CONDITIONAL QUANTILE ESTIMATION FOR
HYSTERETIC AUTOREGRESSIVE MODELS

Degao Li, Ruochen Zeng, Liwen Zhang, Wai Keung Li and Guodong Li

Jiaxing University, University of Hong Kong
and Shanghai University of Finance and Economics

Supplementary Material

This supplementary material gives the technical proofs of Theorems 1-4.

S1 Proof of Theorem 1

For simplicity, we drop τ in all notations for model parameters in the subsequent section. For example, we denote $\theta = \theta, R_{L,\tau} = R_L, R_{U,\tau} = R_U$. As in the standard arguments in Huber (1967), it is sufficient to verify the following three claims:

(a) $\sup_{\Lambda} n^{-1} |\bar{L}_n(\lambda) - L_n(\lambda)| \to 0$ in the almost surely sense, where the parameter space Λ is previously defined.

(b) $E\{\rho_\tau[y_t - M_t(\lambda)]\} \geq E\{\rho_\tau[y_t - M_t(\lambda^0)]\}$ for any $\lambda \in \Lambda$. Additionally,
the equality holds if and only if $\lambda = \lambda^0$.

(c)

\[
E \left\{ \sup_{\lambda \in \Delta(\eta)} |\rho_r[y_t - M_t(\tilde{\lambda})] - \rho_r[y_t - M_t(\lambda)]| \right\} \to 0, \quad \text{as } \eta \to 0,
\]

where $\delta_\Lambda(\eta) = \{ \tilde{\lambda} \in \Lambda : \| \tilde{\lambda} - \lambda \| < \eta \}, 0 < \eta < 1$ and $\lambda \in \Lambda$. Therefore, this shows that $E \{ \rho_r[M_t(\lambda)] \}$ is a continuous function of λ.

We first prove Claim (a). Let $j_n = \min\{ t : y_{t-d} \in (r_L, r_U) \}$. By the settings for the initial values, it holds that $\tilde{R}_t = 1$ for $1 \leq t \leq j_n$ and $R_{j_n} = R_{j_n-1} = \ldots = R_1$. We have

\[
\frac{1}{n} \left| \tilde{L}_n(\lambda) - L_n(\lambda) \right| = (1 - R_1) \prod_{t=1}^{j_n} I\{r_L < y_{t-d} \leq r_U\} \cdot \frac{1}{n} \left| \sum_{t=1}^{j_n} [\rho_r(y_t - x_t^T \theta_1) - \rho_r(y_t - x_t^T \theta_2)] \right|
\]

\[
\leq \prod_{t=1}^{j_n} I\{a \leq y_{t-d} \leq b\} \cdot \frac{1}{n} \sum_{t=1}^{j_n} \sup_{\lambda \in \Lambda} \left[|x_t^T (\theta_2 - \theta_1) \tau| + |y_t - x_t^T \theta_2| + |y_t - x_t^T \theta_1| \right],
\]

which implies that Claim (a) holds if j_n is finite. On the other hand, applying the ergodic theorem, we obtain

\[
\frac{1}{j_n} \sum_{t=1}^{j_n} \sup_{\lambda \in \Lambda} \left[|x_t^T (\theta_2 - \theta_1) \tau| + |y_t - x_t^T \theta_2| + |y_t - x_t^T \theta_1| \right]
\]

\[
\to E \left\{ \sup_{\lambda \in \Lambda} \left[|x_t^T (\theta_2 - \theta_1) \tau| + |y_t - x_t^T \theta_2| + |y_t - x_t^T \theta_1| \right] \right\} < \infty, \quad (A.1)
\]
when $j_n \to \infty$ as $n \to \infty$, and $E(|y_t|^{2+\delta}) < \infty$. As in Li et al. (2013a), it is easy to show that

$$\prod_{t=1}^{j_n} I\{a \leq y_{t-d} \leq b\} \to 0, \text{ as } j_n \to \infty. \quad (A.2)$$

Thus, (A.1) and (A.2) imply the validity of Claim (a).

Next, we prove Claim (b). Denote $\psi_r(w) = \tau - I\{w < 0\}$, and it holds that, for $u \neq 0$,

$$\rho_r(u-v) - \rho_r(u) = -v \psi_r(u) + \int_0^v [I(u \leq s) - I(u < 0)]ds$$

$$= -v \psi_r(u) + (u-v)[I(0 > u > v) - I(0 < u < v)];$$

see Knight (1998). Moreover, $E\{\psi_r(y_t - x_t^\alpha \theta_1^0)R_t^0|F_{t-1}\} = 0$ and $E\{\psi_r(y_t - x_t^\alpha \theta_2^0)(1 - R_t^0)|F_{t-1}\} = 0$. As a result,

$$E\{\rho_r[y_t - M_t(\lambda)]\} = E\{\rho_r[y_t - M_t(\lambda^0)]\} + E\{[\rho_r(y_t - x_t^\alpha \theta_1) - \rho_r(y_t - x_t^\alpha \theta_1^0)]R_tR_t^0\}$$

$$+ E\{[\rho_r(y_t - x_t^\alpha \theta_2) - \rho_r(y_t - x_t^\alpha \theta_2^0)]R_t(1 - R_t^0)\}$$

$$+ E\{[\rho_r(y_t - x_t^\alpha \theta_2) - \rho_r(y_t - x_t^\alpha \theta_2^0)](1 - R_t)R_t^0\}$$

$$+ E\{[\rho_r(y_t - x_t^\alpha \theta_2) - \rho_r(y_t - x_t^\alpha \theta_2^0)](1 - R_t)(1 - R_t^0)\}$$

$$= I_1 + I_2 + I_3 + I_4 + I_5.$$
where

\[I_1 = E\{\rho_r[y_t - M_t(\lambda^0)]\}, \]
\[I_2 = E\{(y_t - x_t^T \theta_1)(I\{x_t^T \theta_1^0 > y_t > x_t^T \theta_1\} - I\{x_t^T \theta_1^0 < y_t < x_t^T \theta_1\})R_tR_t^0\}, \]
\[I_3 = E\{(y_t - x_t^T \theta_1)(I\{x_t^T \theta_2^0 > y_t > x_t^T \theta_1\} - I\{x_t^T \theta_2^0 < y_t < x_t^T \theta_1\})R_t(1 - R_t^0)\}, \]
\[I_4 = E\{(y_t - x_t^T \theta_2)(I\{x_t^T \theta_1^0 > y_t > x_t^T \theta_2\} - I\{x_t^T \theta_1^0 < y_t < x_t^T \theta_2\})R_t^0(1 - R_t)\}, \]
\[I_5 = E\{(y_t - x_t^T \theta_2)(I\{x_t^T \theta_2^0 > y_t > x_t^T \theta_2\} - I\{x_t^T \theta_2^0 < y_t < x_t^T \theta_2\})(1 - R_t^0)(1 - R_t)\}. \]

It can be shown that \(I_1, I_2, I_3, I_4 \) and \(I_5 \) are all nonnegative, and thus
\[E\{\rho_r[y_t - M_t(\lambda)]\} \geq E\{\rho_r[y_t - M_t(\lambda^0)]\}. \] Furthermore, the above equality holds only when these nonnegative terms are all equal to zero.

From the equality
\[E\{(y_t - x_t^T \theta_1)(I\{x_t^T \theta_1^0 > y_t > x_t^T \theta_1\} - I\{x_t^T \theta_1^0 < y_t < x_t^T \theta_1\})R_tR_t^0\} = 0, \]
we have
\[E\{(y_t - x_t^T \theta_1)I\{x_t^T \theta_1^0 > y_t > x_t^T \theta_1\}R_tR_t^0\} = 0, \tag{A.3} \]
and
\[E\{(y_t - x_t^T \theta_1)I\{x_t^T \theta_1^0 < y_t < x_t^T \theta_1\}R_tR_t^0\} = 0. \tag{A.4} \]

Thus (A.3) implies that
\[P\{I\{x_t^T \theta_1^0 > y_t > x_t^T \theta_1\} = 0\} \geq P\{R_tR_t^0 = 1\} \geq P\{y_{t-d} \leq r_L, y_{t-d^0} \leq r_L^0\} > 0. \]
We then have

\[P\{0 > y_t - x_t^T\theta_0 > x_t^T(\theta_1 - \theta_0)\} = P\{x_t^T\theta_0 > y_t > x_t^T\theta_1\} = 0. \]

By Assumption 4, we can obtain that \(x_t^T(\theta_1 - \theta_0) \geq 0\) almost surely. On the other hand, by (A.4), we can obtain that \(x_t^T(\theta_1 - \theta_0) \leq 0\) almost surely. Thus we have \(\theta_1 = \theta_0^0\).

Similarly, we can obtain that \(\theta_2 = \theta_0^2\) from the equality

\[E\{(y_t - x_t^T\theta_2)(I\{x_t^T\theta_0 > y_t > x_t^T\theta_2\} - I\{x_t^T\theta_0 < y_t < x_t^T\theta_2\})(1 - R_0^0)(1 - R_t)\} = 0. \]

Based on the following two inequalities

\[E\{(y_t - x_t^T\theta_1)(I\{x_t^T\theta_0 > y_t > x_t^T\theta_1\} - I\{x_t^T\theta_0 < y_t < x_t^T\theta_1\})R_t(1 - R_0^0)\} = 0, \]

and

\[E\{(y_t - x_t^T\theta_2)(I\{x_t^T\theta_0 > y_t > x_t^T\theta_2\} - I\{x_t^T\theta_0 < y_t < x_t^T\theta_2\})R_0^0(1 - R_t)\} = 0. \]

As \(\theta_0^1 \neq \theta_0^2\), we have \(E\{(1 - R_t)R_0^0\} = 0\) and \(E\{(1 - R_0^0)R_t\} = 0\), respectively.

As in Li et al. (2015a), we have \(r_L = r_L^0, r_U = r_U^0\), and \(d = d^0\). Thus, Claim (b) holds.
To complete the proof, it is sufficient to verify Claim (c). We denote
\[
\tilde{\lambda} = (\tilde{\theta}_1^T, \tilde{\theta}_2^T, \tilde{r}_L, \tilde{r}_U, d)^T \in \delta_\lambda(\eta) \text{ with } 0 < \eta < 1.
\]

\[
\rho_t[y_t - M_t(\tilde{\lambda})] - \rho_t[y_t - M_t(\lambda)]
\]
\[
= [\rho_t(y_t - x_t^T \tilde{\theta}_1) - \rho_t(y_t - x_t^T \theta_1)]R_t(\tilde{r}_L, \tilde{r}_U, d)R_t(r_L, r_U, d)
\]
\[
+ [\rho_t(y_t - x_t^T \tilde{\theta}_2) - \rho_t(y_t - x_t^T \theta_2)][1 - R_t(\tilde{r}_L, \tilde{r}_U, d)]R_t(r_L, r_U, d)
\]
\[
+ [\rho_t(y_t - x_t^T \tilde{\theta}_1) - \rho_t(y_t - x_t^T \theta_2)]R_t(\tilde{r}_L, \tilde{r}_U, d)[1 - R_t(r_L, r_U, d)]
\]
\[
+ [\rho_t(y_t - x_t^T \tilde{\theta}_2) - \rho_t(y_t - x_t^T \theta_2)][1 - R_t(\tilde{r}_L, \tilde{r}_U, d)][1 - R_t(r_L, r_U, d)].
\]

Note that
\[
[\rho_t(y_t - x_t^T \tilde{\theta}_1) - \rho_t(y_t - x_t^T \theta_1)]R_t(\tilde{r}_L, \tilde{r}_U, d)R_t(r_L, r_U, d)
\]
\[
= \left\{ - x_t^T (\tilde{\theta}_1 - \theta_1) \psi_t(y_t - x_t^T \theta_1) + \int_0^{x_t^T (\tilde{\theta}_1 - \theta_1)} [I \{y_t - x_t^T \theta_1 \leq s\} \right.
\]
\[
- I \{y_t - x_t^T \theta_1 > 0\}] ds \right\} \times R_t(\tilde{r}_L, \tilde{r}_U, d)R_t(r_L, r_U, d)
\]
\[
\leq 3\eta \|x_t\|.
\]

In the same way,
\[
[\rho_t(y_t - x_t^T \tilde{\theta}_2) - \rho_t(y_t - x_t^T \theta_2)][1 - R_t(\tilde{r}_L, \tilde{r}_U, d)][1 - R_t(r_L, r_U, d)] \leq 3\eta \|x_t\|.
\]

On the other hand, it is easy to obtain that
\[
|[1 - R_t(\tilde{r}_L, \tilde{r}_U, d)]R_t(r_L, r_U, d)| \leq |R_t(\tilde{r}_L, \tilde{r}_U, d) - R_t(r_L, r_U, d)|,
\]
and
\[
|[1 - R_t(r_L, r_U, d)]R_t(\tilde{r}_L, \tilde{r}_U, d)| \leq |R_t(\tilde{r}_L, \tilde{r}_U, d) - R_t(r_L, r_U, d)|.
\]
Moreover,\[[\rho_r(y_t - x^T_t \hat{\theta}_1) - \rho_r(y_t - x^T_t \theta_2)]R_t(\tilde{r}_L, \tilde{r}_U, d)[1 - R_t(r_L, r_U, d)] \]
\[= [\rho_r(y_t - x^T_t \bar{\theta}_1) - \rho_r(y_t - x^T_t \theta_1)]R_t(\tilde{r}_L, \tilde{r}_U, d)[1 - R_t(r_L, r_U, d)] \]
\[+ [\rho_r(y_t - x^T_t \theta_1) - \rho_r(y_t - x^T_t \theta_2)]R_t(\tilde{r}_L, \tilde{r}_U, d)[1 - R_t(r_L, r_U, d)] \]
\[\leq 3\eta \|x_t\| + [\rho_r(y_t - x^T_t \theta_1) + \rho_r(y_t - x^T_t \theta_2)]R_t(\tilde{r}_L, \tilde{r}_U, d) - R_t(r_L, r_U, d). \]

In a similar way, we obtain that
\[[\rho_r(y_t - x^T_t \bar{\theta}_1) - \rho_r(y_t - x^T_t \theta_2)]R_t(\tilde{r}_L, \tilde{r}_U, d)[1 - R_t(r_L, r_U, d)] \]
\[\leq 3\eta \|x_t\| + [\rho_r(y_t - x^T_t \theta_1) + \rho_r(y_t - x^T_t \theta_2)]R_t(\tilde{r}_L, \tilde{r}_U, d) - R_t(r_L, r_U, d). \]

Denote $C_1 = 12\|x_t\|$ and $C_2 = 2E\{\rho_r(y_t - x^T_t \theta_1) + \rho_r(y_t - x^T_t \theta_2)\}^{1+\gamma/2}$, respectively. It is easy to show both C_1 and C_2 are finite when $E\{|y_t|^{2+\gamma}\} < \infty$. Applying Hölder’s inequality, we have
\[E\left\{ \sup_{\lambda \in \delta_\lambda(\eta)} |\rho_r[y_t - M_t(\bar{\lambda})] - \rho_r[y_t - M_t(\lambda)]| \right\} \]
\[\leq C_1 \eta + C_2 \left(E\left\{ \sup_{\lambda \in \delta_\lambda(\eta)} |R_t(r_L, r_U, d) - R_t(\tilde{r}_L, \tilde{r}_U, d)| \right\} \right)^{\gamma/(2+\gamma)}. \]

Similar to Li et al. (2015a), we have
\[E\left\{ \sup_{\lambda \in \delta_\lambda(\eta)} |R_t(r_L, r_U, d) - R_t(\tilde{r}_L, \tilde{r}_U, d)| \right\} \to 0, \quad \text{as} \quad \eta \to 0. \]

We thus finish the proof of Claim (c).

Making use of the standard argument for strong consistency in Huber (1967), based on the above three claims, it can be shown that $\hat{\lambda}_n \to \lambda_0$ almost surely. We then complete the proof of Theorem 1.
S2 Proof of Theorem 2

As Theorem 1 indicates that \(\hat{\theta}_n \) is strongly consistent, without loss of generality, we restrict the parameter space to a neighborhood of \(\theta^0 \), say,

\[
\xi(\Delta) = \{ \theta \in \Theta, a < r_L < r_U < b : |\theta - \theta^0| < \Delta, |r_L - r^0_L| < \Delta, |r_U - r^0_U| < \Delta \},
\]

for \(0 < \Delta < \min\{1, (r^0_U - r^0_L)/2\} \). First, we assume \(p = d = 1 \). And for simplicity assume \(z_L < 0, z_U > 0 \).

Similar to Chan (1991), we need to verify that \(\forall \varepsilon > 0, \exists K > 0, \]

\[
P \{ \tilde{L}_n(\theta, r^0_L + z_L, r^0_U + z_U) - \tilde{L}_n(\theta, r^0_L, r^0_U) > 0 \} > 1 - \varepsilon, \quad (A.5)
\]

where \(\theta \in \xi(\Delta), |z_L| > K/n, \) and \(|z_U| > K/n \).

Denote

\[
A_0 = \{ r^0_U < y_{t-1} \leq r^0_U + z_U, R_{t-1} = 1 \}, \quad B_0 = \{ r^0_L + z_L < y_{t-1} \leq r^0_L, R_{t-1} = 0 \},
\]

\[
A_{jt} = \{ y_{t-1}, \ldots, y_{t-j} \in (r^0_L, r^0_U), r^0_U < y_{t-j-1} \leq r^0_U + z_U, R_{t-j-1} = 1 \} \quad \text{for } j \geq 1,
\]

and

\[
B_{jt} = \{ y_{t-1}, \ldots, y_{t-j} \in (r^0_L, r^0_U), r^0_U + z_L < y_{t-j-1} \leq r^0_L, R_{t-j-1} = 0 \} \quad \text{for } j \geq 1,
\]

where \(R_t = R_t(r^0_L + z_L, r^0_U + z_U) \). As Li et al. (2015a), we have

\[
R_t(r^0_L + z_L, r^0_U + z_U) - R_t(r^0_L, r^0_U) = I \{ A_t(z_L, z_U) \} - I \{ B_t(z_L, z_U) \},
\]

where \(A_t(z_L, z_U) = \bigcup_{j=1}^{\infty} A_{jt} \), and \(B_t(z_L, z_U) = \bigcup_{j=1}^{\infty} B_{jt} \). Moreover, it can be shown that \(B_t(z_L, z_U) \subset \{ B_t(r^0_L, r^0_U) = 1 \} \) and \(A_t(z_L, z_U) \subset \{ A_t(r^0_L, r^0_U) = 1 \} \).
S2. PROOF OF THEOREM 2

0}. Then,

\[\tilde{L}_n(\theta, r_{L}^0 + z_L, r_{U}^0 + z_U) - \tilde{L}_n(\theta, r_{L}^0, r_{U}^0) = \sum_{t=1}^{n} [\rho(y_t - x^T \theta_1) - \rho(y_t - x^T \theta_2)] [R_t(r_{L}^0 + z_L, r_{U}^0 + z_U) - R_t(r_{L}^0, r_{U}^0)] \]

= \sum_{t=1}^{n} [\rho(y_t - x^T \theta_1) - \rho(y_t - x^T \theta_2)] [I \{ A_t(z_L, z_U) \} - I \{ B_t(z_L, z_U) \}] \]

= \tilde{L}_n^1(z_L, z_U) + \tilde{L}_n^2(z_L, z_U),

where

\[\tilde{L}_n^1(z_L, z_U) = \sum_{t=1}^{n} [\rho(y_t - x^T \theta_1) - \rho(y_t - x^T \theta_2)] I \{ A_t(z_L, z_U) \}, \]

and

\[\tilde{L}_n^2(z_L, z_U) = \sum_{t=1}^{n} [\rho(y_t - x^T \theta_2) - \rho(y_t - x^T \theta_1)] I \{ B_t(z_L, z_U) \}. \]

Next, we show that \(\forall \varepsilon > 0, \exists K > 0 \), such that

\[P \{ \tilde{L}_n^1(z_L, z_U) > 0 \} > 1 - \varepsilon, \]

when \(\theta \in \xi(\Delta), -\Delta < z_L < 0 \), and \(K/n < z_U < \Delta \). Then

\[\tilde{L}_n^1(z_L, z_U) = \sum_{t=1}^{n} \{ \rho(y_t - x^T \theta_1) - \rho(y_t - x^T \theta_2) \} I \{ A_t(z_L, z_U) \} \]

= \sum_{t=1}^{n} \{ -x_i^T (\theta_1 - \theta_2) \psi_\tau(y_t - x_i^T \theta_2) \} I \{ A_t(z_L, z_U) \} \]

+ \sum_{t=1}^{n} \{ (y_t - x_i^T \theta_1)(I \{ x_i^T \theta_2 > y_t > x_i^T \theta_1 \}) \]

- I \{ x_i^T \theta_2 < y_t < x_i^T \theta_1 \} \} I \{ A_t(z_L, z_U) \}. \]
By Assumption 4, when Δ is sufficiently small, for some $\nu_1 > 0$,

$$
\sum_{t=1}^{n} \{(y_t - x_t^T \theta_1)(I\{x_t^T \theta_2 > y_t > x_t^T \theta_1\} - I\{x_t^T \theta_2 < y_t < x_t^T \theta_1\})\} I\{A_t(z_L, z_U)\} \\
\geq \nu_1 \sum_{t=1}^{n} I\{A_t(z_L, z_U)\}.
$$

As $P\{y_t - x_t^T \theta_2^0 < 0\} = \tau$, we have for some constant $\nu_2 > 0$,

$$
I\{y_t - x_t^T \theta_2 < 0\} = I\{y_t - x_t^T \theta_2^0 + x_t^T (\theta_2^0 - \theta_2) < 0\} \\
= I\{y_t - x_t^T \theta_2^0 < 0\} + I\{0 < y_t - x_t^T \theta_2^0 < -x_t^T (\theta_2^0 - \theta_2)\} \\
= I\{y_t - x_t^T \theta_2^0 < 0\} + I\{x_t^T \theta_2^0 < y_t < x_t^T \theta_2\}.
$$

Furthermore,

$$
\sum_{t=1}^{n} \{-x_t^T (\theta_1 - \theta_2) \psi_r(y_t - x_t^T \theta_2)\} I\{A_t(z_L, z_U)\} \\
\leq \nu_2 \left\{ \sum_{t=1}^{n} \psi_r(y_t - x_t^T \theta_2^0) I\{A_t(z_L, z_U)\} + \sum_{t=1}^{n} y_t \psi_r(y_t - x_t^T \theta_2^0) I\{A_t(z_L, z_U)\} \right\} \\
+ \nu_2 \left\{ \sum_{t=1}^{n} I\{x_t^T \theta_2^0 < y_t < x_t^T \theta_2\} I\{A_t(z_L, z_U)\} \\
+ \sum_{t=1}^{n} y_t - 1 I\{x_t^T \theta_2^0 < y_t < x_t^T \theta_2\} I\{A_t(z_L, z_U)\} \right\}.
$$
Denote

\[T_{z_L}(z_U) = E\{ I\{ A_t(z_L, z_U) \} \}, \quad T_{n,z_L}(z_U) = \frac{1}{n} \sum_{t=1}^{n} I\{ A_t(z_L, z_U) \}, \]

\[V_{z_L}(z_U) = E\{ y_{t-1}\psi_t(y_t - x_t^T\theta_2^0) I\{ A_t(z_L, z_U) \} \}, \]

\[V_{n,z_L}(z_U) = \frac{1}{n} \sum_{t=1}^{n} y_{t-1}\psi_t(y_t - x_t^T\theta_2^0) I\{ A_t(z_L, z_U) \}, \]

\[\widetilde{V}_{n,z_L}(z_1, z_2) = \frac{1}{n} \sum_{t=1}^{n} |y_{t-1}\psi_t(y_t - x_t^T\theta_2^0)| I\{ A_t(z_L, z_2) \cap A_t^c(z_L, z_1) \}, \]

\[\widetilde{V}_{z_L}(z_1, z_2) = E\{ |y_{t-1}\psi_t(y_t - x_t^T\theta_2^0)| I\{ A_t(z_L, z_2) \cap A_t^c(z_L, z_1) \} \}, \]

where \(\theta \in \xi(\Delta), -\Delta < z_L < 0, K/n < z_U < \Delta, \) and \(z_1 < z_2, A_t^c(z_L, z_1) \) is the complement set of \(A_t(z_L, z_1) \). There thus exists \(0 < m < M \) and \(H > 0 \) such that

\[m z_U \leq T_{z_L}(z_U) \leq M z_U, \quad \text{Var}\{ I\{ A_t(z_L, z_U) \} \} \leq H T_{z_L}(z_U), \]

\[E\{ |y_{t-1}\psi_t(y_t - x_t^T\theta_2^0)| I\{ A_t(z_L, z_2) \cap A_t^c(z_L, z_1) \} \} \leq H\{ T_{z_L}(z_2) - T_{z_L}(z_1) \}, \]

and

\[\text{Var}\{ |y_{t-1}\psi_t(y_t - x_t^T\theta_2^0)| I\{ A_t(z_L, z_2) \cap A_t^c(z_L, z_1) \} \} \leq H\{ T_{z_L}(z_2) - T_{z_L}(z_1) \}, \]

\[\widetilde{V}_{z_L}(z_1, z_2) \leq H\{ T_{z_L}(z_2) - T_{z_L}(z_1) \}. \]

By Assumption 3, we have

\[\text{Var}\{ n T_{n,z_L}(z_U) \} \leq n H T_{z_L}(z_U), \quad \text{and} \quad \text{Var}\{ n V_{n,z_L}(z_U) \} \leq n H T_{z_L}(z_U), \]

and

\[\text{Var}\{ n \widetilde{V}_{n,z_L}(z_1, z_2) \} \leq n H\{ T_{z_L}(z_2) - T_{z_L}(z_1) \}. \]
Moreover, we can obtain that, for any \(\varepsilon > 0 \), any \(\eta > 0 \) and all \(n \),

\[
P\left\{ \sup_{K/n \leq z_U < \Delta, -\Delta \leq z_L \leq 0} \left| \frac{1}{nT_{z_L}(z_U)} \sum_{t=1}^{n} I\{A_t(z_L, z_U)\} - 1 \right| < \eta \right\} > 1 - \varepsilon,
\]

and

\[
P\left\{ \sup_{K/n \leq z_U < \Delta, -\Delta \leq z_L \leq 0} \left| \frac{1}{nT_{z_L}(z_U)} \sum_{t=1}^{n} \psi_\tau(y_t - x_t^T \theta_2)I\{A_t(z_L, z_U)\} \right| < \eta \right\} > 1 - \varepsilon.
\]

By Assumption 4, we also have

\[
P\left\{ \sup_{K/n \leq z_U < \Delta, -\Delta \leq z_L \leq 0} \left| \frac{1}{nT_{z_L}(z_U)} \sum_{t=1}^{n} y_{t-1}(y_t - x_t^T \theta_2)I\{A_t(z_L, z_U)\} \right| < \eta \right\} > 1 - \varepsilon,
\]

and

\[
P\left\{ \sup_{K/n \leq z_U < \Delta, -\Delta \leq z_L \leq 0} \left| \frac{1}{nT_{z_L}(z_U)} \sum_{t=1}^{n} y_{t-1}(x_t^T \theta_2 < y_t < x_t^T \theta_2)I\{A_t(z_L, z_U)\} \right| < \eta \right\} > 1 - \varepsilon.
\]

Thus we show that for any \(\varepsilon > 0 \),

\[
P\{\tilde{L}_n^1(z_L, z_U) > 0\} > 1 - \varepsilon.
\]

Similarly, we obtain the result for \(\tilde{L}_n^2(z_L, z_U) \), and then that for \(\tilde{L}_n(z_L, r_L^0 + z_L, r_U^0 + z_U) - \tilde{L}_n(\theta, r_L^0, r_U^0) \). Together with Claim (a) in the proof of Theorem 1, we finish the proof of (A.5) for \(p = d = 1 \), \(z_L < 0 \) and \(z_U > 0 \). Moreover, the proof for the other cases is similar, and is hence ignored. The proof of (a) is then completed.

As the proof of Claim (b) is routine and similar to Qian (1998), we omit the details.
Next, we prove Claim (c). Denote $X_t = (x_t^T \tilde{R}_t, x_t^T (1 - \tilde{R}_t))^T$, $\hat{V}_n = \sqrt{n}(\hat{\theta} - \theta^0)$, and $u_t = y_t - X_t^T \theta^0$. We have

$$\rho_t[(y_t - x_t^T \hat{\theta}_1)\tilde{R}_t + (y_t - x_t^T \hat{\theta}_2)(1 - \tilde{R}_t)] = \rho_t[u_t - X_t^T (n^{-1/2}\hat{V})].$$

Thus we denote

$$Z_{n,\tau}(V) = \sum_{t=1}^{n} \{\rho_t[u_t - X_t^T (n^{-1/2}V)] - \rho_t(u_t)\}, \quad (A.6)$$

and can obtain that if \hat{V}_n is a minimizer of $Z_{n,\tau}(V)$, then $\hat{V}_n = \sqrt{n}(\hat{\theta}_n - \theta^0)$.

By Knight’s identity (Knight, 1998),

$$\rho_t(u - v) - \rho_t(u) = -v\psi_t(u) + \int_0^v \{I\{u \leq s\} - I\{u < 0\}\}ds,$$

we rewrite (A.6) as

$$Z_{n,\tau}(V) = \sum_{t=1}^{n} \{\rho_t[u_t - X_t^T (n^{-1/2}V)] - \rho_t(u_t)\}$$

$$= Z_{n,\tau}^{(1)}(V) + Z_{n,\tau}^{(2)}(V),$$

where

$$Z_{n,\tau}^{(1)}(V) = -\frac{1}{\sqrt{n}} \sum_{t=1}^{n} X_t^T V \psi_t(u_t),$$

and

$$Z_{n,\tau}^{(2)}(V) = \sum_{t=1}^{n} \int_0^1 \left\{I\{u_t \leq s\} - I\{u_t < 0\}\right\} ds.$$
Note that
\[
\psi_\tau(u_{t\tau}) = \tau - I\{ (y_t - x_t^T \theta_0^0) \tilde{R}_t + (y_t - x_t^T \theta_2^0) (1 - \tilde{R}_t) < 0 \} \\
= \tau - I\{ [y_t - F_t^{-1}(\tau)] \tilde{R}_t + [y_t - F_t^{-1}(\tau)] (1 - \tilde{R}_t) < 0 \} \\
= \tau - I\{ y_t - F_t^{-1}(\tau) < 0 \} \\
= \psi_\tau[y_t - F_t^{-1}(\tau)],
\]
and
\[
X_tX_t^T = \left(\begin{array}{cccc}
 x_t^T \tilde{R}_t & x_t^T \tilde{R}_t (1 - \tilde{R}_t) \\
 x_t (1 - \tilde{R}_t) & x_t (1 - \tilde{R}_t) \end{array} \right)
= \left(\begin{array}{cccc}
 x_t x_t^T \tilde{R}_t^2 & x_t x_t^T \tilde{R}_t (1 - \tilde{R}_t) \\
 x_t x_t^T \tilde{R}_t (1 - \tilde{R}_t) & x_t x_t^T (1 - \tilde{R}_t)^2 \\
 \end{array} \right)
= \text{diag}[x_t x_t^T \tilde{R}_t, \ x_t x_t^T (1 - \tilde{R}_t)].
\]

Then using the martingale central limit theorem, we have
\[
\frac{1}{\sqrt{n}} \sum_{t=1}^n X_t^T \psi_\tau[y_t - F_t^{-1}(\tau)] \overset{d}{\longrightarrow} W,
\]
where \(W\) is a \(2(p + 1)\)-dimensional vector normal variate with covariance matrix \(\tau(1 - \tau)\Omega_0\). On the other hand,
\[
E\{Z_{n,\tau}^{(2)}(V)|\mathcal{F}_t\} = \sum_{t=1}^n \int_0^{\frac{1}{\sqrt{n}} X_t^T V} \frac{F_t[s + F_t^{-1}(\tau)] - F_t[F_t^{-1}(\tau)]}{s} s ds \\
= \sum_{t=1}^n \int_0^{\frac{1}{\sqrt{n}} X_t^T V} f_t[F_t^{-1}(\tau)] s ds + o_p(1) \\
= \frac{1}{2n} \sum_{t=1}^n f_t[F_t^{-1}(\tau)] V^T X_t X_t V + o_p(1),
\]
and thus

\[E\{Z_{n,\tau}^{(2)}(V)|\mathcal{F}_{t-1}\} \xrightarrow{d} \frac{1}{2}V^T\Omega_1V. \]

We have

\[
Z_{n,\tau}(V) = \sum_{t=1}^{n}\{\rho_{\tau}(u_{t\tau} - X^T_t(n^{-1/2}V)) - \rho_{\tau}(u_{t\tau})\} \\
= Z_{n,\tau}^{(1)}(V) + Z_{n,\tau}^{(2)}(V) \\
\Rightarrow \frac{1}{2}V^T\Omega_1V - V^TW = Z_\tau(V),
\]

where " \Rightarrow " denotes the weak convergence. Knight (1998) and Pollard (1991) have shown that if the finite dimensional distributions of \(Z_n(\cdot) \) converge weakly to \(Z(\cdot) \) and \(Z(\cdot) \) has a unique minimum, then the convexity of \(Z_n(\cdot) \) implies that \(\hat{\lambda}_n \) converges in distribution to the minimizer of \(Z(\cdot) \).

Thus by the lemma A of Knight (1989), we have

\[
\sqrt{n}(\hat{\theta}_n - \theta^0) \xrightarrow{d} \tau(1 - \tau)\Omega^{-1}_1\Omega_0\Omega^{-1}_1.
\]

This finishes the proof of Theorem 2.
S3 Proof of Theorem 3

Note that \(u_{\tau \tau} = y_t - \theta^T X_t \), arguing as in the proof of Theorem 5 of Li et al. (2015b), for any \(v \in \mathbb{R}^{2p+2} \), we have

\[
L^*(v) = \sum_{t=1}^{n} \omega_t \rho_\tau(y_t - (\theta + n^{-1/2} v)^T X_t) - \sum_{t=1}^{n} \omega_t \rho_\tau(y_t - \theta^T X_t)
\]

\[
= -v^T \cdot \frac{1}{\sqrt{n}} \sum_{t=1}^{n} \omega_t \psi_\tau(u_{\tau \tau})X_t + \sum_{t=1}^{n} \omega_t \int_0^{n^{-1/2} v^T X_t} I(u_{\tau \tau} \leq s) - I(e_{\tau \tau} < 0) ds
\]

\[
= -v^T \cdot \frac{1}{\sqrt{n}} \sum_{t=1}^{n} \omega_t \psi_\tau(e_{\tau \tau})X_t + \frac{1}{2} v^T \Omega_1^* v + o_p^*(1),
\]

where \(\Omega_1^* = \frac{1}{n} \sum_{t=1}^{n} \omega_t f_t[F_t^{-1}(\tau)] X_t^T X_t = \Omega_1 + o_p^*(1) \), and the notation \(o_p^*(1) \) is referred to the bootstrapped probability space. Moreover, \(L^*(v) \) is a convex function with respect to \(v \), thus we have the following Bahadur representation

\[
\sqrt{n}(\hat{\theta}^* - \theta) = \Omega_1^{-1} \frac{1}{\sqrt{n}} \sum_{t=1}^{n} \omega_t \psi_\tau(u_{\tau \tau})X_t + o_p^*(1).
\] \hspace{1cm} (A.7)

On the other hand, by the proof of Claim (c), we have

\[
\sqrt{n}(\hat{\theta} - \theta) = \Omega_1^{-1} \frac{1}{\sqrt{n}} \sum_{t=1}^{n} \psi_\tau(u_{\tau \tau})X_t + o_p(1).
\] \hspace{1cm} (A.8)

(A.7) and (A.8) imply that

\[
\sqrt{n}(\hat{\theta}^* - \hat{\theta}) = \Omega_1^{-1} \frac{1}{\sqrt{n}} \sum_{t=1}^{n} (\omega_t - 1) \psi_\tau(u_{\tau \tau})X_t + o_p^*(1).
\] \hspace{1cm} (A.9)

Similar to the proof of Theorem 5 of Li et al. (2015b), we have the left-hand-side of the (A.9) is tight. Subsequently, we complete the proof of Theorem
By Theorems 1 and 2, \hat{d} is consistent with integer value, and the estimators of \hat{r}_L and \hat{r}_U are super-consistent. Therefore, we can assume that the true values of (r^0_L, r^0_U, d^0) are known in advance. As the regime indicator R^0_t only depends on (r^0_L, r^0_U, d^0), R^0_t is known as well. For each $0 \leq p \leq p_{\text{max}}$, let

$$\theta^0_{1,(p)} = \arg\min E\{\rho_{\tau}[(y_t - x^T_{t,p} \theta_{1,(p)}) R^0_t]\},$$

and

$$\theta^0_{2,(p)} = \arg\min E\{\rho_{\tau}[(y_t - x^T_{t,p} \theta_{2,(p)})(1 - R^0_t)]\},$$

where notation $(_{(p)} \rangle$ indicates the dependence on p. Furthermore, let

$$\hat{\sigma}_{1,(p)} = \frac{1}{n_1} \sum_{t=1}^{n} \rho_{\tau}\{(y_t - x^T_{t,p} \hat{\theta}_{1,(p)}) R^0_t\} \text{ and } \hat{\sigma}_{2,(p)} = \frac{1}{n_2} \sum_{t=1}^{n} \rho_{\tau}\{(y_t - x^T_{t,p} \hat{\theta}_{2,(p)})(1 - R^0_t)\}$$

with

$$\hat{\theta}_{1,(p)} = \arg\min \sum_{t=1}^{n} \rho_{\tau}\{(y_t - x^T_{t,p} \theta_{1,(p)}) R^0_t\},$$

and

$$\hat{\theta}_{2,(p)} = \arg\min \sum_{t=1}^{n} \rho_{\tau}\{(y_t - x^T_{t,p} \theta_{2,(p)})(1 - R^0_t)\}.$$
and for any p,

$$\hat{\sigma}_{1,(p)} = \sigma_{1,(p)}^0 + o_p(1) \quad \text{and} \quad \hat{\sigma}_{2,(p)} = \sigma_{2,(p)}^0 + o_p(1).$$

Furthermore, we have

$$\sigma_{1,0}^0 \geq \sigma_{1,1}^0 \geq \ldots \geq \sigma_{1,(p_0)}^0 = \sigma_{1,(p_0+1)}^0 = \ldots = \sigma_{1,(p_{\max})}^0$$

and

$$\sigma_{2,0}^0 \geq \sigma_{2,1}^0 \geq \ldots \geq \sigma_{2,(p_0)}^0 = \sigma_{2,(p_0+1)}^0 = \ldots = \sigma_{2,(p_{\max})}^0.$$

When $p < p_0$, we have

$$\text{BIC}(p) - \text{BIC}(p_0) = 2n_1 \ln(\hat{\sigma}_{1,(p)}/\hat{\sigma}_{1,(p_0)}) + 2n_2 \ln(\hat{\sigma}_{2,(p)}/\hat{\sigma}_{2,(p_0)}) + (p - p_0) \ln(n_1n_2).$$

Therefore, we have $\sigma_{1,(p_0-1)}^0 > \sigma_{1,(p_0)}^0$ when $|\theta_{1,p_0}^0| \neq 0$, and $\sigma_{2,(p_0-1)}^0 > \sigma_{2,(p_0)}^0$ when $|\theta_{2,p_0}^0| \neq 0$. Denote $C = \ln[\sigma_{1,(p)}/\sigma_{1,(p_0)}]P(R_t^0 = 1) + \ln[\sigma_{2,(p)}/\sigma_{2,(p_0)}]P(R_t^0 = 0) > 0$. Then

$$\text{BIC}(p) - \text{BIC}(p_0) = Cn + o_p(n). \quad \text{(A.10)}$$

When $p > p_0$, it is easy to obtain that $n_1 \hat{\sigma}_{1,(p)}/\hat{\sigma}_{1,(p_0)} = O_p(1)$. Thus $n_1 \ln(\hat{\sigma}_{1,(p)}/\hat{\sigma}_{1,(p_0)}) = O_p(1)$. In the same way, we have $n_2 \ln(\hat{\sigma}_{2,(p)}/\hat{\sigma}_{2,(p_0)}) = O_p(1)$. Then by $n_1 = nP\{R_t^0 = 1\}$ and $n_2 = nP\{R_t^0 = 0\}$, with $p > p_0$ we
have

\[\text{BIC}(p) - \text{BIC}(p_0) = 2n_1 \ln(\hat{\sigma}_{1,(p)}/\hat{\sigma}_{1,(p_0)}) + 2n_2 \ln[\hat{\sigma}_{2,(p)}/\hat{\sigma}_{2,(p_0)}] + (p - p_0) \ln(n_1n_2) \]

\[= (p - p_0) \ln(n_1n_2) + O_p(1) \]

\[= 2(p - p_0) \ln(n) + (p - p_0) \ln[P(R^0_t = 1)P(R^0_t = 0)] + O_p(1). \]

Together with (A.10), we have \(\text{BIC}(p) - \text{BIC}(p_0) > 0 \) when \(p \neq p_0 \). We complete the proof of Theorem 4.

References

Knight, K. (1998). Limiting distributions for \(l_1 \) regression estimators under general conditions.

