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S1 Details of paper examples

Example 1. The initial log-linear model logµ27×1 = A27×19θ19×1, in the

matrix form is as follows. Note that the µ indices correspond to cell counts

1 to 27 respectively.



log µ000

log µ100

log µ200

log µ010

log µ110

log µ210

log µ020

log µ120

log µ220

log µ001

log µ101

log µ201

log µ011

log µ111

log µ211

log µ021

log µ121

log µ221

log µ002

log µ102

log µ202

log µ012

log µ112

log µ212

log µ022

log µ122

log µ222



=



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

1 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0

1 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0

1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0

1 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0

1 0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 1 0 0

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0

1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

1 1 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0

1 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1

1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0

1 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0

1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1





θ

θX1

θX2

θY1

θY2

θZ1

θZ2

θXY
11

θXY
21

θXY
12

θXY
22

θY Z
11

θY Z
21

θY Z
12

θY Z
22

θXZ
11

θXZ
21

θXZ
12

θXZ
22



,
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The reduced model logµ′21×1 = A′21×18θ
′
18×1 in the matrix form is,



log µ200

log µ010

log µ110

log µ210

log µ020

log µ120

log µ220

log µ001

log µ101

log µ201

log µ011

log µ111

log µ021

log µ121

log µ202

log µ012

log µ112

log µ212

log µ022

log µ122

log µ222



=



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0

1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

1 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0

0 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1

0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0

1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0

0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1





θX1

θ + θX2

θ + θY1

θ + θY2

θ + θZ1

θZ2

θXY
11

−θ + θXY
21

θXY
12

−θ + θXY
22

−θ + θY Z
11

−θ + θY Z
21

θY Z
12

θY Z
22

θXZ
11

−θ + θXZ
21

θXZ
12

θXZ
22 .



.

Example 2. The vector of 59 estimable parameters obtained by parameter

redundancy for the 35 × 21 contingency table is,

θ
′T =(θ, θA1 , θ

A
2 , θ

B
1 , θ

B
2 , θ

C
1 , θ

C
2 , θ

D
1 , θ

D
2 , θ

E
1 , θ

E
2 , θ

F
1 , θ

AB
11 , θ

AB
21 , θ

AB
12 , θ

AB
22 , θ

AC
11 , θ

AC
21 ,

θAC12 , θ
AC
22 , θ

AD
11 , θ

AD
21 , θ

AD
12 , θ

AE
11 , θ

AE
21 , θ

AE
12 , θ

AF
11 , θ

AF
21 , θ

BC
11 , θ

BC
21 , θ

BC
12 , θ

BC
22 ,

θBD11 , θBD21 , θBD12 , θBD22 , θBE11 , θ
BE
21 , θ

BE
12 , θ

BF
11 , θ

BF
21 , θ

BE
22 , θ

CD
11 , θ

CD
21 , θ

CD
12 , θ

CD
22 ,

θCE11 , θ
CE
21 , θ

CE
12 , θ

CE
22 , θ

CF
11 , θ

CF
21 , θ

DE
11 , θ

DE
21 , θ

DE
12 , θ

DF
11 , θ

DF
21 , θ

EF
11 , θ

EF
21 ).
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Example 3. Model (4.11) can be written as,



logµ000

logµ100

logµ010

logµ110

logµ001

logµ101

logµ011

logµ111


=



1 0 0 0 0 0 0

1 1 0 0 0 0 0

1 0 1 0 0 0 0

1 1 1 1 0 0 0

1 0 0 0 1 0 0

1 1 0 0 1 1 0

1 0 1 0 1 0 1

1 1 1 1 1 1 1





θ

θX

θY

θXY

θZ

θXZ

θY Z


.

The derivative matrix for contingency table in Table 2(a) is,

D =



µ000 µ100 µ010 µ110 µ001 µ101 µ011 µ111

θ 0 y2 y3 y4 y5 y6 y7 0

θX 0 y2 0 y4 0 y6 0 0

θY 0 0 y3 y4 0 0 y7 0

θXY 0 0 0 y4 0 0 0 0

θZ 0 0 0 0 y5 y6 y7 0

θXZ 0 0 0 0 0 y6 0 0

θY Z 0 0 0 0 0 0 y7 0


.

Example 4. The derivative matrix for contingency table in Table 2(b) is,

D =



µ000 µ100 µ010 µ110 µ001 µ101 µ011 µ111

θ 0 y2 y3 0 y5 y6 y7 y8

θX 0 y2 0 0 0 y6 0 y8

θY 0 0 y3 0 0 0 y7 y8

θXY 0 0 0 0 0 0 0 y8

θZ 0 0 0 0 y5 y6 y7 y8

θXZ 0 0 0 0 0 y6 0 y8

θY Z 0 0 0 0 0 0 y7 y8


.

Example S1. It is known that for a log-linear model fitted to a contingency

table with all positive yi, the log-likelihood function is strictly concave and

the maximum likelihood estimates exist for all the model parameters. Con-

sider fitting a saturated Poisson log-linear model to an lm (m > 1, l > 2)
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contingency table. The derivative matrices for a 21 and a 22 table are,

D1 =

 µ0 µ1

θ y1 y2
θX 0 y2

 , D2 =


µ00 µ10 µ01 µ11

θ y1 y2 y3 y4
θX 0 y2 0 y4
θY 0 0 y3 y4
θXY 0 0 0 y4

 .

Even for larger tables, we can always arrange an ordering of cell means and

corresponding parameters that produces an upper triangular D matrix in

which the main diagonal elements are the cell counts, as shown in D1 and

D2 above (and also in the proof of Theorem 1). So when yi > 0,∀i ∈ L, the

D matrix is always full rank, as expected, and all of the model parameters

are estimable.

S2 Proof of Theorem 1

To prove Theorem 1, we use the induction method for two variables in

two steps. First, the statement is proven to be true for an l1 table for all

integers l > 2. Then we show that if the statement is assumed to be true

for an lm table, it is also true for lm+1 for all integers l > 2 (Earl, 2017).

For simplicity, instead of yi and 0 in the derivative matrix we write 1 and

0. This helps relate the derivative matrix of m variables and the one with

m+1 variables. Recall that a zero cell turns a corresponding column to zero

in the derivative matrix. To clarify the notation, without loss of generality,

assume the contingency table has m variables and each of them has l levels.
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We set Dr(θr) =
dµr

dθr
, in which µr and θr are the set of cell means and

parameters added to the model because of adding the rth variable to the

table. Then we define Dr = Dr(θr) =
dµr

dθr
, as the derivative matrix for

µr = µ1∪µ2∪· · ·∪µr and θr = θ1∪θ2∪· · ·∪θr, which are union of sets of

cell means and model parameters for having variables 1 to r. Accordingly,

Dr(θr) =
dµr

dθr
. In the tables and matrices, the yi’s are ordered according

to (1.2) in the main paper.

Before we derive the derivative matrix and nonestimable parameters for

a general case of m = k, we start with a simple table and gradually discover

the pattern in the structure of the derivative matrices. For a 21 table, α

and the nonestimable parameters in presence of zero cell counts are shown

here. Since only one cell count is zero, the deficiency is one and there is

one α vector for each case.

m = 1, D1 = D1(θ1) = D1(θ1) =


µ0 µ1

θ 1 1

θX 0 1

 ,
θ1 = (θ, θX), µ1 = (µ0, µ1).

zero cell α vector nonestimable parameters

y0 = 0 α11 = (1,−1) γ1 = {θ, θX}

y1 = 0 α12 = (0, 1) γ2 = {θX}

Those α vectors are actually α11 = (α,−α) and α12 = (0, α), where α
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could be any non-zero number but for simplification the value 1 is used.

For the model corresponding to a 22 table, the derivative matrix, and

nonestimable parameters for setting each cell count to zero are,

m = 2, D2 = D2(θ2) =



µ00 µ10 µ01 µ11

θ 1 1 1 1

θX 0 1 0 1

θY 0 0 1 1

θXY 0 0 0 1


=

[
D1(θ1) D2(θ1)

0 D2(θ2)

]
=

[
D1 D2(θ1)

0 D1

]
,

θ1 = (θ, θX), θ2 = (θY , θXY ), θ2 = (θ, θX , θY , θXY ),

µ1 = (µ00, µ10), µ2 = (µ01, µ11), µ2 = (µ00, µ10, µ01, µ11).

zero cell α vector nonestimable parameters

y00 = y1 = 0 α21 = (1,−1,−1, 1) = (α11,α11) γ1 = {θ, θX , θY , θXY }

y10 = y2 = 0 α22 = (0, 1, 0,−1) = (α12,α12) γ2 = {θX , θXY }

y01 = y3 = 0 α23 = (0, 0, 1,−1) = (0,α11) γ3 = {θY , θXY }

y11 = y4 = 0 α24 = (0, 0, 0, 1) = (0,α12) γ4 = {θXY }

The expression α21 = (α11,α11) is true in terms of places of zero and non-

zero elements which indicate estimable and nonestimable parameters. The

pattern in the derivative matrices and α vectors holds for increasing m and

any l, as used in the proof below.
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Proof. Step one: We prove that the statement is true for l1 for all integers

l > 2. Assume the only variable in the model is X with [l] = {0, 1, ..., l−1}

levels, therefore the saturated model includes l parameters. The derivative

matrix for this model is,

D1 = D1(θ1) =



µ0 µ1 µ2 µ3 µl−1

θ 1 1 1 1 . . . 1

θX1 0 1 0 0 . . . 0

θX2 0 0 1 0 . . . 0

θX3 0 0 0 1 . . . 0

...
...

...
...

...
...

...

θXl−1 0 0 0 0 . . . 1


.

For this model, we show the α vectors and the nonestimable parameters

in the presence of zero cell counts. Since only one cell count is zero, the

deficiency is one and there is one α for each case.

zero cell α vector nonestimable parameters

y0 = 0 α11 = (1,−1,−1,−1, . . . , 1) all parameters

y1 = 0 α12 = (0, 1, 0, 0, . . . , 0) θX1

y2 = 0 α13 = (0, 0, 1, 0, . . . , 0) θX2

y3 = 0 α14 = (0, 0, 0, 1, . . . , 0) θX3

...
...

...

yl−1 = 0 α1l = (0, 0, 0, . . . , 0, 1) θXl−1

According to the α vectors, the theorem statement is true for this model.

We can fix the number of variables at m = 2 and show that the statement

is still true for this model with any number of levels. Assume the variables

in this model are X and Y with [l] = {0, 1, ..., l − 1} levels, the derivative
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matrix for the model for this l2 table is, D2 = D2(θ2),

=



Y = 0 Y = 1 Y = l − 1

µ00 µ10 µ20 . . . µl−10 µ01 µ11 µ21 . . . µl−11 . . . µ0l−1 µ1l−1 µ2l−1 . . . µl−1l−1

θ 1 1 1 . . . 1 1 1 1 . . . 1 . . . 1 1 1 . . . 1

θX1 0 1 0 . . . 0 0 1 0 . . . 0 . . . 0 1 0 . . . 0

θX2 0 0 1 . . . 0 0 0 1 . . . 0 . . . 0 0 1 . . . 0

...
...

...
...

...
...

...
...

...
...

... . . .
...

...
...

...
...

θXl−1 0 0 0 . . . 1 0 0 0 . . . 1 . . . 0 0 0 . . . 1

θY1 0 0 0 . . . 0 1 1 1 . . . 1 . . . 0 0 0 . . . 0

θXY
11 0 0 0 . . . 0 0 1 0 . . . 0 . . . 0 0 0 . . . 0

θXY
21 0 0 0 . . . 0 0 0 1 . . . 0 . . . 0 0 0 . . . 0

...
...

...
...

...
...

...
...

...
...

... . . .
...

...
...

...
...

θXY
l−11 0 0 0 . . . 0 0 0 0 . . . 1 . . . 0 0 0 . . . 0

...
...

...
...

...

θYl−1 0 0 0 . . . 0 0 0 0 . . . 0 . . . 1 1 1 . . . 1

θXY
1l−1 0 0 0 . . . 0 0 0 0 . . . 0 . . . 0 1 0 . . . 0

θXY
2l−1 0 0 0 . . . 0 0 0 0 . . . 0 . . . 0 0 1 . . . 0

...
...

...
...

...
...

...
...

...
...

... . . .
...

...
...

...
...

θXY
l−1l−1 0 0 0 . . . 0 0 0 0 . . . 0 . . . 0 0 0 . . . 1



=


D1 D1 . . . D1

0 D1 . . . 0

...
...

...
...

0 0 0 D1

 .

The derivative matrix is upper triangular and all elements on the main

diagonal are 1. Let yi(0) be a cell count such that its index ends with zero

and γi is the set including corresponding nonestimable parameters. We can

order cells from 1 to lm according to (1.2). Thus, in the case of having one

zero cell count, the nonestimable parameters and unique α vectors are as

follows which satisfy the theorem’s statement.
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zero cell α vector nonestimable parameters

yi(0) = y1 = 0 α21 =

#l︷ ︸︸ ︷
(α11, . . . ,α11) γi = γ1 = {all parameters}

...
...

...

yi(0) = yl = 0 α2l = (α1l, . . . ,α1l) γi = γl = {θXl−1, θ
XY
l−11, . . . , θ

XY
l−1l−1}

yi(1) = yl+1 = 0 α2(l+1) = (0,α11,0, . . . ,0) γi = γl+1 = {θY1 , θXY
11 , . . . , θXY

l−11}
...

...
...

yi(1) = yl×2 = 0 α2(l×2) = (0,α1l,0, . . . ,0) γi = γl×2 = {θXY
l−11}

...
...

...

yi(l−1) = yl2−l+1 = 0 α2(l2−l+1) = (0,0, . . . ,α11) γi = γl2−l+1 = {θYl−1, θ
XY
1l−1, . . . , θ

XY
l−1l−11}

.

..
.
..

.

..

yi(l−1) = yl2 = 0 α2l2 = (0,0, . . . ,α1l) γi = γl2 = {θXY
l−1l−1}

Step two: The statement is assumed to be true for lm when m = k,

we will show it is also true when m = k + 1. For m = k when any of

the cell counts is zero, the corresponding parameter to that cell and given

that, all other parameters with a higher order interaction of the variables

are assumed to be nonestimable. The derivative matrix is,

Dk = Dk(θk) =

 Dk−1(θk−1) Dk(θk−1)

0 Dk(θk)

 =

 Dk−1 Dk(θk−1)

0 Dk(θk)

 ,
in which,

Dk(θk) =


Dk−1 0 . . . 0

0 Dk−1 . . . 0

...
...

...
...

0 0 0 Dk−1

 .
l−1×l−1

Derivative matrices are upper triangular and all elements on their main

diagonals are 1. Say yi(0) is a cell count such that its index ends with zero.
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γi is the set including the corresponding parameter to that cell and given

that, all other parameters associated with a higher order interaction of the

variables. The order of setting cell counts to zero here is the same order

used in forming the derivative matrix. Thus, the nonestimable parameters

must be as follows (same for α vectors, because of the repetitive pattern in

models and the point that in each case there is only one α vector).

zero cell α vector nonestimable parameters

yi(0) = y1 = 0 αk1 =

#l︷ ︸︸ ︷
(αk−1(1), . . . ,αk−1(1)) γi = γ1 = {all parameters}

...
...

...

yi(0) = ylk−1 = 0 αklk−1 = (αk−1(lk−1), . . . ,αk−1(lk−1)) γi = γlk−1

yi(1) = ylk−1+1 = 0 αk(lk−1+1) = (0,αk−1(1),0, . . . ,0) γi = γlk−1+1

...
...

...

yi(1) = ylk−1×2 = 0 αk(lk−1×2) = (0,αk−1(lk−1),0, . . . ,0) γi = γlk−1×2

...
...

...

yi(l−1) = y(lk−1×l−1)+1 = 0 αk((lk−1×l−1)+1) = (0,0, . . . ,αk−1(1)) γi = γ(lk−1×l−1)+1

...
...

...

yi(l−1) = ylk = 0 αklk = (0,0, . . . ,αk−1(lk−1)) γi = γlk = {only the

highest order parameter}

Now the theorem statement must be proven for m = k + 1. We have,

Dk+1 = Dk+1(θk+1) =

 Dk(θk) Dk+1(θk)

0 Dk+1(θk+1)

 =

 Dk Dk+1(θk)

0 Dk+1(θk+1)

 ,

in which,

Dk+1(θk+1) =


Dk 0 . . . 0

0 Dk . . . 0

...
...

...
...

0 0 0 Dk

 .
l−1×l−1
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So the nonestimable parameters are expected to be,

zero cell nonestimable parameters

yi(0) = y1 = 0 γi = γ1 = {all parameters}
...

...
yi(0) = ylk = 0 γi = γlk

yi(1) = ylk+1 = 0 γi = γlk+1

...
...

yi(1) = ylk×2 = 0 γi = γlk×2

...
...

yi(l−1) = y(lk×l−1)+1 = 0 γi = γ(lk×l−1)+1

...
...

yi(l−1) = ylk+1 = 0 γi = γlk+1 = {only the
highest order parameter}

To prove that these are nonestimable parameters, we need to obtain the

corresponding α vectors. According to the repetitive pattern of α vectors,

that was observed when constructing the derivative matrices by increasing

the number of variables in the table, they are made of vectors of the previous

step. Therefore the unique α vectors are,

zero cell α vector

yi(0) = y1 = 0 αk+1(1) =

#l︷ ︸︸ ︷
(αk1, . . . ,αk1)

...
...

yi(0) = ylk = 0 αk+1(lk) = (αklk , . . . ,αklk )

yi(1) = ylk+1 = 0 αk+1(lk+1) = (0,αk1,0, . . . ,0)
...

...
yi(1) = ylk×2 = 0 αk+1(lk×2) = (0,αklk ,0, . . . ,0)

...
...

yi(l−1) = y(lk×l−1)+1 = 0 αk+1((lk×l−1)+1) = (0,0, . . . ,αk1)
...

...
yi(l−1) = ylk+1 = 0 αk+1lk+1 = (0,0, . . . ,αklk )
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For the first 1
l

proportion of the cases in the previous table, having a

zero cell count makes α = (αki, . . . ,αki). Since the theorem is assumed to

be true for m = k, the first αki makes the corresponding parameter to that

cell and given that, all other parameters with a higher order interaction

of variables be nonestimable for the last smaller model (m = k). Repeat-

ing αki, l − 1 times in the α vector makes some other parameters of the

new model to be nonestimable, which are the same previous parameters

corresponding to all levels of the new variable. Hence, the corresponding

parameter to that cell and given that, all other parameters with a higher

order interaction of the variables are nonestimable.

For the rest of the 1
l

parts of the cases, having a zero cell count makes

an αki appear in the vector. This αki makes the corresponding parameter

to that cell and given that, all other parameters with a higher order in-

teraction of the variables be nonestimable for the last smaller model, but

as it appeared after one or more vectors of zeroes here, those parameters

will have the higher levels of the new variable in their superscript and sub-

script. Hence, the corresponding parameter to that cell and given that,

all other parameters with a higher order interaction of the variables are

nonestimable. Therefore the statement is true for m = k + 1.
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