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S1 Lemmas

Lemma 1. LHD-based block bootstrap mean is unbiased, i.e.,

E∗N,ω(ȳ∗N) = ȳn.

Proof of Lemma 1: Since the data points are equally distributed over all

the blocks, we have E∗N,ω(ȳ∗N) = m−d
∑

i1,...,id
ȳi1,...,id = ȳn.2

Lemma 2. Let ȳi = 1
Bn(i)

∑
xs∈Bn(i) ys, ∀i = (i1, . . . , id). Assuming (A.1),

(A.2) and m = o(n1/d), we have

n

m2d

∑
i1,...,id

(ȳi1,...,id − µ)2 − τ 2
n

P−→ 0,

where τ 2
n = 1

n

∑n
s,t=1Cov(Ys(xs), Yt(xt)).
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Proof of Lemma 2: Let An = n
m2d

∑
i1,...,id

(ȳi1,...,id − µ)2. We can show

that Cov(An, An) = 0 and E(An) = τ 2
n.

Cov(An, An) = Cov(
n

m2d

∑
i1,...,id

(ȳi1,...,id − µ)2,
n

m2d

∑
i1,...,id

(ȳi1,...,id − µ)2)

=
1

n2

∑
i

∑
xs1 ,xs2 ,xt1

,xt2
∈Bn(i)

Cov{(ys1 − µ)(ys2 − µ), (yt1 − µ)(yt2 − µ)}

+
1

n2

∑
i6=j

∑
xs1 ,xs2∈Bn(i)

∑
xt1

,xt2
∈Bn(j)

Cov{(ys1 − µ)(ys2 − µ), (yt1 − µ)(yt2 − µ)}

By expanding two terms above separately, we have Cov(An, An) = O( 1
n

+

md

n
)→ 0 as m = o(n1/d). In addition, we have

E(An)− τ 2
n =

1

n

∑
i 6=j

∑
xs∈Bn(i),xt∈Bn(j)

σ2ψ(y(xs), y(xt)) = o(1)

Thus, An − τ 2
n

P−→ 0. 2

Lemma 3. Assume (A.1)- (A.2), then

nτ ∗N
2/md−1 − τ 2

n
P−→ 0,

where τ ∗N
2 = Cov∗N,ω(ȳ∗N , ȳ

∗
N).

Proof of Lemma 3: Based on the definition of nτ ∗N
2/md−1, we have

nτ ∗N
2/md−1 = n

mdCov
∗
N,ω(ȳi∗1 , ȳi∗1) + 2n(m−1)

md Cov∗N,ω(ȳi∗1 , ȳi∗2).

For the first term on the right, we have

n

md
Cov∗N,ω(ȳi∗1 , ȳi∗1) =

n

m2d

∑
i1,...,id

(ȳi1,...,id − µ)2 − n

md
(ȳn − µ)2 = An −Bn.

By Lemma 2, we have An − τ 2
n

P−→ 0. For Bn = n
md (ȳn − µ)2, by the

central limit theorem for ȳn, we have Bn
P−→ 0. Next, it suffices to show
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that n(m−1)
md Cov∗N,ω(ȳi∗1 , ȳi∗2) converges to 0 in probability under P . The

following double summation
∑

i1,...,jd,j1,...,jd
are taken over i = (i1, . . . , id)

and j = (j1, . . . , jd) such that Bn(i) and Bn(j) are not equal and are selected

together.

n(m− 1)

md
Cov∗N,ω(ȳi∗1 , ȳi∗2) =

n(m− 1)

m2d

1

md − 1− d(m− 1)

∑
i 6=j

(ȳi − µ)(ȳj − µ)

+
n(m− 1)

md
[1− 2md

m{md − 1− d(m− 1)}
](ȳn − µ)2

= Cn +Dn.

Similar to An and Bn, we can show that Cn
P−→ 0 and Dn

P−→ 0. The

result follows immediately. 2

Lemma 4. Under (A.1)-(A.3), for each φ ∈ Θ,

lim
n→∞

P

[
P ∗N,ω

(
|N−1

N∑
s=1

q∗s(·, ω,φ) +N−1r∗N(·, ω,φ)

−n−1

n∑
s=1

qs(ω,φ)− n−1rn(ω,φ)| > δ
)
> ξ

]
= 0.

Proof of Lemma 4: Rewrite the bootstrapped likelihood function as

I1 + I2 + I3, where I1 = N−1
∑N

s=1{q∗s(·, ω,φ)−E∗q∗s(·, ω,φ)},

I2 = {N−1
∑N

s=1E
∗q∗s(·, ω,φ)− n−1

∑n
s=1 qs(ω,φ)}, I3 = N−1r∗N(·, ω,φ)−

n−1rn(ω,φ). By Lemma 3, I2 ≡ 0. For I3, it can be shown that n−1rn(ω,φ)→

0 in P and N−1r∗N(·, ω,φ)→ 0, prob-P ∗N,ω prob-P . For notation simplicity,

we omit θ in the following discussion. The expectation and variance of
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n−1rn(ω,φ) are:

|E{n−1rn(ω,φ)}|

≤ 1

2nσ2(1 + g)
λmax(En)λmax(D−1

n ) + | log{1 + λnmax(En)|D−1
n }|

= o(1)

and

V ar(n−1rn(ω,φ)) ≤ 1

4(1 + g)2σ4n2
V ar{

n∑
i=1

(
n∑
j=1

uijεj)
2}

≤ cn
4(1 + g)2σ4n2

n∑
i=1

n∑
j=1

V ar(ε2
j) = o(1)

where εj is the ith entry of D−1
n (yn−Xnβ) and ui = (uij) is the ith row of

Un; cn = maxi{
∑n

j=1 u
2
ij}.

In addition, as λmax(E∗N) ≤ λmax(En) and λmax(D∗N
−1) ≤ λmax(D−1

n ),

we have

1

2σ2(1 + g∗)
(y∗N −X∗Nβ)TD∗N

−1E∗ND
∗
N
−1(y∗N −X∗Nβ)

≤ 1

2σ2
λmax(En)λmax(D−1

n )‖y∗N −X∗Nβ‖2
2.

According to Lemma 6 below, we have N−1‖y∗N − X∗Nβ‖2
2 − n−1‖yn −

Xnβ‖2
2 → 0 prob-P ∗N,ω prob-P . Similarly, we can bound log |IN+U∗N

TD∗N
−1U∗N |.

As λmax(En)→ 0, we have 1
N
r∗N(·, ω,φ)→ 0, prob-P ∗N,ω prob-P .

So when n is sufficiently large, we only need to show that limn→∞ P
[
P ∗N,ω(|I1| >
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δ) > ξ
]

= 0. By Chebyshev’s inequality,

P ∗N,ω(|I1| > δ) ≤ 1

δ2
V ar∗N,ω(q̄∗N(·, ω,φ)).

By Lemma 1, r−1V ar∗N,ω(q̄∗N(·, ω,φ)) = Op(1), together with the fact that

N = n/md−1 ,

P
[
P ∗N,ω(|I1| > δ) > ξ

]
≤ P

[ n

md−1

1

δ2
V ar∗N,ω(q̄∗N(·, ω,φ)) > ξ

n

md−1

]
= O(m2d−2/n2)→ 0.

2

The next lemma further extends Lemma 4 to the uniform weak law of

large numbers for the LHD-based block bootstrap likelihood functions.

Lemma 5. (Uniform Weak Law of Large Numbers) Under (A.1)-(A.5), ∀

δ, ξ > 0,

lim
n→∞

P

[
P ∗N,ω(sup

φ∈Θ
|N−1

N∑
s=1

q∗s (·, ω,φ) +N−1r∗N (·, ω,φ)

−n−1
n∑

s=1

qs(ω,φ)− n−1rn(ω,φ)| > δ) > ξ

]
= 0.

Proof of Lemma 5: By Lemma 4, |n−1rn(ω,φ)−N−1r∗N(·, ω,φ)| can be

arbitrarily small as n is large enough uniformly over Θ. We only need to

show that

lim
n→∞

P
[
P ∗N,ω(sup

φ∈Θ
|N−1

N∑
s=1

q∗s(·, ω,φ)− n−1

n∑
s=1

qs(ω,φ)| > δ) > ξ
]

= 0.

Given ε > 0 that will be selected later, let {η(φj, ε), j = 1, . . . , K} be a
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finite cover of Θ, where η(φi, ε) = {φ ∈ Θ : |φ− φj| < ε}. Then

sup
φ
|N−1

N∑
s=1

q∗s(·, ω,φ)− n−1

n∑
s=1

qs(ω,φ)|

=
K

max
j=1

sup
φ∈η(φj ,ε)

|q̄∗N(·, ω,φ)− q̄n(ω,φ)|.

It follows that ∀ δ > 0 with fixed ω,

PN,ω
(

sup
φ∈Θ
|q̄∗N(·, ω,φ)− q̄n(ω,φ)| > δ

)
≤

K∑
j=1

PN,ω
(

sup
φ∈η(φj ,ε)

|q̄∗N(·, ω,φ)− q̄n(ω,φ)| > δ
)
.

For ∀ φ ∈ η(φj, ε), by Global Lipschitz condition,

|q̄∗N(·, ω,φ)− q̄n(ω,φ)| ≤ |q̄∗N(·, ω,φj)− q̄n(ω,φi)|+N−1

N∑
s=1

L∗sε+ n−1

n∑
s=1

Lsε,

where L∗s is the bootstrapped Lispchitz coefficient.

By Markov inequality and the fact that supn{n−1
∑n

s=1ELs} = O(1),

we have P (n−1
∑n

s=1 Ls > δ/3) ≤ 3ε∆/δ ≤ ξ/3, where ∆ is a large constant.

If we choose ε < ξδ/(9∆), we have

P
[
P ∗N,ω( sup

φ∈η(φj ,ε)

|q̄∗N(·, ω,φ)− q̄n(ω,φ)| > δ) > ξ
]

≤ P
[
P ∗N,ω(|q̄∗N(·, ω,φj)− q̄n(ω,φj)| > δ) > ξ/3

]
+P
[
P ∗N,ω(N−1

N∑
s=1

L∗sε > δ/3) > ξ/3
]

+ P [n−1

n∑
s=1

Lsε > δ/3]

= I1 + I2 + I3.

According to Lemma 4, I1 ≤ ξ/3 when n is large enough. By Markov’s



S2. CONSISTENCY OF THE LHD-BASED BLOCK BOOTSTRAP MEAN

inequality,

P ∗N,ω(N−1

N∑
s=1

L∗sε > δ/3) ≤ N−1

N∑
s=1

E∗L∗s/(δ/3ε) = n−1

n∑
s=1

Ls/(δ/3ε).

The last equality is because of Lemma 1. Thus, I2 < ξ/3 as well as I3. 2

S2 Consistency of the LHD-based block bootstrap

mean

Before studying the asymptotic performance of MLEs, we first focus on

understanding properties of the LHD-based block bootstrap mean, which

is an important foundation to the theoretical development of φ̂
∗
N later.

The LHD-based block bootstrap can be formulated mathematically as

follows. Given the underlying probability space (Ω,F , P ) of a Gaussian

process, a sample of size n with settings x1(ω), ...,xn(ω) and responses

y(x)’s are observed from a given realization ω ∈ Ω. Let (Λ,G) be a

measurable space on the realization. For each ω ∈ Ω, denote P ∗N,ω as

the probability measure induced by the m-run LHD-based block boot-

strap on (Λ,G). The proposed bootstrap is a method to generate new

dataset on (Λ,G, P ∗N,ω) conditional on the n original observations. Let

τt : Λ → {1, ..., n} denote a random index generated by the LHD-based

block bootstrap. So, τt is the tth index in the intersect index of observa-
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tions and {Bn(i∗1), ...,Bn(i∗m)}, where (i∗1, ..., i
∗
m) is a randomly generated

m-run LHD. Therefore, for (λ, ω) ∈ Λ × Ω, we have the tth bootstrap

sample: x∗t (λ, ω) ≡ xτt(λ)(ω).

Suppose {Y (xt), t ∈ R} follows a GP with mean µ. Given n observa-

tions, the sample estimation of mean µ is

ȳn =
1

n

n∑
s=1

ys,

and the LHD-based block bootstrap mean with N samples is given by

ȳ∗N =
1

N

N∑
s=1

y∗s .

With a slight abuse of notation, we replace the notation of random variable

Y by its realization y unless otherwise specified. The following lemma shows

the asymptotic consistency of the LHD-based block bootstrap mean.

Lemma 6. Under (A.1)-(A.2), if m→∞ and m = o(n1/d), then

sup
x
|P ∗N,ω(

√
n/md−1(ȳ∗N − ȳn)/τn ≤ x)− P (

√
n(ȳn − µ)/τn ≤ x)| P−→ 0,

when n −→∞.

Note thatE(·) andCov(·, ·) denote the expectation and variance under

P whileE∗N,ω(·) andCov∗N,ω(·, ·) denote the expectation and variance under

P ∗N,ω.

Proof of Lemma 6: It suffices to show that (1) E∗N,ω(ȳ∗N) = ȳn; (2)

nτ ∗N
2/md−1 − τ 2

n
P−→ 0; and (3) supx |P ∗N,ω((ȳ∗N − E∗N,ω(ȳ∗N))/τ ∗N ≤ x) −
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Φ(x)| P−→ 0, where Φ(· ) denotes standard normal distribution function and

τ ∗N
2 = Cov∗N,ω(ȳ∗N , ȳ

∗
N).

Lemmas 1 and 3 imply the results in (1) and (2). Note that ȳ∗N =

1
m

∑m
j=1 ȳi∗j and (ȳi∗1 , . . . , ȳi∗m) follows Latin Hypercube sampling distribu-

tion. According to Loh (1996), we have the Berry-Essen type of bound for

Latin Hypercube sampling

sup
x
|P ∗N,ω((ȳ∗N − ȳn)/τ ∗N ≤ x)− Φ(x)| ≤ c∗m−1/2,

where c∗ is a constant that depends only on d, given E∗N,ω‖ȳi∗1‖
3 < ∞. So

we only need to show that E∗N,ω‖ȳi∗1‖
3 is bounded uniformly in probabil-

ity under P . Since E∗N,ω‖ȳi1‖3 = 1
md

∑
i ȳ

3
i and according to Minkowski’s

inequality, it follows that

1

md

∑
i

E{ȳ3
i} ≤

1

md

∑
i

1

|Bn(i)|3
{
∑

xs∈Bn(i)

E(ys)}3 <∞.

2

S3 Proof of Theorem 1

To investigate the asymptotic properties of the estimators from LHD-based

block bootstrap, we decompose the likelihood function into blocks. For

each block, denote yi = (ys(xs),xs ∈ Bn(i)), Xi = (xs,xs ∈ Bn(i))T ,

Ri,j(θ)=
[
ψ(y(xs), y(xt);θ), xs ∈ Bn(i),xt ∈ Bn(j)

]
and zi = R

−1/2
i,i (θ)(yi−
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Xiβ). Then, we can rewrite the penalized log-likelihood function n−1`(Xn,yn,φ)

as

Qn(Xn,yn,φ) = −(2nσ2)−1
∑n

s=1 z
2
s − (2n)−1

∑n
s=1 log(λs)

−(2n)−1
∑n

s=1 log(σ2) + n−1rn(Xn,yn,φ)

−
∑p

s=1 pλ(|βs|)

= n−1
∑n

s=1 qs(ω,φ) + n−1rn(ω,φ)−
∑p

s=1 pλ(|βs|)
(S3.1)

where {λs, s = 1, . . . , n} = {eigenvalues of |Ri,i(θ)|, i = (i1, . . . , id)} with

(i1, . . . , id) in lexicographical order and eigenvalues from the largest to the

smallest. Note that rn(ω,φ) = `(Xn,yn,φ) −
∑n

s=1 qs(zs,φ) contains all

terms involving the off block-diagonal terms. Define Dn(θ) = diag(Ri,i(θ))

and En(θ) = Rn(θ)−Dn(θ). Assuming that En(θ) = Un(θ)UT
n (θ), we have

rn(ω,φ) =
1

2σ2(1 + g)
(yn −Xnβ)TD−1

n (θ)En(θ)D−1
n (θ)(yn −Xnβ)

+
1

2
log |In + UT

n (θ)D−1
n (θ)Un(θ)|,

where g = trace(En(θ)D−1
n (θ)).

The MLE is obtained by φ̂n = arg maxφQn(Xn,yn,φ). Analogue to

the decomposition for Qn(Xn,yn,φ), the log-likelihood function for LHD-
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based block bootstrap samples can be written as

Q∗N(X∗N ,y
∗
N ,φ) = N−1

N∑
s=1

q∗s(·, ω,φ) +N−1r∗N(·, ω,φ)

−
p∑
s=1

pλ(|βs|) (S3.2)

where r∗N(·, ω,φ) contains all terms involving the off block-diagonal terms

with bootstrapped samples. Specifically,

r∗N(·, ω,φ)

=
1

2σ2(1 + g∗)
(y∗N −X∗Nβ)TD∗N

−1(θ)E∗N(θ)D∗N
−1(θ)(y∗N −X∗Nβ)

+
1

2
log |IN + U∗N

T (θ)D∗N
−1(θ)U∗N(θ)|,

where D∗N(θ) = diag(Ri∗j ,i∗j (θ), j = 1, . . . ,m) and E∗N(θ) = R∗N(θ)−D∗N(θ)

with E∗N(θ) = U∗N(θ)U∗N
T (θ); g∗ = trace(E∗N(θ)D∗N

−1(θ)). The boot-

strapped version of φ̂n is φ̂
∗
N = arg maxφQ

∗
N(X∗N ,y

∗
N ,φ). Theoretical

properties of the LHD-based block bootstrap likelihood function (S3.2) are

established in lemmas 4 and 5, which leads to a proof of convergence proper-

ties of the bootstrap estimator φ̂
∗
N . Lemma 4 first established the pointwise

weak law of large numbers for the LHD-based block bootstrap likelihood

functions. Lemma 5 further extends Lemma 4 to the uniform weak law of

large numbers for the LHD-based block bootstrap likelihood functions.
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Proof of Theorem 1: Based on Lemma 5, we have

lim
n→∞

P [P ∗N,w(sup
φ∈Θ
|Qn −Q∗N | > δ) > ξ] = 0,

where Qn and Q∗N are given in (S3.1) and (S3.2). With the full preparation

of the likelihood convergence developed in Lemmas 4 and 5, the convergence

of bootstrap parameter estimation follows immediately given the existence

of φ̂n and φ̂
∗
N .

Denote q̄∗N(·, ω,φ) = N−1
∑N

i=1 q
∗
i (·, ω,φ) and q̄n(ω,φ) = n−1

∑n
i=1 qi(ω,φ).

By (A.6), q∗s(·, ω, ·) : Λ×Θ→ R and r∗N(·, ω, ·) : Λ×Θ→ R are measurable-

G for each φ ∈ Θ. In addition, q∗s(λ, ω, ·) and r∗N(λ, ω, ·) are continuous on

Θ for all λ. Thus, we have φ̂
∗
N(·, ω) exists as a measurable-G function by

Jennrich (1969).

Following the procedure in Goncalves and White (2004), for any sub-

sequence {n′}, given that φ̂n′ is identifiable and unique, there exists a fur-

ther subsequence {n′′} such that φ̂n′′ is identifiably unique with respect

to {Qn′′} for all ω ∈ F in some F ∈ F with P (F ) = 1. By condi-

tion (A.6), there exists G ∈ F with P (G) = 1 such that for all ω ∈ G,

{Q∗N ′′(·, ω,φ)} (N ′′ is corresponding bootstrapped sample size of n′′) is a

sequence of random function on (Λ,G, P ∗N,ω) continuous on Θ for all λ ∈ Λ.

Hence, by White (1996), for fixed ω ∈ G, there exists φ̂
∗
N ′′(·, ω) : Λ → Θ

measurable-G and φ̂
∗
N ′′(·, ω) = arg maxφQ

∗
N ′′(·, ω,φ). By the uniform weak
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law of large numbers for Q∗N(X∗N ,y
∗
N ,φ) obtained from Lemma 5, we

have Q∗N ′′(·, ω,φ) − Qn′′(ω,φ) → 0 as n′′ → ∞ prob − P ∗N,ω prob − P

uniformly on Θ, where we write Q̂∗N → 0 prob − P ∗N,ω, prob − P if, for

any ε > 0 and δ > 0, limn→∞ P{P ∗N,ω(|Q̂∗N > ε| > δ)} = 0 and omit

prob−P ∗N,ω, prob−P in the text for notation simplicity. Hence, there exists

a further subsequence {n′′′} such that Q∗N ′′′(·, ω,φ) − Qn′′′(ω,φ) → 0 as

n′′ → ∞ prob − P ∗N,ω prob − P for all ω in some H ∈ F with P (H) = 1.

Choose ω ∈ F ∩ G ∩ H, by White (1996), we have φ̂
∗
N ′′′ − φ̂n′′′ → 0 as

n′′′ →∞ prob−P ∗N,ω prob−P . Since this is true for any subsequence {n′},

we have P (F ∩ G ∩ H) = 1. Thus, φ̂
∗
N − φ̂n → 0 prob − P ∗N,ω, prob − P .

Then φ̂N = 1
K

∑K
i=1 φ̂

∗
N(i)− φ̂n → 0 prob− P ∗N,ω, prob− P . 2

S4 Proof of Theorem 2

Proof. Define B = V ar{n−1/2
∑n

s=1∇qs(·, ω,φ0)}. We first show that√
n/md−1B−1/2∇Q∗N(·, ω, φ̂n)→ N(0, I). Denote h̄∗N(φ) = N−1

∑N
s=1∇q∗s(z∗s ,φ)
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and h̄n(φ) = n−1
∑n

s=1∇qs(zs,φ). We have

√
n/md−1[h̄∗N(φ̂n)− h̄n(φ̂n)] =

√
n/md−1[h̄∗N(φ̂n)− h̄∗N(φ0)]

+
√
n/md−1[h̄∗N(φ0)− h̄n(φ0)]

+
√
n/md−1[h̄n(φ0)− h̄n(φ̂n)]

= J1 + J2 + J3.

Since h̄n and h̄∗N are functions whose secondary derivative are continuous,

J1 + J3 → 0 as φ̂n−φ0 → 0 by Theorem 3.1 in Chu (2011). Moreover, the

two terms in J2 are both evaluated at φ0 which is a fixed value, then by

Lemma 6, we have B−1/2J2 → N(0, I).

By condition (A.10) and follow a similar proof as Lemma 5, we have

∇2Q∗N(·, ω,φ)−∇2Qn(ω,φ)→ 0 prob− P ∗N,ω, prob− P.

Let Ĥn(ω) = ∇2Qn(ω, φ̂n). According to White (1996), given the result

φ̂
∗
N − φ̂n → 0 prob− P ∗N,ω, prob− P and assumption (A.8), we have

√
N(φ̂

∗
N − φ̂n) = −Ĥ−1

n (ω)
√
N∇Q∗N(·, ω, φ̂n) + oP ∗N,ω

(1)

= −Hn(φ0)−1(ω)
√
N∇Q∗N(·ω, φ̂n) + oP ∗N,ω

(1).

Given the fact that

√
n/md−1B−1/2∇Q∗N(·, ω, φ̂n)→ N(0, I) prob− P ∗N,ω, prob− P.
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we have

B−1/2Hn(φ0)
√
N(φ̂

∗
N − φ̂n)→ N(0, I).

For β10, B and H can be written as J(β10) and J(β10) +G(β10). For β̂
∗
N,1,

we have

√
N [J(β10) + G(β10)]{β̂

∗
N,1 − β̂n,1} → N(0, J(β10)).

For sub-bagging estimator β̂N,1 =
∑K

i=1 β̂
∗
N,1(i), we have

√
KN [J(β10) + G(β10)]{β̂N,1 − β̂n,1} → N(0, J(β10)),

then the result follows.

S5 Proof of Theorem 3

Using the same technique before, we decompose the log-likelihood by blocks

and rewrite the likelihood of β based on the OSE approach as follows:

Qn(β) = n−1

n∑
s=1

qs(ω,β, θ̂
(0)

n , σ̂2
n

(0)
) + n−1rn(ω,β, θ̂

(0)

n σ̂2
n

(0)
)

−
p∑
j=1

p′λ(|β̂
(0)
j |)|βj|.
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The likelihood based on subsampled data can be written as:

Q∗N(β) = N−1

N∑
s=1

q∗s(ω,β, θ̂
∗(0)

N , σ̂2
N

∗(0)
) +N−1r∗N(ω,β, θ̂

∗(0)

N , σ̂2
N

∗(0)
)

−
p∑
j=1

p′λ(β̂
∗(0)
j |)|βj|.

By the fact that φ̂
∗
N − φ̂n → 0 and the results in Lemma 2, Lemma 3 and

Lemma 6 still hold, we have φ̂
∗
N,OSE − φ̂n,OSE → 0. Then follows the same

technique in the proof of Theorem 2, the result follows.


