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Supplementary Material

This supplementary material contains: (i) the optimization algorithm for the edge-out model

(section S1); (ii) proofs for Theorem 4.5 and 4.9 in the main manuscript (section S2); (iii)

comparisons between hubNet and other popular methods (section S3); (iv) comparisons between

the edge-out model and hglasso (section S4).

S1 Optimization for the edge-out model

We consider the objective function (2.7). The diagonal elements of B are

fixed at zero. Let X.,i and X.,−i denote the ith column of X and X with ith

column removed, and let B−i,−i denote B with ith row and column both

removed. Let S(x, t) = sign(x)(|x| − t)+ be the soft-thresholding operator.
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We use the following blockwise coordinate descent algorithm similar to

that of Peng et al. (2010):

1. Initialize B = 0.

2. Iterate over i ∈ {1, 2, . . . , p} until convergence:

(a) Compute the 1× (p− 1) vector ri,−i = XT
.,i(X.,−i −X.,−iB−i,−i).

(b) Compute the elementwise soft-thresholded vector βi,−i = S(ri,−i, θγ).

(c) Update the ith row of B:

Bi,−i =


0 ‖βi,−i‖2‖X.,i‖22 ≤ θ(1− γ)

√
p− 1

(1− θ(1−γ)
√
p−1

‖βi.−i‖2‖X.,i‖22
)βi,−i ‖βi,−i‖2‖X.,i‖22 > θ(1− γ)

√
p− 1

It can be shown that, fixing all entries of B not in row i, the above update

expression exactly minimizes the objective over Bi,−i. Then this proce-

dure is a blockwise coordinate descent algorithm, applied to an objective

whose non-differentiable component is separable across blocks, and hence

converges to the solution.
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S2 Proof of Theorems 4.5 and Theorems 4.9

Denote by XS and XSC the submatrices of X consisting of predictors in S

and SC , and define

Σ̂SS :=
1

n
XT
SXS, Σ̂SCS :=

1

n
XT
SCXS, W := XSC −XSΓ.

Note that by (2.6), W is independent of XS with independent Gaussian

entries of variance at most 1. The following lemma collects probabilistic

statements involving XS and W; its proof is deferred to Section S2.1.

Lemma 1. Suppose n, p→∞, 1 ≤ s ≤ p, and s� n. If λmin(ΣSS) ≥ Cmin

for a constant Cmin > 0, then each of the following statements holds with

probability approaching 1:

p
max
j=1
‖X.,j‖2 ≤ 2n+ 6 log p (S2.1)

s
max
j=1
‖X.,j‖2 ≤ 2n (S2.2)

‖Σ̂−1SS‖2 ≤ 2C−1min (S2.3)

‖Σ̂−1SS‖∞ ≤ ‖Σ
−1
SS‖∞ + 3(s+

√
s log n)/(Cmin

√
n)

(S2.4)

‖Σ̂−1SSXT
SW‖∞,2 ≤

√
4np/Cmin (S2.5)

‖WTXSΣ̂−1SS‖∞,2 ≤
√

4n(s+ 3 log p)/Cmin (S2.6)

‖WT (Ids×s − 1
n
XSΣ̂−1SSXT

S )W‖∞,2 ≤ 2n+
√

3np+
√

6p log p. (S2.7)
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Proof of Theorem 4.5

Our proof draws upon a similar analysis of support recovery in the mul-

tivariate regression setting by Obozinski et al. (2011). Let us introduce

θn = θ
√
p− 1/n and write the edge-out estimate (in the case γ = 0) as

B̂eo = arg min
B∈Rp×p:Bii=0 ∀i

1

2n
‖X−XB‖2F + θn

p∑
i=1

‖Bi,.‖2. (S2.8)

Consider the restricted problem over B ∈ Rs×p where each predictor is

regressed only on XS:

B̂restricted = arg min
B∈Rs×p:Bii=0∀i

1

2n
‖X−XSB‖2F + θn

∑
i∈S

‖Bi,.‖2. (S2.9)

The subgradient conditions for optimality of B̂eo and B̂restricted imply the

following sufficient condition for recovery of S, whose proof we defer to

Section S2.1:

Lemma 2. If XT
SXS is invertible, then the solution B̂ := B̂restricted to (S2.9)

is unique. If furthermore this solution satisfies

max
j∈Sc

1

n
‖XT
·,j(X−XSB̂)‖2 < θn, (S2.10)

min
i∈S
‖B̂i,.‖2 > 0, (S2.11)

then the solution B̂eo to (S2.8) is unique, with the first s rows non-zero and

equal to B̂ and remaining rows equal to 0.
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Through the remainder of this section, let B̂ := B̂restricted ∈ Rs×p be

the solution to the restricted problem (S2.9). As s � n and ΣSS is non-

singular, XT
SXS is invertible with probability 1. Hence, to prove Theorem

4.5, it suffices to show that (S2.10) and (S2.11) hold with high probability.

Define

U :=

(
Ids×s

1
n
Σ̂−1SSXT

SW

)
∈ Rs×p,

B∗ :=

(
0s×s Γ

)
∈ Rs×p,

D̂ := diag
(
‖B̂1,.‖−12 , ..., ‖B̂s,.‖−12

)
∈ Rs×s,

∆ ∈ Rs×p, ∆ij :=


XT
.,j(X.,j −XSB̂.,j) i = j

0 otherwise,

Z :=

Z ∈ [−1, 1]s×p :
Zi,. = D̂i,iB̂i,. if ‖B̂i,.‖2 > 0

Zi,i = 0 and ‖Zi,.‖2 ≤ 1 if ‖B̂i,.‖2 = 0


The subgradient condition for optimality of B̂ for (S2.9) implies the follow-

ing, whose proof we also defer to Section S2.1.

Lemma 3. There exists Z ∈ Z such that

B̂−B∗ = U− θnΣ̂−1SSZ− 1
n
Σ̂−1SS∆.

Using these lemmas, we now verify conditions (S2.10) and (S2.11):
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Lemma 4. Suppose Assumptions 4.1, 4.3, and 4.4 hold, and θn satisfies

(4.10). Then with probability approaching 1, (S2.11) holds and

‖B̂−B∗‖∞,2 ≤ 2θn‖Σ−1SS‖∞.

Proof:

By Lemma 3, for some Z ∈ Z,

‖B̂−B∗‖∞,2 ≤ ‖U‖∞,2 + θn‖Σ̂−1SSZ‖∞,2 + 1
n
‖Σ̂−1SS∆‖∞,2.

For the first term, (S2.5) and the definition of U imply, with probability

approaching 1,

‖U‖∞,2 ≤ 1 +
√

4p/(Cminn).

For the second term, (S2.4) and the observation ‖Z‖∞,2 ≤ 1 imply, with

probability approaching 1,

‖Σ̂−1SSZ‖∞,2 ≤ ‖Σ̂−1SS‖∞‖Z‖∞,2 ≤ ‖Σ̂
−1
SS‖∞ ≤ ‖Σ

−1
SS‖+3(s+

√
s log n)/(Cmin

√
n).

For the third term, note that for all j = 1, . . . , p,

|∆jj| ≤ ‖X.,j‖2, (S2.12)

for otherwise

‖X.,j −XSB̂.,j‖22 − ‖X.,j‖2 = (2X.,j −XSB̂.,j)
T (−XSB̂.,j) > 0,

implying that the objective (S2.9) would decrease upon setting B̂.,j = 0 and

contradicting optimality of B̂. Then, as ∆ is diagonal, (S2.2) and (S2.3)

6
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imply, with probability approaching 1,

‖Σ̂−1SS∆‖∞,2 ≤ ‖Σ̂−1SS‖∞,2
s

max
j=1
|∆jj| ≤ ‖Σ̂−1SS‖2

s
max
j=1
‖X.,j‖22 ≤ 4n/Cmin.

Noting that ‖Σ−1SS‖∞ ≥ ‖Σ
−1
SS‖2 = 1/λmin(ΣSS) ≥ 1 by our normalization

Σjj = 1 for all j, we have under the given assumptions

max(1,
√
p/n, θns/

√
n, θn

√
s/n log n,� θn‖Σ−1SS‖∞ � Γmin.

Then with probability approaching 1, ‖B̂−B∗‖∞,2 ≤ 2θn‖Σ−1SS‖∞ and

min
i
‖B̂i,.‖2 ≥ min

i
‖B∗i,.‖2 − 2θn‖Σ−1SS‖∞ = Γmin − 2θn‖Σ−1SS‖∞ > 0.

�

Lemma 5. Suppose Assumptions 4.1, 4.2, 4.3, and 4.4 hold, and θn satis-

fies (4.10). Then (S2.10) holds with probability approaching 1.

Proof: By Lemma 4, it suffices to consider the event where ‖B̂i,.‖2 > 0

for all i ∈ S, and hence Z = D̂B̂ in Lemma 3. On this event, writing

X = (XS,XSΓ + W) = (XS,W) + XSB∗ and applying Lemma 3,

1

n
‖XT

SC (X−XSB̂)‖∞,2 =
1

n
‖XT

SC (XS,W) + XT
SCXS(B∗ − B̂)‖∞,2

≤ 1

n
‖XT

SC (XS,W)−XT
SCXSU‖∞,2 + θn‖Σ̂SCSΣ̂−1SSD̂B̂‖∞,2 +

1

n
‖Σ̂SCSΣ̂−1SS∆‖∞,2.

(S2.13)

For the first term of (S2.13), recalling the definition of U, noting that

XT
S (Id− 1

n
XSΣ̂−1SSXT

S ) = 0, and applying (S2.7), with probability approach-
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ing 1,

‖XT
SC (XS,W)−XT

SCXSU‖∞,2 = ‖XT
SC (Id− 1

n
XSΣ̂−1SSXT

S )W‖∞,2

= ‖WT (Id− 1
n
XSΣ̂−1SSXT

S )W‖∞,2 ≤ 2n+
√

3np+
√

6p log p� nθn.

For the third term of (S2.13), applying (S2.12), (4.11), (S2.2), and (S2.6),

with probability approaching 1,

‖Σ̂SCSΣ̂−1SS∆‖∞,2 ≤ ‖Σ̂SCSΣ̂−1SS‖∞,2
s

max
j=1
|∆jj| =

1

n
‖(XSΓ + W)TXSΣ̂−1SS‖∞,2

s
max
j=1
|∆jj|

≤
(
‖ΓT‖∞,2 +

1

n
‖WTXSΣ̂−1SS‖∞,2

)
s

max
j=1
‖X.,j‖22 ≤

2n√
Cmin

+

√
16n(s+ 3 log p)

Cmin

� nθn.

It remains to bound the second term of (S2.13). Let D be as in As-

sumption 4.2 and write

Σ̂SCSΣ̂−1SSD̂B̂ = ΓTDB∗ + ΓTD(B̂−B∗) + ΓT (D̂−D)B̂ + (Σ̂SCSΣ̂−1SS − ΓT )D̂B̂

=: I + II + III + IV.

By Assumption 4.2 and the definition of B∗,

‖I‖∞,2 = ‖ΓTDΓ‖∞,2 ≤ 1− δ.

By Lemma 4, with probability approaching 1,

‖II‖∞,2 ≤ ‖ΓT‖∞‖D(B̂−B∗)‖∞,2 ≤ ‖ΓT‖∞Γ−1min‖B̂−B∗‖∞,2 ≤ 2‖ΓT‖∞Γ−1minθn‖Σ−1SS‖∞ � 1.

III satisfies the same bound, as

‖III‖∞,2 ≤ ‖ΓT‖∞‖(D̂−D)B̂‖∞,2 = ‖ΓT‖∞max
i∈S

|‖B∗i,.‖2 − ‖B̂i,.‖2|
‖B∗i,.‖2

≤ ‖ΓT‖∞‖D(B̂−B∗)‖∞,2.
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Finally, using XSC = XSΓ + W and applying (S2.6), with probability

approaching 1,

‖IV‖∞,2 = ‖( 1
n
XT
SCXSΣ̂−1SS − ΓT )D̂B̂‖∞,2 =

1

n
‖WTXSΣ̂−1SSD̂B̂‖∞,2

≤ 1

n
‖WTXSΣ̂−1SS‖∞‖D̂B̂‖∞,2 ≤

√
s

n
‖WTXSΣ̂−1SS‖∞,2 ≤

√
4s(s+ 3 log p)

Cminn
� 1.

Combining the above yields ‖Σ̂SCSΣ̂−1SSD̂B̂‖∞,2 ≤ 1− δ/2 with probability

approaching 1, which together with (S2.13) implies (S2.10). �

Theorem 4.5 follows from Lemmas 2, 4, and 5.

Proof of Theorem 4.9

We verify the conditions of Lemma 8.2 of Zhou et al. (2009) under the given

assumptions and in our asymptotic setting with random design. By (S2.1)

and (S2.3), with probability approaching 1,

max
j∈SC

‖X.,j‖2√
n
≤
√

2 +
6 log p

n
, λmin(Σ̂SS) ≥ Cmin

2
. (S2.14)

It remains to verify the weighted incoherency condition (8.4a) of Zhou et al.

(2009). Define Dw,S = diag(w1, . . . , ws) ∈ Rs×s and D−1
w,SC = diag(w−1s+1, . . . , w

−1
p ) ∈

R(s−p)×(s−p) where w−1k = 0 if wk =∞. Then

‖D−1
w,SCXT

SCXS(XT
SXS)−1Dw,S‖∞ ≤

wmax(S)

nwmin(SC)
‖XT

SCXSΣ̂−1SS‖∞ ≤
ρ

n
‖XT

SCXSΣ̂−1SS‖∞.
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Writing XSC = XSΓ + W and applying (4.11) and (S2.6), with probability

approaching 1,

1

n
‖XT

SCXSΣ̂−1SS‖∞ ≤
√
s

n
‖XT

SCXSΣ̂−1SS‖∞,2 ≤
√
s‖ΓT‖∞,2 +

√
s

n
‖WTXSΣ−1SS‖∞,2

≤
√

s

Cmin

+

√
4s(s+ 3 log p)

nCmin

≤
√

s

Cmin

(
1 +

√
12 log p

n
+ o(1)

)
.

Hence under Assumption 4.7, with probability approaching 1,

‖D−1
w,SCXT

SCXS(XT
SXS)−1Dw,S‖∞ ≤ 1− η − o(1) ≤ 1− η/2. (S2.15)

Conditional on X, on the event where (S2.14) and (S2.15) hold, our con-

clusion follows from Lemma 8.2 of Zhou et al. (2009). Then the conclusion

also follows unconditionally.

S2.1 Proofs of supporting lemmas

In this section, we prove Lemmas 1, 2, and 3.

Proof of Lemma 1

Our normalization Σjj = 1 implies ‖X.,j‖22 ∼ χ2
n for each j = 1, . . . , p. We

use the chi-squared tail bound

P [χ2
n > n+ 2

√
nt+ 2t] ≤ exp(−t) (S2.16)

for all t > 0, from Lemma 1 of Laurent and Massart (2000). Then

P [‖X.,j‖22 > 2n+6 log p] ≤ P [‖X.,j‖22 > n+2
√

2n log p+4 log p] ≤ exp(−2 log p),
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S2. PROOF OF THEOREMS 4.5 AND THEOREMS 4.9

and a union bound over j = 1, . . . , p yields (S2.1). Also, P [‖X.,j‖22 > 2n] ≤

exp(−n/8), and as s � n, a union bound over j = 1, . . . , s yields (S2.2).

For (S2.3) and (S2.4),

‖Σ̂−1SS−Σ−1SS‖2 ≤ ‖Σ
−1/2
SS ‖2‖Σ

1/2
SS Σ̂−1SSΣ

1/2
SS−Id‖2‖Σ−1/2SS ‖2 ≤ C−1min‖Σ̃−1SS−Id‖2

where Σ̃SS
L
= n−1ZTZ for Z ∈ Rn×s having i.i.d. standard Gaussian entries.

Corollary 5.35 of Vershynin (2012) implies(
1−
√
s+ log n√

n

)2

≤ λmin(Σ̃SS) ≤ λmax(Σ̃SS) ≤
(

1 +

√
s+ log n√

n

)2

with probability approaching 1. As s� n, this implies for any δ > 0, with

probability approaching 1

‖Σ̃−1SS − Id‖2 ≤ (2 + δ)

(√
s+ log n√

n

)
.

Then (S2.3) follows from ‖Σ̂−1SS‖2 ≤ ‖Σ̂
−1
SS −Σ−1SS‖2 + ‖Σ−1SS‖2 ≤ 2C−1min, and

(S2.4) from

‖Σ̂−1SS‖∞ ≤ ‖Σ̂
−1
SS−Σ−1SS‖∞+‖Σ−1SS‖∞ ≤

√
s‖Σ̂−1SS−Σ−1SS‖2+‖Σ

−1
SS‖∞ ≤

3(s+
√
s log n)

Cmin

√
n

+‖Σ−1SS‖∞.

For the remaining three statements, denote S = diag(σj+1, . . . , σp) ∈

R(p−s)×(p−s), so W = ZS where Z ∈ Rn×(p−s) is independent of XS with

i.i.d. standard Gaussian entries. Denote P = 1√
n
Σ̂
−1/2
SS XT

S , so that PTP is

the projection in Rn onto the column span of XS. With probability 1, this

column span is of rank s, so P is an orthogonal projection from Rn to Rs.
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Applying σj ≤ 1 for each j,

‖Σ̂−1SSXT
SW‖∞,2 =

√
n‖Σ̂−1/2SS PZS‖∞,2 ≤

√
n‖Σ̂−1/2SS PZ‖∞,2.

Conditional on XS, the columns of Σ̂
−1/2
SS PZ are independent and dis-

tributed as N(0, Σ̂−1SS), so each ith row of Σ̂
−1/2
SS PZ consists of independent

Gaussian entries with variance (Σ̂−1SS)ii ≤ ‖Σ̂−1SS‖2. Then by (S2.16),

P [‖(Σ̂−1/2SS PZ)i,.‖22 > 2p‖Σ̂−1SS‖2 | XS] ≤ exp(−p/8),

and (S2.5) follows by taking a union bound over i = 1, . . . , s, recalling s ≤ p,

and applying (S2.3). Similarly, ‖WTXSΣ−1SS‖∞,2 ≤
√
n‖ZTPTΣ

−1/2
SS ‖∞,2,

and conditional on XS each row of ZTPT Σ̂−1SS is distributed as N(0, Σ̂−1SS).

Then (S2.16) implies

P [‖(ZTPT Σ̂
−1/2
SS )j,.‖22 > (2s+ 6 log p)‖Σ̂−1SS‖2 | XS] ≤ exp(−2 log p),

and (S2.3) and a union bound over j = s+ 1, . . . , p yields (S2.6). Finally,

‖WT (Id− 1
n
XSΣ−1SSXT

S )W‖∞,2 ≤ ‖ZT (Id−PTP)Z‖∞,2,

and conditional on XS, ZT (Id − PTP)Z is equal in law to Z̃T Z̃ where

Z̃ ∈ R(n−s)×(p−s) has i.i.d. standard Gaussian entries. Writing ‖Z̃T Z̃‖∞,2 ≤

‖Z̃T‖∞,2‖Z̃‖2, Corollary 5.35 of Vershynin (2012) implies ‖Z̃‖2 ≤
√

2n+
√
p

with probability approaching 1, while (S2.16) implies ‖Z̃‖2∞,2 ≤ 2n+ 6 log p

with probability approaching 1. Then (S2.7) follows from combining these

bounds and observing n log p� np.
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Proof of Lemma 2

Denote by Jeo(B) the objective function in (S2.8) and by Jrestricted(B) the

objective function in (S2.9). (The former is a function of B ∈ Rp×p :

Bii = 0 and the latter of B ∈ Rs×p : Bii = 0.) If XT
SXS is invertible,

then Jrestricted is strictly convex and |Jrestricted(B)| → ∞ as ‖B‖F → ∞,

hence there is a unique solution B̂restricted to (S2.9). Denote by ∂Jeo and

∂Jrestricted the subdifferentials of Jeo and Jrestricted. Note that ‖X −XB‖2F

is differentiable in B and the penalty decomposes across rows of B, hence

∂Jeo(B) = D1(B) × · · · × Dp(B), where Di(B) is the set of vectors of the

form

− 1

n
XT
.,i(X.,−i −XB.,−i) + θn


Bi,−i/‖Bi,−i‖2 Bi,−i 6= 0

{Zi,−i : ‖Zi,−i‖2 ≤ 1} Bi,−i = 0

where X.,−i and B.,−i denote X and B with ith columns removed. Similarly,

∂Jrestricted(B) = D1(B)′× · · · ×Ds(B)′ where Di(B)′ is the set of vectors of

the form

− 1

n
XT
.,i(X.,−i −XSB.,−i) + θn


Bi,−i/‖Bi,−i‖2 Bi,−i 6= 0

{Zi,−i : ‖Zi,−i‖2 ≤ 1} Bi,−i = 0.

As XB̂eo = XSB̂restricted, we have Di(B̂eo) = Di(B̂restricted)′ for each i ∈ S.

By optimality of B̂restricted for (S2.9), 0 ∈ ∂Jrestricted(B̂restricted), hence 0 ∈

13
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∂Di(B̂restricted)′ = Di(B̂eo) for each i ∈ S. On the other hand, condition

(S2.10) implies 0 ∈ ∂Di(B̂eo) for each i ∈ SC . Then 0 ∈ ∂Jeo(B̂eo), so

B̂eo solves (S2.8). In fact, the strict inequality in condition (S2.10) implies

that 0 is in the interior of Di(B̂eo) for each i ∈ SC . If B̃ is any solution

to (S2.9), then Tr DT (B̃ − B̂eo) ≤ 0 for any D ∈ ∂Jeo(B̂eo), which implies

(B̃− B̂eo)i,. = B̃i,. = 0 for all i ∈ SC . As B̂restricted is the unique solution to

(S2.9), this implies B̃ = B̂eo, so B̂eo is the unique solution to (S2.8).

Proof of Lemma 3

Let Di(B̂)′ for i ∈ S be as in the proof of Lemma 2 above. Optimality of

B̂ implies 0 ∈ Di(B̂)′ for each i ∈ S, i.e. for some Z ∈ Z,

0 = − 1

n
XT
.,i(X−XSB̂) + θnZi,. +

1

n
XT
.,i(0, . . . , 0,X.,i −XSB̂.,i, 0, . . . , 0).

Combining this condition across i ∈ S and recalling X = (XS,XSΓ+W) =

(XS,W) + XSB∗,

0 = − 1

n
XT
S (X−XSB̂)+θnZ+

1

n
∆ = − 1

n
XT
S (XS,W)−Σ̂SS(B∗−B̂)+θnZ+

1

n
∆.

The lemma follows by rearranging and substituting the definition of U.
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S3 Comparisons between hubNet and other methods

S3.1 Comparisons of simulation results between hubNet, lasso,

elasticNet and adaptive lasso

We first compare performance under different settings between four meth-

ods: hubNet, lasso, elastic net and the adaptive lasso with weights set to

the inverse absolute values of the univariate regression coefficients.

We experimented with the following four scenarios:

(a) A favorable model:

Y = XSβ + ε, β = 1, ε ∼ N(0, 1)

Xj = XSΓj + εj, j ∈ T, Γij ∼ N(0, 4), εj ∼ N(0, 1)

Xj = εj, j /∈ T, εj ∼ N(0, 1)

The set S contains the first s features, and T contains 20% of the

remaining features. Hence the model (2.6) is correct but with only

20% of non-core features depending on XS.

(b) An adversarial model:

Y = XS1β + ε, β = 1, ε ∼ N(0, 1)

Xj = XS2Γj + εj, j ∈ T, Γij ∼ N(0, 0.25), εj ∼ N(0, 1)

Xj = εj, j /∈ S2 ∪ T
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S2 contains the first s features and T contains 20% of the remaining

features, of which s belong to S1. Hence a core set S2 influences T ,

but Y is explained directly by certain features in T rather than XS2 .

(c) An extreme adversarial model:

Y = XS1β + ε, β = 1, ε ∼ N(0, 1)

Xj = XS2Γj + εj, j /∈ S2, Γij ∼ N(0, 0.25), εj ∼ N(0, 1)

Xj = εj, j ∈ S2

S2 contains the first s features and S1 contains the next s features.

This setup is the same as in (b) above, except T is now the set of all

features outside S2.

(d) A neutral model:

Y = XSβ + ε, β = 1, ε ∼ N(0, 1)

X ∼ N(0,Σ)

S contains the first s features, and Σ is a random positive-definite co-

variance matrix (generated using the R function genPositiveDefMat)

with the ratio of largest to smallest eigenvalue set to 10.

For each scenario, we consider (n, p, s) = (100, 500, 10) and (200, 1000, 20),

and we also scale each feature to have variance 1 before applying each of

16
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the four methods. For hubNet, the edge-out tuning parameter θ is set by

minimizing GCV, and we fix γ = 1/2. For the elastic net, we also fix

α = 1/2. The main tuning parameter λ in all four methods (corresponding

to the tuning parameter for the adaptive lasso step in hubNet) is set by

10-fold cross-validation.

We evaluate performance using the proportion of falsely detected fea-

tures (FP), the proportion of true features that are undetected (FN), the

cross-validation mean square prediction error in the training set (cvm),

mean square prediction error in the test set, and the total number of se-

lected features. A summary of these values averaged across 100 repetitions

of each scenario is presented in Tables 1 to 4, with standard deviations

reported for cvm and test error.

HubNet outperforms the other three methods in scenario (a) as ex-

pected. Perhaps surprisingly, it also seems to outperform the other methods

under scenarios (b) and (d). In the extreme adversarial scenario (c), hub-

Net performs worse than the other methods, although this can be detected

in cross-validation.

In Figure 1 ,we track FP and FN along the solution paths of the various

methods as λ varies. The results are in line with the above.
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Table 1: Comparison of hubNet with other methods in scenario (a)

(n, p, s) = (100, 500, 10)

cvm(se) FN FP features test.error(se)

lasso 1.555(0.297) 0.94 0.98 27.44 1.634(0.313)

elasticNet 1.599(0.298) 0.90 0.97 40.69 1.685(0.317)

adaptiveLasso 1.251(0.21) 0.93 0.97 24.31 1.497(0.268)

hubNet 1.199(0.201) 0.00 0.25 15.55 1.3(0.227)

(n, p, s) = (200, 1000, 20)

cvm(se) FN FP features test.error(se)

lasso 1.55(0.196) 0.94 0.98 58.33 1.631(0.242)

elasticNet 1.564(0.183) 0.91 0.97 72.76 1.638(0.239)

adaptiveLasso 1.279(0.136) 0.94 0.97 36.65 1.421(0.193)

hubNet 1.174(0.12) 0.00 0.19 25.83 1.256(0.153)
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Table 2: Comparison of hubNet with other methods in scenario (b)

(n, p, s) = (100, 500, 10)

cvm(se) FN FP features test.error(se)

lasso 5.479(2.233) 0.03 0.85 66.33 4.588(2.239)

elasticNet 7.017(2.156) 0.05 0.86 72.94 6.14(2.563)

adaptiveLasso 4.878(1.773) 0.16 0.79 41.65 5.867(2.623)

hubNet 3.716(1.405) 0.01 0.77 44.37 3.247(1.394)

(n, p, s) = (200, 1000, 20)

cvm(se) FN FP features test.error(se)

lasso 15.277(4.159) 0.13 0.85 126.80 12.611(5.519)

elasticNet 17.328(3.555) 0.15 0.86 126.91 15.485(4.568)

adaptiveLasso 12.125(2.536) 0.22 0.76 67.57 13.183(3.658)

hubNet 6.685(3.369) 0.02 0.67 61.82 6.011(3.117)
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Table 3: Comparison of hubNet with other methods in scenario (c)

(n, p, s) = (100, 500, 10)

cvm(se) FN FP features test.error(se)

lasso 2.619(0.821) 0.00 0.82 57.68 2.531(0.807)

elasticNet 3.53(1.183) 0.00 0.86 71.89 3.143(0.984)

adaptiveLasso 5.988(1.889) 0.19 0.79 40.86 6.258(2.086)

hubNet 4.815(1.988) 0.08 0.53 19.77 4.751(2.288)

(n, p, s) = (200, 1000, 20)

cvm(se) FN FP features test.error(se)

lasso 2.776(0.525) 0.00 0.77 86.72 2.866(0.642)

elasticNet 3.915(0.809) 0.00 0.80 99.71 3.664(0.877)

adaptiveLasso 13.466(2.344) 0.24 0.80 77.10 13.135(2.883)

hubNet 21.302(4.784) 0.78 0.85 23.26 21.209(5.111)
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Table 4: Comparison of hubNet with other methods in scenario (d)

(n, p, s) = (100, 500, 10)

cvm(se) FN FP features test.error(se)

lasso 2.486(0.515) 0.00 0.80 54.21 2.683(0.779)

elasticNet 3.948(1.111) 0.00 0.85 69.60 3.649(1.323)

adaptiveLasso 2.038(1.632) 0.01 0.70 37.96 3.085(2.723)

hubNet 1.717(0.356) 0.00 0.72 39.00 2.16(0.619)

(n, p, s) = (200, 1000, 20)

cvm(se) FN FP features test.error(se)

lasso 2.38(0.364) 0.00 0.80 104.40 2.668(0.623)

elasticNet 3.374(0.694) 0.00 0.84 126.78 3.317(0.889)

adaptiveLasso 3.475(1.825) 0.02 0.49 41.74 4.615(2.687)

hubNet 1.647(0.207) 0.00 0.69 66.77 2.137(0.416)
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Figure 1: False positive and false negative paths under four generating models.
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Table 5: Comparisons between hubNet , PCR and sparse PCR on two real data sets.

cvm(se) Num. features test error

Kidney Cancer Data hubNet 9.98(0.40) 1 0.008

p = 14814 PCR 11.1(0.33) 10 0.36

ntrain = 88, ntest = 89 SPCR(10 non-zeros) 10.3(0.60) 7 0.456

SPCR(50 non-zeros) 10.1(0.40) 1 0.564

SPCR(100 non-zeros) 10.0(0.40) 1 0.137

cvm(se) Num. features test p-value

DLBCL-patient Data hubNet 10.9(0.36) 21 0.020

p = 7399 PCR 11.1(0.33) 0 –

ntrain = 156, ntest = 79 SPCR(10 non-zeros) 11.01(0.40) 18 0.738

SPCR(50 non-zeros) 11.06(0.35) 7 0.829

SPCR(100 non-zeros) 11.07(0.26) 1 0.473

S3.2 Comparisons of hubNet, PC regression and sparse PC re-

gression on real datasets

The comparisons between hubNet, PCR and sparse PCR are summarized

in Table 5, and plots of test p-values versus number of non-zero features

are given in Figures 2 and 3. The model trained using hubNet has much

better performance on the test data set, and it uses original features which

are easier to interpret and validate.
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Figure 2: p-values of LR statistics for B-cell lymphoma dataset
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Figure 3: p-values of LR statistics for Kidney cancer dataset
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S4 Recovery of hub nodes and speed comparisons

In this section, we compare the edge-out method with the hglasso method

of Tan et al. (2014) in terms of computational speed and recovery of the

underlying hub structure. We also compare the edge-out procedure with

individual lasso regressions to show that the grouped `2 penalty can signif-

icantly improve the identification of hub predictors.

We generate X according to three settings:

1. For a core set S of size s, let A ∈ {0, 1}p×p have all diagonal entries 1,

all entries in row i and column i equal to 1 for all i ∈ S, and remaining

entries 0. Define

E =


0 Aij = 0

Unif([−0.15,−0.015] ∪ [0.015, 0.15]) otherwise,

Ē = 1
2
(E + ET ), and Σ−1 = Ē + (0.2 − λmin(Ē))Id, and generate the

rows of X from N(0,Σ).

2. For two predictor sets S1 and S2 of sizes s/2, let

A =

A1 0

0 A2
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with A1,A2 generated as above with core sets S1, S2. Construct X

from A in the same way as above.

3. For a core set S of size s, generate Γ ∈ Rs×(p−s) with i.i.d. entries

distributed as N(0, 4) truncated above and below at ±2. Then gen-

erate each row Xi,. of X such that Xij ∼ N(0, 1) for j ∈ S and

Xij = Xi,SΓ.,j + εij for j /∈ S and εij ∼ N(0, 1).

In each setting, we re-standardize the predictors to have variance 1.

We set (n, p, s) = (100, 200, 4) and compare edge-out and hglasso by

the number of correctly identified hub nodes as well as their corresponding

absolute row sums in the estimated matrix. (This matrix is B̂eo for edge-

out and V̂T in the hglasso decomposition Σ−1 = Z + V + VT where Z is

sparse and VT has few non-zero rows.) Edge-out was applied with only the

`2 penalty (eol2) or with γ = 0.5 (eol12), and hglasso with λ1 = 1000 and

λ2 = 0.2 or 0.5. Results are shown in Figure 4: the left column of the figure

tracks the number of correctly identified hubs as the main tuning parameter

(θ for edge-out and λ3 for hglasso) varies, while the right column tracks the

maximum rank of any hub node when all nodes are ranked in decreasing

order of their absolute row sums. (A maximum rank of 4 indicates that all

four hub nodes have larger absolute row sums than all remaining nodes.)

We observe that both variants of edge-out perform well in all three settings;
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hglasso performs well in settings 1 and 3 for λ2 = 0.2 but not for setting 2

under the tested tuning parameters.
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Figure 4: Comparison of hub detection accuracy of edge-out and hglasso, by inclusion of hub

predictors on the left and ranking of hub predictors on the right, as the number of total included

predictors increases.

Figure 5 compares the speed of these two methods, with one of n, p
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fixed while the other grows. We see that the edge-out algorithm is much

faster and appears to scale quadratically in p and linearly in n.
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Figure 5: Speed comparisons. In the top row we compare the computation times for the hglasso

and edge-out algorithms, as the number of predictors increases, for sparse and dense problems.

The bottom row examines just edge-out, with n or p fixed, for larger problems. We were not

able to run hglasso in these latter settings.

Next, we increase the number of hub predictors s to 10, and we compare

edge-out with and without the `1 penalty to individual lasso regressions

(corresponding to the special case of edge-out with γ = 1).
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S4. RECOVERY OF HUB NODES AND SPEED COMPARISONS
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Figure 6: Comparison of hub detection accuracy of edge-out with γ = 0 (only `2 penalty),

γ = 1/2 (combined `1 and `2 penalty), and γ = 1 (individual lasso regressions), using the same

metrics as in Figure 4.

Performance is significantly better in all three examples when we include

the `2 or grouped lasso penalty in edge-out, rather than using only the lasso

penalty. Performance of edge-out with and without the `1 penalty is similar
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in the first and second examples, as the hub predictors have varying levels

of influence on the other predictors, and many of these influences are small.

In contrast, inclusion of the `1 penalty in the third example yields worse

performance, because the hub predictors in this example have a strong

influence on all of the non-hub predictors.
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