SEMIPARAMETRIC REGRESSION MODEL
FOR RECURRENT BACTERIAL INFECTIONS
AFTER HEMATOPOIETIC STEM CELL TRANSPLANTATION

Chi Hyun Lee, Chiung-Yu Huang, Todd E. DeFor, Claudio G. Brunstein
Daniel J. Weisdorf and Xianghua Luo

1University of Massachusetts, Amherst,
2University of California, San Francisco and 3University of Minnesota

Supplementary Material

Web Appendix A. Proof under the Random Censoring Assumption

A.1. Regularity conditions

We assume the following regularity conditions:

(C1) The true parameter β is in the interior of the parameter space \mathbb{R}^{2p}.

(C2) A is a $p \times 1$ vector of covariates that is bounded.

(C3) Σ is nonsingular.

A.2. Uniqueness and consistency of $\hat{\beta}$
We begin by reformulating the estimating functions (2.2) and (2.4) as

\[
D_0(b_0) = \int_{t,s,a_1,a_2} w(a_1, a_2, b_0)(a_2 - a_1) \frac{O_{L_0}(t,s)}{G_0(t \wedge L_0)} \hat{F}_0(dt, ds, da_1; a_2, b_0) \hat{H}(da_2),
\]

(S.1)

\[
D^*_1(b) = \int_{t,s,a_1,a_2} w(a_1, a_2, b_1)(a_2 - a_1) \frac{O_{L_1}(t,s)}{G_1(t \wedge L_1)} \hat{F}^*_1(dt, ds, da_1; a_2, b) \hat{H}(da_2),
\]

(S.2)

where \(\hat{F}_0 \) is the empirical estimator of the subdistribution function \(F_0(t, s, a_1; a_2, b_0) = \Pr[Z_{i0} \leq t, \exp\{(a_2 - A_i)^Tb_0\} X_i \leq s, A_i \leq a_1, \Delta_{i0} = 1] \), \(\hat{F}^*_1(t, s, a_1; a_2, b) \) is

\[
\frac{1}{n} \sum_{i=1}^{n} \frac{1}{m_i} \sum_{j=1}^{m_i} \mathbb{I}[Z_{ij} \leq t, \exp\{(a_2 - A_i)^Tb_0\} X_i + \exp\{(a_2 - A_i)^Tb_1\} Y_{ij} \leq s, A_i \leq a_1, \Delta_{ij} = 1],
\]

the weighted average version of the empirical estimator of \(F_1(t, s, a_1; a_2, b) = \Pr[Z_{ij} \leq t, \exp\{(a_2 - A_i)^Tb_0\} X_i + \exp\{(a_2 - A_i)^Tb_1\} Y_{ij} \leq s, A_i \leq a_1, \Delta_{ij} = 1] \) and \(\hat{H} \) is the empirical distribution function of \(H(a_2) = \Pr(A_i \leq a_2) \). The Kaplan–Meier estimators \(\hat{G}_0(t) \) and \(\hat{G}_1(t) \) can be expressed as continuous and compactly differentiable functions \([\text{Gill and Johansen}, 1990] \). Empirical estimators \(\hat{F}_0, \hat{F}^*_1, \) and \(\hat{H} \) are also continuous and compactly differentiable func-
tionals, and it follows that D_0 and D^*_1 are continuous and compactly differentiable. Since estimating function (S.1) is monotone in b_0, the solution to $D_0(b_0) = 0$ is unique. Equation (S.2) is also monotone in b_1 given b_0, and $D^*_1((\hat{\beta}_0^T, b_1^T)^T) = 0$ has a unique solution.

Note that \hat{G}_0, \hat{G}_1, \hat{F}_0, \hat{F}^*_1, and \hat{H} are uniformly consistent estimators. The consistency of $\hat{\beta}_0$ corresponding to the time from transplant to the first infection has been established by Huang (2002). Given that $\hat{\beta}_0$ is consistent for β_0, $D_1^T(b)(b_1 - \beta_1)$ converges almost surely and uniformly in b to

$$E \left[E \left\{ w(A_i, A_{i'}, b_1) A_{i'i'}^T(b_1 - \beta_1) O_{L_1} \left[Z^{0}_{ij}, Z^{0}_{ii'j} \{ (\beta_0^T, b_1^T)^T \} \right] | A_i, A_{i'} \right\} \right], \quad (S.3)$$

which equals $E \left[E \left\{ w(A_i, A_{i'}, b_1) A_{i'i'}^T(b_1 - \beta_1) O_{L_1} \left[Z^{0}_{ij}, \exp(A_{i'i'}^T \beta_0) X^0_i + \exp(A_{i'i'}^T (b_1 - \beta_1)) \exp(A_{i'i'}^T \beta_1) Y^0_{ij} \right] | A_i, A_{i'} \right\} \right]$. Expression (S.3) is equal to 0 only when $b_1 = \beta_1$, which implies strong consistency of $\hat{\beta}_1$ for β_1. Thus, given the consistency of $\hat{\beta}_0$, the consistency of the estimator $\hat{\beta}$ follows.

A.3. Asymptotic normality of $D(\beta)$

Define $D(b) \equiv \{D_0^T(b_0), D^*_1(b)\}^T$. By the functional delta method and the influence function approach, $n^{1/2}D(\hat{\beta})$ is asymptotically normal with mean zero and variance Ω. Following the proof in Huang (2002), we derive the sen-
sensitivity curves of $n^{1/2}D_0(\beta_0)$ and $n^{1/2}D^*_1(\beta)$ as follows, for i:

$$
\xi_0(\beta_0) = n^{-3/2} \sum_{i'=1}^{n} w(A_i, A_{i'}, \beta_0) A_{ii'} \left[\frac{\Delta_{i0}O_{L_0}\{Z_{i0}, Z_{i'0}(\beta_0)\}}{G_0(Z_{i0} \wedge L_0)} - \frac{\Delta_{i'0}O_{L_0}\{Z_{i'0}, Z_{i'0}(\beta_0)\}}{G_0(Z_{i'0} \wedge L_0)} \right] + n^{-3/2} \int_0^{L_0} Q_0(t, \beta_0) \hat{G}_0(t-)^{-} d\hat{M}_{i0}(t),
$$

(S.4)

$$
\xi^*_1(\beta) = n^{-3/2} \sum_{i'=1}^{n} w(A_i, A_{i'}, \beta_1) A_{ii'} \left[\frac{1}{m_i^*} \sum_{j=1}^{m_i^*} \frac{\Delta_{ij}O_{L_1}\{Z_{ij}, Z_{i'j}(\beta)\}}{G_1(Z_{ij} \wedge L_1)} - \frac{1}{m_{i'}^*} \sum_{l=1}^{m_{i'}^*} \frac{\Delta_{i'l}O_{L_1}\{Z_{i'l}, Z_{i'l}(\beta)\}}{G_1(Z_{i'l} \wedge L_1)} \right] + n^{-3/2} \int_0^{L_1} Q_1(t, \beta) \hat{G}_1(t-)^{-} d\hat{M}_{i1}^*(t),
$$

(S.5)

in which,

$$
Q_0(t, \beta_0) = \sum_{i=1}^{n} \sum_{i'=1}^{n} w(A_i, A_{i'}, \beta_0) A_{ii'} \left[\frac{\Delta_{i0}O_{L_0}\{Z_{i0}, Z_{i'0}(\beta_0)\}}{G_0(Z_{i0} \wedge L_0)} I(Z_{i0} > t) \right],
$$

$$
Q_1(t, \beta) = \sum_{i=1}^{n} \sum_{i'=1}^{n} w(A_i, A_{i'}, \beta_1) A_{ii'} \left[\frac{1}{m_i^*} \sum_{j=1}^{m_i^*} \frac{\Delta_{ij}O_{L_1}\{Z_{ij}, Z_{i'j}(\beta)\}}{G_1(Z_{ij} \wedge L_1)} I(Z_{ij} > t) \right],
$$
\[Y_0(t) = \sum_{i=1}^{n_i} I(Z_{i0} \geq t), \quad \hat{M}_0(t) = I(Z_{i0} \leq t, \Delta_{i0} = 0) - \int_0^t I(Z_{i0} \geq s) d\hat{\Lambda}_0(s), \]

\[Y^*_1(t) = \sum_{i=1}^{n_i} \frac{1}{m^*_i} \sum_{j=1}^{m^*_i} I(Z_{ij} \geq t), \quad \text{and} \]

\[\hat{M}^*_1(t) = \frac{1}{m^*_i} \sum_{j=1}^{m^*_i} I(Z_{ij} \leq t, \Delta_{ij} = 0) - \int_0^t \frac{1}{m^*_i} \sum_{j=1}^{m^*_i} I(Z_{ij} \geq s) d\hat{\Lambda}_1(s), \]

and \(\hat{\Lambda}_k \) is the Nelson-Aalen estimator corresponding to \(\hat{G}_k \) for \(k = 0, 1 \). Note that the last terms on the right-hand side of equations (S.4) and (S.5) are derived based on the martingale representation of \(\hat{G}_0(t) \) and \(\hat{G}_1(t) \). The variance \(\Omega \) can be estimated by

\[\hat{\Omega} = \sum_{i=1}^{n_i} \{ \xi_{i0}^T(\hat{\beta}_0), \xi_{i1}^T(\hat{\beta}) \} \{ \xi_{i0}^T(\hat{\beta}_0), \xi_{i1}^T(\hat{\beta}) \}^T, \]

which is shown to be a consistent estimator by the Glivenko-Cantelli theorem of [Pollard (1984)].

A.4. Asymptotic linearity of \(D(b) \) at \(b = \beta \)

For \(b_0 \) and \(b \) converging to \(\beta_0 \) and \(\beta \), we can show that \(D_0(b_0) = \tilde{D}_0(b_0) + o_p(||b_0 - \beta_0|| + n^{-1/2}) \) and \(D_1^*(b) = \tilde{D}_1^*(b) + o_p(||b - \beta|| + n^{-1/2}) \), respectively, where

\[\tilde{D}_0(b_0) = \int_{t,s,a_1,a_2} w(a_1, a_2, \beta_0)(a_2 - a_1) \frac{O_{L_0}(t, s)}{G_0(t \land L_0)} \hat{F}_0(dt, ds, da_1; a_2, b_0) \hat{H}(da_2) \]

\[\tilde{D}_1^*(b) = \int_{t,s,a_1,a_2} w(a_1, a_2, \beta_1)(a_2 - a_1) \frac{O_{L_1}(t, s)}{G_1(t \land L_1)} \hat{F}_1^*(dt, ds, da_1; a_2, b) \hat{H}(da_2). \]

Since there exist points in \(b \) where \(\tilde{D}(b) = \{ \tilde{D}_0^T(b_0), \tilde{D}_1^T(b) \}^T \) is nondiffer-
entiable, the first-order Taylor expansion cannot be directly used. Instead, we
use the generalized law of mean \cite{Huang2000}. Let Σ be the limit of the left
and right partial derivative of $\tilde{D}(b)$. For b converging to β, we obtain that

$$
D(b) = \tilde{D}(b) + o_p(||b - \beta|| + n^{-1/2})
= D(\beta) + \Sigma(b - \beta) + o_p(||b - \beta|| + n^{-1/2}).
$$

Thus, $D(b)$ is asymptotically linear at $b = \beta$.

A.5. Asymptotic normality of $\hat{\beta}$

It follows that $n^{1/2}(\hat{\beta} - \beta)$ is asymptotically normal with mean zero and
variance $\Sigma^{-1}\Omega(\Sigma^{-1})^T$, which can be consistently estimated by $\hat{\Sigma}^{-1}\hat{\Omega}(\hat{\Sigma}^{-1})^T$,
where $\hat{\Sigma} = \partial\tilde{D}(\hat{\beta})/\partial b$ is consistent for Σ.

A.6. Efficiency of $\hat{\beta}$

To examine the efficiency gain of using the proposed method over Huang’s
method, we rewrite the estimating function in an empirical average form as
follows,

$$
D(\beta) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{m_i} \sum_{j=1}^{m_i} \phi(X_i, Y_{ij}, \Delta_{i0}, \Delta_{ij}, A_i; \beta) + o_p(n^{-1/2}),
$$

where $\phi(X_i, Y_{ij}, \Delta_{i0}, \Delta_{ij}, A_i; \beta) = \{\phi_0^T(X_i, \Delta_{i0}, A_i; \beta_0), \phi_1^T(X_i, Y_{ij}, \Delta_{ij}, A_i; \beta)\}^T$,
in which

$$\phi_0(X_i, \Delta_{i0}, A_i; \beta_0) = \int_{t,s,a_1,a_2} w(a_1,a_2,\beta_0)(a_2 - a_1) \frac{O_{L_0}(t,s)}{G_0(t \wedge L_0)}$$

$$\times F_0(dt,ds,da_1; a_2, \beta_0) H(da_2)$$

$$\phi_1(X_i, Y_{ij}, \Delta_{ij}, A_i; \beta) = \int_{t,s,a_1,a_2} w(a_1,a_2,\beta_1)(a_2 - a_1) \frac{O_{L_1}(t,s)}{G_1(t \wedge L_1)}$$

$$\times F_1(dt,ds,da_1; a_2, \beta) H(da_2).$$

For simplicity of notation, we denote $\phi_{ij}(\beta) = \phi(X_i, Y_{ij}, \Delta_{i0}, \Delta_{ij}, A_i; \beta)$. The asymptotic variance of $n^{1/2}D(\beta)$ is

$$\Omega = E \{ \phi_{ij}(\beta)^{\otimes 2} \} - E \left[\frac{1}{m_i^*} \sum_{j=1}^{m_i^*} \left\{ \phi_{ij}(\beta) - \frac{1}{m_i^*} \sum_{j=1}^{m_i^*} \phi_{ij}(\beta) \right\}^{\otimes 2} \right].$$

We note that the asymptotic variance of $n^{1/2}(\bar{\beta} - \beta)$ is $\Sigma^{-1}E\{\phi_{ij}(\beta)^{\otimes 2}\}(\Sigma^{-1})^T$, which is greater or equal to the asymptotic variance of $n^{1/2}(\hat{\beta} - \beta)$, $\Sigma^{-1}\Omega\Sigma^{-1}$. The proposed estimator $\hat{\beta}$ is more efficient than the estimator $\bar{\beta}$ from Huang's method when there exists $m_i^* \geq 2$ for any subject i, $i = 1, \ldots, n$.

Web Appendix B. Proof under the Conditional Independent Censoring Assumption

Here we only provide detailed proofs of the asymptotic properties for $\hat{\beta}$.
under the conditional independent censoring assumption when the covariate-specific Kaplan–Meier estimator is used for the estimation of $G(t \mid A)$. Similar techniques can be used for establishing the asymptotic properties when a semiparametric regression model is used. For the arguments below, we need the regularity conditions (C1) and (C2) in Web Appendix A.1 and an additional condition, namely,

(C4) Σ^c is nonsingular.

B.1. Uniqueness and consistency of $\tilde{\beta}$

We rewrite the estimating functions (2.5) and (2.6) as

\[
D_c^0(b_0) = \int w(a_1, a_2, b_0)(a_2 - a_1) \frac{O_{L_0}(t, s)}{\hat{G}_0(t \mid a_1)} \hat{F}_0(dt, ds, da_1; a_2, b_0) \hat{H}(da_2),
\]

(S.6)

\[
D_c^0(b_0) = \int w(a_1, a_2, b_1)(a_2 - a_1) \frac{O_{L_1}(t, s)}{\hat{G}_1(t \mid a_1)} \hat{F}_1^*(dt, ds, da_1; a_2, b) \hat{H}(da_2).
\]

(S.7)

The covariate-specific Kaplan–Meier estimators $\hat{G}_0(t \mid A)$ and $\hat{G}_1(t \mid A)$ are continuous and compactly differentiable as well as \hat{F}_0, \hat{F}_1^*, and \hat{H}. Thus, it follows that D_c^0 and D_c^0 are continuous and compactly differentiable functionals. Due to the monotonicity of the estimating functions (S.6) in b_0 and (S.7) in b_1 given b_0, the solutions to $D_c^0(b_0) = 0$ and $D_c^0(b) = 0$ are unique.
Given the uniform consistency of the Kaplan–Meier estimators and that of
the empirical functions, the consistency of \(\tilde{\beta}_0 \) and \(\tilde{\beta}_1 \) can be shown in a manner
similar to that in Web Appendix A.2.

B.2. Asymptotic normality of \(D^c(\beta) \)

Let \(D^c(b) \equiv \{D^c_0(T_0(b_0), D^c_1(T_1(b))\}^T \). By the functional delta method and the
influence function approach, we show that \(n^{1/2} D^c(\beta) \) is asymptotically normal
with mean zero and variance \(\Omega^c \). The proof is in the same line as Web Appendix
A.3. For \(i \), we derive

\[
\psi_0^i(\beta_0) = n^{-3/2} \sum_{i' = 1}^n w(A_i, A_{i'}, \beta_0) A_{ii'} \left[\frac{\Delta_{i0} O_{L_0} \{Z_{i0}, \hat{Z}_{i0}(\beta_0)\}}{\hat{G}_0(Z_{i0} \wedge L_0 | A_i)} - \frac{\Delta_{i'0} O_{L_0} \{Z_{i'0}, \hat{Z}_{i'0}(\beta_0)\}}{\hat{G}_0(Z_{i'0} \wedge L_0 | A_{i'})} \right] + n^{-3/2} \int_0^{L_0} \frac{Q_0^i(t, \beta_0) \hat{G}_0(t- | A_i)}{Y_0(t) \hat{G}_0(t | A_i)} d \hat{M}^c(t),
\]

(S.8)

\[
\psi_1^i(\beta) = n^{-3/2} \sum_{i' = 1}^n w(A_i, A_{i'}, \beta_1) A_{ii'} \left[\frac{\Delta_{ij} O_{L_1} \{Z_{ij}, \hat{Z}_{ij}(\beta)\}}{\hat{G}_1(Z_{ij} \wedge L_1 | A_i)} - \frac{\Delta_{i'j} O_{L_1} \{Z_{i'j}, \hat{Z}_{i'j}(\beta)\}}{\hat{G}_1(Z_{i'j} \wedge L_1 | A_{i'})} \right] + n^{-3/2} \int_0^{L_1} \frac{Q_1^i(t, \beta) \hat{G}_1(t- | A_i)}{Y_1^i(t) \hat{G}_1(t | A_i)} d \hat{M}^c_1(t),
\]

(S.9)
in which,

\[
Q_{0}(t, \beta_0) = \sum_{i=1}^{n} \sum_{i' = 1}^{n} w(A_i, A_{i'}, \beta_0) \Delta_{i0} O_{L0}(Z_{i0}, Z_{i'i0}(\beta_0)) \hat{G}_{0}(Z_{i0} \wedge L_0 | A_i) I(Z_{i0} > t),
\]

\[
Q_{*}^{c}(t, \beta) = \sum_{i=1}^{n} \sum_{i' = 1}^{n} w(A_i, A_{i'}, \beta) \Delta_{i} O_{L}(Z_{i}, Z_{ii'}(\beta)) \hat{G}_{1}(Z_{i} \wedge L_1 | A_i) I(Z_{i} > t),
\]

\[
\hat{M}_{c0}(t) = I(Z_{i0} \leq t, \Delta_{i0} = 0) - \int_{0}^{t} I(Z_{i0} \geq s) d\hat{\Lambda}_{0}(s | A_i),
\]

\[
\hat{M}_{*}^{c1}(t) = \frac{1}{m_i} \sum_{j=1}^{m_i} I(Z_{ij} \leq t, \Delta_{ij} = 0) - \int_{0}^{t} \frac{1}{m_i} \sum_{j=1}^{m_i} I(Z_{ij} \geq s) d\hat{\Lambda}_{1}(s | A_i)
\]

and \(\hat{\Lambda}_{k}(t | A)\) is the Nelson–Aalen estimator corresponding to \(\hat{G}_{k}(t | A)\) for \(k = 0, 1\). The last terms on the right-hand side of equations (S.8) and (S.9) result from the large sample properties of \(\hat{G}_{0}(t | A)\) and \(\hat{G}_{1}(t | A)\). The variance \(\Omega^{c}\) can be consistently estimated by \(\hat{\Omega}^{c} = \sum_{i=1}^{n} \{\psi_{i0}^{T}(\hat{\beta}_0), \psi_{i1}^{T}(\hat{\beta})\}^{T} \{\psi_{i0}^{T}(\hat{\beta}_0), \psi_{i1}^{T}(\hat{\beta})\}\).

B.3. Asymptotic linearity of \(D^{c}(b)\) at \(b = \beta\)

We define

\[
\tilde{D}_{0}(b_0) = \int_{t,s,a_1,a_2} w(a_1, a_2, \beta)(a_2 - a_1) O_{L0}(t, s) \hat{F}_{0}(dt, ds, da_1; a_2, b_0) \hat{H}(da_2)
\]

\[
\tilde{D}_{*1}^{c}(b) = \int_{t,s,a_1,a_2} w(a_1, a_2, \beta)(a_2 - a_1) O_{L1}(t, s) \hat{F}_{*1}(dt, ds, da_1; a_2, b) \hat{H}(da_2).
\]
Let Σ^c be the limit of the left and right partial derivative of $\tilde{D}^c(b)$. We can prove the linearity of $D^c(b)$ in a similar way as Web Appendix A.4. Thus, we omit the details and present the main result. By the generalized law of mean, for b converging to β, we obtain that

$$D^c(b) = D^c(\beta) + \Sigma^c(b - \beta) + o_p(||b - \beta|| + n^{-1/2}).$$

Thus, $D^c(b)$ is asymptotically linear at $b = \beta$.

B.4. Asymptotic normality of $\tilde{\beta}$

The asymptotic normality and linearity of $D^c(\beta)$ yield that $n^{1/2}(\tilde{\beta} - \beta)$ is asymptotically normal with mean zero and variance $(\Sigma^c)^{-1} \Omega^c ((\Sigma^c)^{-1})^T$, which can be consistently estimated by $(\tilde{\Sigma}^c)^{-1} \Omega^c ((\tilde{\Sigma}^c)^{-1})^T$, where $\tilde{\Sigma}^c = \partial D^c(\beta)/\partial b$ is a consistent estimator of Σ^c.

Web Table S1. Summary of baseline characteristics
Table S1: Summary of patient- and transplant-related characteristics.

<table>
<thead>
<tr>
<th>Variables</th>
<th>No. Patients (%) / Median (Range)</th>
<th>All Patients</th>
<th>Children (Age < 18)</th>
<th>Adults (Age ≥ 18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>516</td>
<td>155</td>
<td>361</td>
<td></td>
</tr>
<tr>
<td>Age at TX</td>
<td>36.9 (0.5–71.4)</td>
<td>9.4 (0.5–17.9)</td>
<td>47.4 (18.1–71.4)</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>304 (59)</td>
<td>100 (65)</td>
<td>204 (57)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>212 (41)</td>
<td>55 (35)</td>
<td>157 (43)</td>
<td></td>
</tr>
<tr>
<td>Diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALL</td>
<td>131 (25)</td>
<td>67 (43)</td>
<td>64 (18)</td>
<td></td>
</tr>
<tr>
<td>AML</td>
<td>217 (42)</td>
<td>63 (41)</td>
<td>154 (43)</td>
<td></td>
</tr>
<tr>
<td>CML</td>
<td>19 (4)</td>
<td>1 (1)</td>
<td>18 (5)</td>
<td></td>
</tr>
<tr>
<td>Hodgkin’s Lymphoma</td>
<td>7 (1)</td>
<td>1 (1)</td>
<td>6 (2)</td>
<td></td>
</tr>
<tr>
<td>Multiple Myeloma</td>
<td>1 (0)</td>
<td>0 (0)</td>
<td>1 (0)</td>
<td></td>
</tr>
<tr>
<td>Myelodysplastic Syndrome</td>
<td>45 (9)</td>
<td>9 (6)</td>
<td>36 (10)</td>
<td></td>
</tr>
<tr>
<td>Myeloproliferative Neoplasm</td>
<td>10 (2)</td>
<td>0 (0)</td>
<td>10 (3)</td>
<td></td>
</tr>
<tr>
<td>Neuroblastoma</td>
<td>1 (0)</td>
<td>1 (1)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>Non-Hodgkin’s Lymphoma</td>
<td>59 (11)</td>
<td>6 (4)</td>
<td>53 (15)</td>
<td></td>
</tr>
<tr>
<td>Other Leukemia</td>
<td>21 (4)</td>
<td>7 (5)</td>
<td>14 (4)</td>
<td></td>
</tr>
<tr>
<td>Other Malignancy</td>
<td>5 (1)</td>
<td>0 (0)</td>
<td>5 (1)</td>
<td></td>
</tr>
<tr>
<td>CMV Serostatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>301 (58)</td>
<td>100 (65)</td>
<td>201 (56)</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>215 (41)</td>
<td>55 (35)</td>
<td>160 (44)</td>
<td></td>
</tr>
<tr>
<td>Type of Transplant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double Cord</td>
<td>374 (72)</td>
<td>60 (39)</td>
<td>314 (87)</td>
<td></td>
</tr>
<tr>
<td>Single Cord</td>
<td>142 (28)</td>
<td>95 (61)</td>
<td>47 (13)</td>
<td></td>
</tr>
<tr>
<td>Conditioning Regimen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myeloablative</td>
<td>281 (54)</td>
<td>150 (97)</td>
<td>131 (36)</td>
<td></td>
</tr>
<tr>
<td>Non-Myeloablative w ATG</td>
<td>67 (13)</td>
<td>0 (0)</td>
<td>67 (19)</td>
<td></td>
</tr>
<tr>
<td>Non-Myeloablative wo ATG</td>
<td>168 (33)</td>
<td>5 (3)</td>
<td>163 (45)</td>
<td></td>
</tr>
<tr>
<td>HLA Locus Matching Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/6</td>
<td>262 (51)</td>
<td>44 (28)</td>
<td>218 (60)</td>
<td></td>
</tr>
<tr>
<td>5/6</td>
<td>202 (39)</td>
<td>86 (55)</td>
<td>116 (32)</td>
<td></td>
</tr>
<tr>
<td>6/6</td>
<td>52 (10)</td>
<td>25 (16)</td>
<td>27 (7)</td>
<td></td>
</tr>
<tr>
<td>GVHD Prophylaxis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSA/MMF/MTX</td>
<td>449 (87)</td>
<td>104 (67)</td>
<td>344 (95)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>67 (13)</td>
<td>51 (33)</td>
<td>16 (4)</td>
<td></td>
</tr>
<tr>
<td>CD34+ graft infused (×10⁶/kg)</td>
<td>0.49 (0.06–27.53)</td>
<td>0.58 (0.06–8.42)</td>
<td>0.47 (0.07–27.53)</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>130 (25)</td>
<td>35 (23)</td>
<td>95 (26)</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>386 (75)</td>
<td>120 (77)</td>
<td>266 (74)</td>
<td></td>
</tr>
<tr>
<td>TNC dose infused (×10⁸/kg)</td>
<td>0.38 (0.11–4.89)</td>
<td>0.48 (0.15–2.27)</td>
<td>0.36 (0.11–4.89)</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>139 (27)</td>
<td>29 (19)</td>
<td>110 (30)</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>377 (73)</td>
<td>126 (81)</td>
<td>251 (70)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: TX=transplant; ALL=acute lymphoblastic leukemia; AML=acute myeloblastic leukemia; CML=chronic myeloid leukemia; CMV=cytomegalovirus; ATG=anti-thymocyte globulin; HLA=human leukocyte antigen; GVHD=graft-versus-host disease; CSA=cyclosporin; MMF=mycophenolate mofetil; MTX=methotrexate; TNC=total nucleated cell; High: dose > 1st quartile; low: dose ≤ 1st quartile.
References

