & \mathbf{C}_{12}(z) \\ \mathbf{C}_{12}^{T}(z) & \mathbf{C}_{22}(z) \end{bmatrix} \begin{bmatrix} \mathbf{b}_{2} \\ -\mathbf{b}_{2} \\ -\mathbf{b}_{2} \end{bmatrix}. \end{split}$$

Using (3.3)-(3.5) and the fact that

$$\mathbf{B}_4 egin{bmatrix} \mathbf{b}_2 \ -\mathbf{b}_2 \end{bmatrix} = egin{bmatrix} \mathbf{b}_2 \ -\mathbf{b}_2 \end{bmatrix},$$

we get

$$J_{z}(\frac{1}{\sqrt{2}}) = \frac{1}{2} \begin{bmatrix} \mathbf{b}_{2}^{T}, -\mathbf{b}_{2}^{T}, -\mathbf{b}_{2}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{S}_{z}^{T} \\ \mathbf{M}_{z}^{T} \\ \mathbf{T}_{z}^{T} \end{bmatrix} \mathbf{B}_{p} \begin{bmatrix} \mathbf{S}_{z}, \mathbf{M}_{z}, \mathbf{T}_{z} \end{bmatrix} \begin{bmatrix} \mathbf{b}_{2} \\ -\mathbf{b}_{2} \\ -\mathbf{b}_{2} \end{bmatrix}.$$

In Proposition 8 we have seen that

$$\begin{bmatrix} \mathbf{s}_z, \mathbf{M}_z, \mathbf{T}_z \end{bmatrix} \begin{bmatrix} \mathbf{b}_2 \\ -\mathbf{b}_2 \\ -\mathbf{b}_2 \end{bmatrix} = \begin{bmatrix} a \\ 0 \\ \vdots \\ 0 \end{bmatrix},$$

where a is either 1 or -1. It follows that

$$J_{z}(\frac{1}{\sqrt{2}}) = [1, 0, \dots, 0] \mathbf{B}_{p} \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix} = \frac{p-1}{2p}$$

which completes the proof.

S10 Proof of Proposition 10

For $\mathbf{X}^* = c [\mathbf{B}_2, -\mathbf{B}_2]$, as in the statement of Proposition 10, define

$$G_z = L_z(\mathbf{X}^*)/n = tr(\mathbf{C}_{11}(z)) - 2tr(\mathbf{C}_{12}(z)\mathbf{X}^*) + tr(\mathbf{X}^{*T}\mathbf{C}_{22}(z)\mathbf{X}^*).$$

We get from (3.3)-(3.5)

$$\begin{aligned} G_{z} &= tr \left(\mathbf{B}_{4} \begin{bmatrix} \mathbf{S}_{z}^{T} \\ \mathbf{M}_{z}^{T} \end{bmatrix} \mathbf{B}_{p} [\mathbf{S}_{z}, \mathbf{M}_{z}] \mathbf{B}_{4} \right) \\ &- 2c tr \left(\mathbf{B}_{4} \begin{bmatrix} \mathbf{S}_{z}^{T} \\ \mathbf{M}_{z}^{T} \end{bmatrix} \mathbf{B}_{p} \mathbf{T}_{z} [\mathbf{B}_{2}, -\mathbf{B}_{2}] \right) \\ &+ c^{2} tr \left(\begin{bmatrix} \mathbf{B}_{2} \\ -\mathbf{B}_{2} \end{bmatrix} \mathbf{T}_{z}^{T} \mathbf{B}_{p} \mathbf{T}_{z} [\mathbf{B}_{2}, -\mathbf{B}_{2}] \right) \\ &= tr \left(\mathbf{B}_{4} \begin{bmatrix} (\mathbf{S}_{z} - c\mathbf{T}_{z}\mathbf{B}_{2})^{T} \\ (\mathbf{M}_{z} + c\mathbf{T}_{z}\mathbf{B}_{2})^{T} \end{bmatrix} \mathbf{B}_{p} [\mathbf{S}_{z} - c\mathbf{T}_{z}\mathbf{B}_{2}, \mathbf{M}_{z} + c\mathbf{T}_{z}\mathbf{B}_{2}] \mathbf{B}_{4} \right), \end{aligned}$$

where we have used that $[\mathbf{B}_2, -\mathbf{B}_2] \mathbf{B}_4 = [\mathbf{B}_2, -\mathbf{B}_2]$ and, for any $\mathbf{A}_1, \mathbf{A}_2$, that $tr(\mathbf{A}_1\mathbf{A}_2) = tr(\mathbf{A}_2\mathbf{A}_1)$.

We split G_z up into several parts. Define

$$G_{z}^{(1)} = tr \left(\begin{bmatrix} (\mathbf{S}_{z} - c\mathbf{T}_{z}\mathbf{B}_{2})^{T} \\ (\mathbf{M}_{z} + c\mathbf{T}_{z}\mathbf{B}_{2})^{T} \end{bmatrix} \begin{bmatrix} \mathbf{S}_{z} - c\mathbf{T}_{z}\mathbf{B}_{2}, \mathbf{M}_{z} + c\mathbf{T}_{z}\mathbf{B}_{2} \end{bmatrix} \right),$$

S10. PROOF OF PROPOSITION 10

$$G_{z}^{(2)} = tr\left(\begin{bmatrix} (\mathbf{S}_{z} - c\mathbf{T}_{z}\mathbf{B}_{2})^{T} \\ (\mathbf{M}_{z} + c\mathbf{T}_{z}\mathbf{B}_{2})^{T} \end{bmatrix} \frac{1}{p} \mathbf{1}_{p} \mathbf{1}_{p}^{T} \Big[\mathbf{S}_{z} - c\mathbf{T}_{z}\mathbf{B}_{2}, \mathbf{M}_{z} + c\mathbf{T}_{z}\mathbf{B}_{2} \Big] \right),$$

and

$$G_{z}^{(3)} = \frac{1}{4} \mathbf{1}_{4}^{T} \begin{bmatrix} (\mathbf{S}_{z} - c\mathbf{T}_{z}\mathbf{B}_{2})^{T} \\ (\mathbf{M}_{z} + c\mathbf{T}_{z}\mathbf{B}_{2})^{T} \end{bmatrix} \mathbf{B}_{p} \begin{bmatrix} \mathbf{S}_{z} - c\mathbf{T}_{z}\mathbf{B}_{2}, \mathbf{M}_{z} + c\mathbf{T}_{z}\mathbf{B}_{2} \end{bmatrix} \mathbf{1}_{4}.$$

Then $G_z = G_z^{(1)} - G_z^{(2)} - G_z^{(3)}$, because $tr(\mathbf{B}_4\mathbf{A}\mathbf{B}_4) = tr(\mathbf{A}) - \frac{1}{4}\mathbf{1}_4^T\mathbf{A}\mathbf{1}_4$.

If z starts with R, the first row of $\mathbf{S}_z - c\mathbf{T}_z\mathbf{B}_2$ equals [-c/2, c/2]. Otherwise it is [c/2, -c/2].

For $i \geq 2$, the *i*-th row of $\mathbf{S}_z - c\mathbf{T}_z\mathbf{B}_2$ equals

$$[1 - c/2, c/2]$$
, if $z(i - 1) = R$, $z(i) = R$,
 $[c/2, -c/2]$, if $z(i - 1) = R$, $z(i) = T$,
 $[-c/2, c/2]$, if $z(i - 1) = T$, $z(i) = R$,
 $[c/2, 1 - c/2]$, if $z(i - 1) = T$, $z(i) = T$.

On the other hand, the first row of $\mathbf{M}_z + c\mathbf{T}_z\mathbf{B}_2$ is [c/2, -c/2] if z starts with R, and [-c/2, c/2] if it starts with T. For $i \geq 2$, the *i*-th row of $\mathbf{M}_z + c\mathbf{T}_z\mathbf{B}_2$ equals

$$[c/2, -c/2],$$
 if $z(i-1) = R, z(i) = R,$
 $[1-c/2, c/2],$ if $z(i-1) = R, z(i) = T,$

$$[c/2, 1-c/2]$$
, if $z(i-1) = T$, $z(i) = R$,
 $[-c/2, c/2]$, if $z(i-1) = T$, $z(i) = T$.

We therefore have that

$$\begin{aligned} (\mathbf{S}_{z} - c\mathbf{T}_{z}\mathbf{B}_{2})^{T}(\mathbf{S}_{z} - c\mathbf{T}_{z}\mathbf{B}_{2}) &= \\ \begin{bmatrix} \frac{c^{2}}{4} & -\frac{c^{2}}{4} \\ -\frac{c^{2}}{4} & \frac{c^{2}}{4} \end{bmatrix} + s_{RR} \begin{bmatrix} (1 - \frac{c}{2})^{2} & \frac{c}{2}(1 - \frac{c}{2}) \\ \frac{c}{2}(1 - \frac{c}{2}) & \frac{c^{2}}{4} \end{bmatrix} \\ + m_{RT} \begin{bmatrix} \frac{c^{2}}{4} & -\frac{c^{2}}{4} \\ -\frac{c^{2}}{4} & \frac{c^{2}}{4} \end{bmatrix} + m_{TR} \begin{bmatrix} \frac{c^{2}}{4} & -\frac{c^{2}}{4} \\ -\frac{c^{2}}{4} & \frac{c^{2}}{4} \end{bmatrix} + s_{TT} \begin{bmatrix} \frac{c^{2}}{4} & \frac{c}{2}(1 - \frac{c}{2}) \\ \frac{c}{2}(1 - \frac{c}{2}) & (1 - \frac{c}{2})^{2} \end{bmatrix} \end{aligned}$$

and

$$tr((\mathbf{S}_{z} - c\mathbf{T}_{z}\mathbf{B}_{2})^{T}(\mathbf{S}_{z} - c\mathbf{T}_{z}\mathbf{B}_{2})) = (1 + m_{RT} + m_{TR})\frac{c^{2}}{2} + (s_{RR} + s_{TT})(\frac{c^{2}}{4} + (1 - \frac{c}{2})^{2}).$$

Similarly,

$$tr((\mathbf{M}_{z} + c\mathbf{T}_{z}\mathbf{B}_{2})^{T}(\mathbf{M}_{z} + c\mathbf{T}_{z}\mathbf{B}_{2}))$$

= $(1 + s_{RR} + s_{TT})\frac{c^{2}}{2} + (m_{RT} + m_{TR})(\frac{c^{2}}{4} + (1 - \frac{c}{2})^{2}).$

Noting that $s_{RR} + s_{TT} + m_{RT} + m_{TR} = p - 1$, we get

$$G_z^{(1)} = tr((\mathbf{S}_z - c\mathbf{T}_z\mathbf{B}_2)^T(\mathbf{S}_z - c\mathbf{T}_z\mathbf{B}_2))$$
$$+tr((\mathbf{M}_z + c\mathbf{T}_z\mathbf{B}_2)^T(\mathbf{M}_z + c\mathbf{T}_z\mathbf{B}_2))$$

$$= (p+1)\frac{c^2}{2} + (p-1)(\frac{c^2}{4} + (1-\frac{c}{2})^2)$$
$$= \frac{3p^3 + 4p^2 - 2p - 4}{4(p+1)^2}.$$

We also get from our analysis of the rows of $\mathbf{S}_z - c\mathbf{T}_z\mathbf{B}_2$ and of $\mathbf{M}_z + c\mathbf{T}_z\mathbf{B}_2$

that

$$\mathbf{1}_{4}^{T} \begin{bmatrix} (\mathbf{S}_{z} - c\mathbf{T}_{z}\mathbf{B}_{2})^{T} \\ (\mathbf{M}_{z} + c\mathbf{T}_{z}\mathbf{B}_{2})^{T} \end{bmatrix} = \begin{bmatrix} 0, \ 1, \dots, \ 1 \end{bmatrix}$$

for any sequence z. Therefore,

$$G_z^{(3)} = \frac{1}{4} [0, 1, \dots, 1] \mathbf{B}_p [0, 1, \dots, 1]^T = \frac{p-1}{4p}.$$

To determine $G_z^{(2)}$, we calculate

$$\begin{bmatrix} (\mathbf{S}_z - c\mathbf{T}_z\mathbf{B}_2)^T \\ (\mathbf{M}_z + c\mathbf{T}_z\mathbf{B}_2)^T \end{bmatrix} \mathbf{1}_p = \begin{bmatrix} -\frac{c}{2} \\ \frac{c}{2} \\ \frac{c}{2} \\ -\frac{c}{2} \\ -\frac{c}{2} \end{bmatrix} + s_{RR} \begin{bmatrix} 1 - \frac{c}{2} \\ \frac{c}{2} \\ -\frac{c}{2} \\ -\frac{c}{2} \end{bmatrix}$$
$$+ m_{RT} \begin{bmatrix} \frac{c}{2} \\ -\frac{c}{2} \\ 1 - \frac{c}{2} \\ \frac{c}{2} \\ \frac{c}{2} \\ 1 - \frac{c}{2} \end{bmatrix} + m_{TR} \begin{bmatrix} -\frac{c}{2} \\ \frac{c}{2} \\ \frac{c}{2} \\ \frac{c}{2} \\ 1 - \frac{c}{2} \end{bmatrix}$$

$$= \begin{bmatrix} s_{RR} - \frac{c}{2} \left(s_{RR} - s_{TT} - \left(m_{RT} - m_{TR} \right) + 1 \right) \\ s_{TT} + \frac{c}{2} \left(s_{RR} - s_{TT} - \left(m_{RT} - m_{TR} \right) + 1 \right) \\ m_{RT} + \frac{c}{2} \left(s_{RR} - s_{TT} - \left(m_{RT} - m_{TR} \right) + 1 \right) \\ m_{TR} - \frac{c}{2} \left(s_{RR} - s_{TT} - \left(m_{RT} - m_{TR} \right) + 1 \right) \end{bmatrix},$$

if the sequence starts with R, and, similarly,

$$\begin{bmatrix} (\mathbf{S}_{z} - c\mathbf{T}_{z}\mathbf{B}_{2})^{T} \\ (\mathbf{M}_{z} + c\mathbf{T}_{z}\mathbf{B}_{2})^{T} \end{bmatrix} \mathbf{1}_{p} \\ = \begin{bmatrix} s_{RR} - \frac{c}{2} (s_{RR} - s_{TT} - (m_{RT} - m_{TR}) - 1) \\ s_{TT} + \frac{c}{2} (s_{RR} - s_{TT} - (m_{RT} - m_{TR}) - 1) \\ m_{RT} + \frac{c}{2} (s_{RR} - s_{TT} - (m_{RT} - m_{TR}) - 1) \\ m_{TR} - \frac{c}{2} (s_{RR} - s_{TT} - (m_{RT} - m_{TR}) - 1) \end{bmatrix},$$

if the sequence starts with T.

Defining the parameters

$$s = s_{RR} + s_{TT}, \quad d_s = s_{RR} - s_{TT}$$
$$m = m_{RT} + m_{TR}, \quad d_m = m_{RT} - m_{TR},$$

we then get

$$\begin{aligned} G_z^{(2)} &= \\ &\frac{1}{p} \mathbf{1}_p^T \left[\mathbf{S}_z - c \mathbf{T}_z \mathbf{B}_2, \, \mathbf{M}_z + c \mathbf{T}_z \mathbf{B}_2 \right] \left[\mathbf{S}_z - c \mathbf{T}_z \mathbf{B}_2, \, \mathbf{M}_z + c \mathbf{T}_z \mathbf{B}_2 \right]^T \mathbf{1}_p \\ &= \frac{1}{p} \left((\frac{s}{2} + \frac{d_s}{2} - \frac{c}{2} (d_s - d_m + 1))^2 + (\frac{s}{2} - \frac{d_s}{2} + \frac{c}{2} (d_s - d_m + 1))^2 \right. \end{aligned}$$

$$+\left(\frac{m}{2} + \frac{d_m}{2} + \frac{c}{2}(d_s - d_m + 1)\right)^2 + \left(\frac{m}{2} - \frac{d_m}{2} - \frac{c}{2}(d_s - d_m + 1)\right)^2\Big)$$

= $\frac{1}{2p}\left(s^2 + \left(d_s - c(d_s - d_m + 1)\right)^2 + m^2 + \left(d_m + c(d_s - d_m + 1)\right)^2\right),$

if the sequence z starts with R. In the same way we get

$$G_z^{(2)} = \frac{1}{2p} \Big(s^2 + \big(d_s - c(d_s - d_m - 1) \big)^2 + m^2 + \big(d_m + c(d_s - d_m - 1) \big)^2 \Big),$$

if z starts with T.

To determine a minimum of $G_z^{(2)}$, we consider four cases.

Case 1: The sequence z starts with R and ends with R.

In this case $m_{RT} = m_{TR}$ and, therefore, $d_m = 0$. Hence,

$$G_z^{(2)} = \frac{1}{2p} \left(s^2 + \left(d_s - c(d_s + 1) \right)^2 + m^2 + \left(c(d_s + 1) \right)^2 \right).$$

Observe that

$$\left(d_s - c(d_s + 1)\right)^2 + \left(c(d_s + 1)\right)^2 = d_s^2(1 - 2c + 2c^2) - d_s(2c - 4c^2) + 2c^2.$$

Since d_s is an integer, we have $d_s \leq d_s^2$. Making use of 0 < c < 1/2, this implies that $-d_s(2c - 4c^2) \geq -d_s^2(2c - 4c^2)$ and, therefore,

$$(d_s - c(d_s + 1))^2 + (c(d_s + 1))^2 \ge d_s^2(1 - 4c + 6c^2) + 2c^2$$

Observing that $(1 - 4c + 6c^2) = (1 - 2c)^2 + 2c^2 > 0$, we get that

$$(d_s - c(d_s + 1))^2 + (c(d_s + 1))^2 \ge 2c^2.$$

Hence, we have shown that in Case 1

$$G_z^{(2)} \ge \frac{1}{2p}(s^2 + m^2 + 2c^2).$$

Case 2: The sequence z starts with R and ends with T.

In this case $m_{RT} = m_{TR} + 1$ and, therefore, $d_m = 1$. Hence,

$$G_z^{(2)} = \frac{1}{2p} \left(s^2 + \left(d_s - c d_s \right)^2 + m^2 + \left(1 + c d_s \right)^2 \right).$$

Define $g = d_s + 1$. Then $d_s = g - 1$ and

$$(d_s - cd_s)^2 + (1 + cd_s)^2 = (g - 1)^2(1 - c)^2 + (1 - c + cg)^2$$
$$= 2(1 - c)^2 + g^2(1 - 2c + 2c^2) - g(2 - 6c + 4c^2).$$

Because g is an integer and because $2 - 6c + 4c^2 = 2(1 - c)(1 - 2c) \ge 0$ we conclude that $-g(2 - 6c + 4c^2) \ge -g^2(2 - 6c + 4c^2)$ and therefore that

$$(d_s - cd_s)^2 + (1 - cd_s)^2 \ge 2(1 - c)^2 + g^2(4c - 1 - 2c^2).$$

Since $c = \frac{p}{2(p+1)}$ and $p \ge 2$, we have

$$4c - 1 - 2c^2 = \frac{p^2 - 2}{2p^2 + 4p + 2} > 0$$

and, therefore,

$$(d_s - cd_s)^2 + (1 - cd_s)^2 \ge 2(1 - c)^2.$$

Note that 0 < c < 1/2. Therefore, $2(1-c)^2 > 2c^2$ and we have shown that in Case 2

$$G_z^{(2)} > \frac{1}{2p}(s^2 + m^2 + 2c^2)$$

Case 3: The sequence starts with T and ends with R.

In this case $m_{TR} = m_{RT} + 1$ and therefore $d_m = -1$. This implies that

$$G_z^{(2)} = \frac{1}{2p} \Big(s^2 + \big(d_s - c d_s \big)^2 + m^2 + \big(-1 + c d_s \big)^2 \Big),$$

If we define $\bar{d}_s = -d_s$, we see that

$$G_z^{(2)} = \frac{1}{2p} \left(s^2 + \left(\bar{d}_s - c \bar{d}_s \right)^2 + m^2 + \left(1 + c \bar{d}_s \right)^2 \right).$$

Hence, we conclude in the same way as in Case 2, that in Case 3 we also have

$$G_z^{(2)} > \frac{1}{2p}(s^2 + m^2 + 2c^2).$$

Case 4: The sequence starts and ends with T.

In this case $m_{TR} = m_{RT}$ and therefore $d_m = 0$. This implies that

$$G_z^{(2)} = \frac{1}{2p} \Big(s^2 + \big(d_s - c(d_s - 1) \big)^2 + m^2 + \big(c(d_s - 1) \big)^2 \Big),$$

Defining $\bar{d}_s = -d_s$, we see that

$$G_z^{(2)} = \frac{1}{2p} \Big(s^2 + \big(\bar{d}_s - c(\bar{d}_s + 1)\big)^2 + m^2 + \big(c(\bar{d}_s + 1)\big)^2 \Big).$$

Hence, we conclude in the same way as in Case 1 that

$$G_z^{(2)} \ge \frac{1}{2p}(s^2 + m^2 + 2c^2).$$

Combining the four cases, we have shown for any sequence z that

$$G_z^{(2)} \ge \frac{1}{2p}(s^2 + m^2 + 2c^2).$$

Since $s+m = s_{RR} + s_{TT} + m_{RT} + m_{TR} = p-1$, we get $s^2 + m^2 \ge \frac{1}{2}(p-1)^2$.

Inserting $c = \frac{p}{2(p+1)}$, we hence have that

$$G_z^{(2)} \ge \frac{1}{4p} \left((p-1)^2 + \frac{p^2}{(p+1)^2} \right).$$

Combining the results for the three terms, we conclude for any $z \in Z_p$

that

$$\begin{aligned} G_z &\leq \frac{3p^3 + 4p^2 - 2p - 4}{4(p+1)^2} - \frac{(p-1)^2 + \frac{p^2}{(p+1)^2}}{4p} - \frac{p-1}{4p} \\ &= \frac{3p^4 + 4p^3 - 2p^2 - 4p}{4p(p+1)^2} - \frac{p^4 - p^2 + 1}{4p(p+1)^2} - \frac{(p-1)(p+1)^2}{4p(p+1)^2} \\ &= \frac{(2p+3)(p-1)}{4(p+1)}. \end{aligned}$$

This completes the proof of Proposition 10.