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Supplementary Material

Summary: This supplementary material provides the details for deriving some of the results in the

paper. It also contains a comprehensive account for real data applications associated with our second

and third studies in Section 5 of the paper. We provide complimentary numerical results to show

how PRGM predictors of the finite population mean perform compared with their corresponding Bayes

predictors.

S1 Proof of Lemma 1

Suppose that L(γ(y), δ) ≤ M for all (γ(y), δ) ∈ R
2. Since L(γ(y), δ) is a strictly BS

loss function in both γ(y) and δ, then limγ(y)→∞ L(γ(y), δ) = limδ→∞ L(γ(y), δ) =

M . Denote the unique (finite) minimizer of
∫

L(γ(y), δ(ys))h(γ(y)|ys)dγ(y) in δ

to be δπ. Since L(·, ·) is bounded,

lim
δ(ys)→∞

∫

L(γ(y), δ(ys))h(γ(y)|ys)dγ

=

∫

lim
δ(ys)→∞

L(γ(y), δ(ys))h(γ(y)|ys)dγ(y) = M.
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Also, 0 <
∫

L(γ(y), δπ(ys))h(γ(y)|ys)dγ(y) = m < M . Hence,

lim
δ(ys)→∞

{
∫

L(γ(y), δ(ys))h(γ(y)|ys)dγ(y)− inf
δ(ys)

∫

L(γ(y), δ(ys))h(γ(y)|ys)dγ(y)

}

= lim
δ(ys)→∞

{
∫

L(γ(y), δ(ys))h(γ(y)|ys)dγ(y)−
∫

L(γ(y), δπ(ys))h(γ(y)|ys)dγ(y)

}

= M −m

< M = lim
δ(ys)→∞

L(δπ(ys), δ(ys)).

Thus, for sufficiently large δ(ys) and bounded L(·, ·), the equality (2.3) in the paper

can not be true and this completes the proof.

S2 Proof of Theorem 1

First note that L(γ(y), δ) is a regret loss function and it is a strictly BS in both

γ(y) and δ. Since

δ(ys) = inf
π∈Γ

δπ(ys) ≤ δπ(ys) ≤ sup
π∈Γ

δπ(ys) = δ(ys),

one can easily see that, for all ys ∈ R
n,

sup
π∈Γ

R(δ(ys), δ
π(ys)) = sup

π∈Γ
L(δπ(ys), δ(ys))

= max

{

L(δ(ys), δ(ys)), L(δ(ys)), δ(ys))

}

.

By the BS property of L(δ, δ) (L(δ, δ)) in δ, we conclude that L(δ, δ) (L(δ, δ)) is a

strictly decreasing (increasing) function of δ for δ < δ < δ. Let D(δ) = L(δ, δ)−
L(δ, δ), thenD(δ) is a decreasing function of δ for δ < δ < δ andD(δ)D(δ) < 0. So,

there exists a δp(ys) such that D(δp(ys)) = 0, or equivalently L(δ(ys), δ
p(ys)) =

L(δ(ys), δ
p(ys)) for all ys. Also, for any δ ∈ D, max{L(δ(ys), δ(ys)), L(δ(ys)),

δ(ys))} is increasing in either direction about δp(ys). By the BS property of



L(δ(ys), δ(ys)) and L(δ(ys)), δ(ys)), we have

max

{

L(δ(ys), δ(ys)), L(δ(ys)), δ(ys))

}

=







L(δ(ys), δ(ys)) if δ(ys) ≤ δ(ys) < δp(ys),

L(δ(ys), δ(ys)) if δp(ys) < δ(ys) ≤ δ(ys).

This shows that the minimum of supπ∈Γ R(δ(ys), δ
π(ys)) over all δ ∈ D happens

at δp(ys) and L(δ(ys), δ
p(ys)) = L(δ(ys), δ

p(ys)) for all ys.

S3 Derivation of PRGM predictors in Example 1

Note that all equation numbers are the same as those in the paper.

S3.1 SE loss function

Under Γµ, using (4.3), the Bayes predictor of γ1(y) is given by

δπ(ys) = ys − (1− f)(ys − µ)B0,

where B0 = σ2

σ2+nτ20
. Since µ1 ≤ µ ≤ µ2, using Table 1, the PRGM predictor of

γ1(y) is

δPRGM
µ (ys) = ys − (1− f)B0(ys −

µ1 + µ2

2
) = ys − (1− f)(ys − µ∗)B0 (4.4)

Note that δPRGM is a Bayes predictor of γ1(y) w.r.t. πµ∗ ∈ Γµ with µ∗ = µ1+µ2

2
∈

[µ1, µ2]. Under the class Γτ2 of priors, the Bayes predictor of γ1(y) is given by

δπ(ys) = ys − (1− f)(ys − µ0)B,

where B2 ≤ B ≤ B1 and Bi =
σ2

σ2+nτ2i
, i = 1, 2. For ys 6= µ0, and using Table 1,

one can easily show that the PRGM predictor of γ1(y) is

δPRGM
τ (ys) = ys − (1− f)(ys − µ0)B

∗, (4.5)



S3.1 SE loss function

where B∗ = B1+B2

2
= σ2

σ2+nτ2∗
and τ 2∗ =

2nτ21 τ
2
2+σ2(τ21+τ22 )

2σ2+nτ21+nτ22
. Here again, δPRGM

τ is a

Bayes predictor of γ1(y) w.r.t. πτ∗ ∈ Γτ2, (τ 21 ≤ τ 2∗ ≤ τ 22 ). Under the class Γǫ of

priors, the Bayes predictor of γ1(y) is obtained as

δπ(ys) = λδπ0(ys) + (1− λ)δq(ys),

with δπ0(ys) = Eπ0(γ1(y)|ys), δ
q(ys) = Eq(γ1(y)|ys) and λ = (1− ǫ)m(ys|π0)

m(ys|π) . Note

that m(ys|π) = (1 − ǫ)m(ys|π0) + ǫm(ys|q) with m(ys|π0) and m(ys|q) denoting
the marginal (predictive) densities of ys under the prior distributions π0 and q,

respectively. Using Theorem 3 of Ghosh and Kim (1993), we have

δ(ys) = f ys + (1− f)
aδ0(ys) + θlf(ys|θl)

a+ f(ys|θl)
and

δ(ys) = f ys + (1− f)
aδ0(ys) + θuf(ys|θu)

a+ f(ys|θu)
,

where a = 1−ǫ
ǫ
m(ys|π0), f(ys|θ.) is the conditional density of ys given θ., δ

0(ys) =

Eπ0(θ|ys), θl =
σ√
n
νl+ ys, θu = σ√

n
νu+ ys, and the values of νl and νu are obtained

as the solutions of the following equation

e−ν2/2 − cν2 − bν + c = 0,

by noting that ν =
√
n(θ−ys)

σ
, c = a(2πσ2)

n
2 exp{

∑
i∈s(yi−ys)

2

2σ2 } and b = c
√
n(ys−δ0)

σ
.

Now, using Table 1, the PRGM predictor of γ1(y) under the SEL function and the

class Γǫ of prior distributions is given by

δPRGM
ǫ (ys) = fys +

(1− f)

2

(

aδ0(ys) + θlf(ys|θl)
a + f(ys|θl)

+
aδ0(ys) + θuf(ys|θu)

a+ f(ys|θu)

)

. (4.6)

Note that if π0(·) is the density of N(µ0, τ
2
0 )-distribution then δ0(ys) = ys−B0(ys−

µ0), and if ǫ = 0 then Γǫ = {π0}, and accordingly

δPRGM
0 (ys) = δπ0(ys) = ys − (1− f)(ys − µ0)B0.



S3.2 LINEX loss function

One can easily observe that δPRGM
ǫ (ys) can be considered as a compromise between

the Bayes predictor under the prior distribution π0 (associated with ǫ = 0 corre-

sponding to the case where one is very confident in π0) and the predictor obtained

as the mid-range of the class of Bayes predictors under the ǫ-contaminated class

of priors when ǫ is close to one.

S3.2 LINEX loss function

Under the class Γµ of priors, and using the conditional distribution of γ1(y) given

ys, the Bayes predictor of γ1(y) under the LINEX loss function is given by

δπ(ys) =
−1

c
lnE(e−cγ(y)|ys)

= ys − (1− f)B0(ys − µ)− c(1− f)σ2

2n
(1− (1− f)B0),

where µ1 ≤ µ ≤ µ2. Hence, from Table 1, the PRGM predictor of γ1(y) is obtained

as follows

δPRGM
τ (ys) = ys −

c(1− f)σ2

2n
(1− (1− f)B0)

− 1

c
ln

ecB0(1−f)(ys−µ1) − ecB0[(1−f)(ys−µ2)

c(µ2 − µ1)(1− f)B0
. (4.8)

Under the class Γτ2 of priors, the Bayes predictor of γ1(y) is given by

δπ(ys) = ys − (1− f)B(ys − µ0)−
c(1− f)σ2

2n
(1− (1− f)B),

where B2 ≤ B ≤ B1 with Bi =
σ2

σ2+nτ2i
, i = 1, 2. Given ys 6= µ0 and c 6= 0, using

Table 1, the PRGM predictor of γ1(y) under the LINEX loss function with respect

to class Γτ2 of priors has the following form

δPRGM
τ (ys) = ys −

c(1− f)σ2

2n

− 1

c
ln

ecB2[(1−f)(ys−µ0)− c(1−f)2σ2

2n
] − ecB1[(1−f)(ys−µ0)− c(1−f)2σ2

2n
]

c(B2 − B1)[(1− f)(ys − µ0)− c(1−f)2σ2

2n
]

. (4.9)



Under the class Γǫ of priors, we expand Theorem 3 of Ghosh and Kim (1993) and

find

δ(ys) = fys −
cσ2(1− f)2

2(N − n)
− 1

c
ln

a0 + e−c(1−f)θlf(ys|θl)
a + f(ys|θl)

,

and

δ(ys) = fys −
cσ2(1− f)2

2(N − n)
− 1

c
ln

a0 + e−c(1−f)θuf(ys|θu)
a+ f(ys|θu)

,

where t = E(e−c(1−f)θ|ys), a0 = at, and a, θl and θu are defined in Example 1.

Also, the values of νl and νu are the solutions of the following equation

e
−c(1−f)(ν σ√

n
+ys)[−c(1 − f)(k + e−

ν2

2 )− kν

√
n

σ
] + ktν

√
n

σ
= 0,

by noting that ν =
√
n(θ−ys)

σ
, and k = a(2πσ2)

n
2 exp{

∑
i∈s(yi−ys)

2

2σ2 }. Now, using

Table 1, the PRGM predictor of γ(y) under the LINEX loss function and class Γǫ

of prior distributions is easy to obtain as follows

δPRGM
ǫ (ys) = fys −

cσ2(1− f)2

2(N − n)

− 1

c
ln

a0+e−c(1−f)θuf(ys|θu)
a+f(ys|θu) − a0+e−c(1−f)θlf(ys|θl)

a+f(ys|θl)

ln a0+e−c(1−f)θuf(ys|θu)
a+f(ys|θu) − ln a0+e−c(1−f)θlf(ys|θl)

a+f(ys |θl)

. (4.10)

S4 Derivation of PRGM predictors in Example 2

Note that all equation numbers are the same as those in the paper.

S4.1 SE loss function

Under the class Γµ of priors, the Bayes predictor of γ1(y) using (4.16) is the

posterior mean, that is

δπ(ys) = fys + ((1−Bs0)µ+
bs
ds
Bs0)

as
N
,



S4.1 SE loss function

where Bs0 =
τ20 ds

σ2+τ20 ds
. Since µ1 ≤ µ ≤ µ2, using Table 1, the PRGM predictor of

γ1(y) is given by

δPRGM
µ (ys) = fys + ((1− Bs0)µ

∗ +
bs
ds
Bs0)

as
N
. (4.19)

Note that δPRGM is itself a Bayes predictor of γ1(y) w.r.t. πµ∗ ∈ Γµ with µ∗ =

µ1+µ2

2
∈ [µ1, µ2].

Under the class Γτ2 of priors, the Bayes predictor of γ1(y) is

δπ = f ȳs +
as
N
µ0 +

as
N

(

bs
ds

− µ0

)

Bs

where Bs1 ≤ Bs ≤ Bs2 and Bsi =
τ2i ds

σ2+τ2i ds
, i = 1, 2. For

bs
ds

6= µ0, and using Table

1, one can easily show that the PRGM predictor of γ1(y) is given by

δPRGM
τ (ys) = f ȳs +

as
N
µ0 +

as
N

(

bs
ds

− µ0

)

B∗
s , (4.20)

where B∗
s = Bs1+Bs2

2
= τ2s

∗
ds

σ2+τ2s
∗ds

and τ 2s
∗
=

2dsτ
2
1 τ

2
2 + σ2(τ 21 + τ 22 )

2σ2 + ds(τ 21 + τ 22 )
. Here again,

δPRGM
τ is a Bayes predictor of γ1(y) w.r.t. πτs∗ ∈ Γτ2 , (τ

2
1 ≤ τ 2s

∗ ≤ τ 22 ). Under the

class Γǫ of priors, we extend Theorem 3 of Ghosh and Kim (1993) and find δ(ys)

and δ(ys) as follow

δ(ys) = f ys + (1− f)x̄s̄
aδ0(ys) + βlf(ys|βl)

a+ f(ys|βl)
,

and

δ(ys) = f ys + (1− f)x̄s̄
aδ0(ys) + βuf(ys|βu)

a+ f(ys|βu)
,

where a = 1−ǫ
ǫ
m(ys|π0), f(ys|β.) is the conditional density of ys given β., δ

0(ys) =

Eπ0(β|ys),

βl =
σ√
ds
νl +

bs
ds
, βu = σ√

ds
νu +

bs
ds
, and the values of νl and νu are the solutions of

the following equation

e−ν2/2 − cν2 − bν + c = 0,



S4.2 LINEX loss function

by noting that ν =
√
ds(β − bs

ds
)/σ, and c = a(2πσ2)

n
2 exp{ 1

2σ2

∑

i∈s(y
2
i − b2s

ds
)} and

b = c
√
ds
σ
( bs
ds

− δ0(ys)). So, using Table 1, the PRGM predictor of γ1(y) under the

SEL function and the class Γǫ of prior distributions is given by

δPRGM
ǫ (ys) = fys +

(1− f)x̄s̄

2

(

aδ0(ys) + βlf(ys|βl)

a + f(ys|βl)
+

aδ0(ys) + βuf(ys|βu)

a+ f(ys|βu)

)

.

(4.21)

S4.2 LINEX loss function

Considering the class Γµ of priors for β in model (4.14), first the Bayes predictor

of γ(y) using (4.18) is

δπ(ys) =
1

N
as(1− Bs0)µ+ f ȳs + asbs

Bs0

Nds
− cσ2

2N2

(

(N − n) +
Bs0

ds
a2s

)

.

For as > 0,

δπ(ys) =
1

N
as(1− Bs0)µ1 + f ȳs + asbs

Bs0

Nds
− cσ2

2N2

(

(N − n) +
Bs0

ds
a2s

)

,

and

δ
π
(ys) =

1

N
as(1− Bs0)µ2 + f ȳs + asbs

Bs0

Nds
− cσ2

2N2

(

(N − n) +
Bs0

ds
a2s

)

.

For as < 0,

δπ(ys) =
1

N
as(1− Bs0)µ2 + f ȳs + asbs

Bs0

Nds
− cσ2

2N2

(

(N − n) +
Bs0

ds
a2s

)

,

and

δ
π
(ys) =

1

N
as(1− Bs0)µ1 + f ȳs + asbs

Bs0

Nds
− cσ2

2N2

(

(N − n) +
Bs0

ds
a2s

)

.

So, we have

δPRGM
µ (ys) = f ȳs + asbs

Bs0

Nds
− cσ2

2N2

(

(N − n) +
Bs0

ds
a2s

)

− 1

c
ln

e
−
cas
N

(1−Bs0)µ2 − e
−
cas
N

(1−Bs0)µ1

−c
1

N
as(1− Bs0)(µ2 − µ1)

. (4.22)



S4.2 LINEX loss function

Under the class Γτ2 of priors, the Bayes predictor of γ1(y) is given by

δπ(ys) = (
as
N
(
bs
ds

− µ0)−
cσ2

2N2

a2s
ds
)Bs + f ȳs +

as
N
µ0 −

cσ2

2N
(1− f),

where Bs1 ≤ Bs ≤ Bs2 and Bsi =
τ2i ds

σ2+τ2i ds
, i = 1, 2. Given ys

x̄s
6= µ0 and c 6= 0, the

PRGM predictor of γ1(y) under the LINEX loss function with respect to class Γτ2

of priors is obtained as follow

δPRGM
τ (ys) = f ȳs +

as
N
µ0 −

cσ2

2N
(1− f)

− 1

c
ln

e
−cBs1(

as
N

(
bs
ds

−µ0)−
cσ2

2N2

a2s
ds

)

− e
−cBs2(

as
N

(
bs
ds

−µ0)−
cσ2

2N2

a2s
ds

)

−c(Bs1 − Bs2)(
as
N
(
bs
ds

− µ0)−
cσ2

2N2

a2s
ds
)

. (4.23)

Under the class Γǫ of priors, we expand Theorem 3 of Ghosh and Kim (1993) and

find δ(ys) and δ(ys) as follow

δ(ys) = fys −
cσ2(1− f)2

2(N − n)
− 1

c
ln

b0 + e−c(1−f)βlx̄s̄f(ys|βl)

a + f(ys|βl)
,

and

δ(ys) = fys −
cσ2(1− f)2

2(N − n)
− 1

c
ln

b0 + e−c(1−f)βux̄s̄f(ys|βu)

a+ f(ys|βu)
,

where a = 1−ǫ
ǫ
m(ys|π0), t = E(e−c(1−f)βx̄s̄ |ys), b0 = at, βl =

σ√
ds
νl +

bs
ds

, βu =

σ√
ds
νu +

bs
ds

and the values of νl and νu are the solutions of the following equation

e
−c(1−f)x̄s̄(

σ√
ds

ν+ bs
ds

)

[(k + e−
ν2

2 )− k

√
ds
σ

ν] + kt

√
ds
σ

ν = 0,

by noting that ν =
√
ds(β − bs

ds
)/σ, and k = a(2πσ2)

n
2 exp{ 1

2σ2 (
∑

i∈s y
2
i − b2s

ds
)}. So,

from Table 1,

δPRGM
ǫ (ys) = fys −

cσ2(1− f)2

2(N − n)

− 1

c
ln

b0+e−c(1−f)βux̄s̄f(ys|βu)
a+f(ys|βu)

− b0+e−c(1−f)βlx̄s̄f(ys|βl)
a+f(ys|βl)

ln b0+e−c(1−f)βux̄s̄f(ys|βu)
a+f(ys|βu)

− ln b0+e−c(1−f)βlx̄s̄f(ys|βl)
a+f(ys |βl)

. (4.24)



S5 Applications and simulation studies

In this section, we consider models (4.14) and (4.25) and present two more real

world applications of our results and perform further simulation studies. To this

end, we first consider the problem of predicting the average seventh-month weight

of sheep in a finite population consisting of 224 sheep at the Research Farm of

Ataturk University, Erzurum, Turkey, which were used by Ozturk et al. (2005) and

Jafaraghaie and Nematollahi (2018). We compute and compare the performance

of the Bayes and PRGM predictors of the underlying population mean. Also, we

adopt the non-normal model (4.25) and use a cancer dataset corresponding to

remission time (in months) of 128 bladder cancer patients from a study conducted

by the American Cancer Society. We predict the average remission time using the

Bayes and PRGM approach and compare their performance over different classes

of priors using a simulation study.

S5.1 Application to a Sheep data

This data set contains the values of the seventh-month weights, mother’s weight

at mating and birth weight of 224 sheep which are measured in kilograms (see

Ozturk et al. (2005) for details). Jafaraghaie and Nematollahi (2018) considered

the seventh-month weight and mother’s weight at mating as response and auxiliary

variables, respectively, and showed that the regression model (4.14) provides a good

fit to this data. They showed that the response variable has approximately normal

distribution with mean 28.11 and variance 15.21, and the maximum likelihood

estimates of β and σ2 were obtained as in Table 1. Also, they argued the need

for robust Bayes prediction in this problem. To this end, we consider a single

prior N(0.2, 0.1) as well as two classes Γµ = {N(µ, τ 20 ) : µ ∈ [0.2, 0.8]} and Γτ2 =

{N(µ0, τ
2) : τ 2 ∈ [0.1, 0.7] ⊆ ℜ+} of priors for β. We obtain the Bayes predictor



S5.1 Application to a Sheep data

Table 1: The maximum likelihood estimates of the parameters, β and σ2.

Parameters Estimate Std. Error

β 0.53785 0.00422

σ2 10.9767 1.10149

(δ
π
µ0,τ

2
0 with µ0 = 0.2 and τ 20 = 0.1), the PRGM predictor over the class Γµ

(δPRGM
Γµ

) and the PRGM predictor over the class Γτ2 (δ
PRGM
Γ
τ2

). Table 2 summarizes

the predicted values under the SE loss function for fixed sample size n = 50. As we

observe the PRGM predicted values are closer to the mean of the seventh-month

weight of sheep, i.e., 28.11 than the corresponding Bayes predcition.

Table 2: The Bayes and PRGM predicted values of the finite population mean over Γµ and Γτ2 under the SE

loss function.

δ
π
µ0,τ

2
0 δRΓµ

δPRGM
Γ
τ2

28.03038 28.03991 28.03496

To evaluate the performance of each predictor, we perform a simulation study

similar to Subsection 5.1 and calculate the EMSE and EAB of each predictor

for different sample sizes (n = 20, 30, and 50). We consider two classes of prior

distributions. The first class Γµ of priors is chosen to be Γµ = {N(µ, τ 20 ) : µ ∈
[0.2, 0.8]}. In this setting we obtain the PRGM predictor of the population mean

under Γµ as well as its Bayes predictor under some specific normal distributions

with µ0 = 0.2, 0.4, 0.6, 0.8 and τ 20 = 0.1, 0.3, 0.5, 0.7 as prior distributions for θ.

We also consider another class of priors Γτ2 = {N(µ0, τ
2) : τ 2 ∈ [0.1, 0.7] ⊆

ℜ+} and study the performance of the PRGM predictors of the population mean

compared with their Bayes predictors with respect to normal prior distributions



S5.2 Application to a bladder cancer data

with µ0 = 0.2, 0.4, 0.6, 0.8 and τ 20 = 0.1, 0.3, 0.5, 0.7. For simulation studies, we

consider a superpopulation model yi = 0.53785 xi + ǫi with ǫi ∼ N(0, 10.9767).

The parameters of the superpopulation model are obtained using our real-data

set. We use the same steps as in Jafaraghaie and Nematollahi (2018), to generate

samples from this superpopulation model and calculate the EMSE and EAB of the

predictors. The estimated MSE and bias of each predictor are presented in Tables

3 and 4. From Table 3 we observe that for all values of τ 20 and small values of µ0

(µ0 = 0.2, 0.4), PRGM predictors perform reasonably well compared with Bayes

predictors and for large values of µ0 (µ0 = 0.6, 0.8), Bayes predictors perform

well compared with PRGM predictors. Table 4 presents that for all values of τ 20

and small values of µ0 (µ0 = 0.2), and also, for moderate to large values of τ 20

(τ 20 = 0.3, 0.5, 0.7) and moderate to large values of µ0 (µ0 = 0.4, 0.6, 0.8), PRGM

predictors perform reasonably well compared with Bayes predictors. We have

opposite results for small values of τ 20 (τ 20 = 0.1) and moderate to large values of

µ0 (µ0 = 0.4, 0.6, 0.8).

S5.2 Application to a bladder cancer data

In this subsection, we consider a data set corresponding to remission times (in

months) of 128 bladder cancer patients with average remission time 9.366. This

dataset was previously studied by Lee and Wang (2003) and Lemonte and Cordeiro

(2013). Bladder cancer is a disease in which abnormal cells multiply without

control in the bladder. The most common type of bladder cancer recapitulates

the normal histology of the urothelium and is known as transitional cell carcinoma

(Zea et al., 2012). These remission times are a subset of the data from a bladder

cancer study conducted by the American Cancer Society. By using this dataset,

we would like to predict the average remission time of the population under the
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Table 3: Simulated MSE and absolute bias for the Bayes and PRGM predictors for values τ20 = 0.1, 0.3, 0.5, 0.7,

µ0 = 0.2, 0.4, 0.6, 0.8 and µ ∈ [0.2, 0.8] over Γµ (sheep data).

δπ δPRGM

τ20 n µ0 = 0.2 0.4 0.6 0.8

0.1 20 0.46015 0.45908 0.45873 0.45910 0.45881

30 0.28276 0.28222 0.28197 0.28200 0.28206

EMSE 50 0.15236 0.15224 0.15221 0.15227 0.15222

20 0.54154 0.54097 0.54084 0.54108 0.54086

EAB 30 0.42669 0.42626 0.42602 0.42601 0.42612

50 0.31309 0.31291 0.31281 0.31280 0.31284

0.3 20 0.46011 0.45994 0.45985 0.45985 0.45989

30 0.28260 0.28250 0.28243 0.28239 0.28246

EMSE 50 0.15236 0.15234 0.15234 0.15234 0.15234

20 0.54159 0.54152 0.54149 0.54150 0.54150

EAB 30 0.42655 0.42645 0.42638 0.42633 0.42641

50 0.31302 0.31298 0.31295 0.31293 0.31296

0.5 20 0.46021 0.46013 0.46008 0.46006 0.46010

30 0.28262 0.28256 0.28252 0.28249 0.28254

EMSE 50 0.15237 0.15237 0.15236 0.15236 0.15236

20 0.54167 0.54164 0.54163 0.54162 0.54163

EAB 30 0.42655 0.42650 0.42645 0.42642 0.42647

50 0.31302 0.31300 0.31298 0.31297 0.31299

0.7 20 0.46026 0.46022 0.46018 0.46016 0.46020

30 0.28263 0.28259 0.28256 0.28254 0.28258

EMSE 50 0.15238 0.15238 0.15237 0.15237 0.15237

20 0.54171 0.54169 0.54168 0.54168 0.54169

EAB 30 0.42655 0.42652 0.42649 0.42646 0.42650

50 0.31302 0.31300 0.31299 0.31298 0.31300

SE loss function. The Kolmogorov-Smirnov test shows that we may assume the

original data is a random sample from a gamma-distribution with shape parameter

α = 1.1726 and rate parameter θ = 0.125 with a p-value of 0.5085. So, the data

can be considered as a realization of a gamma superpopulation model. Then, for

this data, the model (4.25) holds and the maximum likelihood estimates of the

parameters is given in Table 5.
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Table 4: Simulated MSE and absolute bias for the Bayes and PRGM predictors for values τ20 = 0.1, 0.3, 0.5, 0.7,

µ0 = 0.2, 0.4, 0.6, 0.8 and τ2 ∈ [0.1, 0.7] over Γτ2 (sheep data).

δπ δPRGM

µ0 n τ20 = 0.1 0.3 0.5 0.7

0.2 20 0.46015 0.46011 0.46021 0.46026 0.46002

30 0.28276 0.28260 0.28262 0.28263 0.28262

EMSE 50 0.15236 0.15236 0.15237 0.15238 0.15235

20 0.54154 0.54159 0.54167 0.54171 0.54150

EAB 30 0.42669 0.42655 0.42655 0.42655 0.42657

50 0.31309 0.31302 0.31302 0.31302 0.31303

0.4 20 0.45908 0.45994 0.46013 0.46022 0.45961

30 0.28222 0.28250 0.28256 0.28259 0.28239

EMSE 50 0.15224 0.15234 0.15237 0.15238 0.15231

20 0.54097 0.54152 0.54164 0.54169 0.54132

EAB 30 0.42626 0.42645 0.42650 0.42652 0.42638

50 0.31291 0.31298 0.31300 0.31300 0.31295

0.6 20 0.45873 0.45985 0.46008 0.46018 0.45945

30 0.28197 0.28243 0.28252 0.28256 0.28226

EMSE 50 0.15221 0.15234 0.15236 0.15237 0.15229

20 0.54084 0.54149 0.54163 0.54168 0.54126

EAB 30 0.42602 0.42638 0.42645 0.42649 0.42625

50 0.31281 0.31295 0.31298 0.31299 0.31290

0.8 20 0.45910 0.45985 0.46006 0.46016 0.45952

30 0.28200 0.28239 0.28249 0.28254 0.28223

EMSE 50 0.15227 0.15234 0.15236 0.15237 0.15231

20 0.54108 0.54150 0.54162 0.54168 0.54132

EAB 30 0.42601 0.42633 0.42642 0.42646 0.42620

50 0.31280 0.31293 0.31297 0.31298 0.31288

To predict the population mean, we consider a single prior Γ(7, 2) as well as two

classes

Γa = {Γ(a, b0) : a ∈ [3, 9]} and Γb = {Γ(a0, b) : b ∈ [2, 8] ⊆ R
+} of priors for θ. We

obtain the Bayes predictor (δπa0,b0 with a0 = 7 and b0 = 2), the PRGM predictor

over the class Γb (δPRGM
Γb

) and the PRGM predictor over the class Γa (δPRGM
Γa

).

Table 6 summarizes the predicted values under the SE loss function when n = 50.
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Table 5: The maximum likelihood estimates of the parameters θ and α.

Parameters Estimate Std. Error

θ 0.1252 0.0173

α 1.1726 0.1308

As we observe the PRGM predicted values are closer to the population mean , i.e.,

9.366 than the Bayes prediction.

Table 6: The Bayes and PRGM predicted values of the finite population mean over Γb and Γa under the SE

loss function.

δπa0,b0 δPRGM
Γb

δPRGM
Γa

9.265631 9.298799 9.363406

In order to obtain the bias and precision associated with each predicted value, we

perform a simulation study as follows:

1. Generate y∗1, y
∗
2, ..., y

∗
n from a Γ(1.1726, 0.1252) distribution.

2. Consider y∗i , i = 1, ..., n as a sample generated from the underlying model.

3. Calculate the Bayes and PRGM predictors.

4. Repeat steps 1-3 for b = 104 times and calculate the value of EMSE and

EAB of the predictors using the following formula:

EMSE =
1

b

b
∑

i=1

(δ̂ki − Ȳ )2, EAB = |1
b

b
∑

i=1

(δ̂ki − Ȳ )|, k = Bayes, PRGM,

where, δ̂ki is the predictor in i-th repetition of sampling and Ȳ is the popula-

tion mean.
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We consider two classes of prior distributions. The first class Γb of priors is chosen

to be Γb = {Γ(a0, b) : b ∈ [2, 8] ⊆ R
+}. In this setting we obtain the PRGM

predictor of the population mean under Γb as well as its Bayes predictor under some

specific gamma distributions with a0 = 3, 5, 7, 9, b0 = 2, 4, 6, 8 as prior distributions

for θ. We also consider another class of priors Γa = {Γ(a, b0) : a ∈ [3, 9]} and study

the performance of PRGM predictors of the population mean compared with their

corresponding Bayes predictors with respect to normal prior distributions with

a0 = 3, 5, 7, 9, b0 = 2, 4, 6, 8. The estimated MSE and the bias of each predictor

are presented in Tables 7 and 8. From Table 7, we observe that the performance of

PRGM predictors with respect to Bayes predictor are quite satisfactory in terms

of EMSE as well as the associated bias for all values of a0 and small values of b0

(b0 = 2, 4). But we have quite the opposite results for large values of b0 (b0 = 6, 8).

Note that the MSE and the bias decrease as the sample size increases. From Table

8, we observe that for all values of b0 and large values of a0 (a0 = 7, 9), PRGM

predictors are preferred to Bayes predictors in terms of EMSE and EAB. Also,

EMSEs and EABs decrease as the sample size increases.
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Table 7: Simulated MSE and absolute bias for the Bayes and PRGM predictors of finite population mean for

a0 = 3, 5, 7, 9, b0 = 2, 4, 6, 8 and b ∈ [2, 8] over Γb (cancer data).

δπ δPRGM

n b0 = 2 b0 = 4 b0 = 6 b0 = 8

a0 = 3 20 4.357 4.281 4.216 4.164 4.247

30 2.695 2.665 2.640 2.619 2.652

EMSE 50 1.312 1.305 1.299 1.294 1.302

20 1.711 1.690 1.671 1.655 1.681

EAB 30 1.340 1.330 1.321 1.314 1.325

50 0.934 0.931 0.928 0.926 0.930

a0 = 5 20 4.734 4.586 4.448 4.320 4.515

30 2.854 2.793 2.737 2.685 2.765

EMSE 50 1.351 1.336 1.323 1.310 1.329

20 1.823 1.790 1.758 1.728 1.774

EAB 30 1.392 1.376 1.360 1.346 1.368

50 0.948 0.943 0.938 0.933 0.940

a0 = 7 20 5.549 5.348 5.156 4.973 5.251

30 3.213 3.128 3.047 2.969 3.087

EMSE 50 1.446 1.424 1.403 1.384 1.414

20 2.008 1.967 1.928 1.889 1.947

EAB 30 1.489 1.468 1.447 1.427 1.457

50 0.981 0.973 0.966 0.959 0.970

a0 = 9 20 6.631 6.391 6.159 5.936 6.274

30 3.716 3.611 3.510 3.412 3.560

EMSE 50 1.586 1.558 1.531 1.505 1.545

20 2.232 2.186 2.142 2.098 2.164

EAB 30 1.620 1.594 1.569 1.545 1.582

50 1.029 1.020 1.010 1.002 1.015
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Table 8: Simulated MSE and absolute bias for the Bayes and PRGM predictors of finite population variance

for b0 = 2, 4, 6, 8, a0 = 3, 5, 7, 9 and a ∈ [3, 9] over Γa (cancer data).

δπ δPRGM

n a0 = 3 a0 = 5 a0 = 7 a0 = 9

b0 = 2 20 4.357 4.734 5.549 6.631 4.974

30 2.695 2.854 3.213 3.716 2.973

EMSE 50 1.312 1.351 1.446 1.586 1.386

20 1.711 1.823 2.008 2.232 1.880

EAB 30 1.340 1.392 1.489 1.620 1.425

50 0.934 0.948 0.981 1.029 0.960

b0 = 4 20 4.281 4.586 5.348 6.391 4.805

30 2.665 2.793 3.128 3.611 2.902

EMSE 50 1.305 1.336 1.424 1.558 1.368

20 1.690 1.790 1.967 2.186 1.844

EAB 30 1.330 1.376 1.468 1.594 1.407

50 0.931 0.943 0.973 1.020 0.954

b0 = 6 20 4.216 4.448 5.156 6.159 4.647

30 2.640 2.737 3.047 3.510 2.836

EMSE 50 1.299 1.323 1.403 1.531 1.351

20 1.671 1.758 1.928 2.142 1.809

EAB 30 1.321 1.360 1.447 1.569 1.389

50 0.928 0.938 0.966 1.010 0.948

b0 = 8 20 4.164 4.320 4.973 5.936 4.498

30 2.619 2.685 2.969 3.412 2.773

EMSE 50 1.294 1.310 1.384 1.505 1.335

20 1.655 1.728 1.889 2.098 1.775

EAB 30 1.314 1.346 1.427 1.545 1.372

50 0.926 0.933 0.959 1.002 0.942
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